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Balanced ellipsoidal vortex equilibria in a
background shear flow at finite Rossby number
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We consider a uniform ellipsoid of potential vorticity (PV), where we exploit analytical
solutions derived for a balanced model at the second order in the Rossby number, the
next order to quasi-geostrophic (QG) theory, the so-called QG+1 model. We consider this
vortex in the presence of an external background shear flow, acting as a proxy for the
effect of external vortices. For the QG model the system depends on four parameters, the
height-to-width aspect ratio of the vortex, h/r, as well as three parameters characterising
the background flow, the strain rate, γ , the ratio of the background rotation rate to the
strain, β, and the angle from which the flow is applied, θ . However, the QG+1 model also
depends on the PV, as well as the Prandtl ratio, f /N (f and N are the Coriolis and buoyancy
frequencies, respectively). For QG and QG+1 we determine equilibria for different values
of the background flow parameters for increasing values of the imposed strain rate up to
the critical strain rate, γc, beyond which equilibria do not exist. We also compute the linear
stability of this vortex to second-order modes, determining the marginal strain γm at which
ellipsoidal instability erupts. The results show that for QG+1 the most resilient cyclonic
ellipsoids are slightly prolate, while anticyclonic ellipsoids tend to be more oblate. The
highest values of γm occur as β → 1. For large values of f /N, changes in the marginal
strain rates occur, stabilising anticyclonic ellipsoids while destabilising cyclonic ellipsoids.

Key words: vortex dynamics,rotating flows,stratified flows

1. Introduction

Observations of the Earth’s oceans reveal the presence of a wealth of coherent structures,
collectively known as vortices. These energetic structures, exist not only at the surface
(Chelton, Schlax & Samelson 2011), but are also found within the ocean interior (Assassi
et al. 2016; Furey et al. 2018; Yang et al. 2019) and play a role in driving the ocean
general circulation (Rhines 1986; McWilliams 2008). They can occur at many different
scales, and can exist for long periods of time (Armi et al. 1989). They are distinctly
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characterised by the direction of their rotation, cyclonic (anticlockwise in the Northern
Hemisphere) or anticyclonic (clockwise), and can travel over long distances, sometimes
transporting various physical and biological properties to very different surroundings
(Dong et al. 2014). Commonly observed examples are salt ‘meddies’, vortices which form
in the Mediterranean as they pass into the Atlantic ocean, where their high salt content
relative to the ambient waters of the Atlantic, make them more easy to detect and track
(Paillet et al. 2002; Bashmachnikov et al. 2015).

In order to better understand ocean vortices and their typical characteristics
many idealised studies have been undertaken. One such model chosen to represent
three-dimensional (3-D) coherent structures is that of the isolated ellipsoid of uniform
potential vorticity, first considered for a quasi-geostrophic flow (Zhmur & Pankratov 1989;
Zhmur & Shchepetkin 1991; Meacham 1992). The quasi-geostrophic (QG) model is the
simplest 3-D model for intermediate to large scale flows that incorporates two important
features underpinning geophysical flows: the effects of the Earth’s rotation and density
stratification. In this model, the fluid flow is completely determined by a single materially
conserved scalar quantity, the potential vorticity (PV), and has an analytical solution for
the case of an isolated uniform ellipsoid of PV. Further studies considered the impact
of other vortices through a background external strain and shear flow (Meacham et al.
1994; Hashimoto, Shimonishi & Miyazaki 1999; Miyazaki, Ueno & Shimonishi 1999;
McKiver & Dritschel 2003; Reinaud, Dritschel & Koudella 2003; McKiver & Dritschel
2006; Koshel, Ryzhov & Zhmur 2013), obtaining equilibrium states and performing linear
stability analysis of these equilibrium states (see McKiver (2015) for a review). Although
it is an idealised model, the work of Reinaud et al. (2003) in particular shows that it can
provide insights into the dynamics seen in complicated QG turbulence. They conducted a
high resolution QG simulation with hundreds of vortices over long times and found that
the most typical shape characteristics of the vortices tended to be slightly oblate (where
the height is scaled by f /N, where f and N are the Coriolis and Buoyancy frequencies,
respectively) with a mean height-to-width aspect ratio of 0.8f /N, which corresponded to
the shape of typical equilibria found from the ellipsoidal model.

While QG dynamics can provide insights into geophysical flows, it is only the first order
(in the Rossby number) in a hierarchy of ‘balance’ models (Ford, McIntyre & Norton
2000), based on scaling capturing the separation in time scales between slow PV-based
motions and fast wave motions. While these ‘balanced’ models are a reduction of the
full equations that filter the fast oscillations, such as inertia–gravity waves, they have
been shown to accurately capture geophysical turbulence up to Rossby numbers (based
on PV) of order one (Dritschel & Viúdez 2007; McKiver & Dritschel 2008; Dritschel &
McKiver 2015; Tsang & Dritschel 2015). One important feature which the QG model does
not capture is the asymmetry between cyclonic and anticyclonic vortices, as a result of
the Earth’s rotation. This asymmetry, only starts to appear in the equations at the next
order to QG in the Rossby number, what can be referred to as QG+1 (Muraki, Snyder &
Rotunno 1999). Recently, the case of an isolated uniform PV ellipsoid have been solved
analytically for the QG+1 equations (McKiver & Dritschel 2016; McKiver 2020). These
solutions applied to an isolated ellipsoidal vortex, while giving some insight into what are
the characteristics of an individual vortex that are intrinsically more stable, they do not tell
us about the more complex interactions between multiple vortices.

In this work we will attempt to move towards the multi-vortex case, exploiting the
solutions of McKiver (2020) and extending them to the case where an external linear
shear flow is applied to the ellipsoid, to determine a family of equilibria over a range of
the relevant model parameters. For QG, this model depends on four parameters: the height
to width aspect ratio of the vortex, h/r, and three parameters characterising the shear flow.
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However, at the next order, two more parameters enter, the PV itself (both magnitude
and sign) and the Prandtl ratio defined as f /N. The existence of equilibria in this model
depends on the background flow strain rate, which represents the strain exerted on a vortex
by surrounding vortices. The magnitude of this strain scales with the inverse cube of the
separation distance between vortices. At some critical value of the strain the vortex will
begin to deform significantly, and will undergo a strong interaction. In this model the onset
of strong interactions is represented by the critical turning point strain rate, beyond which
equilibria do not exist. How this critical strain changes over the parameter space gives
an understanding of what vortex characteristics are most resilient to the influence of the
background shear flow. As well as determining the equilibria over the parameter space, we
will determine their linear stability to ellipsoidal modes, i.e. modes that change the shape
of the vortex while keeping its ellipsoidal form.

In § 2.1 and § 2.2 we summarise the balance model used and the solution for an ellipsoid
of uniform PV up to second order in the Rossby number. We then show in § 2.3 the
methods for determining equilibria, followed in § 2.4 with a summary of the method for
solving for the ellipsoidal stability modes. In § 3 we present the results comparing the QG
case with the cyclonic and anticyclonic cases at the next order (QG+1). In § 4 we discuss
the results and draw our conclusions.

2. Problem formulation

2.1. Nonlinear quasi-geostrophic balance model
Here, we review the equations for the nonlinear quasi-geostrophic (NQG) balance model
originally derived in McKiver & Dritschel (2008), and specifically, the analytical solutions
obtained for the case of an ellipsoid of uniform PV anomaly derived in McKiver (2020).
The equations for the NQG balance model are based on a rewriting of the non-hydrostatic
Oderdeck–Boussinesq equations introduced by Dritschel & Viúdez (2003) where the
equations of motion are expressed in terms of three prognostic variables, the potential
vorticity, � , and the horizontal components of the dimensionless ageostrophic horizontal
vorticity, i.e.

A ≡ (A,B,C) = ω/f + ∇b/f 2, (2.1)

where ω is the relative vorticity and b is the buoyancy. This choice of variables
essentially reflects the balanced part of the flow and the departure from thermal-wind
(geostrophic–hydrostatic) balance. From this model McKiver & Dritschel (2008) derived
a set of balance equations by performing an expansion in the PV-based Rossby number,
ε = |� |max, up to second order. This balanced model, known as the nonlinear QG balance,
filters the fast inertia–gravity waves, keeping only the dynamics that depends on the PV,
its evolution being governed by its material conservation, i.e.

D�
Dt

≡ ∂�

∂t
+ u · ∇� = 0, (2.2)

where u = (u, v,w) is the 3-D velocity field. This velocity field can be expressed in terms
of a vector potential, ϕ ≡ (ϕ, ψ, φ),

u = −f ∇ × ϕ, (2.3)

where the vector potential can be solved through an inversion problem at different orders in
the Rossby number (McKiver & Dritschel 2008). At first order we have the QG equations

∇2φ(1) = �, (2.4)
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where bracketed superscripts on field variables only denote order in Rossby number (note
ϕ(1) = ψ(1) = 0). Note here the vertical coordinate z is stretched by χ = N/f , the inverse
of the Prandtl ratio. At the next order O(ε2) we have the QG+1 equations

∇2ϕ(2) = (2/χ)(φ(1)yy φ
(1)
zx − φ(1)yz φ

(1)
xy ), (2.5a)

∇2ψ(2) = (2/χ)(φ(1)xx φ
(1)
yz − φ(1)zx φ

(1)
xy ), (2.5b)

∇2φ(2) = |∇φ(1)z |2 − (∇2φ(1))φ(1)zz , (2.5c)

where subscripts x, y and z on fields denote partial differentiation.

2.2. Ellipsoidal vortex in a linear background flow
Here, we consider the above balanced equations for the case of a single ellipsoid of uniform
PV centred at the origin in the presence of a linear background shear flow. The shape of the
ellipsoid is specified by its axis half-lengths a, b, c, and the unit vectors â = (â1, â2, â3),
b̂ = (b̂1, b̂2, b̂3) and ĉ = (ĉ1, ĉ2, ĉ3) directed along these axes. Taking the approach of
McKiver & Dritschel (2003), we consider the motion to be composed of two parts: (i) that
due to the vortex itself and (ii) that due to external vortices. When the external flow field
depends linearly on spatial coordinates, i.e. u = Sx, then the equation of motion for the
ellipsoid can be written as (McKiver & Dritschel 2003)

dB
dt

= SB + BST, (2.6)

where B and S are 3 × 3 matrices. The matrix B defines the shape and orientation of the
vortex (the ‘shape’ matrix) and is given by

B = MEMT, (2.7)

where M is a rotation matrix defined by

M = (â b̂ ĉ), (2.8)

and where the superscript T denotes transpose, and the matrix E is a diagonal matrix

E =
⎛
⎝a2 0 0

0 b2 0
0 0 c2

⎞
⎠ . (2.9)

We refer to S as the ‘flow’ matrix and it is composed of two parts S = Sv + Sb, the
self-induced motion, Sv , and the motion induced by the external background vortices, Sb.

The self-induced motion of the vortex is obtained through the solutions of the equations
above, where the QG O(ε) solution is obtained by inverting equation (2.4) giving
(Meacham 1992)

φ(1)v = 1
2 xTΦ(1)

v x, (2.10)

where κv = �abc/3 is the vortex strength and Φ
(1)
v is a 3 × 3 symmetric matrix

Φ(1)
v = MDMT, (2.11)

where the matrix D is a diagonal matrix with

D11 = ξa = κvRD(b2, c2, a2), (2.12a)

D22 = ξb = κvRD(c2, a2, b2), (2.12b)

D33 = ξc = κvRD(a2, b2, c2), (2.12c)
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and where RD is the elliptic integral of the second kind (Carlson 1965) given by

RD( f , g, h) ≡ 3
2

∫ ∞

0

dt√
(t + f )(t + g)(t + h)3

. (2.13)

The solution at the next order, O(ε2), is obtained by solving the QG+1 equations (2.5)
whose solutions are (McKiver 2020)

ϕ(2)v = 1
2 xTΓ (2)

v x, Γ (2)
v ≡ 1

χ
MH3MT, (2.14a)

ψ(2)v = 1
2 xTΨ (2)

v x, Ψ (2)
v ≡ 1

χ
MH5MT, (2.14b)

φ(2)v = 1
2 xTΦ(2)

v x, Φ(2)
v ≡ −MH6MT, (2.14c)

where Hn are 3 × 3 symmetric matrices whose elements are given by

Hk
11 = (Ωab +Ωca)ξaâTJ kâ + (ξa −Ωab)ξbb̂TJ kb̂ + (ξa −Ωca)ξcĉTJ kĉ, (2.15a)

Hk
22 = (Ωbc +Ωab)ξbb̂TJ kb̂ + (ξb −Ωbc)ξcĉTJ kĉ + (ξb −Ωab)ξaâTJ kâ, (2.15b)

Hk
33 = (Ωca +Ωbc)ξcĉTJ kĉ + (ξc −Ωca)ξaâTJ kâ + (ξc −Ωbc)ξbb̂TJ kb̂, (2.15c)

Hk
12 = [ξaξb −Ωab(ξa + ξb)]âTJ kb̂, (2.15d)

Hk
31 = [ξcξa −Ωca(ξc + ξa)]ĉTJ kâ, (2.15e)

Hk
23 = [ξbξc −Ωbc(ξb + ξc)]b̂TJ kĉ, (2.15f )

where

Ωab ≡ a2ξa − b2ξb

a2 − b2 , (2.16a)

Ωca ≡ c2ξc − a2ξa

c2 − a2 , (2.16b)

Ωbc ≡ b2ξb − c2ξc

b2 − c2 , (2.16c)

and where the matrices J k are

J 1 =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ , J 2 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , J 3 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , (2.17a)

J 4 =
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ , J 5 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , J 6 =

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠ . (2.17b)

As the interior potentials at first and second order have a quadratic dependence on spatial
coordinates, the self-induced velocity field is linear and preserves the ellipsoidal form.
Thus, the self-induced velocity field has the form uv = Svx, where the self-induced flow
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κb

κv

θ

η
ĉ

b̂

z

R

y

Figure 1. Schematic of the ellipsoidal vortex of strength κv whose axes of length a, b and c are directed along
the unit vectors â, b̂ and ĉ respectively, in the presence of background flow induced by a vortex at a distance R
and of strength κb. The vortex equilibria are tilted about the x-axis by an angle η while θ is the angle between
the two vortices. Note â is parallel to the x-axis which is directed out of the page in this perspective.

matrix Sv is given by

Sv = LϕΓ (2)
v + LψΨ (2)

v + Lφ(Φ(1)
v + Φ(2)

v ), (2.18)

where the skew matrices are defined as

Lϕ =
⎛
⎝0 0 0

0 0 −χ
0 1 0

⎞
⎠ , Lψ =

⎛
⎝ 0 0 χ

0 0 0
−1 0 0

⎞
⎠ , Lφ =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ , (2.19)

and where the scaling factor χ = N/f arises where the velocity field depends on z
derivatives of the vector potential components.

For the background flow field we follow the treatment of McKiver & Dritschel (2003)
where they consider the effect of a single distant vortex of strength κb, located at x = X b,
at a distance R from the ellipsoidal vortex of strength κv located at x = X v (see figure 1).
To leading order these vortices appear as points, with no shape or internal structure, and
rotate about each other at a rate of

Ω = κv + κb

R3 . (2.20)

If we consider a frame of reference rotating with the z-axis passing through the joint centre
of the two vortices, and assuming the original vortex is located at the origin, then in the
vicinity of the origin the background streamfunction at the QG order is

φ
(1)
b = −κb

R
+ 1

2
xTΦ

(1)
b x + O(κb|x|3/R4), (2.21)

where the matrix Φ
(1)
b is given by

Φ
(1)
b = κb

R5

⎛
⎝R2 − 3X2

b −3XbYb −3XbZb
−3XbYb R2 − 3Y2

b −3YbZb
−3XbZb −3YbZb R2 − 3Z2

b

⎞
⎠−

⎛
⎝Ω 0 0

0 Ω 0
0 0 0

⎞
⎠ . (2.22)
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Thus the QG background flow matrix can be obtained using S(1)b = LφΦ
(1)
b and can be

written in the form (McKiver & Dritschel 2003)

S(1)b = γ

⎛
⎝ 0 1

2 (1 + 3 cos 2θ)+ β 3
2 sin 2θ

1 − β 0 0
0 0 0

⎞
⎠ , (2.23)

where γ is ‘the strain rate’ defined as

γ ≡ κb/R3, (2.24)

and

β ≡ Ω/γ = (κb + κv)/κb, (2.25)

is a parameter depending only the ratio of the vortex strengths and θ is the angle of
the vortices in the y − z plane (figure 1). For the case of a cyclonic (anticyclonic) vortex
� > 0 (� < 0), implying that κv > 0 (κv < 0) and γ > 0 (γ < 0). Thus, as was noted in
Reinaud et al. (2003), for both the cyclonic and anticyclonic vortices, when β < 1 we have
opposite-signed interactions, while for β > 1 we have like-signed interactions. The case
where β = 1 implies |κb/κv| → ∞, corresponding to the special cases of adverse shear
for γ > 0 and cooperative shear for γ < 0. In what follows we only consider the case of
adverse shear when β = 1.

The background flow fields at the next order can be computed using (2.21) in the QG+1
equations, and solving to obtain

S(2)b = γ 2

⎛
⎝ 0 −1

3 [5 − 2β − 3(1 − 2β) cos 2θ ] 0
1
3 [5 − 2β − 3(1 − 2β) cos 2θ ] 0 0

2
χ
(1 − β2) sin 2θ 0 0

⎞
⎠ .

(2.26)

These terms are weak relative to the QG terms, depending on the strain rate squared.
However, the term in the third row of S(2)b matrix, while small, can induce motions which
have a dependence on the Prandtl ratio f /N. Generally, elements on the third row of the
background flow matrix can induce vertical motions, although for the form used here and
for the parameters explored in this work we find no such motions, with the B33 element
remaining constant over long time integrations, preserving the height of the vortex as
it evolves as is the case for QG flow. This allows us to specify the vortex in terms of
its height-to-width aspect ratio, generally defined as h/r = √

4π/3VB3/4
33 (Reinaud et al.

2003), where V is the volume of the ellipsoid. Note, in the case of the upright ellipsoid
h/r = c/

√
ab.

This model is governed by the evolution equation (2.6), with the self-induced flow
matrix, Sv , given by (2.18), and the background flow matrix, Sb = S(1)b + S(2)b given by
(2.23) and (2.26). At first order (QG) this system depends on 4 parameters, h/r, β, θ and
γ . However, at the next order (QG+1), there is also a dependence on the PV anomaly �
and the Prandtl ratio f /N.
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2.3. Vortex equilibria
Giving the equations governing the evolution of an ellipsoidal vortex one can then
determine equilibrium vortices from (2.6), where they satisfy

SB + BST = 0. (2.27)

This equation is solved numerically using an iterative linear method introduced by Reinaud
et al. (2003). This uses an initial guess for the matrix B (usually a vortex having circular
horizontal cross-section aligned with the coordinate axes) and uses the linearised form of
(2.27) to obtain the next iteration. Equation (2.27) cannot be inverted directly, instead one
equation must be removed and conservation of volume enforced to close the equations.
The iterative process is repeated until the difference between the elements of the matrix B
at successive iterations is less than 10−10. If we find that the difference between iterations
is greater than 1 or if we exceed 10 000 iterations, then the procedure is stopped and we
assume there is no steady state for the particular parameters considered.

For a set of specified parameter values (�, f /N, h/r, β, θ) this procedure is first applied
for the smallest value of the strain rate, |γ | = 10−5, and once the equilibrium is found the
strain rate is incremented by dγ = 10−5, and the procedure is repeated until we reach a
critical turning point strain, γc, i.e. the strain value beyond which there are no more steady
states.

2.4. Linear stability analysis
Once we have determined the equilibria we can solve for the linear stability of these
equilibria to ellipsoidal modes, i.e. the m = 2 mode, which corresponds to a change of
vortex shape that preserves its ellipsoidal form, using the method derived in McKiver &
Dritschel (2006). To derive the linear stability they consider an infinitesimal perturbation
to the equilibrium, defined by the shape matrix Be, i.e.

B(t) = Be + B
′
(t). (2.28)

One can then rewrite the shape matrix as

B =
6∑

k=1

J kBk, (2.29)

and then using this and applying a Taylor expansion about the equilibrium the self-induced
flow matrix is

Sv(B) = Sv(Be)+
6∑

k=1

B
′k ∂Sv
∂Bk

∣∣∣∣
B=Be

. (2.30)

Then taking the perturbation to be B
′ = B̂eσ t the linear stability can be written as an

eigenvalue problem

T B̂ = σ B̂, (2.31)

where T is a 6 × 6 matrix defined by

T k1 = Ck
11, T k2 = Ck

12, T k3 = Ck
13, (2.32a)

T k4 = Ck
22, T k5 = Ck

23, T k6 = Ck
33, (2.32b)
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where Ck are six 3 × 3 matrices defined by

Ck = ∂Sv
∂Bk

∣∣∣∣
B=Be

Be + SJ k + J kST + Be
∂ST

v

∂Bk

∣∣∣∣
B=Be

. (2.33)

The matrices, Ck, can be determined using a known formula for the derivative of the
self-induced flow matrix with respect to Bk (see Appendix A). The eigenvectors and
eigenvalues of (2.31) correspond to the ellipsoidal disturbances and their growth rates,
respectively. This problem can be solved using standard matrix solver methods. The real
and imaginary parts of the eigenvalue σ (= σr + iσi) correspond to the growth rate and
frequency, respectively. The equilibrium is unstable if there exists an eigenvalue with a
positive real part, i.e. σr > 0, otherwise it is neutrally stable (σr = 0).

3. Results

We compute the equilibria and their linear stability to ellipsoidal modes for a range
of parameter values. We will first consider the dependence on the background flow
parameters β and θ , and the aspect ratio h/r, while fixing the values of the magnitude
of the PV anomaly to 0.5, and the Prandtl ratio to f /N = 0.1, values typical of oceanic
vortices. For the other parameters we consider both oblate and prolate vortices, with
the oblate cases having aspect ratios given by h/r = k/10, where k = 1, 2, . . . , 10, while
for the prolate case h/r = 10/k, where k = 1, 2, . . . , 9. For each aspect ratio, we have
considered both opposite-signed interactions for −4 ≤ β < 1 and like-signed interactions
for 1 ≤ β ≤ 6, with increments Δβ = 0.2. For each value of β we consider the angle of
incidence 0 ◦ ≤ θ < 90◦ in increments Δθ = 4◦. We will then examine the dependence on
the PV� and the Prandtl ratio f /N, parameters that, unlike in the QG case, have an impact
on the equilibria and stability at the next order. For all parameters selected we compute
the first-order QG cases, as well as the QG+1 cyclonic (� > 0) and anticyclonic (� < 0)
cases.

In figure 2 we show two examples of the growth rates as a function of the magnitude
of strain rate for different parameter values, and for the QG (black dotted line), QG+1
cyclonic (thin blue line with pluses) and QG+1 anticyclonic (thin red line with dots)
modes. We define the margin of stability, γm, as the place where the instability erupts.
In general, this is different for the QG, QG+1 cyclonic and QG+1 anticyclonic equilibria,
the magnitude of each we will refer to as γ qg

m , γ cy
m and γ ac

m , respectively. Similarly, we will
define the magnitude of the critical turning point strain rate for QG, QG+1 cyclonic and
QG+1 anticyclonic equilibria as γ qg

c , γ cy
c and γ ac

c , respectively. For the opposite-signed
interaction shown in figure 2(a), γ cy

m < γ ac
m ≈ γ

qg
m , implying that the cyclonic case is the

most unstable, with the anticyclonic and QG cases being slightly more stable. While for
the like-signed case shown in figure 2(b) γ ac

m < γ
qg
m < γ

cy
m with the anticyclonic mode

erupting first, while the cyclonic case is more stable than the QG case.
In figure 3 we show some examples of the equilibria at the critical turning point for

QG+1 cyclonic and anticyclonic prolate vortices with h/r = 2.5 and β = 1. As a result
of the form of the background shear flow, the ellipsoid equilibrium axes are always
either aligned with the coordinate axes or else tilted by an angle η about the x-axis (see
general configuration in figure 1). When θ = 0◦ the ellipsoidal axes are aligned with the
coordinate axes, but as θ increases the equilibria tilt with respect to the coordinate axes.
The anticyclonic equilibria are seemingly more tilted than the cyclonic ones. In figure 4
we make contour plots of the tilt angle η(h/r, θ) for the QG, QG+1 cyclonic and QG+1
anticyclonic cases at the critical turning point γc, for β = 1. For all cases when the shear
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Figure 2. Plot of the growth rates as a function of the magnitude of the strain rate for QG (black solid line),
QG+1 cyclonic (thin blue line with pluses) and QG+1 anticyclonic (thin red line with dots) with (a) h/r = 1.25,
β = −1, θ = 28◦, (b) h/r = 2.5, β = 2, θ = 0◦.
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Figure 3. The ellipsoidal equilibria at the critical turning point for h/r = 2.5, β = 1 and for different values
of the angle θ . The top row shows the QG+1 cyclonic cases and the bottom row shows the QG+1 anticyclonic
cases.

angle θ = 0◦ the ellipsoid axes are aligned with the coordinate axes. While oblate vortices
are only slightly tilted for all values of θ , the tilt angle for prolate vortices increases sharply
with increasing θ . Comparing the QG and QG+1 cases reveals that the QG+1 anticyclonic
equilibria are generally more tilted than the QG equilibria, which in turn are more tilted
than the cyclonic equilibria.

3.1. Opposite-signed interactions (β < 1)
Here, we present the results for opposite-signed interactions (β < 1). We begin by
analysing how the turning point and marginal ellipsoidal instabilities are affected by
changes in the parameters β, θ and h/r, while keeping PV and the Prandtl ratio fixed with
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Figure 4. Contour maps of the tilt angle η(h/r, θ) for equilibria at the critical turning point γ = γc with β = 1
and showing (a) QG (black solid line) and QG+1 cyclonic (blue dashed) and (b) QG (black solid) and QG+1
anticyclonic (red dotted). The minimum and maximum contour values displayed are 0◦ and 40◦ respectively,
and the contour interval is 10◦. The contour corresponding to η = 0◦ lies along the axis θ = 0◦, and thus cannot
be seen. The η = 40◦ contour level is indicated.

|� | = 0.5 and f /N = 0.1, respectively. In figure 5 we show contour plots of |γm(β, θ)| and
|γc(β, θ)| for QG and QG+1 cyclonic (a,c,e,g,i) and QG and QG+1 anticyclonic (b,d, f,h, j)
cases and for different height-to-width aspect ratios. Notably, in all cases the magnitude of
the marginal and turning point strain values increase as β → 1, implying that interactions
between vortices of extremely different strengths are least destructive. For the most oblate
case (h/r = 0.4) there are no ellipsoidal instabilities before the critical turning point.
Instabilities erupt as the aspect ratio increases for a certain range of parameter space, with
generally the gap between |γm| and |γc| increasing with the aspect ratio. The occurrence of
a marginal instability before the critical turning point strain coincides with the appearance
of a kink in the curves for certain aspect ratios (for h/r ≥ 0.8). This kink occurs when the
matrix components B11 = B22, i.e. when the principal axes a and b of the ellipsoid switch,
as has been previously seen for the QG case in McKiver & Dritschel (2006).

For oblate vortices up to h/r = 1, γ ac
c > γ

cy
c . This is the case also for prolate vortices,

for values of θ below a certain value. However, for large θ , the prolate cyclones are more
stable than the anticyclones. For the most oblate case, h/r = 0.4, the marginal strain
increases with θ . For h/r = 0.8, where the kink appears in the curves, the marginal and
turning point strains decrease with increasing θ (i.e. the troughs in the curves as a function
of θ ). The range of θ values where this occurs increases with increasing aspect ratio.
Let us refer to the angle which corresponds to the minimum absolute value of marginal
strain as θm. This is the vertical offset angle which is the most destructive. For h/r = 0.4,
θ

qg
m = θ

cy
m = θac

m = 0◦. While this is also the case for QG and QG+1 cyclonic equilibria
with h/r = 0.8, for QG+1 anticyclones θm ≈ 75◦. For h/r = 1, θcy

m = 0, while θqg
m and θac

m
are between 65◦ and 70◦. At higher aspect ratios θm > 50◦ for all cases, with generally
θ

cy
m ≤ θ

qg
m ≤ θac

m .
To determine what aspect ratio is most stable we will use the mean inverse strain rate as

introduced by Reinaud et al. (2003) where

λc = 2
π

∫ π/2

0
λc(θ) dθ, (3.1)
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Figure 5. Contour plots of the magnitude of marginal and turning point strain rates as a function of β and θ in
the case of opposite-signed interactions (β < 1) and for QG and QG+1 cyclonic (a,c,e,g,i) and QG and QG+1
anticyclonic (b,d, f,h,j), with γ qg

c (black thick solid), γ qg
m (black dotted), γ cy

c (blue thin solid), γ cy
m (blue dashed),

γ ac
c (red thin solid) and γ ac

m (red dashed). The two smallest contour values are indicated, with the maximum
contour value being 0.1, and the contour interval is 0.005 for all plots.
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Figure 6. Plots of the critical turning point and marginal average inverse strain rates, λc in (a) and (b), λm
in (c) and (d) as a function of the aspect ratio h/r in the case of opposite-signed interactions (β < 1) for QG
and QG+1 cyclonic (a,c) and QG and QG+1 anticyclonic (b,d). The QG values are depicted with thick solid
curves, while the QG+1 cyclonic and anticyclonic values are depicted with dashed blue and dashed red curves
respectively. The 5 curves shown are for β = −4,−3,−2,−1, 0 with the β = −4 and β = 0 curves indicated.
The minimum of each curve is indicated with black triangles (QG), blue crosses (QG+1 cyclonic) and red
crosses (QG+1 anticyclonic).

where λc is the inverse of the critical strain rate. Similarly, we can define this also for the
marginal strain

λm = 2
π

∫ π/2

0
λm(θ) dθ, (3.2)

where now λm is the inverse of the marginal strain rate. As the value of θ in a turbulent flow
varies randomly, the average of the inverse strain rate acts as a measure of the robustness
of a family of vortices, with the parameters with the smallest value of λc being the most
robust. In figure 6 we show the marginal and critical average strain rates for the QG and
QG+1 cyclonic and anticyclonic cases. The most robust QG equilibria tend to have aspect
ratios slightly greater than 1.0, as was found by Reinaud et al. (2003). The QG+1 cyclonic
equilibria have higher aspect ratios, of around 1.25, shifting to above 1.4 for increasing β.
On the other hand, the anticyclonic equilibria tend to be shorter, with aspect ratios of 1.
When we look at the marginal average inverse strain, all the most stable aspect ratios are
reduced, with QG centred at h/r = 1, while the cyclonic and anticyclonic ones are just
above and below that, respectively.
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Now we look at how the equilibria are affected by changes in the PV anomaly, or in
other words the PV-based Rossby number. In figure 7 we consider the case β = 0, i.e.
equal and opposite interactions (κb = −κv), where we plot the magnitude of the marginal
and turning point strain rates vs the potential vorticity for oblate (a,c,e) and prolate (b,d, f )
equilibria with h/r = 0.6 and h/r = 1.67, respectively, each for three different values of
the angle θ . As the magnitude of the PV increases the magnitude of the marginal and
turning point strain increases, i.e. the stronger the PV the more the vortex is able to resist
the effect of the background flow. However, the behaviour is not the same for the QG and
QG+1 cases. The QG lines are symmetric about the zero PV value, reflecting the fact that
cyclonic and anticyclonic vortices behave the same at first order in the Rossby number.
For low values of |� |, less than approximately 0.25, QG+1 is similar to QG. However, an
asymmetry between cyclonic and anticyclonic equilibria appears at the next order as the
magnitude of the PV gets higher. The dependence of γm and γc on h/r and θ corresponds
with what was already seen in figure 5, with oblate ellipsoids having γm = γc, while for
prolate ellipsoids there is a gap between γm and γc for certain θ values (figure 7b,d).
However, for the anticyclonic prolate ellipsoids, the gap between γm and γc increases as
|� | increases. This can lead to the anticyclonic equilibria becoming more unstable than
the cyclonic case as |� | increases, whereas generally when there is no marginal instability
before the turning point the cyclonic equilibria are more unstable than the anticyclonic
ones.

We now examine the impact of the Prandtl ratio f /N on the marginal and turning point
strain. Here, we have computed equilibria and their stability for the range 0 < f /N ≤ 1
in increments of 0.05, while keeping the magnitude of the PV fixed at |� | = 0.5. We do
this for a selection of the background flow parameters: h/r = 0.6, 1.67 and θ = 30◦, 60◦.
Note, we do not consider θ = 0◦ as the only terms in the background flow matrix, (2.26),
where f /N = 1/χ appears depend on the sine of θ . In figure 8 we show results for β = 0.
At first order there is no dependence on f /N, although we include the QG case in the
figures to provide a comparison with the next order. At the next order, changes in f /N can
influence the marginal and critical strain, although generally only weakly. For the oblate
cases (figure 8a,c), increasing f /N increases the cyclonic critical strain, while decreasing
the anticyclonic strain, however these changes in the critical strain are very weak. For
θ = 60◦ an instability in the anticyclonic equilibria appears, with the margin of instability
decreasing more significantly as f /N → 1, although remaining greater than the QG critical
strain value. For the prolate cases (figure 8b,d) there is very different behaviour depending
on the angle θ . For θ = 30◦ we have a similar weak change in the critical strain, but now
there is instability before the turning point for both cyclonic and anticyclonic equilibria.
For θ = 60◦ the dependence on f /N is far more dramatic, with a situation where the
changes in f /N results in a cross-over of the γ cy

c and γ ac
c curves, with cyclonic vortices

being more stable than anticyclonic eddies for small values of f /N, but becoming more
unstable above a certain threshold (f /N ≈ 0.7).

3.2. Like-signed interactions (β ≥ 1)
We now turn to the case of like-signed vortex interactions, first considering the dependence
on β, θ and h/r, while keeping PV and the Prandtl ratio fixed with |� | = 0.5 and
f /N = 0.1, respectively. In figure 9 we show contour plots of |γm(β, θ)| and |γc(β, θ)|
in the case of like-signed interactions, comparing QG with QG+1 cyclonic (a,c,e,g,i) and
QG with QG+1 anticyclonic (b,d, f,h, j) for a few different height-to-width aspect ratios.
For all cases there appears to be no ellipsoidal instabilities before the critical turning
point. In fact, these do occur, but only for θ = 0◦, as has been seen before for the QG
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Figure 7. Plot of the magnitude of the marginal and turning point strain rates as a function of the PV anomaly
� for an oblate (a,c,e) and prolate (b,d, f ) ellipsoid with h/r = 0.6 and h/r = 1.67, respectively, and for θ = 0◦

(a,b), θ = 30◦ (c,d) and θ = 60◦ (e, f ). The curves shown represent γ qg
c (black solid line), γ qg

m (black dashed
line), γ cy

c (blue solid line), γ cy
m (blue pluses), γ ac

c (red solid line) and γ ac
m (red dots).

case (McKiver & Dritschel 2006). As is the case for opposite-signed interactions the
critical strain rates increase as β → 1. For oblate vortices (h/r ≤ 1) γ cy

c < γ
qg
c < γ ac

c ,
with cyclonic equilibria more unstable than anticyclonic ones. The aspect ratio h/r = 1.25
seems to be a threshold with γ cy

c ≈ γ
qg
c ≈ γ ac

c , beyond which anticyclonic vortices are
more unstable than cyclonic ones. For h/r = 0.4 the critical and marginal strain rates
increase with increasing θ , while for higher aspect ratios there are intermediate values of
θ for which the vortex is more unstable, appearing as troughs in the curves as a function
of θ . These minimum strain values usually occur for θ between 20◦ and 30◦ for both QG
and QG+1 models, and like the case of opposite-signed interactions θcy

m ≤ θ
qg
m ≤ θac

m for
oblate vortices. However, for prolate vortices (h/r ≥ 1.25), θcy

m ≈ θac
m .
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Figure 8. Plot of the magnitude of the marginal and turning point strain rates as a function of f /N for an
oblate (a,c) and prolate (b,d) ellipsoid with h/r = 0.6 and h/r = 1.67, respectively, and for θ = 30◦ (a,b) and
θ = 60◦ (c,d). The curves shown represent γ qg

c (black solid line), γ qg
m (black dashed line), γ cy

c (blue solid line),
γ

cy
m (blue pluses), γ ac

c (red solid line) and γ ac
m (red dots).

As was done for the opposite-signed interactions, here, we compute the average inverse
critical strain rates to see what aspect ratios are most resilient in like-signed interactions
(figure 10). Note, for like-signed interactions this is the same as the average marginal
inverse strain rate as γm = γc. As observed by Reinaud et al. (2003), QG vortices tend to
be slightly oblate, with an aspect ratio of 0.8f /N as β → 1. At the next order, anticyclonic
vortices are even more oblate (h/r ≈ 0.7f /N) for β = 1, while cyclonic vortices have a
higher aspect ratio, approaching unity (h/r ≈ f /N).

Next, we show the dependence on the anomalous PV. In figure 11 we consider the
case β = 2, i.e. equal interactions (κb = κv), where we plot the marginal and turning
point strain vs � for the case of an oblate and prolate vortex with h/r = 0.6 and
h/r = 1.67, respectively, and for three different values of the angle θ . Like the case
of opposite-signed interactions, as |� | increases the magnitude of the marginal and
critical strain increases. For the case of oblate vortices the anticyclonic equilibria become
more stable while the cyclonic equilibria become more unstable as |� | increases.
Conversely, for prolate vortices, the cyclonic equilibria become more stable while the
anticyclonic equilibria become more unstable as |� | increases. The only case where
marginal instability occurs before the critical turning point is for the prolate vortex with
θ = 0◦. As was seen for the opposite-signed interaction for the anticyclonic equilibria the
gap between marginal and critical strain increases with |� |, leading to the anticyclonic
equilibria becoming more unstable than the cyclonic one. Overall, the magnitude of the
critical strain values for like-signed interactions are much smaller than the values for the
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Figure 9. As in figure 5 but now for the case of like-signed interactions (β ≥ 1). The two smallest contour
values are indicated, with the maximum contour value being 0.1, and the contour interval is 0.005 for all plots.
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Figure 10. Plots of the critical turning point average inverse strain rates λc as a function of the aspect
ratio h/r in the case of like-signed interactions (β ≥ 1) for QG and QG+1 cyclonic (a) and QG and QG+1
anticyclonic (b). The 6 curves shown are for β = 1, 2, 3, 4, 5, 6 with β = 1 and β = 6 indicated. The minimum
of each curve is indicated with black triangles (QG), blue crosses (QG+1 cyclonic) and red crosses (QG+1
anticyclonic).

opposite-signed interactions seen in figure 7, implying that the like-signed interactions are
more destructive.

In figure 12 we show the marginal and critical strain as a function of f /N for the
case β = 2. For the oblate cases (figure 12a,c) γ ac

c > γ
cy
c , but increases in f /N leads to

increases in the gap between the turning point of the cyclonic and anticyclonic vortices, i,e.
stabilising anticyclones while destabilising cyclones. For the prolate cases (figure 12b,d),
we see a cross-over of γ cy

m and γ ac
m curves, with cyclonic vortices being more stable than

anticyclonic vortices for small values of f /N, but becoming more unstable above a certain
threshold. This threshold is affected by the offset angle θ , moving from f /N ≈ 0.65 for
θ = 30◦ to f /N ≈ 0.55 for θ = 60◦. Overall increases in f /N act to stabilise anticyclonic
ellipsoids, while destabilising cyclonic ones. The location of this cross-over is linked to
the tilt angle of the equilibria, with the cyclonic equilibria becoming more unstable when
their tilt angle is greater than the tilt angle of the anticyclonic equilibria.

4. Discussion and conclusions

Here, we presented results for the equilibria of an ellipsoidal vortex in a background shear
flow at the next order to QG. These results give a glimpse of the characteristics of vortices
that are most resistant to the influence of their surroundings at finite Rossby number.

Considering first the impact of the background flow parameter β defined in (2.25) as the
ratio of vortex strengths, we found that for both QG+1 cyclones and anticyclones the most
stable equilibria occur as β → 1. This is what has been previously found for QG (Reinaud
et al. 2003; McKiver & Dritschel 2006) and implies that interactions between vortices of
very different strengths (β = 1) are the most stable.

Next, considering the parameter θ , we find that when there is vertical shear (θ > 0◦)
prolate equilibria are tilted about the x-axis with respect to the vertical, with anticyclonic
equilibria more tilted than cyclonic ones. The value of θ for which |γ | is minimum
indicates the offset angle which is most destructive. We have found that generally this
offset angle tends to be greater for anticyclonic equilibria than cyclonic ones. This reflects
the findings of Reinaud & Dritschel (2018), where they analysed the merger of two
corotating vortices at finite Rossby number and found that nearly aligned cyclones tend
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Figure 11. As in figure 7 but now for like-signed interactions with β = 2.

to merge from further apart than anticyclones, while vertically offset anticyclones merge
from further apart than cyclones.

In general, we have found that the most resilient cyclonic vortices are slightly prolate,
while anticyclonic vortices tend to be more oblate (where the height is scaled by f /N),
with respect to the QG equivalent cases. This tendency increases with the Rossby number.
Previous studies based on QG theory had already established that QG vortices tend to
be oblate, due to the fact that vertical shear is more destabilising than horizontal shear
(Reinaud & Dritschel 2002; Reinaud et al. 2003). The work of Graves, McWilliams &
Montgomery (2006) considering gradient-wind balance in the shallow water equations
studied the impact of a straining flow on cyclonic and anticyclonic vortices at finite Rossby
number, finding that strain weakens cyclonic vortices significantly more than anticyclonic
vortices at higher Rossby numbers. The work by Reinaud & Dritschel (2018) considering
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Figure 12. As in figure 8 but now for like-signed interactions with β = 2.

two vortex merger for the full 3-D non-hydrostatic equations also finds that cyclonic
vortices are more susceptible to horizontal strain than anticyclonic vortices, but also finds
that anticyclonic vortices are more adversely affected by vertical shear given that vertically
offset anticyclones merge from further apart than cyclones. These previous studies all point
to the fact that the most resilient anticyclonic vortices must adopt a more oblate shape to
resist the impact of vertical shear, while cyclonic vortices must reduce the impact of strain
by in turn reducing their mean horizontal radius, becoming more prolate, as is found in this
work. These findings also agree qualitatively with other theoretical and modelling studies
(Hassanzadeh, Marcus & Le Gal 2012; Damien et al. 2017; Lemasquerier et al. 2020; Xu
et al. 2020) and observations of subsurface vortices (Bosse et al. 2016; Dilmahamod et al.
2018). Further observational studies would be needed to comprehensively catalogue the
typical size, shape and orientation of subsurface cyclonic and anticyclonic eddies.

We also examined the dependence of the equilibria on the Prandtl ratio f /N. We found
that, for prolate vortices, increasing f /N can change from a regime where cyclones are
more stable, to one where anticyclones are. The value of f /N where this occurs depends
on the offset angle θ , decreasing as θ increases. Although, overall, these values of f /N
are large, they are still within the values for which the flow is statically stable, based
on the empirical formula found by Dritschel & McKiver (2015) from their study of
turbulence simulations at different values of the Rossby and Prandtl ratio. This effect,
along with the fact that oblate vortices tend to be anticyclonic, may lead to the overall
dominance of anticyclonic eddies in geophysical flows (Graves et al. 2006) and may even
have relevance for the typical structure found for extraplanetary vortices (Abrahamyan
2016; Lemasquerier et al. 2020; Sánchez-Lavega et al. 2021).
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Here, we have computed the second-order (ellipsoidal) stability modes, modes which
deform the vortex while preserving its ellipsoidal form. In future work, it would be useful
to solve the full stability problem, as was done by Hashimoto et al. (1999) and McKiver &
Dritschel (2006) for QG, where it was revealed that the marginal modes are almost entirely
ellipsoidal. However, the complexity of the equations for the QG+1 ellipsoid make the
solution to the full linear stability problem much more challenging. While such a study
would reveal if there might be marginal non-ellipsoidal modes, this would not affect the
value of the critical turning point strain that was computed here.

This work has underlined the differences between cyclonic and anticyclonic ellipsoidal
vortices at the next order to QG. In future work, the full non-hydrostatic equations could
be solved numerically, to perform high resolution turbulence simulations in order to obtain
statistics on the most typical vortex characteristics, as was done by Reinaud et al. (2003)
for the QG model. Also, further work could be done to extend the single QG+1 ellipsoidal
vortex model to a multi-vortex model, as was done by Dritschel, Reinaud & McKiver
(2004) for QG, which would provide a useful tool for understanding turbulence dynamics
at finite Rossby number.

Acknowledgements. The author would like to thank J. Reinaud for helpful comments, as well as comments
provided by two anonymous reviewers.

Declaration of interest. The authors report no conflict of interest.

Appendix A. Derivative of the self-induced flow matrix

Here, we show how to determine the derivative of the self-induced flow matrix Sv =
LϕΓ

(2)
v + LψΨ

(2)
v + Lφ(Φ

(1)
v + Φ

(2)
v ) with respect to the elements of the matrix B. As

the matrices L are constant matrices, we only need to determine the derivative of the
symmetric matrices Γ v , Ψ v and Φv , all of which have the same general form, i.e.

Φ = MHMT. (A1)

This general form can be rewritten as

Φ = H11ââT + H22b̂b̂T + H33ĉĉT + H12(âb̂T + b̂âT)+ H31(ĉâT + âĉT)

+ H23(b̂ĉT + ĉb̂T). (A2)

Taking the derivatives with respect to the B matrix elements Bk gives,

∂Φ

∂Bk = ∂H11

∂Bk ââT + H11

(
∂ â
∂Bk âT + â

∂ âT

∂Bk

)
+ ∂H22

∂Bk b̂b̂T + H22

(
∂ b̂
∂Bk b̂T + b̂

∂ b̂T

∂Bk

)

+ ∂H33

∂Bk ĉĉT + H33

(
∂ ĉ
∂Bk ĉT + ĉ

∂ ĉT

∂Bk

)

+ ∂H12

∂Bk (âb̂T + b̂âT)+ H12

(
∂ â
∂Bk b̂T + â

∂ b̂T

∂Bk + ∂ b̂
∂Bk âT + b̂

∂ âT

∂Bk

)
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+ ∂H31

∂Bk (ĉâT + âĉT)+ H31

(
∂ ĉ
∂Bk âT + ĉ

∂ âT

∂Bk + ∂ â
∂Bk ĉT + â

∂ ĉT

∂Bk

)

+ ∂H23

∂Bk (b̂ĉT + ĉb̂T)+ H31

(
∂ b̂
∂Bk ĉT + b̂

∂ ĉT

∂Bk + ∂ ĉ
∂Bk b̂T + ĉ

∂ b̂T

∂Bk

)
. (A3)

For the derivatives of the axis vectors we can use formulas derived in McKiver & Dritschel
(2006), i.e.

∂ â
∂Bk = λk

abb̂ − λk
caĉ, (A4a)

∂ b̂
∂Bk = λk

bcĉ − λk
abâ, (A4b)

∂ ĉ
∂Bk = λk

caâ − λk
bcb̂, (A4c)

where we have the following scalars:

λk
ab = âTJ kb̂

a2 − b2 , (A5a)

λk
bc = b̂TJ kĉ

b2 − c2 , (A5b)

λk
ca = ĉTJ kâ

c2 − a2 . (A5c)

As the matrices H depend on the coefficients ξa, ξb, ξc their derivatives can be obtained,
again using formulas from McKiver & Dritschel (2006), namely

∂ξa

∂Bk = âTJ kâ
∂ξa

∂a2 + b̂TJ kb̂
∂ξa

∂b2 + ĉTJ kĉ
∂ξa

∂c2 , (A6a)

∂ξb

∂Bk = âTJ kâ
∂ξb

∂a2 + b̂TJ kb̂
∂ξb

∂b2 + ĉTJ kĉ
∂ξb

∂c2 , (A6b)

∂ξc

∂Bk = âTJ kâ
∂ξc

∂a2 + b̂TJ kb̂
∂ξc

∂b2 + ĉTJ kĉ
∂ξc

∂c2 , (A6c)

where the derivatives of the coefficients ξa, ξb, ξc are

∂ξa

∂a2 = −(Ωab +Ωca)

2a2 ,
∂ξa

∂b2 = Ωab

2b2 ,
∂ξa

∂c2 = Ωca

2c2 , (A7a)

∂ξb

∂b2 = −(Ωbc +Ωab)

2b2 ,
∂ξb

∂c2 = Ωbc

2c2 ,
∂ξb

∂a2 = Ωab

2a2 , (A7b)

∂ξc

∂c2 = −(Ωca +Ωbc)

2c2 ,
∂ξc

∂a2 = Ωca

2a2 ,
∂ξc

∂b2 = Ωbc

2b2 . (A7c)

Finally, (A3) can be rewritten in the form

∂Φ

∂Bk = MQkMT, (A8)
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where Qk are symmetric matrices whose components are given by

Qk
11 = ∂H11

∂Bk + 2(λk
caH31 − λk

abH12), (A9a)

Qk
22 = ∂H22

∂Bk + 2(λk
abH12 − λk

bcH23), (A9b)

Qk
33 = ∂H33

∂Bk + 2(λk
bcH23 − λk

caH31), (A9c)

Qk
12 = ∂H12

∂Bk + λk
ab(H11 − H22)+ λk

caH23 − λk
bcH31, (A9d)

Qk
31 = ∂H31

∂Bk + λk
ca(H33 − H11)+ λk

bcH12 − λk
abH23, (A9e)

Qk
23 = ∂H23

∂Bk + λk
bc(H22 − H33)+ λk

abH31 − λk
caH12. (A9f )
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