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The free-surface flow formed by a circular jet impinging on a stationary disk is
analysed theoretically. We develop a simple and coherent model to predict the location
and height of the jump for high-viscosity liquids. The study explores the effect of
gravity in the supercritical flow. The formulation reduces to a problem, involving only
one parameter: α=Re1/3Fr2, where Re and Fr are the Reynolds and Froude numbers
based on the flow rate and the jet radius. We show that the jump location coincides
with the singularity in the thin-film equation when gravity is included, suggesting
that the jump location can be determined without the knowledge of downstream flow
conditions such as the jump height, the radius of the disk, which corroborates earlier
observations in the case of type I circular hydraulic jumps. Consequently, there is no
need for a boundary condition downstream to determine the jump radius. Our results
corroborate well existing measurements and numerical simulation. Our predictions
also confirm the constancy of the Froude number FrJ based on the jump radius
and height as suggested by the measurements of Duchesne et al. (Europhys. Lett.,
vol. 107, 2014, 54002). We establish theoretically the conditions for FrJ to remain
independent of the flow rate. The subcritical flow and the height of the hydraulic jump
are sought subject to the thickness at the edge of the disk, comprising contributions
based on the capillary length and minimum flow energy. The thickness at the edge
of the disk appears to be negligibly small for high-viscosity liquids.

Key words: boundary layers, interfacial flows (free surface), thin films

1. Introduction

We examine the thin-film flow as a result of a circular jet impinging on a stationary
disk. A circular hydraulic jump is expected to arise when a fluid jet falling vertically
at high Reynolds number impacts the disk. The fluid spreads radially as a thin
film until reaching a critical radius at which the film rises abruptly. Although the
impingement of a circular jet has been extensively considered, there remain important
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The circular hydraulic jump radius for high-viscosity liquids 129

issues as to a fully predictive theoretical formulation, particularly concerning the
prediction of the jump location and height. Early predictions for the jump radius
based on inviscid theory were reported by Rayleigh (1914), which did not yield a
good agreement with experiment (Watson 1964). Although Tani (1949) considered
viscous effects later, the dominant influence of viscosity was addressed much later. In
fact, Watson (1964) formulated an appropriate description of the developing boundary
layer and the fully viscous layer upstream of the jump. Watson (1964) studied both
the radial and planar jet spreads for steady laminar and turbulent flows. Watson’s
thin-film approach became the basis for numerous theoretical and experimental studies.
The jump location is of major fundamental significance, and its prediction remains
somewhat incomplete, as far as a coherent and simple theory is concerned, despite
the various existing theoretical and numerical approaches in the literature. It will be a
major focus in the present study. In particular, we explore the role of gravity and its
influence on the location of the jump. We demonstrate the crucial role of gravity for
liquids of relatively large viscosity and low surface tension. The influence of surface
tension was the focus of the recent study of Bhagat et al. (2018).

Numerous existing studies follow essentially the same approach as proposed by
Watson (1964), where the flow domain comprises a developing boundary layer
followed by a supercritical viscous film layer ahead of the jump and a subcritical
layer downstream of the jump. This description appears to mimic well the flow
for a type I hydraulic jump, where the jump is relatively abrupt, followed by flow
separation and the emergence of a vortex downstream. Upstream of the jump, the
location where the boundary layer reaches the free surface separates the developing
boundary-layer region from the fully viscous region. The boundary-layer height before
this transition point is typically determined using a Kármán–Pohlhausen approach and
the similarity profile for the velocity. Downstream of the transition point, the same
similarity profile is assumed to (approximately) hold. Based on the balance of
forces, a relation between the jump location and the height is also obtained for both
laminar and turbulent flows. Watson’s theory was tested in a number of experimental
investigations, including those of Watson himself, Craik et al. (1981), Stevens &
Webb (1992), Bush & Aristoff (2003) and Baonga, Gualous & Imbert (2006). Liu &
Lienhard (1993) observed that Watson’s predictions are least satisfactory in the limit
of relatively weak jump. Surface tension effect was neglected in Watson’s work, and
was later included by Bush and co-workers for a small circular jump radius, which
led to a better agreement with experiment. They elucidated the influence of surface
tension on the circular hydraulic jump, on both its size (Bush & Aristoff 2003)
and its stability (Bush, Aristoff & Hosoi 2006) through combined theoretical and
experimental investigations. The instability and the transition to polygonal hydraulic
jump were originally reported by Ellegaard et al. (1998, 1999). The transition to type
II and polygonal jump will not be considered here.

Watson’s theory is generally considered to be adequate for a circular jump with
relatively large radius and height. Some extensions have been considered, such as the
spread of an impinging non-Newtonian jet by Zhao & Khayat (2008), the formation of
hydraulic jump on an inclined plane by Kate, Das & Chakraborty (2007) and Benilov
(2015), and the impingement on a rotating disk by Ozar, Cetegen & Faghri (2003) and
Wang & Khayat (2018). The influence of slip was also examined by Dressaire et al.
(2010), Prince, Maynes & Crockett (2012) and Khayat (2016). Another extension
involves the influence of gravity on the jump radius (Avedisian & Zhao 2000).
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130 Y. Wang and R. E. Khayat

The fully theoretical prediction of the simultaneous location and height of the jump
remains lacking in typical analyses. We recall that Watson’s approach and similar
formulations provide only one relation between the jump radius and height in the form
of an averaged momentum equation discretized across the jump. A second relation is
therefore required. Moreover, the location of the jump is not always identifiable in
reality, especially for high-viscosity liquids and flow at low rate. Avedisian & Zhao
(2000) published photographs of the transition across the jump from submerged views,
which illustrate the difficulty in identifying the jump location when the height changes
gradually as result of a sudden reduction of gravity. The numerical simulation of
Rojas, Argentina & Tirapegui (2010) also depicts the ambiguity in the jump location.
Their numerical film profiles in their figure 2 illustrate how the abrupt jump ceases
to exist with increasing viscosity, giving way to a smoother profile.

The full prediction of the jump location has been the focus of several studies.
Following the approach of Tani (1949), Bohr, Dimon & Putzkaradze (1993) obtained
the shallow-water equations for the average radial velocity and fluid depth by
averaging the axisymmetric Navier–Stokes equations and in the vertical direction.
They eliminated the depth from the averaged mass and momentum equations, and
derived an ordinary differential equation for the average velocity. The equation turned
out to have a single critical point which is a spiral (see Tani (1949)), and can exhibit
an essential singularity at some finite distance. Bohr et al. (1993) argued that the
jump location is close to the critical spiral point of their averaged equation, and
deduced that the jump radius scales as Q5/8ν−3/8g−1/8, where Q is the jet flow rate,
ν is the kinematic viscosity and g is the acceleration due to gravity. They also
identified the location of the disk edge where the singularity occurs. The influence
of the flow rate, the viscosity and the nozzle-to-disk distance on the hydraulic jump
radius was investigated experimentally by Brechet & Neda (1999), who reached
a scaling law similar to that proposed by Bohr et al. (1993). They also observed
that the nozzle-to-disk distance has no influence on the jump location. Kasimov
(2008) modified the formulation of Bohr et al. (1993) by adding the effect of surface
tension and incorporating the shape of a flat plate with a falling edge. He studied
the influence of surface tension on the stability of the hydraulic jump, and found
that a steady jump may not exist at high surface tension. In a later work, Bohr,
Putkaradze & Watanabe (1997) and Watanabe, Putkaradze & Bohr (2003) adopted a
non-self-similar cubic profile for the velocity that allowed them to avoid the critical
point and the singularity of the averaged equations. However, two experimental points
are needed in their solution to fix the boundary conditions, and some prior knowledge
of the location of the jump was required. We shall refer back to the contributions of
Bohr and associates later in this study.

Additional studies of numerical nature were also done. Passandideh-Fard,
Teymourtash & Khavari (2011) proposed a numerical approach to determine the
hydraulic jump location. The free surface was tracked by a volume-of-fluid approach.
In their calculation domain, the downstream depth was imposed at the disk edge.
Rojas et al. (2010), Rojas, Argentina & Tirapegui (2013), Rojas & Tirapegui (2015)
developed and implemented a spectral representation for the velocity profile in the
vertical direction. The projected averaged dynamical system is multidimensional in
this case. More details on the work of Rojas and associates will be given when we
compare our predictions with theirs.

Duchesne, Lebon & Limat (2014) showed experimentally that the Froude number
based on the jump height and velocity is independent of the flow rate, the viscosity
and the surface tension. This critical Froude number, denoted here by FrJ , is therefore
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The circular hydraulic jump radius for high-viscosity liquids 131

a constant, and should in principle provide the desired additional relation, which when
coupled with Watson’s discretized momentum relation, would allow the full prediction
of the jump location and height. However, no theoretical justification was provided.
More recently, the measurements of Mohajer & Li (2015) do indeed support the claim
of Duchesne et al. (2014), but found that the Froude number is not independent of
the surface tension. Recently, Wang & Khayat (2018) revisited this issue in their
study of the flow on a rotating disk, and provided some theoretical arguments and
comparison with experiment in support of the claim of Duchesne et al. (2014). The
thickness at the edge of the disk was determined as a combination of static and
dynamic contributions based on the local minimization of energy. The Froude number
was found to remain essentially independent of the flow rate. However, the predictions
were limited to low-viscosity liquids and high flow rates.

This brings us to the main objective of the present study, focused on the theoretical
prediction of the jump location and height for liquids of high viscosity. In this
case, gravity becomes important for the supercritical flow. We therefore explore the
interplay among inertia, viscosity and gravity for a thin film flowing axisymmetrically
on a stationary disk as a result of jet impingement. In § 2, we outline the problem by
giving the governing equations and boundary conditions in each region of the physical
domain. The overall solution strategy is also discussed. In § 3, the Kármán–Pohlhausen
(KP) approach is adopted to determine the boundary-layer structure and the film
thickness upstream of the jump. The transition point is also located, where the
boundary-layer edge and the free surface meet. In § 4, the KP approach is employed
again to examine the viscous boundary-layer region, and assess the influence of
gravity on the thin-film flow and jump location. Comparison with experiment is also
carried out. In § 5, the height of the hydraulic jump is determined using a momentum
balance across the jump, and the effect of gravity on the jump is analysed. The
drawback of this approach is discussed. Alternatively, we propose an approach based
on the knowledge of the edge thickness, which is established following the recent
study of Wang & Khayat (2018). Finally, concluding remarks and discussion are
given in § 6.

2. Physical domain and problem statement
Consider the steady laminar incompressible flow of a circular (axisymmetric) jet

of a Newtonian fluid emerging from a nozzle of radius a, impinging at a volume
flow rate Q on a flat disk lying normal to the jet direction. The flow configuration
is depicted schematically in figure 1, where dimensionless variables and parameters
are used. The problem is formulated in the (r, θ, z) fixed coordinates, with the origin
coinciding with the disk centre. The flow is assumed to be independent of θ , thus
excluding polygonal flow. In this case, u(r, z) and w(r, z) are the corresponding
dimensionless velocity components in the radial and vertical directions, respectively.
The r-axis is taken along the disk radius and the z-axis is taken parallel to the jet.
The length and the velocity scales are conveniently taken to be the radius of the jet,
a, and Q/πa2 both in the radial and vertical directions. Since the pressure is expected
to be predominantly hydrostatic for a thin film, it will be scaled by ρga. Two main
dimensionless groups emerge in this case: the Reynolds number Re=Q/πaν, where
ν is the kinematic viscosity, and the Froude number Fr = Q/π

√
a5g, g being the

acceleration due to gravity. We shall see that the problem can be reduced to a
one-parameter problem, but the two parameters remain useful when comparing with
experiment.
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(i) (ii)
r0 rJ r∞ r

∂(r)
h(r)

U(r)

HJ

hJ

H(r)

H∞

z 1

Inviscid region

(iii) (iv)

FIGURE 1. Schematic illustration of the axisymmetric jet flow impinging on a flat
stationary disk and the hydraulic jump of type I with one vortex downstream. Shown are
the stagnation region (i), the developing boundary-layer region (ii), the fully developed
viscous region (iii) and the hydraulic jump region (iv). All notations are dimensionless.

2.1. The physical domain
Following the treatment of Watson (1964), we identify four distinct flow regions
for the jet over a circular disk, with smooth passage from one region to the next
(see figure 1): a stagnation flow region (i), a developing boundary-layer region (ii),
where the boundary layer grows until it reaches the film surface at the transition
location r= r0 and a fully viscous thin-film region (iii). A hydraulic jump emerges in
region (iv), located at a radius r = rJ . We observe that r = O(1) near the stagnation
point in region (i). The velocity outside the boundary layer rises rapidly from 0
at the stagnation point to the impingement velocity in the inviscid far region. In
region (ii), and as we shall confirm, the boundary layer is not expected to grow like
√

r/Re in the presence of gravity. The speed outside the boundary layer remains
almost constant, as the fluid here is unaffected by the viscous stresses. For r � 1,
the flow field in region (ii) is not significantly affected by the stagnation flow of
region (i). The region 1� r< r0 will be referred to as the developing boundary-layer
region, with boundary-layer thickness δ(r), outside which the flow is inviscid and
uniform. Here r0 is the location of the transition point at which the viscous stresses
become appreciable right up to the free surface, where the whole flow is of the
boundary-layer type. At this point, in the absence of gravity, the velocity profile
changes from the Blasius type to the self-similar profile. In contrast, in the presence
of gravity, a similarity profile does not exist. The flow in region (iii), r > r0, which
will be referred to as the fully developed viscous region, is bounded by the disk and
the free surface z= h(r).

Finally, the hydraulic jump in region (iv) occurs at a location r= rJ , which is larger
than r0 since the jump typically occurs downstream of the transition point. Referring
to figure 1, we conveniently introduce the supercritical film thickness (upstream of the
jump) as h(r)= h(r < rJ), and the subcritical thickness (downstream of the jump) as
H(r) ≡ h(r > rJ). The height immediately upstream of the jump is denoted by hJ ≡

h(r = rJ), and the height immediately downstream of the jump is denoted by HJ ≡

H(r= rJ). The subcritical height H(r) is generally not constant and is different from
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The circular hydraulic jump radius for high-viscosity liquids 133

the height HJ . In this study, the fluid is assumed to be drained at the edge of the disk,
at r= r∞, and the flow remains steady, with the film thickness denoted by H∞=H(r=
r∞). Although it is common practice to assume the jump height to remain equal to HJ ,
this assumption is valid for fluids of low viscosity. The edge thickness is not expected
to depend heavily on the flow rate (Rojas et al. 2013; Mohajer & Li 2015).

2.2. Governing equations and boundary conditions
Unless otherwise specified, the Reynolds number is assumed to be moderately large
so that our analysis is confined to the laminar regime. Consequently, for steady
axisymmetric thin-film flow, in the presence of gravity, the mass and momentum
conservation equations are formulated using a thin-film or Prandtl boundary-layer
approach, which amounts to assuming that the radial flow varies much slower than
the vertical flow (Schlichtling 2000). By letting a subscript with respect to r or
z denote partial differentiation, the reduced dimensionless conservation equations
become

ur +
u
r
+wz = 0, (2.1a)

Re(uur +wuz)=−
Re
Fr2

pr + uzz, (2.1b)

pz =−1. (2.1c)

Here, p is the dimensionless pressure.
These are the thin-film equations commonly used to model the spreading liquid flow

(Tani 1949; Bohr et al. 1993, 1996; Kasimov 2008). We observe that the pressure
for a thin film is hydrostatic as a result of its vanishing at the film surface (in the
absence of surface tension) and the small thickness of the film. In addition, upstream
of the jump, the variation of the film thickness with the radius is expected to be
smooth and gradual. In this case, the radial variation of the hydrostatic pressure is
also small. Unlike the case of liquids of low viscosity, gravity cannot be neglected
in the supercritical range. At the disk, the no-slip and no-penetration conditions are
assumed to hold for any r. In this case:

u(r, z= 0)=w(r, z= 0)= 0. (2.2)

At the free surface z = h(r < rJ) or z = H(r > rJ), the kinematic and dynamic
conditions for steady flow take the form

w(r, z= h)= u(r, z= h)h′(r), uz(r, z= h)= p(r, z= h)= 0. (2.3a,b)

Here a prime denotes total differentiation. The flow field is sought separately in
the developing boundary-layer region (ii) for 0< r < r0, the fully developed viscous
boundary-layer region (iii) for r0 < r< rJ and the hydraulic jump region (iv) for rJ <
r< r∞. We observe that region (i) is neglected and will not be considered here. In this
case, the leading edge of the boundary layer in region (ii) is taken to coincide with the
disk centre. Consequently, the additional boundary conditions are as follows. In region
(ii), the flow is assumed to be sufficiently inertial for inviscid flow to prevail between
the boundary-layer outer edge and the free surface (see figure 1). In this case, the
following conditions at the outer edge of the boundary layer and beyond must hold:

uz(r< r0, z= δ)= 0, u(r< r0, δ 6 z< h)= 1. (2.4a,b)
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Integrating (2.1c) subject to condition (2.3b), the pressure becomes p(r, z)= h(r)− z,
which is then eliminated so that (2.1b) reduces to

Re(uur +wuz)=−
Re
Fr2

h′ + uzz. (2.5)

Finally, the conservation of mass at any location upstream and downstream of the
jump yields the following relation in dimensionless form:

1
2r
=

∫ h(r)

0
u(r< rj, z) dz=

∫ H(r)

0
u(r> rj, z) dz. (2.6)

The presence of gravity causes the flow to be non-self-similar in character.
Therefore, in the present study, approximate solutions are sought in each region.
An integral approach of the Kármán–Pohlhausen (KP) type (Schlichtling 2000) is
adopted upstream of the jump, similar to the formulation of Prince et al. (2012) for
a jet impinging on a disk with slip. The cubic profile is used for the velocity, which
is considered to be the leading-order solution in a comprehensive spectral approach
when inertia is included (Khayat & Kim 2006; Rojas et al. 2010). The cubic profile
seems to be amply adequate as it leads to close agreement with Watson’s (1964)
similarity solution for a jet impinging on a stationary disk (Prince et al. 2012). The
cubic profile was also assessed by Khayat (2016) for a planar jet impinging on a
surface with slip, and was found to yield a good agreement against his numerical
solution. See also Rao & Arakeri (1998) for an integral analysis of a rotating film.
Higher-order polynomial velocity profiles were also used. In their study on flow
separation and wave breaking, Bohr et al. (1996) used a quartic profile to illustrate
the emergence of a singularity at the separation point for a thin film. The coefficients
in the polynomial expansion were not obtained explicitly. A cubic velocity profile was
later adopted by Bohr et al. (1997), accounting for regions of separation. The cubic
profile was also adopted in our recent study for a jet impinging on a rotating disk
(Wang & Khayat 2018), and was found to yield close agreement with experiment.

3. The flow in the developing boundary layer and the transition location
Throughout this study, the stagnation region (i) under the impinging jet will not

be considered. The velocity outside the boundary layer rises rapidly from 0 at the
stagnation point to the impingement velocity in the inviscid far region. The impinging
jet is predominantly inviscid close to the stagnation point, and the boundary-layer
thickness remains negligibly small. Obviously, this is the case for a jet at relatively
large Reynolds number. Ideally, the flow at the boundary-layer edge should correspond
to the (almost parabolic) potential flow near the stagnating jet, with the boundary-layer
leading edge coinciding with the stagnation point (Liu, Gabour & Lienhard 1993).
However, the assumption of uniform horizontal flow near the wall and outside the
boundary layer (as illustrated in figure 1) is reasonable. The distance from the
stagnation point for the inviscid flow to reach uniform horizontal velocity is small,
of the order of the jet radius (Lienhard 2006). In the absence of gravity, the flow
acquires a similarity character. In this case, the position or effect of the leading
edge is irrelevant. This is not the case in the presence of gravity, where, as we
shall see, a non-self-similar solution should be sought subject to initial conditions at
the leading edge. However, the dominance of inertia near the stagnation point, albeit
weakened by gravity, should make plausible the assumption of uniform horizontal flow.
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This assumption was adopted initially by Watson (1964), and is commonly used in
the existing theories (see, for instance, Higuera (1994), Bush & Aristoff (2003),
Prince et al. (2012)).

We therefore start by examining the flow in region (ii), where the inviscid flow
dominates the upper layer (δ6 z< h) of the film in the radial direction. Consequently,
the radial velocity above the boundary layer remains equal to one: U(r) = 1. The
boundary-layer height δ is determined by considering the mass and momentum
balance over the boundary-layer region (ii). Therefore, we consider first the integral
form of the convective term in (2.5). The vertical velocity component is eliminated
by noting from (2.1a) that w(r, z)=−(1/r)(∂/∂r)(r

∫ z
0 u(r, z) dz). In this case,

uur +wuz =
∂u2

∂r
+

u2

r
−

1
r
∂

∂z

(
u(r, z)

∫ z

0

∂ru(r, z̄)
∂r

dz̄
)
. (3.1)

Consequently, upon integrating (3.1) across the boundary-layer thickness, we obtain
the integral form of the momentum equation in the boundary-layer region:

Re
r

[
d
dr

∫ δ

0
ru(u− 1) dz

]
=−

Re
Fr2

h′δ − uz(r, z= 0). (3.2)

The boundary layer grows with radial distance, eventually invading the entire film
width, reaching the jet free surface at r= r0. For r< r0 and above the boundary-layer
outer edge, at some height z= h(r)> δ(r), lies the free surface. The height of the free
surface in region (ii) is then determined from mass conservation inside and outside the
boundary layer. Therefore, for r< r0,∫ δ(r)

0
u(r, z) dz+ h(r)− δ(r)=

1
2r
. (3.3)

For simplicity, we choose a cubic profile for the velocity. Thus, we let

u(r< r0, z)=
3
2

( z
δ

)
−

1
2

( z
δ

)3
=

1
2
η(3− η2)≡ f (η), (3.4)

where η = z/δ. The cubic profile (3.4) is obviously one of many that can be used.
The cubic profile, which will also be modified and implemented in the fully viscous
region (iii), does not satisfy the momentum equation at z = 0 except in the absence
of a pressure gradient. But so do many profiles used in the literature, including the
parabolic profile used by Bohr et al. (1993) and Kasimov (2008). The inclusion of the
pressure gradient yields a non-self-similar profile, making the problem mathematically
more cumbersome. For this reason, simple profiles are often adopted in the literature,
including the cubic profile used by Prince et al. for a flow on a disk with isotropic
(2012) and anisotropic (2014) slip, Watson’s (axisymmetric) similarity profile used by
Dressaire et al. (2010) to simulate non-axisymmetric hydraulic jump patterns. None
of these profiles satisfy the momentum equation at the disk, yet they all lead to an
accurate description. See, for instance, the comparisons of Dressaire et al. (2010),
Prince et al. (2012) and Khayat (2016). The profile (3.4) fulfils desirable criteria as
it is simple and, and as we shall see, yields accurate results.

Upon inserting (3.4) into (3.2) and (3.3), we obtain the following coupled equations
for the boundary-layer and free-surface heights:

h−
3
8
δ =

1
2r
, (3.5a)
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39
280

Re
r
δ

d
dr
(rδ)=

Re
Fr2

h′δ2
+

3
2
. (3.5b)

These equations are solved subject to δ(r = 0) = 0. In the absence of gravity
(Fr →∞), equations (3.5) are easily solved to yield the following boundary-layer
and film thicknesses:

δ(r< r0)= 2

√
70
39

r
Re
, h(r< r0)=

1
4

(
2
r
+

√
210
13

r
Re

)
, (3.6a,b)

which agree with the δ≈
√

r/Re behaviour established from the dimensional argument
of (2.5). In this case, h decreases rapidly, like 1/r, near the disk centre, reaching
a minimum, and increases like

√
r further downstream. The transition location is

determined by equating h(r0) and δ(r0) to obtain r0 = ((78/875)Re)1/3.
In the presence of gravity, the system (3.5) must be solved numerically. The

problem can be reduced to a one-parameter problem by introducing the following
transformation:

r= Re1/3r̄, (h, δ)= Re−1/3(h̄, δ̄). (3.7a,b)

Eliminating the film height and using (3.7), the equation for the boundary-layer
height reduces to, along with the film thickness:

3
4

(
1
α
δ̄ −

13
35

)
δ̄δ̄′ =

39
140

(
δ̄2

r̄

)
+

1
α

δ̄2

r̄2
− 3, h̄=

3
8
δ̄ +

1
2r̄
. (3.8a,b)

Here, we introduced

α ≡ Re1/3Fr2, (3.9)

which becomes the only parameter in the problem. Equation (3.8a) is solved
numerically subject to δ̄(r̄= 0)= 0, yielding in turn the height from (3.8b).

Figure 2 illustrates the influence of gravity on the boundary-layer height. In the
limit of infinite Froude number, the classical boundary-layer result is recovered
(Watson 1964; Schlichtling 2000). As expected, gravity can have a tangible effect
as the profiles in figure 2 show a departure from the classical parabolic character
of the boundary layer height. In fact, it is not difficult to show that the asymptotic
solution of equation (3.8a) for small r that the behaviour of the boundary-layer
height near impingement is linear with distance. More precisely, δ̄ =

√
3αr̄ + O(r̄2),

or δ≈
√

3(Fr/
√

Re)r as opposed to δ= 2
√
(70/39)r/Re in the absence of gravity. The

linear growth is clearly reflected by the α= 10 curve. Thus, the boundary-layer height
approaches the linear behaviour with a diminishing slope as the level of gravity (or
α) increases. We observe from (3.8b) that, since the boundary-layer height is small
near the origin, the film height decays like h̄∼ 1/2r̄ regardless of the level of gravity.
This behaviour is also reflected by the h curves in figure 2, showing a narrow spread
when α is varied compared to δ. Gravity tends to lower the boundary-layer height.

The behaviour in figure 2 can also be deduced qualitatively from (2.5), where the
effect of gravity tends to enhance the effect of inertia as a result of the decaying
film thickness with distance. The level of inertia is reflected by the radial convective
term Re uur. An estimate of the order of magnitude of this term is reached by taking
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FIGURE 2. Influence of gravity in the developing boundary-layer region (ii). The rescaled
boundary-layer height, δ, and film thickness, h, are plotted against the normalized radial
distance. The transition location coincides with the intersection of the two heights (at the
cusps in the figure). We only indicate the transition location by a vertical line for α= 10.

u to correspond to the free-surface value. In this case, we see that Re uur decays
with distance like Re r−1. There is an additional contribution to inertia stemming from
gravity, namely through −(Re/Fr2)h′∼ (Re/2Fr2)r−2 for small r, making the boundary-
layer height behaves roughly like δ ∼

√
r/Re(1 + 1/2Fr2r)−1/2, which clearly shows

the diminishing influence of gravity on the boundary-layer height. Thus, for dominant
gravity, this relation reduces to δ ∼ (Fr/Re)r, which is the linear behaviour based
on (3.8).

Figure 3 depicts the influence of gravity on the transition location r0 and
corresponding film thickness h(r0), which are determined by setting h(r0) = δ(r0).
The transition location is further from impingement for a thinner film with increasing
gravity effect as inertia is enhanced by gravity. This is the same trend predicted for
the effect of slip (see figure 8 of Khayat (2016)). Similar to slip, gravity results in
an asymptotic behaviour of the thickness for large α.

4. The fully viscous layer and prediction of the jump location
In this section, we formulate the problem for the film thickness in region (iii)

and examine the flow field in this region. We then determine the location of the
jump based on the supercritical flow without recourse to the subcritical solution.
The approach is validated against existing measurements of the jump radius and its
dependence on the flow rate.

4.1. The equation for the film thickness
In region (iii), the potential flow in the radial direction ceases to exist, with the
velocity U(r) = u(r, z = h) at the free surface becoming dependent on r. We again
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FIGURE 3. Dependence of the location and film thickness at the transition point between
the developing and viscous boundary-layer regions (ii) and (iii) on gravity.

assume a cubic velocity profile subject to conditions (2.3a) and (2.3b). In this case,
the radial velocity profile is given as function of the surface velocity U(r) as

u(r0 < r< rJ, z)=U(r)f (η), η=
z

h(r)
. (4.1a,b)

Here, we observe that f (η) is still given by (3.4). Using the mass conservation (2.6)
yields the following relation:

U(r0 < r< rJ)=
4

5hr
. (4.2)

This equation agrees with equation (15) of Prince et al. (2012) when setting their
slip parameter equal to zero.

Similar to (3.2), the integral form of the momentum equation reads:

Re
r

d
dr

∫ h

0
ru2 dz=−

Re
Fr2

hh′ − uz(r, z= 0). (4.3)

Substituting (4.1) into (4.3) and using (4.2) to eliminate U, we obtain the equation
for the film thickness in the fully viscous region:

Re
(

1
Fr2
−

272
875r2h3

)
h′ =

4
5rh2

(
68Re
175

1
r2
−

3
2h

)
, (4.4)

which is solved for r > r0 subject to h(r = r0) = δ(r0). We observe that the flow in
the absence of gravity is recovered in the limit Fr→∞. In this case, the problem
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reduces to the following equation and boundary condition:

dh
dr
=−

h
r
+

525
136

r
Re
, h(r0)= 2

√
70
39

r0

Re
, (4.5a,b)

which admits

h(r> r0)=
175

136Rer
(r3
− r3

0)+ 2
r0

r

√
70
39

r0

Re
=

175
136

r2

Re
+

233
340

1
r
, (4.6)

as solution, where we recall r0 = ((78/875)Re)1/3. For comparison, Watson’s
expression is reproduced here in dimensionless form:

h(r> r0)=
2π

3
√

3

r2

Re
+

3c(3
√

3c−π)

8π

1
r
. (4.7)

Thus, we have h ≈ 1.21(r2/Re) + 0.685(1/r) from (4.6) compared to Watson’s
h≈ 1.28(r2/Re)+ 0.69(1/r) from (4.7), showing a surprisingly close agreement, and
validity of the cubic profile.

4.2. The supercritical flow and the location of the hydraulic jump
Equation (4.4) indicates that a singularity exists, occurring at some distance where
the slope of the free surface becomes infinite. An equation similar to (4.4) was
obtained by Bohr et al. (1993) by approximating the mean of the derivative of u2 in
the averaged momentum equation (4.3) in terms of the derivative of the mean square.
They showed that the singularity is not an artefact of the averaging process, but is
inherent to the thin-film equations. Of closer relevance is the equation obtained by
Kasimov (2008) using a parabolic velocity profile, incorporating the shape of a finite
disk with a sudden falling edge (see below).

We conjecture that the location of the singularity coincides with the radius of the
jump. Consequently, we now have a relation between the jump radius rJ and the film
height hJ immediately upstream of the jump:

Fr−2
=

272
875

1
r2

J h3
J
. (4.8)

We therefore identify the jump location or radius to occur when the slope of the
free surface upstream of the jump becomes infinite, that is h′(r = rJ)→∞, which
coincides with the occurrence of the singularity of equation (4.4). At this location the
relation between the jump radius and height is given by (4.8). Obviously, this claim is
bold and needs to be validated, which we shall do shortly. The jump location is found
by simply integrating (4.4) numerically subject to h(r0)= δ(r0) from r0 to a distance
rJ until (4.8) is satisfied to within a certain tolerance. More details on the numerical
treatment are given below.

Before comparing the predicted jump radius with existing measurements, it is
helpful to explore the general supercritical flow behaviour (upstream of the jump).
Once again, the flow becomes governed by a one-parameter problem when transforma-
tion (3.7) is used. In this case, (4.4) reduces to(

1
α
−

272
875

1
r̄2h̄3

)
h̄′ =

1
r̄h̄2

(
272
875

1
r̄2
−

6
5h̄

)
, (4.9)
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where we recall α from (3.9). In this case, relation (4.8) becomes

r̄2
J h̄3

J =
272
875α. (4.10)

We observe that the velocity at the free surface remains invariant under transforma-
tion (3.7). Equation (4.9) is integrated numerically subject to the condition h̄(r̄= r̄0)=

δ̄(r̄0) at the transition point, using MATLAB sixth-order Runge–Kutta scheme. The
integration is carried out at equal steps in the distance taken equal to 10−3, until the
turning point is reached at the singularity. The program is terminated when the slope
h′>102, giving an accuracy in the jump location rJ to the third decimal. The pre-jump
height hJ is then deduced from (4.10).

We observe that equation (4.9), similar to equation (33) of Bohr et al. (1993)
and equation (3.1)) of Kasimov (2008) for a flat disk, has only one critical
point h̄c = (6α/5)1/4, r̄c =

√
272/875(5/6)3/8α1/8, which is the root of the system

1/α − (272/875)(1/r̄2h̄3) = (272/875)(1/r̄2) − 6/5h̄ = 0, corresponding to a pair of
complex conjugate eigenvalues of the Jacobian of the linearized two-dimensional
dynamical system (Kasimov 2008). The real part is positive, indicating that the
critical point is an unstable spiral, which in turn indicates that the solution cannot
pass through the critical point. Bohr et al. (1993) estimated that the jump is located
close to the critical point. They computed the flow and the free surface by choosing
the pre-jump (inner) branch to correspond to a constant average velocity, and chose
the post-jump (outer) branch that emanates from the point of singularity. The two
branches are then joined by the shock when they reach the same radial position, at a
point that is identified as the jump radius (see their figure 3). This method led them
to deduce the scaling for the jump radius to be RJ ≈ Q5/8ν−3/8g−1/8. In fact, if we
assume the jump to occur at or near the critical point and recall (3.9), we obtain
r̄J ≈ r̄c=

√
272/875(5/6)3/8(Re3Fr2)1/8, which is the dimensionless form of the scaling

deduced by Bohr et al. (1993).
Later, Kasimov (2008) derived an equation of closer similarity to (4.9) but

introduced the shape of a flat disk with a cutoff at the edge. See his equation
(3.1) and figure 2. The addition of the variable disk shape led to the existence of
a critical saddle point near the disk edge, in addition to the spiral critical point.
Kasimov determined the flow and the surface height on the two sides of the jump.
The upstream branch is sought by solving his equation (3.1) subject to an initial
condition corresponding the location where the jet velocity at impact equals the
free-surface velocity. The downstream branch is sought by integrating (3.1) inward
toward the jump starting at the far critical saddle point through which the solution
effectively must pass. The integration is terminated on each side at the turning points,
corresponding to an infinite slope in the surface height or the singularity in (3.1). The
two heights computed on either side are subsequently used to determine the location
of the jump by applying the discretized momentum equation.

Figure 4 gives an overview of the influence of gravity on the film thickness
distribution up to the jump location. The film thickness exhibits a minimum typically
downstream of the transition location. In general, gravity does not seem to have much
of an effect until the jump is reached. In particular, and as expected by inspecting
(2.5), near the minimum, gravity has a negligible effect. The jump occurs sooner and
closer to transition point for a flow with stronger gravity.

The influence of gravity on the corresponding free-surface velocity profiles is
depicted in figure 5. Here the velocity in the developing boundary-layer region (ii)
outside the boundary layer is equal to 1 (the uniform jet velocity), which then
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FIGURE 4. Influence of gravity on the developing boundary-layer height and film
thickness for supercritical flow. Also indicated in vertical lines are the locations of the
hydraulic jump location Re−1/3rJ for different α values.

decreases monotonically with distance downstream of the transition location. In the
absence of gravity (α→∞), the surface velocity decreases rapidly. This behaviour
is easily deduced from (4.2) by substituting (4.6) to obtain

Ū(r̄0 < r̄< r̄J)∼
4
5

(
175
136(r̄

3
− r̄3

0)+ 2r̄0

√
70
39 r̄0

)−1

, as α→∞. (4.11)

In this case, U decreases like r−3 at large distance. The figure indicates that gravity
tends to enhance the radial flow near the transition point similar to the effects of disk
rotation (Wang & Khayat 2018) and slip (Prince et al. 2012; Khayat 2016). The rate
at which the surface velocity decays with radial distance is also enhanced by gravity.
However, further downstream, gravity inhibits flow movement as the film thickens
ahead of the jump.

Figure 6 illustrates the development of the dimensionless wall shear stress at the
disk (skin friction) for the same gravity levels as in figures 4 and 5. The figure shows
that the wall shear stress is always larger for higher gravity except near the jump.
This larger shear stress, which reflects a larger shear rate at the disk, is the result of
a thinner film thickness and a greater free-surface velocity caused by a higher gravity
effect as already reported in figures 4 and 5. The shear stress decays rapidly with
radial distance in the developing boundary-layer region. In the absence of gravity,

τ̄w(r̄0 < r̄< r̄J)∼
6
5 r̄
[

175
136(r̄

3
− r̄3

0)+ 2r̄0

√
70
39 r̄0

]−2

, as α→∞. (4.12)

For any gravity level, after the rapid drop, τw exhibits a maximum before decaying
monotonically. At large radial distance, the shear stress decays like r−5 in the absence
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FIGURE 5. Influence of gravity on the free-surface velocity for supercritical flow.

of gravity effect. The strength of the maximum is essentially uninfluenced by gravity,
but tends to occur further downstream with increasing gravity effect.

Although both the film height in figure 4 and the free-surface velocity in figure 5
are not significantly influenced by gravity, the location of the jump reflects a
significant influence. This is depicted in figure 7 where the jump radius and
corresponding film thickness immediately upstream of the jump are plotted against α.
The growth of the jump radius and the height closely follows the overall behaviour
r̄J ≈ α

1/6 and h̄J ≈ α
2/9, yielding r̄2

J h̄3
J ≈ α, which agrees with the original expression

(4.10). The fractional power growth is also reflected from the position of the vertical
lines in figure 4 as well.

4.3. Comparison with experiment
Figure 8 shows the dependence of the dimensional jump location on the flow rate,
where comparison is carried out with the measurements of Hansen et al. (1997)
as well as the numerical predictions of Rojas et al. (2010) for silicon oils of two
different viscosities. The same experimental data were also used by Rojas et al.
(2010) when they validated their spectral solution. We have included our results
using the same log–log ranges used by Rojas et al. (2010) in their figure 2. Our
predictions are in excellent agreement with their numerical results. The qualitative
and quantitative agreement for the highest-viscosity case ν = 95 cS is especially
encouraging given the simplicity of the present approach compared to their spectral
approach. In particular, and in contrast to the numerical approach, the present
formulation does not require imposing a boundary condition downstream of the
jump. The agreement with experiment appears to suggest that the location of the
jump can be determined without knowledge of downstream conditions such as the
disk diameter or the thickness at the edge of the disk. This observation corroborates
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FIGURE 6. Influence of gravity on the wall shear stress for supercritical flow.
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FIGURE 7. Dependence on the jump location and height immediately upstream of the
jump on α.

well the experimental findings of Brechet & Neda (1999). We recall that Rojas et al.
(2010) had to impose the thickness at the edge of the disk as measured by Hansen
et al. (1997). Both the present theoretical and existing numerical predictions tend
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FIGURE 8. Dependence of the hydraulic jump radius on the flow rate. The figure shows
the comparison between the present theoretical predictions and the measurements of
Hansen et al. (1997) for two silicon oils of viscosities ν = 15 cSt and 95 cSt. The
numerical predictions of Rojas et al. (2010) are also included.

to overestimate slightly the jump radius compared to experiment. The discrepancy
appears to be higher for low flow rates, for a given liquid. A plausible explanation
for the discrepancy is the difficulty to accurately locate the jump radius in reality.
Moreover, it is likely that the jump for ν= 95 cSt is of type II, with two vortex rolls
downstream of the jump.

We further assess the validity of our approach by comparison against the scaling law
proposed by Rojas et al. (2013), which relates the radius of the jump, in particular, to
the height downstream of the jump (see their relation (15)). In the absence of surface
tension, the relation, written here as RJ ≈ ((9/70)(Q3/π3νgH̃∞))1/4 , becomes based
on their spectral approach for inertial lubrication flow (Rojas et al. 2010) and the
inviscid Belanger equation (White 2006). Figure 9 shows the comparison between our
predictions and the scaling law.

Finally, we observe that our earlier approach (Wang & Khayat 2018), where gravity
is neglected in the supercritical regime, could not capture the location of the jump
in comparison to experiment for heavily viscous liquids. On the other hand, the case
of water is not considered here, not just because of the low viscosity but also due to
the high surface tension. We considered the case of water in our recent work dealing
with high surface tension liquids along with comparisons with experiment (Wang &
Khayat 2018). In the present work, we neglect surface tension upstream in order to
investigate the role of gravity on the hydraulic jump. Our objective is to also confirm
or dismiss the claim and observation of Duchesne et al. (2014) for highly viscous
liquids. Further comparison with other existing measurements, including those of
Duchesne et al. (2014), will be carried out in § 5.
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FIGURE 9. Dependence of the hydraulic jump radius on the flow rate. The figure shows
the comparison between the present theoretical predictions (solid lines) and the ones based
on the scaling law (dashed lines) of Rojas et al. (2013) for two silicon oils of viscosities
ν = 15 cSt and 95 cSt.

4.4. Further validation
As further general assessment of the validity of equation (4.9), we examine its solution
against that of the shallow-water equations for weak gravity. Thus, we set ε≡ α−1 as
the small parameter, and expand the thickness as h̄(r̄) =

∑
m=0 ε

mh̄m(r̄). To leading
order, (4.9) yields the following equation for h̄0:

(r̄h̄0)
′
=

525
136 r̄2, (4.13)

which corresponds to the thickness in the absence of gravity. The solution of this
equation was already given earlier and is equivalent to (4.6). To next order:

(r̄h̄1)
′
=

875
272 r̄3h̄3

0h̄′0. (4.14)

We next examine the corresponding solution of the shallow-water equations, which
are first rescaled to involve the only parameter α = Re1/3Fr2 by recalling (3.7) and
introducing all the barred variables as

r= Re1/3r̄, h= Re−1/3h̄, z= Re−1/3z̄, u= ū, w= Re−2/3w̄. (4.15a−e)

In this case, equations (2.1a), (2.5) and (2.6) become

ūr̄ +
ū
r̄
+ w̄z̄ = 0, ūūr̄ + w̄ūz̄ =−α

−1h̄′ + ūz̄z̄,

∫ h̄

0
ū dz̄=

1
2r̄
. (4.16a−c)

In the presence of gravity, a similarity solution is possible only under some conditions.
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Starting with the mapping ξ̄ (r̄, z̄)= r̄, η̄(r̄, z̄)= z̄/h̄(r̄), and taking ū(r̄, z̄)= Ū(ξ̄ )g(η̄),
(4.16a) becomes

Ū′g−
h̄′

h̄
η̄Ūgη̄ +

Ūg
ξ̄
+

1
h̄

w̄η̄ = 0. (4.17)

Isolating w̄η̄ and rearranging terms:

w̄η̄ = ξ̄
−1
[−(ξ̄ h̄Ū)′g+ ξ̄ h̄′Ū(η̄g)η̄]. (4.18)

Now, from conservation of mass or (4.16c), we have

Ūh̄r̄=
1

2
∫ 1

0
g dη̄
=Const., yielding (ξ̄ h̄Ū)′ = 0. (4.19)

Consequently, (4.18) reduces to w̄η̄ = h̄′Ū(η̄g)η̄. Integrating and recalling that
w̄(ξ̄ , η̄= 0)= 0, we get w̄= h̄′Ūη̄g(η̄).

We thus have so far

ū= Ūg(η̄), w̄= h̄′Ūη̄g(η̄), r̄Ūh̄=C≡
(

2
∫ 1

0
g(η) dη

)−1

, (4.20a−c)

where (4.20c) is deduced from (4.16c). Substituting the velocity components from
(4.20a,b) into equation (4.16b), and eliminating Ū using (4.20c), yields the following
problem for g:

C2(r̄h̄)′g2
− εh̄3r̄3h̄′ +Cr2gη̄η̄ = 0, g(0)= gη̄(1)= 0, g(1)= 1. (4.21a−c)

We again seek the solution by expanding the thickness as h̄(r̄) =
∑

m=0 ε
mh̄m(r̄). To

leading order, we recover the classical equation of Watson (1964):

C(r̄h̄0)
′g2
+ r̄2gη̄η̄ = 0, (4.22)

which suggests that r̄−2(r̄h̄0)
′ must be constant. Multiplying (4.22) by gη̄, and

integrating using the conditions in (4.21), yields the following equation:

(rh0)
′
=

3c2

2C
r2, where c=

∫ 1

0

dg√
1− g3

= 1.402. (4.23)

The value of C is determined by noting that c = gη̄/
√

1− g3, yielding
∫ 1

0 g dg =∫ 1
0 g dg/

√
1− g3 = 0.615, so that C= 0.813. To the next order in ε, (4.21) gives

(r̄h̄1)
′
=

3c
2C2

r̄3h̄3
0h̄′0, (4.24)

where c
∫ 1

0 g2 dη = (1/3)
∫ 1

0 dg3/
√

1− g3 = 2/3 was used. Comparison between
the numerical coefficients of (4.14) and (4.24) indicates a discrepancy of 6 %. The
discrepancy for the first-order contribution is 1 % when (4.15) is compared with
(4.24).
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Finally, it is worth observing that Bohr et al. (1993) and Rojas et al. (2013) found
that the jump radius scales roughly as RJ ≈Q5/8ν−3/8g−1/8. Using the current scaling,
the dimensionless form of the estimate of Bohr et al. can be written as rJ≈Re3/8Fr1/4.
Avedisian & Zhao (2000) investigated the circular hydraulic jump experimentally for
normal and reduced gravity conditions. They measured the jump diameter and shape at
the free liquid surface for an impinging jet on a stationary disk. Based on the reported
two values of the flow rate and two gravitational acceleration data provided, we find
that the location of the jump behaves close to g−1/9, roughly confirming the scaling
of Bohr et al. (1993) for low gravity. We can also estimate the behaviour of the jump
radius from (4.8) by assuming the thickness from (4.6) or (4.7) for large distance or
hJ ≈ r2

J/Re. When inserted in (4.8), we obtain rJ ≈ Re3/8Fr1/4, which is precisely the
scaling suggested by Bohr et al. (1993) cast in dimensionless form. Interestingly, this
scaling law can also be expressed in terms of only one parameter as r̄J ≈ α

1/8.

5. The influence of gravity on the hydraulic jump height and the subcritical flow

Now that the jump location has been determined, we are in a position to examine
the flow and the film height in the subcritical region downstream of the jump, in
particular the height of the jump. Here, we consider two alternatives and assess their
validity, the first consisting of applying the conservation of momentum across the
jump, and the second involving the use of the film thickness at the edge of the disk
and integrating the momentum equation (backwards) to determine the jump height. We
conveniently let r = rJ− and r = rJ+ denote the radial position immediately up- and
downstream of the jump, respectively, with corresponding film heights hJ ≡ h(r= rJ−)

and HJ ≡ h(r= rJ+).

5.1. Conservation of momentum across the jump
We first recall the integral form (4.3) of the momentum conservation equation, which
holds for any position r > r0 in the super- and subcritical regions. Across the jump,
equation (4.3) is applied for a control volume of width 1r in the radial direction,
taking the following discretized form:

Re1
∫ h

0
u2 dz=−

Re
Fr2

1h2

2
−1ruz(rJ, z= 0). (5.1)

Since the width of the jump 1r is assumed to be small, equation (5.1) reduces to

Fr−2

2
(H2

J − h2
J)=

∫ hJ

0
u2(rJ−, z) dz−

∫ HJ

0
u2(rJ+, z) dz. (5.2)

We observe that the supercritical velocity is already available from (4.1) and (4.2),
yielding u(rJ−, z)= (4/5rJhJ)f (η), where η= z/hJ and f (η) is given in (3.4). We also
use relation (4.8) to eliminate hJ , In this case, (5.2) becomes

H2
J − 3

(
272
875

Fr2

r2
J

)2/3

+ 2Fr2
∫ HJ

0
u2(rJ+, z) dz= 0. (5.3)

Thus, the jump height is completely determined as a function of the Froude and
the Reynolds numbers once the subcritical velocity profile u(rJ+, z) is imposed.
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Various assumptions have been adopted in the literature, ranging from inviscid to
fully viscous flows. Both regimes will be explored next.

We first consider the flow to be inviscid downstream of the jump. Although the
present work is focused on heavily viscous liquids, the inviscid subcritical flow would
correspond to a jump that is relatively high. A boundary layer always exists, but it is
relatively thin in this case. Consequently, the velocity right downstream of the jump
would be essentially uniform. This is an assumption that has been widely adopted
in the literature in various contexts (see, for instance, Watson 1964; Bush & Aristoff
2003; Dressaire et al. 2010; Prince et al. 2012). At the very least, the inclusion of
the uniform subcritical flow is helpful as a reference limit. The assumption of uniform
flow does not necessarily have to hold over the entire domain downstream of the jump.
It is not unreasonable to assume that the velocity is uniform right downstream of
the jump, which allows the jump height to be readily determined from (5.3). Further
downstream, the flow may be considered fully viscous, and can be determined by
taking the jump height and velocity as initial conditions.

Thus, assuming uniform flow downstream of the jump, and using the mass
conservation equation (2.6), equation (5.3) reduces to

H2
J − 3

(
272
875

Fr2

r2
J

)2/3

+
Fr2

2r2
J HJ
= 0. (5.4)

Equation (5.4) takes an interesting form when cast in terms of the Froude number
based on the jump radius and height. In this regard, there is a close connection with
the recent experimental findings and claim of Duchesne et al. (2014), which we will
now explore.

Duchesne et al. (2014) introduced the Froude number defined in terms of the jump
height and the average velocity immediately after the jump, namely FrJ = Fr/2rJH3/2

J
in our notations. Their measurements suggest that FrJ remains sensibly independent
of the flow rate (constant with respect to Fr). However, they could not explain or
theoretically support this observation, which, in turn, begs the question whether the
constancy of FrJ has any theoretical basis. This turns out to be indeed the case as we
shall now demonstrate.

It is easy to see that (5.4) yields the following equation for FrJ:

Fr2
J −

24
25(

17
7 )

2/3Fr4/3
J +

1
2 = 0. (5.5)

This equation indicates that FrJ is indeed a constant that is independent of the Fr
or, equivalently, of the flow rate, confirming the observation of Duchesne et al. (2014).
This is a cubic equation in Fr2/3

J , admitting FrJ = 0.58 as a solution. Thus, we have
established the constancy of FrJ when the subcritical flow to be inviscid.

We next address the question whether FrJ remains actually independent of the flow
rate if the subcritical flow is assumed to be viscous, and see whether this yields
a closer constant FrJ value to the one measured by Duchesne et al. (2014). We
follow Duchesne et al. (2014), and adopt a lubrication flow approach. In this case,
a differential equation for H can be obtained by neglecting the inertial terms in
equation (2.5), yielding the following profile for the radial velocity:

u(r> rJ, z)=
Re
Fr2

dH
dr

(
z2

2
−Hz

)
. (5.6)
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Inserting u into the mass conservation (2.6) and integrating, the equation governing
the film thickness downstream of the jump becomes

dH
dr
=−

3
2

Fr2

Re
H−3

r
, (5.7)

which leads to the velocity profile just downstream of the jump as

u(rJ+, z)=−
3

2rJH3
J

(
z2

2
−HJz

)
. (5.8)

Finally, inserting (5.8) into (5.3), we obtain the following equation for FrJ:

Fr2
J −

4
5(

17
7 )

2/3Fr4/3
J +

5
12 = 0. (5.9)

Similar to (5.5), equation (5.9) also confirms that FrJ is independent of Fr (flow
rate), with FrJ = 0.71.

What we have established so far, based on the discretized mass and momentum
equations across the jump, is that FrJ is indeed constant (independent of the flow
rate) as Duchesne et al. (2014) claim from their measurements. Surprisingly, this is
the case whether the subcritical flow is assumed to be inviscid or viscous obeying
the lubrication regime, thus covering a wide range of viscosity and flow rate. The
value of FrJ is found to be slightly lower for inviscid compared to viscous subcritical
flow. However, both values remain higher than the measured value by Duchesne et al.
(2014): FrJ ≈ 0.35–0.40. It is important to observe that the values of FrJ can be
found theoretically without the knowledge of downstream conditions of the jump such
as the disk radius or the thickness at the edge of the disk. Such conditions are not
needed when the discretized conservation equations are invoked. Another important
observation to make is whether the discretized (5.2) itself is valid. It is expected that
(5.2) remains reasonably valid for low-viscosity liquids or at high flow rate since
the jump is of negligible thickness and its location is well defined. However, for
high-viscosity liquids such as the silicon oils used by Duchesne et al. (2014), the
jump is expected to be wide, and (5.2) cannot be entirely valid. This brings us to
the second alternative when seeking the subcritical flow.

5.2. The influence of disk radius and edge thickness
We proceed by examining the flow in the subcritical range, downstream of the jump,
without invoking (5.3). In this case, an approximate or asymptotic solution of (4.4)
can be found by keeping the three dominant terms for large distance, reducing it to
a lubrication-like equation for H:

dH
dr
=−

6
5

Fr2

Re
H−3

r
. (5.10)

Subject to H(r= r∞)=H∞, (5.10) can be integrated analytically to give

H(r)=
(

H4
∞
+

24
5

Fr2

Re
ln
(r∞

r

))1/4

. (5.11)

The prediction of the edge thickness was considered in our recent study for the
flow on a rotating disk (Wang & Khayat 2018). The case of a stationary disk was
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also examined. Both static and dynamic contributions were considered, which yielded
an accurate prediction established by comparing against experiment for the edge
thickness. Direct measurements by Duchesne et al. (2014) of the edge thickness,
performed at nearly 5 mm of the disk perimeter in their experiment, give a nearly
constant value of 1.5 mm with a weak power-law variation with the flow rate, not
exceeding a few per cent. This constant thickness value, for a liquid of surface
tension γ , is very close to the capillary length

√
γ /ρg of the fluid, which results

from the balance of forces between the hydrostatic pressure and the surface tension at
the disk perimeter. This value is also consistent with the measurements of Dressaire
et al. (2010). Consequently, we assumed that the film thickness at the edge of
the disk is essentially equal to the film thickness the liquid exhibits under static
conditions. Lubarda & Talke (2011) proposed an expression for this static thickness
as hs = 2

√
γ /ρg sin(θY/2), based on the minimum free energy principle. Here θY is

the contact angle, which depends on both the liquid and the solid, and may then
be deduced from experiment. For water, we achieved an excellent agreement with
the measurements of Dressaire et al. (2010) for the jump radius by taking θY = 90◦.
This value is within the range of values measured for water on polydimethylsiloxane
(Diversified Enterprises 2009), which is the material used by Dressaire et al. (2010)
for their disk. For water flowing on glass, θY = 35◦ (Vicente, Andre & Ferreira 2012),
a value used recently in our comparison with the measurements of Hansen et al.
(1997) for water (Wang & Khayat 2018).

In addition to the static contribution, and in order to explore the small variation
of edge thickness with flow rate as observed by Duchesne et al. (2014), we resorted
to a minimum mechanical energy principle (Yang & Chen 1992; Yang, Chen & Hsu
1997), which states that a fluid flowing over the edge of a disk under the influence
of a hydrostatic pressure gradient will adjust itself so that the mechanical energy
within the fluid will be minimum with respect to the film thickness at the disk edge.
Consequently, the contribution to the thickness at the edge of the disk is determined
by setting the derivative of the mechanical energy with respect to the film thickness
equal to zero. In dimensionless form, the total energy is E=

∫ H
0 (Fr2(u2/2)+ z+ p) dz.

Since the pressure is hydrostatic: p = −z + H, yielding E =
∫ H

0 (Fr2(u2/2) + H) dz.
Consequently, we set ∂/∂H

∫ H
0 (Fr2(u2/2)+ H) dz= 0 at the edge of the disk. Using

(5.8), we obtain the dimensionless film thickness at the edge as

H∞ = 2

√
1

Bo
sin
(
θY

2

)
+

(
3
40

)1/3 (Fr
r∞

)2/3

. (5.12)

Here the Bond number is given by Bo= ρga2/γ . Clearly, in the presence of relatively
strong gravity or surface tension and large disk radius, the second term tends to be
dominated by the static contribution. As we shall see next, even the static contribution
will turn out to be uninfluential for the heavily viscous liquids considered in the
present work.

Indeed, once the thickness H(r = r∞)= H∞ at the edge of the disk is determined
as per (5.12), we obtain the film thickness distribution downstream of the jump from
(5.10). In particular, and given that the jump location has already been determined,
the jump height is now obtained through

HJ =

(
H4
∞
+

24
5

Fr2

Re
ln
(

r∞
rJ

))1/4

. (5.13)
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1.0
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0.4

0.2

0

FrJ
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0 10 20 30 40

Theory
Experiment

50 60

FIGURE 10. Dependence of FrJ on the flow rate (Froude number). The solid line
correspond to predictions based on relations (4.4) and (5.13). The experimental data
corresponding to silicon oil are from Duchesne et al. (2014). Also added as dashed and
dash-dotted lines the result based on (5.5) and (5.9), respectively.

In this case, it is not difficult to confirm that, for a large disk and relatively small
Reynolds number, the logarithmic term dominates on the right-hand side of (5.13).
This is obviously the case of very viscous liquids. As a comparison, the Reynolds
number for the flow of silicon oils (Duchesne et al. 2014) is of the order of 102,
whereas for water (Dressaire et al. 2010) its order is closer to 104. It is important to
note that the range of Froude number in both sets of measurements is essentially the
same. Based on the range of Froude numbers in figure 10 below, it is not difficult
to deduce that the static contribution to the edge thickness is also dominated. In fact,
experiment (Duchesne et al. 2014) indicate that H∞ =O(1) at most, and H∞ ≈ 0 for
a liquid of high viscosity.

We now turn, once again, to examining conditions where FrJ may remain
independent of the flow rate. This time, (5.13) is used instead of (5.3). In this case,
since the pre-jump height hJ and the jump radius rJ must be computed numerically, it
is not possible to derive a closed form equation similar to (5.5) or (5.9), confirming
that FrJ is constant. In fact, (5.13) suggests that FrJ is not independent of Fr.
However, the dependence on Fr turns out to be weak, as figure 10 suggests. The
figure shows the variation of FrJ against Fr for the silicon oil of viscosity 20 cSt
used by Duchesne et al. (2014) in their measurements, which are also shown in the
figure. The experimental data are reproduced in dimensionless form. Surprisingly, the
figure indicates that FrJ not only is indeed sensibly constant but agrees closely with
experiment. Some discrepancy is, however, noted for low flow rates, which is not
surprising given the difficulty in measuring accurately the jump radius and height.
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Now that the solution is available in the supercritical and subcritical regions, we are
in a position to validate our model over the entire domain, against existing numerical
results and experiment. We also take the opportunity to assess the validity of the
parabolic profile. For the supercritical range, an equation similar to (4.4) is obtained
when using the parabolic profile: f (η)= 2η− η2, namely

Re
(

1
Fr2
−

3
10r2h3

)
h′ =

3
10rh2

(
Re
r2
−

5
h

)
. (5.14)

We observe that the asymptotic form of (5.14) for large r is precisely the lubrication
(5.7), which when integrated yields

H(r)=
(

H4
∞
+ 6

Fr2

Re
ln
(r∞

r

))1/4

. (5.15)

Figure 11 shows the comparison between the present theory and the numerical
results of Rojas & Tirapegui (2015) as well as the measurements of Ellegaard et al.
(1996) for ethylene glycol. Both formulations based on the parabolic and cubic profiles
are represented. The results for the free-surface velocity are reported in dimensionless
form, with corresponding parameters being Re= 334, Fr = 14.4 and Bo= 1.21. The
contact angle used to determine the edge thickness is θY = 70◦, yielding a total edge
thickness of H∞ = 1.7, including the height of the vertical edge. While the position
of the jump is well reproduced by the present theory based on the cubic profile and
the numerical method, figure 11 shows that the theory tends to slightly underestimate
the level of the surface velocity in both the super- and subcritical ranges. Figure 11
indicates that the numerical approach of Rojas et al. tends to agree slightly better
with experiment than the present theory. The figure also indicates a larger discrepancy
when the parabolic profile is used.

We next examine the shape of the entire film under general flow conditions. For
this, we rescale (5.11) using (3.7) to reduce the problem in terms of the parameter
α:

H̄(r̄)=
(

H̄4
∞
+

24
5
α ln

(
r̄∞
r̄

))1/4

. (5.16)

Here H̄∞= 2
√

Re2/3/Bo sin(θY/2)+ ((3/40)α/r̄2
∞
)1/3 from (5.12). The overall effect

of gravity is illustrated in figure 12, which depicts the film thickness over the entire
disk. The jump height decreases with increasing gravity, simultaneously as the jump
location is pushed upstream toward the stagnation point and away from the edge of
the disk. We can also observe the logarithmic increase in height reported earlier in
figure 7.

While the use of (4.4) or (4.9) is imperative in the supercritical range ahead of
the jump, allowing us to locate the jump, it is not necessarily so for the subcritical
flow, where we have the choice to use different approximations. For instance, as the
flow slows down downstream of the shock, we saw that the lubrication assumption
holds well between the jump and the edge of the disk, yielding a good agreement
with experiment (see figures 10 and 11). Our calculations of the subcritical flow so
far are based on the asymptotic form (5.11) of (4.4) or (5.16) of (4.9) for large
r as it is convenient to use, given the analytical distribution of the thickness (and
velocity) downstream of the jump and its direct relation to the edge thickness and
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2 10 50

Theory (cubic profile)
Theory (parabolic profile)

Numerical
Experiment

100

10-1

U

r

10-2

FIGURE 11. Free-surface velocity in the supercritical and subcritical domains. Comparison
between the present theory (solid line), the numerical results of Rojas & Tirapegui (2015),
as well as the experimental data of Ellegaard et al. (1996). Also added is the velocity
distribution based on the parabolic profile.
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FIGURE 12. Influence of gravity on the film thickness plotted against radial distance in
regions (ii), (iii) and (iv).
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0 20

Equation (4.4)–(5.11)
Equation (4.4)

h

40 60
r

80 100

3

2

1
r∞ = 70 r∞ = 80 r∞ = 90

FIGURE 13. Influence of the disk radius on the film thickness plotted against the radial
distance in regions (ii), (iii) and (iv). Solution in solid line based on equations (4.4) and
(5.11). Dashed line shows the subcritical profile based on (4.4).

the disk radius. Alternatively, we now consider using (4.4), and apply it directly
to capture the subcritical flow, which should allow us to assess the validity of
(5.11). Simultaneously, we examine the effect of the disk radius. The comparison is
reported in figure 13 for the film thickness distribution with distance in the super-
and subcritical ranges for three different values of the disk radius. We take Re= 628,
Fr= 63, Bo= 1.1 and ΘY = 55◦. In this case, the values of the thickness at the edge
of the disk are determined from (5.12) are H∞ = 1.24, 1.2 and 1.18, corresponding
to r∞ = 70, 80 and 90, respectively.

Several observations are worth making here. Figure 13 shows that the subcritical
branches exhibit a turning point corresponding to the singularity of (4.4), which occurs
slightly upstream of the jump location. As expected, the profile of the asymptotic
solution (5.11) collapses onto the profile based on (4.4) at a distance not too far from
the jump. This distance, nevertheless, increases with the disk radius. The asymptotic
solution yields a jump height HJ that is slightly above the one based on the exact
solution of (4.4). Finally, despite the important spread in the values of the disk radius,
the location of the singularity reached by the subcritical branches is essentially the
same, as reflected in the saturation near the turning point. This seems to suggest
that the location of the jump in reality, if it were to fall half-way, say, between the
two locations of the singularity, is independent of downstream conditions. We seem
to reach this observation regardless of which branch, super- or subcritical, we are
referring to.

Next, we pursue our assessment of the validity of (4.4) and the asymptotic form
(5.11) against experiment. The comparison is reported in figure 14 for the film
thickness distribution with distance in the super- and subcritical regions against
the measurements of Duchesne et al. (2014) for silicon oil (20 cSt). The data are
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FIGURE 14. Free-surface profile. Comparison between theoretical predictions and the
measurements of Duchesne et al. (2014) for silicon oil (20 cSt). Results plotted in
dimensionless form with Re = 169, Fr = 14.88, Bo = 1.19, ΘY = 55◦ and r̄∞ = 94.
Theoretical profiles based on current theory or (4.4) (solid lines) and asymptotic subcritical
(5.11) (dashed line).

reproduced here in dimensionless form from their figure 2, corresponding to Re= 169,
Fr= 14.88, Bo= 1.19, ΘY = 55◦ and r̄∞= 94. In this case, the value of the thickness
at the edge of the disk is determined from (5.12) as H̄∞= 0.95. Several observations
are worth making here. Figure 14 shows that the theoretical predictions, based on the
solution of (4.4), are generally in good agreement with the experiment of Duchesne
et al. (2014), slightly underestimating their measurements. The location of the jump
is predicted to be close to the level of the turning point or the singularity of the
supercritical branch upstream of the jump. The subcritical branch also exhibits a
turning point corresponding to the singularity of (4.4), occurring slightly downstream
of the jump location (see figure 13). The behaviour of the two branches is in
close (qualitative) agreement with the theoretical predictions of Kasimov (2008)
who incorporated the shape of the bottom (flat disk with a sharp cut off at the
edge). The reader is particularly referred to figure 3(a) from Kasimov (2008). The
asymptotic solution cannot mimic the downward turning trend observed in the
experiment, yielding a jump height HJ that is slightly above the one based on the
exact solution of (4.4). Interestingly, there is no need here to integrate from a critical
point coinciding with at the edge of the disk to obtain the subcritical branch as
Kasimov (2008) did. Kasimov estimated the location of the jump to be somewhere
between the upstream and downstream singularities, which seems to be case here.
However, this may not always be the case. Based on the agreement between theory
and experiment in previous figures, we saw that the location of the jump coincides
rather with the upstream singularity of the averaged momentum equation.
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Finally, an interesting observation can be made regarding the (constant) value of
FrJ and its independence of Fr (or the flow rate). The measurements of the film
profile for heavily viscous liquids seem to give a rough estimate of the height HJ
immediately downstream of the relative the height hJ upstream of the jump. More
precisely, experiment suggests that HJ ≈ 2hJ (see, for instance, the measurements
of Ellegaard et al. (1996), and those in figure 2 of Duchesne et al. (2014). By
substituting hJ =HJ/2 in (4.8) and recalling that FrJ = Fr/2rJH3/2

J , we deduce that

FrJ =
Fr

25/2rJh3/2
J

=
1

16

√
875
34
' 0.32, (5.17)

which is very close to 0.33, the value measured by Duchesne et al. (2014). Another
way of obtaining the same result is to assume that the singularity yielding (4.8) occurs
at a height half-way along the jump, where we expect the slope to be largest (infinite).
In this case, one would replace hJ in (4.8) by the average height, which, in turn, can
be approximated as (HJ + hJ)/2≈HJ/2 if one assumes that hJ�HJ (Watson 1964),
and obtain (5.17). The estimated value in (5.17) confirms the important observation in
this study that the jump characteristics appear to be dictated only by the supercritical
flow and upstream conditions.

6. Concluding remarks and discussion
In this study, the flow of a high-viscosity jet impinging on a stationary disk

is examined theoretically. The present study focuses on the role of gravity in the
prediction of both the location and height of the circular hydraulic jump, and is
restricted to laminar circular steady jump of type I, which exhibits a sharp transition
and is marked by unidirectional surface flow with boundary-layer separation beyond
the jump (Bohr et al. 1996; Bush & Aristoff 2003). See figure 1. Despite the
numerous theoretical and numerical studies in the literature, this prediction remains
somewhat difficult to achieve through a simple and practical theoretical model. This
issue was recently addressed in our work on a jet impinging on a rotating disk,
but was limited to low-viscosity liquids (Wang & Khayat 2018). Typical theoretical
models in the literature seem to rely on some empirical input to generate boundary
conditions, or lack the additional relation needed along with the discretized momentum
balance across the jump when an approach similar to Watson’s is used. The additional
relation is needed in order to determine uniquely the location and height of the jump.
In the present study, we show how a closure to the problem can be brought by
establishing a simple relation between the jump location and pre-jump height by
including the effect of gravity in the developing boundary layer and the supercritical
region of the flow domain. In fact, we show that the Froude number based on the
pre-jump height and jump radius is constant (see relation (4.8) or (4.10)).

The flow is assumed to remain steady and axisymmetric. A model is developed
based on the Kármán–Pohlhausen integral approach to describe the behaviour of the
flow in the developing boundary-layer region (ii) and the fully developed viscous
region (iii). The integral form of the continuity and momentum equations, governing
the flow of a thin film, is treated numerically separately in each region, and the flow
is matched at the transition point. Unlike the flow in the absence of gravity, the
problem does not admit a similarity solution. However, a self-similar cubic profile is
nevertheless assumed for the velocity, which is commonly used and was previously
shown to be accurate. Although two dimensionless parameters are involved in the
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absence of surface tension, namely the Reynolds number Re and the Froude number
Fr defined in terms of the jet radius and the flow rate, we show that the problem can
be cast in terms of only one parameter: α = Re1/3Fr2.

We find that gravity tends to enhance inertia, leading to a drop in the boundary-
layer height as well as the film thickness in region (ii). Near the stagnation point,
the boundary layer departs from the

√
r/Re behaviour to grow increasingly linearly

with distance like δ ≈
√

3(Fr/
√

Re)r under the influence of gravity. The transition
point, where the outer edge of the boundary layer intersects the film surface, moves
towards the perimeter of the disk with increasing gravity while the film thickness at
the transition location diminishes (figures 2 and 3).

In the fully viscous region (iii), the shallow-water equations are reduced to a
first-order equation for the thickness (4.4) or (4.9). We show that this equation
exhibits an essential singularity in the presence of gravity at a distance identified as
the jump location. As the flow slows down, inertia weakens and friction increases
with radial distance. At some distance gravity and viscous effects become equal,
causing the singularity and therefore the jump to occur.

The numerical solution indicates that the film thickness decreases rapidly near
impingement and exhibits a minimum that strengthens with gravity (figure 4),
accompanied by an increase in the surface velocity that decays at a slower rate
with radial distance (figure 5). Interestingly, unlike the film thickness, the surface
velocity decays monotonically with distance. In contrast, the shear stress along
the wall exhibits a weak maximum that shifts downstream as the effect of gravity
increases (figure 6).

We show that, for a flat disk, the jump radius can be determined independently
of its height or downstream conditions, in agreement with experimental observations.
Based on their measurements, Brechet & Neda (1999) concluded that ‘the boundary
conditions on a perfectly flat plate do not influence the radius of the hydraulic
jump’. These findings are validated against existing experimental data and numerical
simulation. Comparison between the predicted and measured jump locations in
figure 8 confirm that, for a circular jump, the jump radius is independent of the
subcritical flow downstream of the jump, nor is it affected by the radius of the disk
or the thickness at the edge of a flat disk. Despite the simplicity of the present
approach, the predicted jump location shows surprisingly close agreement with
existing numerical results based on a spectral methodology.

We consider two alternatives to determine the jump height and assess the empirical
claim of Duchesne et al. (2014) concerning the constancy of the Froude number
FrJ based on the jump radius and height, and its independence of the flow rate.
The first approach, following Watson and many others, consists of applying a
momentum balance across the (infinitely thin) hydraulic jump, yielding (5.3). We
demonstrate theoretically that for both uniform and lubrication flows downstream of
the jump, the Froude number is indeed constant as Duchesne et al. (2014) claim.
However, the predicted values in both cases are higher than their measured value.
This simultaneously suggests that the discretized momentum balance approach is
not adequate, which is not surprising given the finite thickness of the jump for
high-viscosity liquids. This brings us to the second alternative, which consists of
solving the film (4.4), either directly or by deducing an asymptotic form far from
impingement, taking the thickness H∞ of the film at the edge of the disk as the
boundary condition and integrating (upstream) towards the jump location to determine
the height. This approach turns out to be the method of choice as it yields close
agreement with the measured Froude number for silicon oil (see figure 10). The value
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of H∞ is determined theoretically as a combined static and dynamic contributions
as was done for low-viscosity liquids (Wang & Khayat 2018) but turns out to be
relatively much smaller for high-viscosity liquids. Finally, the influence of gravity on
the film shape in the entire flow domain is assessed (figure 13).

We observe that the self-similar cubic profiles (3.4) and (4.1) are obviously adopted
here for their simplicity, and turned out to be consistently accurate in our comparisons
with existing numerical results and experiment. The self-similar cubic profile does not
satisfy the momentum equation at the disk, which would break the similarity. The
accuracy of the profile used here, despite its simplicity, seems to suggest that, in the
KP averaging formulation, the effect of gravity or the pressure gradient in general
is not significant at the level of thee solid disk where shearing is dominant. On the
other hand, a non-self-similar cubic profile would yield a smooth jump as opposed
to the presently predicted shock. Building on the earlier work of Bohr et al. (1997),
Watanabe et al. (2003) used a non-self-similar cubic profile: expression (2.20) in their
paper. They obtained the system (2.26) of two ordinary differential equations from
their averaged momentum and mass conservation equations. The two unknowns were
the film thickness h(r) and a shape parameter λ(r) related to the profile coefficients
in (2.20). A singularity occurs when h = 0 or λ = 7/2, which is not encountered
for the flow they sought. In particular, when λ= 7/2, their equation (2.24b) reduces
to h′ = −41/2rh3 when their relation (2.14) is used. This expression for the slope
indicates that, for the singularity to occur, the slope must be necessarily negative,
which is practically not the case for the flow they considered. Their solution was
sought by imposing the film heights at two locations obtained from experiment. In
that case, the slope is positive or at most mildly negative, and the singularity was thus
avoided. This is particularly the case in the subcritical region where the film thickness
is high. We refer the reader to figures 4 and 5 in Watanabe et al. (2003). We also note
that λ was always negative.

However, the singularity is not always avoidable. In particular, when the disk radius
is sufficiently large, the film thickness at the edge of the disk can be small enough for
h′ to remain negative downstream of the jump, thus causing the singularity to occur
in the subcritical region. See, for instance, figures 1 and 2 in Duchesne et al. (2014),
and our own figures 12–14. Consequently, although a non-self-similar cubic profile
may yield a smooth jump zone, one may still have to deal with the singularity further
downstream. In fact, Bohr et al. (1993) did encounter the singularity downstream, and
attributed its presence to the edge of the disk.

In closing, we highlight the main points that distinguish our method from the main
theoretical literature:

Our approach involves the actual physical domain, ranging from the point of
impingement to the edge of the disk, as opposed to the domain located between two
arbitrarily chosen points as in Bohr et al. (1997) and Watanabe et al. (2003).

In this regard, our model does not require any degree of empiricism (other than the
flow parameters) such as the imposition of the film heights at the boundary(ies) from
experiment (Bohr et al. 1997; Watanabe et al. 2003; Rojas et al. 2013).

Given the essential singularity, the domain is clearly separated, at the level of the
shock, into a supercritical flow ahead of the jump and a subcritical flow after the jump.
Therefore, there is no overlap in the solution domains on the two sides of the shock
as in Kasimov (2008).

Both the supercritical and subcritical flows are sought separately as initial-value
problems, starting at theoretically determined initial conditions that correspond to the
transition point upstream of the jump and the thickness at the edge downstream.

The jump location is precisely identified to coincide with the location of the
singularity of the averaged momentum thin-film equation. In other words, the
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singularity is inherent to the momentum and not necessarily to the energy equation
as in Bhagat et al. (2018).

We attribute the emergence of the jump as the result of the balance between
gravity and viscosity, at a point where inertia has sufficiently weakened by the
mounting friction, coinciding with the location of the singularity, and not somewhere
between the two singularities of the averaged momentum equation as Kasimov (2008)
suggested.

The jump location (not height) is determined independently of downstream
conditions, such as the disk radius and the edge thickness, in agreement with
experiment (Brechet & Neda 1999).

The jump height as well as the entire subcritical flow can be sought a posteriori,
subject to a well-established boundary conditions at the edge of the disk (static and
dynamic contributions at the edge).

Finally, we show the conditions where the Froude number based on the jump height
and location is independent of the flow rate, in agreement with the measurements of
Duchesne et al. (2014).

In conclusion, we demonstrate the crucial role of gravity and its influence on the
emergence of the circular hydraulic jump for liquids of relatively large viscosity. We
propose a simple and complete theoretical model to predict the location of the jump
as well as the flow in the entire domain.
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