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AN AXIOMATIC APPROACH TO FREE AMALGAMATION

GABRIEL CONANT

Abstract. Weuse axioms of abstract ternary relations to define the notion of a free amalgamation theory.
These form a subclass of first-order theories, without the strict order property, encompassing many promi-
nent examples of countable structures in relational languages, in which the class of algebraically closed
substructures is closed under free amalgamation. We show that any free amalgamation theory has elimi-
nation of hyperimaginaries and weak elimination of imaginaries. With this result, we use several families
of well-known homogeneous structures to give new examples of rosy theories. We then prove that, for free
amalgamation theories, simplicity coincides with NTP2 and, assuming modularity, with NSOP3 as well.
We also show that any simple free amalgamation theory is 1-based. Finally, we prove a combinatorial char-
acterization of simplicity for Fraı̈ssé limits with free amalgamation, which provides new context for the fact
that the generic Kn -free graphs are SOP3, while the higher arity generic K

r
n -free r-hypergraphs are simple.

§1. Introduction. In the classification of unstable first-order theories, the dividing
lines given by TP2 and SOP3 have consistently thwarted progress in understanding
general structural behavior for theories without the strict order property (i.e., NSOP
theories). On the other hand, all of the known examples of NSOP theories are either
simple or have TP2; and many (if not most) nonsimple examples have SOP3 as well.
Whether these observationswill lead to general theorems remains an intriguing open
question. The goal of this paper is to develop structural results for a general subclass
of NSOP theories, called free amalgamation theories, which are defined by the exis-
tence of an abstract ternary notion of independence resembling free amalgamation
in relational structures. This subclass will include manywell-established examples of
theories which are either simple or have SOP3 and TP2. The canonical examples are
Fraı̈ssé limits, closed under free amalgamation, such as the random graph (orRado
graph) and generic Kn-free graphs (or Henson graphs). Other examples, in which
free amalgamation is more restricted, include the generic (Kn + K3)-free graphs
constructed by Komjáth [20] and Cherlin, Shelah, and Shi [5], as well as a small
class of well-behaved Hrushovski constructions.
The reason for focusing on free amalgamation theories is that a significant major-
ity of the known examples of nonsimple NSOP theories are “generic” structures
with a high level of homogeneity. At present, it is still unclear how to precisely distill
the nature of NSOP homogeneous structures. However, our results will show that
homogeneity arising from free amalgamation has significant consequences for the
model theory of the structure.Moreover, the essential features of free amalgamation
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AN AXIOMATIC APPROACH TO FREE AMALGAMATION 649

can be described by a model theoretic axiomatic framework, which allows cumber-
some syntactic analysis to be replaced by smoother “geometric” arguments. There
is currently only one other axiomatic framework which includes examples of NSOP
theories with TP2 and SOP3, namely, thorn-forking in rosy theories. However, the
class of rosy theories is quite broad, and rosiness alone does not imply the spe-
cific instances of good model theoretic behavior that we will obtain here for free
amalgamation theories.
The main results are as follows. We first verify that free amalgamation theories
are indeed a subclass of NSOP theories. In particular, using a similar argument as
in unpublished work of Patel [25], we give a short proof that any free amalgama-
tion theory is NSOP4 (see Theorem 4.4). This generalizes Patel’s methods to the
axiomatic framework, and crystallizes the frequently observed connection between
free amalgamation and NSOP4. This result also overlaps with work of Evans &
Wong [12] on certain Hrushovski constructions, and work of Shelah andUsvyatsov
[27] on groups.
We then show that any free amalgamation theory has elimination of hyperimag-
inaries and weak elimination of imaginaries (see Theorem 5.6). Using this, we
provide new examples of rosy theories, including the class of Fraı̈ssé limits closed
under free amalgamation, which are superrosy ofUþ-rank 1. We also show that the
generic (Kn +K3)-free graphs are superrosy of Uþ-rank 2 (see Theorem 6.10).
Finally, we analyze the role of simplicity in free amalgamation theories. We show
that simplicity coincides withNTP2 and alsowith the equivalence of nonforking and
algebraic independence (see Theorem 7.7). As a corollary, it follows that any simple
free amalgamation theory is modular (in the sense of [2]). Using the results above
on (hyper)imaginaries, we then show that any simple free amalgamation theory is
1-based (see Corollary 7.13). We also prove that, for modular free amalgamation
theories, simplicity coincides with NSOP3 (see Theorem 7.17). In particular, mod-
ular free amalgamation theories form the first example of a general, axiomatically
defined class of first-order theories, in which we (nontrivially) obtain the equiva-
lence of simplicity, NTP2, and NSOP3 (which, as previously noted, seems to be a
much broader phenomenon).
For our main class of motivating examples, this results in the following fairly
complete analysis of model theoretic behavior.

Theorem 1.1. SupposeM is a countable ultrahomogeneous structure, in a finite
relational language, whose age is closed under free amalgamation of L-structures. Let
T = Th(M).
(a) T has elimination of hyperimaginaries and weak elimination of imaginaries,
and is rosy with Uþ(T ) = 1.

(b) T is NSOP4. Moreover, the following are equivalent.
(i) T is simple.
(ii) T is NTP2.
(iii) T is NSOP3.

(c) If T is simple then it is supersimple, of SU -rank 1, and 1-based.

The statements in this theorem are consequences of the various main results in
this paper, which are shown for themore general class of free amalgamation theories
(Definition 2.3). GivenM as in the theorem, the justification that Th(M) is a free
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amalgamation theory is done in Proposition 3.4. Several parts of the theorem also
require the observation that Th(M) is modular, which follows from the fact that
algebraic closure inM is trivial (see Proposition 6.5(d )). Part (a), which answers
questions posed to us by Cameron Hill and Vera Koponen, combines Theorem 5.6,
Corollary 6.6, and Proposition 6.8. Part (b) combines Theorems 4.4, 7.7, and 7.17.
Part (c) uses Corollary 7.13 to conclude T is 1-based, and uses the description
of forking given by Theorem 7.7 to conclude T is supersimple SU-rank 1 (it is
also a general fact that U -rank and Uþ-rank coincide for supersimple theories [23,
Theorem 5.1.4]). Part (c) also provides progress toward a question of Koponen [21]
on whether any countable, simple, ultrahomogeneous structure, in a finite relational
language, is 1-based. We again emphasize that NSOP4 in part (b) was first proved
by Patel [25]. After obtaining our results, we later found that weak elimination of
imaginaries in part (a) also follows from [22, Lemma 2.7].
The final result of the paper, Theorem 7.22, is a combinatorial characterization
of simplicity for Th(M), given in terms of irreducibility of forbidden substructures,
for certainM as in the theorem above. The proof uses a generalization of a result
of Hrushovski [16] on the generic Krn -free r-hypergraphs (with r > 2).

§2. Notation and definitions. Fix a complete first-order theory T and a
κ-saturated monster model M of T , for κ sufficiently large. We write A ⊂ M to
mean A ⊆ M and |A| < κ. Given A,B ⊂ M, we let AB denote A ∪ B. We use
singletons a, b, c, x, y, z, . . . to denote tuples of length < κ. Given a tuple a, we
let �(a) denote the length (or domain) of a and, abusing notation, we identify a
with the subset of M given by the range of a. We write a ∈ M to mean a is a
tuple of elements from M. When the domain of the tuple is important, we may
emphasize this by writing a ∈ MI . Given an automorphism � ∈ Aut(M) and a
tuple a = (ai : i ∈ I ) ∈ MI , we let �(a) denote the tuple (�(ai) : i ∈ I ). Given
tuples a, b ∈ M, and C ⊂ M, we write a ≡C b if a, b ∈ MI , for some common
domain I , and �(a) = b for some � ∈ Aut(M/C ).
In many cases, we index sequences of tuples with subscripts (e.g., (ai)i<� , where
each ai is a tuple). Therefore, in situations where we also want to reference the
specific coordinates of the tuples in such a sequence, wewill use superscripts to index
tuples and subscripts to index coordinates (e.g., (al )l<� with al = (ali : i ∈ I )).
Suppose a ∈ MI is a tuple with domain I . A subtuple of a is a tuple of the form
aJ := (ai : i ∈ J ), where J is a subset of I . We write c � a to denote that c
is a subtuple of a. Given an indiscernible sequence I = (al )l<� , we define the
common intersection of I to be the (possibly empty) subtuple a0J � a0, where
J = {i ∈ I : a0i = a1i }.
Let acl denote algebraic closure inM; A ⊂ M is closed if acl(A) = A. We say:

(1) acl is locally finite if acl(A) is finite for all finite A ⊂ M;
(2) acl is disintegrated if, for all A ⊂ M, acl(A) =

⋃{acl(a) : a ∈
A is a singleton};

(3) acl is trivial if acl(A) = A for all A ⊂ M.

We now define axioms of abstract ternary relations on (small subsets of) M.
Some axioms have been slightly adjusted from their standard formulations, and
incorporate algebraic closure of the small subsets in question.
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Definition 2.1. Given a ternary relation |� onM, define the following axioms.
(i) (invariance). For all A,B,C , if A |�C

B and � ∈ Aut(M) then
�(A) |��(C )

�(B).

(ii) (monotonicity). For all A,B,C , if A |�C
B, A0 ⊆ A, and B0 ⊆ B, then

A0 |�C
B0.

(iii) (symmetry). For all A,B,C , if A |�C
B then B |�C

A.
(iv) (full transitivity). For all A and D ⊆ C ⊆ B, A |�D

B if and only if
A |�C

B and A |�D
C .

(v) (full existence). For all B,C ⊂ M and tuples a ∈ M, if C is closed then
there is a′ ≡C a such that a′ |�C

B.
(vi) (stationarity). For all closed C ⊂ M and closed tuples a, a′, b ∈ M, with

C ⊆ a ∩ b, if a |�C
b, a′ |�C

b, and a′ ≡C a, then ab ≡C a′b.
(vii) (freedom). For all A,B,C,D, if A |�C

B and C ∩ AB ⊆ D ⊆ C , then
A |�D

B.
(viii) (closure). For all closed A,B,C , if C ⊆ A ∩ B and A |�C

B then AB is
closed.

There is a significant body of literature concerning axioms of ternary notions
of independence. An excellent introduction can be found in [2]. The choice of
axioms in Definition 2.1 also borrows heavily from Tent and Ziegler’s work with
stationary independence relations [29], and so we give the following adaptation of
their definition to the present context.

Definition 2.2. A ternary relation |� is a stationary independence relation for
T if it satisfies invariance, monotonicity, symmetry, full transitivity, full existence,
and stationarity.

Several comments are warranted at this point. First, Tent and Ziegler’s definition
in [29] is formulated for finite subsets of a countable structure, and does not include
any closure assumptions in the full existence or stationarity axioms. Moreover, the
clause “C ⊆ a ∩ b” is not present in their formulation of stationarity. The main
examples in [29] have trivial algebraic closure and, in such cases, one may show that
the two notions of a stationary independence relation are the same. In [11], Evans,
Ghadernezhad, and Tent also consider axioms of ternary relations, which have been
relativized to the lattice of algebraically closed sets.
The clause “C ⊆ a ∩ b” in the stationarity axiom will be necessary in the
subsequent work. On the other hand, one may easily show that, if |� is a ternary
relation satisfying monotonicity, then the full existence axiom is equivalent to the
version obtained by adding “C ⊆ a ∩ B” to the assumptions. We will tacitly use
this observation when discussing examples in the next section.
Finally, we point out that Tent and Ziegler [29] do formulate the freedom axiom
(although they do not give it a name). This axiom is also very close to Hrushovski’s
notion of CM-triviality [15].
We now define the central notion of this paper.

Definition 2.3. A ternary relation is a free amalgamation relation if it satis-
fies invariance, monotonicity, symmetry, full transitivity, full existence, stationarity,
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freedom, and closure. T is a free amalgamation theory if it has a free amalgamation
relation.

The main results of this paper concern properties of free amalgamation theories.
The reader will notice that some results do not, in and of themselves, require all
parts of the previous definition. Therefore, to obtain the conclusion of a particular
result, it may not be necessary for T to have a ternary relation satisfying every
ingredient of Definition 2.3.

§3. Examples. In order to state the motivating examples of free amalgamation
theories, we must first define the notion of free amalgamation of relational struc-
tures, which gives rise to the canonical example of a ternary relation satisfying the
freedom axiom. Given a relational language L and L-structures A,B,C , we write
A ∼=C B if there is an L-isomorphism from AC to BC , which fixes C pointwise.
Definition 3.1. Assume L is relational. Given an L-structureM and A,B,C ⊆

M, we set A |�
fa

C
B (inM) if A ∩ B ⊆ C and, for all R ∈ L and a ∈ ABC (of

length the arity of R), if R(a) holds then a ∈ AC or a ∈ BC .
To mitigate possible confusion, we emphasize that we are now using the phrase
“free amalgamation” in two different ways. In particular, when we say |� is a
“free amalgamation relation”, or T is a “free amalgamation theory”, we mean
with respect to the definition involving abstract axioms of ternary relations. When
considering structures in a relational language, we will use “free amalgamation of
relational structures” (or “free amalgamation of L-structures”) when referring to
the notion of freely amalgamating such structures as in the previous definition.

Example 3.2.

(1) Fraı̈ssé limitswith free amalgamation.LetL be a finite relational language
and letM be the Fraı̈ssé limit of a Fraı̈ssé classK of finiteL-structures, which
is closed under free amalgamation of L-structures, i.e., for all A,B,C ∈ K,
with C ⊆ A ∩ B, there is D = A′B ′ ∈ K such that A′ ∼=C A, B ′ ∼=C B, and
A′ |�

fa

C
B ′ (inD). In this case, Th(M) is ℵ0-categorical and acl is trivial (see

[14, Chapter 7]). We give a few examples.
(i) If K is the class of graphs, thenM is the random graph or Rado graph.
(ii) Given fixed n > r ≥ 2, let K be the class of Krn -free r-hypergraphs,
where Krn is the complete r-hypergraph on n vertices, considered in the
r-hypergraph language containing an r-ary relation symbol. ThenM is
the genericKrn -free r-hypergraph.When r = 2, we also refer toM as the
generic Kn-free graph orHenson graph.

(iii) Let K be the class of finite metric spaces, with distances in {0, 1, 2, 3},
in the language L = {d1(x, y), d3(x, y)} where, for r ∈ {1, 3}, dr(x, y)
is a binary relation interpreted as d (x, y) = r. If A,B,C,D ∈ K, with
C ⊆ A∩B andAB ⊆ D, thenA |�

fa

C
B (inD) if and only if d (a, b) = 2

for all a ∈ A\C and b ∈ B\C . By the triangle inequality, K is closed
under free amalgamation of L-structures. The Fraı̈ssé limit M is the
Urysohn space with spectrum {0, 1, 2, 3}. This structure is also called the
free third root of the complete graph by Casanovas and Wagner in [4].
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Note that |�
fa is not the usual free amalgamation of metric spaces,

which is the stationary independence relation used by Tent and Ziegler
[29] in their analysis of the rational Urysohn space. In general, free
amalgamation of metric spaces fails the freedom axiom.

(2) Generic (Kn + K3)-free graph. Fix n ≥ 3 and let Kn + K3 be the graph
obtained by freely amalgamatingKn andK3 over a single vertex. In [5], Cher-
lin, Shelah, and Shi construct the unique countable, universal, existentially
closed (Kn + K3)-free graph, which we denote Gn (G3 was originally con-
structed by Komjáth [20]). For any n ≥ 3, Th(Gn) is ℵ0-categorical and acl is
disintegrated (see [5]). However, the age of Gn is not closed under free amal-
gamation of arbitrary relational structures (e.g., Kn+K3 itself is obtained as
the free amalgamation of two (Kn + K3)-free graphs). Accordingly, the age
of Gn is not a Fraı̈ssé class in the graph language. However, it is shown in [25]
that this class is closed under free amalgamation of relational structures over
algebraically closed base structures.

(3) “Freely disintegrated” Hrushovski constructions. Let L be a finite rela-
tional language, and letMf be theHrushovski generic produced from a class
(Kf,≤)
of finite structures closed under free amalgamation of strong substructures,
where f is a “good” control function (see [10, 12] for details). In this case,
Th(Mf) is ℵ0-categorical, but |�

fa does not necessarily satisfy the closure
axiom, and so we must separately impose this assumption. Note that, if acl
is disintegrated and A,B are closed, then AB is closed as well. Therefore,
the closure axiom for |�

fa is asserting that acl is “freely disintegrated”. It
will follow from results in Section 7 that any simple Hrushovski construction
satisfying these assumptions is modular, and so this framework is not suitable
for the well-known nonmodular Hrushovski counterexamples.

We will show that ifM is one of the countable structures defined in Example 3.2,
then Th(M) is a free amalgamation theory. First, we note that in any relational
structure, the ternary relation |�

fa always satisfies several of our axioms (most

importantly, |�
fa satisfies freedom).

Proposition 3.3. Assume L is relational andM is an L-structure. Then |�
fa

satisfies invariance, monotonicity, symmetry, full transitivity, and freedom (inM).
The proof is straightforward, and left to the reader.With this result, we see that in
order to use |�

fa to obtain a free amalgamation relation for the previous examples,
the key axioms to verify are full existence, stationarity, and closure.

Proposition 3.4. Suppose M is one of the countable structures described in
Example 3.2. Then |�

fa is a free amalgamation relation for Th(M).
Proof. We need to verify that |�

fa satisfies existence, stationarity, and closure.
By ℵ0-categoricity, it suffices to work with finite subsets ofM. In each example,
the closure axiom is either by assumption or follows from the fact that acl is dis-
integrated, and so the the union of two closed sets is closed. The existence axiom
for 3.2.1 and 3.2.3 is by assumption, and is shown for 3.2.2 in [25]. For station-
arity, fix finite, closed C ⊂ M and a, a′, b ∈ M such that C ⊆ a ∩ b, a |�

fa

C
b,
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a′ |�
fa

C
b and a ≡C a′. We want to show a′b ≡C ab. From a′ ≡C a, a |�

fa

C
b,

and a′ |�
fa

C
b, it follows that ab ∼=C a′b. Moreover, ab and a′b are closed since

|�
fa satisfies closure. Therefore, a′b ≡C ab follows from the fact that any L-

isomorphism between finite closed subsets ofM extends to an automorphism of
M (see [12,14,25] for, respectively, 3.2.1, 3.2.2, 3.2.3). �
The interested reader should consult the sources mentioned in the previous proof
to find explicit descriptions of algebraic closure in the three families of examples.
We also remark that the assumption of a finite language in Examples 3.2.1 and 3.2.3
is there to ensure ℵ0-categoricity and the appropriate level of quantifier elimination.
This assumption can be weakened slightly to encompass countable relational lan-
guages with only finitely many relations of any given arity, provided that we restrict
to structures in which the interpretation of any relation is irreflexive.
In the proof of Proposition 3.4, we used the closure axiom to prove stationarity.
We will not explicitly use the closure axiom again until Section 7.

§4. NSOP4. In this section,we show that free amalgamation theories forma sub-
class of first-order theories without the strict order property. In fact, we prove these
theories are NSOP4. This has been shown for each of the examples in the previous
section by collective work of several authors including Shelah [26], Hrushovski [16],
Evans and Wong [12], Patel [25], and joint work with Terry [7]. The most general
argument in this direction can be found in unpublished work of Patel [25], which
proves NSOP4 for Example 3.2.1 and Example 3.2.2. Our argument for NSOP4,
while slightly simpler and more general, is very close to Patel’s work.
We continue to fix a first-order theory T and a monster modelM. We begin with
the definition of SOPn.

Definition 4.1. Given n ≥ 3, T has the n-strong order property, SOPn, if there
is an indiscernible sequence (ai)i<� such that, if p(x, y) = tp(a0, a1), then

p(x1, x2) ∪ · · · ∪ p(xn−1, xn) ∪ p(xn, x1)
is inconsistent. We say T is NSOPn if it does not have the n-strong order property.

Remark 4.2. These properties were originally defined in [26] to enrich the clas-
sification of unstable theories. It is fairly straightforward to show that if T has the
strict order property, then it has SOPn for all n ≥ 3. Given n ≥ 3, if T has SOPn+1
then it has SOPn. Moreover, if T has SOP3 then it is unstable. Indeed, if one were
to interpret Definition 4.1 with n = 2 then, as a property of T , the result would be
equivalent to the order property.1 See [19,26].

We now return to free amalgamation theories. The following easy observation
will be very useful.

Lemma 4.3. Suppose |� satisfies invariance, symmetry, and stationarity. Suppose
C ⊂ M is closed and a, b ∈ M are closed tuples, with C ⊆ a ∩ b, a ≡C b, and
a |�C

b. Then ab ≡C ba.
1We caution that SOP2 is not defined this way, but rather as a variant of the tree property.
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Proof. Since a ≡C b, there is a′ ∈ M such that ab ≡C ba′. By invariance and
symmetry we have a′ |�C

b. Then ba′ ≡C ba by stationarity. �
Theorem 4.4. If T is a free amalgamation theory then T is NSOP4.

Proof. Fix an indiscernible sequence (ai)i<� and let p(x, y) = tp(a0, a1). We
want to show

p(x1, x2) ∪ p(x2, x3) ∪ p(x3, x4) ∪ p(x4, x1) is consistent. (†)
Let a′0 be such that acl(a0) = a0a

′
0. Given i < � there is �i ∈ Aut(M) such that

�i(a0) = ai . Let a′i = �i(a
′
0). Then bi := acl(ai) = aia

′
i = �i(a0a

′
0). Note that, for

any i < j < �, if qi,j(xx′, yy′) = tp(bi , bj) then p(x, y) ⊆ qi,j(xx′, yy′). Therefore,
we may replace (bi)i<� by an indiscernible realization of its EM-type and maintain
this feature (see, e.g., [28, Lemma 7.1.1]2).
Set q(xx′, yy′) = q0,1(xx′, yy′). To show (†), we set zi = xix′i and show

q(z1, z2) ∪ q(z2, z3) ∪ q(z3, z4) ∪ q(z4, z1) is consistent. (††)
Let c � b0 be the common intersection of (bi)i<� , which is closed. Let |� be a free
amalgamation relation forT . By full existence there is b∗0 ≡b1 b0 such that b∗0 |�b1

b2.
Then b∗0 ∩b1 = c = b1∩b2, and so b∗0 |�c

b2 by freedom.Moreover, b∗0 ≡c b0 ≡c b2,
and so b∗0 b2 ≡c b2b∗0 by Lemma 4.3. Let b∗1 be such that b∗0 b2b1 ≡c b2b∗0 b∗1 . We
have:

(i) b∗0 b1 ≡ b0b1, and so q(b∗0 , b1),
(ii) q(b1, b2),
(iii) b2b∗1 ≡ b∗0 b1, and so q(b2, b∗1 ),
(iv) b∗1 b

∗
0 ≡ b1b2, and so q(b∗1 , b∗0 ).

This proves (††), as desired. �
Note that NSOP4 is optimal, as many examples in Section 3 have SOP3 (e.g.,
the generic Kn-free graph). Moreover, the freedom axiom is necessary to conclude
NSOP4. For example, the theory of the rational Urysohn space has a stationary
independence relation satisfying closure (see [29]), but is SOPn for all n ≥ 3 (see
[6, 7]). We also observe that, in the proof of NSOP4, algebraic closure could be
replaced by any invariant closure operator.

Example 4.5. In [27], Shelah andUsvyatsov consider groups as a universal class.
Using amalgamated free products, they prove that ifG is a sufficiently large universal
group, then G is NSOP4 with respect to quantifier-free types. In particular, given
A,B,C ⊂ G, set A |�C

B if 〈ABC 〉 is isomorphic to 〈AC 〉 ∗〈C 〉 〈BC 〉 via the
natural map. Then |� satisfies all axioms of a free amalgamation relation except
closure (where “closed” sets are subgroups and, in the stationarity and full existence
axioms, elementary equivalence is replaced by group isomorphism). Altogether, the
proof of Theorem 4.4 recovers this result in [27].

§5. Imaginaries and hyperimaginaries. The main result of this section is that any
free amalgamation theory has elimination of hyperimaginaries andweak elimination

2Recall that the EM-type of a sequence (bi )i<� , over parameters A, is the collection of formulas
ϕ(x1, . . . , xn) over A, for any n < �, such that ϕ(bi1 , . . . , bin ) holds for all i1 < · · · < in < �.
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of imaginaries.We first recall basic notationanddefinitions (see also [3,18]).Given a
0-type-definable equivalence relation E(x, y) and a tuple a ∈ M, with �(a) = �(x),
aE denotes the hyperimaginary determined by [a]E (the equivalence class of a
moduloE). IfE(x, y) is 0-definable and �(x) is finite, then aE is an imaginary.Given
A ⊆ Mheq and e ∈ Mheq, we letO(e/A) denote the orbit of e underAut(M/A). Then
dclheq(A) = {e ∈ Mheq : O(e/A) = {e}} and bdd(A) = {e ∈ Mheq : |O(e/A)| < κ}
(where κ is the saturation cardinal ofM). For A ⊂ Meq, let dcleq(A) = dclheq(A) ∩
Meq and acleq(A) = bdd(A) ∩Meq.
A theory T has elimination of hyperimaginaries if every e ∈ Mheq is interdefinable
with a sequence in Meq. Given e ∈ Meq, a geometric canonical parameter for e
is a finite tuple c ∈ M such that c ∈ acleq(e) and e ∈ acleq(c). If c ∈ acleq(e)
and e ∈ dcleq(c) then c is a weak canonical parameter for e. If c ∈ dcleq(e) and
e ∈ dcleq(c) then c is a canonical parameter for e.T has (geometric,weak) elimination
of imaginaries if every imaginary has a (geometric, weak) canonical parameter.

Definition 5.1. Suppose E(x, y) is a 0-type-definable equivalence relation
onMI .

(1) A sequence (ai)i<� inMI is E-related if E(ai , aj) holds for all i, j < �.
(2) Given a ∈ M

I , define Σ(a,E) to be the set of subtuples c � a such that
there is an E-related indiscernible sequence (ai)i<� in MI , with common
intersection c and a0 = a.

Lemma 5.2. SupposeE(x, y) is a 0-type-definable equivalence relation onMI and
a ∈ M

I . Then Σ(a,E) contains a minimal element under inclusion of tuples.

Proof. We use Zorn’s Lemma. Note that a ∈ Σ(a,E) (witnessed by the constant
sequence ai = a for all i < �), and so Σ(a,E) is nonempty. Suppose � is an ordinal
and (ci)i<� is a sequence of elements of Σ(a,E) such that i < j implies cj � ci . Let
Ki ⊆ I be the domain of cj , and note that i < j implies Kj ⊆ Ki . SetK =

⋂
i<� Ki

and c = aK . Then c � ci for all i < �, and we show c ∈ Σ(a,E). Consider variables
(xi)i<� , where �(xi) = I , and define the type

Δ = P ∪ {xiK = c : i < �} ∪ {xik �= xjk : i < j < �, k ∈ I \K},
where P expresses that (xi)i<� is an indiscernible E-related sequence with x0 = a.
A finite subset of Δ is contained in a type of the form

Δ0 = P ∪ {xiK = c : i < �} ∪ {xik �= xjk : i < j < �, k ∈ I0},
where I0 is a finite subset of I \K . Given Δ0, fix t < � such that I0 ⊆ I \

⋂
i<t Ki .

By assumption, there is an E-related indiscernible sequence (ai)i<� , with com-
mon intersection ct and a0 = a. This sequence realizes Δ0. By compactness, Δ is
consistent, and so c ∈ Σ(a,E). �
Definition 5.3. Suppose E(x, y) is a 0-type-definable equivalence relation on

MI , and a ∈ MI . An indiscernible parameter for aE is a minimal element (under �)
of Σ(a,E).

Lemma 5.4. SupposeE(x, y) is a 0-type-definable equivalence relation onMI . Fix
a ∈ MI and let c � a be an indiscernible parameter for aE . Then c ∈ bdd(aE).
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Proof. Wemay clearly assume c is nonempty. Let I0 ⊆ I be the domain of c. Let
(al )l<� be an E-related indiscernible sequence, with common intersection c, such
that a0 = a.
Suppose, toward a contradiction, that c �∈ bdd(aE), and so we may find (cl )l<�
in O(c/aE), with c0 = c and � arbitrarily large. Choosing � large enough, we may
assume (cl )l<� is indiscernible. For later purposes, we also want � ≥ (2|I |+ℵ0 )+.
By compactness, we may stretch (al )l<� so that it is indexed (al )l<� (and still
indiscernible, E-related, with common intersection c).
Let I1 ⊆ I0 be the domain of the common intersection d of (cl )l<�. Since (cl )l<�
is not a constant sequence, we must have I1 �= I0, and so d is a proper subtuple
of c. We will build an indiscernible E-related sequence (bm)m<� , with b0 = a, such
that the common intersection of (bm)m<� is a subtuple of d . This will contradict
the minimality of c.
Given J ⊆ I , define a binary relation DJ onMI such thatDJ (b, b′) holds if and
only if, for all s, t ∈ I , if bs = b′t then s, t ∈ J . Given l < κ, fix �l ∈ Aut(M/aE) such
that �l(c) = cl (we assume �0 is the identity). We inductively construct a sequence
(bm)m<� and an injective function f : � −→ � such that
(i) b0 = a;
(ii) for all m < � there is r < � such that bi = �f(m)(ar);
(iii) DI0 (b

l , bm) holds for all l < m < �.

We first argue why this construction finishes the proof. Suppose we have (bm)m<�
as described. To show (bm)m<� isE-related, we fixm < � and showE(bm, a) holds.
By (ii), we have some r < � such that bm = �f(m)(a

r). Note that E(ar , a) holds
since (al )l<� isE-related. Since �f(m) ∈ Aut(M/aE), we then haveE(�f(m)(ar), a).
Next, we fix l < m < � and show that DI1 (b

l , bm) holds. Indeed, if s, t ∈ I and
bls = b

m
t , then we have s, t ∈ I0 by (iii). It follows from (ii) that bls = cf(l)s and

bmt = c
f(m)
t (recall c = arI0 for all r < �). Then f(l) �= f(m) implies s, t ∈ I1.

Finally, if we replace (bm)m<� by an indiscernible realization of its EM-type, and
conjugate to maintain b0 = a, then (bm)m<� is the desired E-related indiscernible
sequence, whose common intersection is a subtuple of d .
We now proceed with the construction of (bm)m<� . Let b0 = a and f(0) = 0.
For the induction hypothesis, fix n > 0, and suppose we have constructed (bm)m<n
and f : n −→ � satisfying properties (i), (ii), and (iii) above (relativized to n).
Claim. There are 	, r < � such that, for all m < n, 	 �= f(m) and
DI0 (b

m, �	(ar)).

Note that, given the claim, if we set f(n) = 	 and bn = �	(ar), then bn and
f : n + 1 −→ � are as desired. Therefore the claim finishes the inductive step in the
construction of (bm)m<� .

Proof of the claim. Suppose the claim fails. Then, for all 	 ∈ �\ Im(f) and
r < �, there are m < n and s, t ∈ I such that {s, t} �⊆ I0 and bms = �	(art ). We
first find an integer m < n, indices s, t ∈ I with {s, t} �⊆ I0, and 2-element sets
Δ1,Δ2 ⊆ �\ Im(f) such that bms = �	(art ) for all (	, r) ∈ Δ1 × Δ2. To do this, set
X = {(	, r) ∈ (�\ Im(f))2 : r < 	} and Y = {(m, s, t) : m < n, s, t ∈ I },
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and consider the map 
 : X −→ Y obtained above from the assumption that the
claim fails. Let � = |I | + ℵ0. We have � ≥ (2�)+ by assumption, and so �→ (�+)2�
by the Erdős-Rado Theorem (see, e.g., [28, Theorem C.3.2]). Applied to the map 
,
we obtain an infinite3 set Δ ⊆ �\ Im(f), an integer m < n, and s, t ∈ I such that
{s, t} �⊆ I0 and bms = �	(art ) for all (	, r) ∈ X ∩ Δ2. Now let Δ1,Δ2 ⊆ Δ be disjoint
2-element sets with maxΔ2 < min Δ1.
Now fix some 	 ∈ Δ1 and distinct r, r′ ∈ Δ2. Then �	(art ) = bms = �	(ar

′
t ), and

so art = a
r′
t . In particular, we must have t ∈ I0, and so s �∈ I0. Moreover, for any

r < �, we have art = at . Therefore, given 	 ∈ Δ1, we have bms = �	(at).
Fix distinct 	,	′ ∈ Δ1. Since t ∈ I0, we altogether have c	t = �	(at) = bms =
�	′(at) = c

	′
t , and so t ∈ I1. Therefore at = ct ∈ d and so �	(at) = at for all

	 ∈ Δ1. In particular, we have bms = at = b0t , and soDI0 (b0, bm) fails. Ifm > 0 then
we obtain a contradiction to property (iii) in the induction hypothesis. Therefore
m = 0, and so as = b0s = at . By indiscernibility of (a

l )l<�, and since t ∈ I0, we have
a1s = a

1
t = at = as , which contradicts s �∈ I0. �

Lemma 5.5. Suppose |� is a ternary relation on M satisfying invariance, mono-
tonicity, full existence, stationarity, and freedom. Let E(x, y) be a 0-type-definable
equivalence relation on MI , and suppose a ∈ MI is closed. Then aE ∈ dclheq(c) for
any c ∈ Σ(a,E).
Proof. Fix c ∈ Σ(a,E), and let (ai)i<� be an E-related indiscernible sequence,
with common intersection c, such that a0 = a. Note that (ai)i<� is c-indiscernible
and c is closed. To show aE ∈ dclheq(c), we fix � ∈ Aut(M/c) and showE(a, �(a)).
By full existence, there is b ≡a1 a such that b |�a1

a2. Then ba1 ≡c aa1, and so
b ∩ a1 = c = a1 ∩ a2. Therefore b |�c

a2 by freedom. Note also that, since E(a, a1)
holds, we have E(b, a1), and so, combined with E(a1, a2), we obtain E(b, a2).
By full existence, there is b∗ ≡c a such that b∗ |�c

a�(a). Since a ≡c a2, we may
fix b1 such that b∗a ≡c b1a2. Then b1 ≡c b∗ ≡c a ≡c b and, by monotonicity and
invariance, b1 |�c

a2. Therefore, by stationarity, ba2 ≡c b1a2 ≡c b∗a. In particular,
we have E(b∗, a).
Similarly, since �(a) ≡c a ≡c a2, we may fix b2 such that b∗�(a) ≡c b2a2.
Then b2 ≡c b∗ ≡c b and, by monotonicity and invariance, b2 |�c

a2. Therefore, by
stationarity, ba2 ≡c b2a2 ≡c b∗�(a). In particular, we haveE(b∗, �(a)). Altogether,
we have E(b∗, a) and E(b∗, �(a)), and so E(a, �(a)) holds, as desired. �
Theorem 5.6. If T is a free amalgamation theory then T has elimination of
hyperimaginaries and weak elimination of imaginaries.
Proof. Both results rely on the following claim.

Claim. Suppose E(x, y) is a 0-type-definable equivalence relation on MI , and
a ∈ MI . Then there is a real tuple c ∈ M such that c ∈ bdd(aE) and aE ∈ dclheq(c).
Proof. Let a∗ be a tuple, with domain I∗, such that I ∩ I∗ = ∅ and aa∗ = acl(a).
Consider the equivalence relationE∗ onMI+I

∗
given byE∗(xI xI∗ , yI yI∗) if and only

if E(xI , yI ). Then E∗ is 0-type-definable, and so, if c is an indiscernible parameter
for e := (aa∗)E∗ , then c ∈ bdd(e) and e ∈ dclheq(c) by Lemmas 5.4 and 5.5.
3Erdős-Rado ensures |Δ| ≥ �+; however we only need |Δ| ≥ 4 for the proof.
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Note that Aut(M/aE) = Aut(M/e), and so O(c/aE) = O(c/e), which is
bounded by assumption. Therefore c ∈ bdd(aE). Moreover, if � ∈ Aut(M/c)
then �(e) = e, which means E∗(aa∗, �(aa∗)) holds, and so E(a, �(a)) holds by
definition. Therefore �(aE) = aE , and so aE ∈ dclheq(c). �
We now prove the theorem. By the claim, and [3, Lemma 18.6], we immediately
obtain elimination of hyperimaginaries. For weak elimination of imaginaries, fix
a 0-definable equivalence relation on Mn , and a ∈ Mn. Let c ∈ M be as in the
claim. Then aE ∈ dcleq(c) (with c considered as a small subset of M). Let c0
be a finite subtuple of c such that aE ∈ dcleq(c0). Then c ∈ bdd(aE) implies
c0 ∈ bdd(aE) ∩M ⊆ acleq(aE), and so c0 is a weak canonical parameter for aE . �
Note that, in the proof of the claim, we replaced a with acl(a) only so that we
could apply Lemma 5.5. In these steps, algebraic closure could be substituted by
some other invariant closure operator.
We also remark that Theorem 5.6 cannot be strengthened to full elimination of
imaginaries. Indeed, one often has that finite imaginaries in theories of homoge-
neous structures, in symmetric relational languages, do not have canonical param-
eters. For example, this is the case for the random graph, generic Kn-free graph,
and even just the infinite set. It is also worth observing that the freedom axiom
is necessary in Theorem 5.6. For example, any generic theory of infinitely refining
equivalence relations fails weak elimination of imaginaries, but does have a sta-
tionary independence relation satisfying closure, namely, nonforking independence.
Moreover, the theory of the rational Urysohn space does not eliminate hyperimagi-
naries (see [4,6]) but, as previously remarked, has a stationary independence relation
satisfying closure.

§6. Thorn-Forking and rosiness. In this section, we use weak elimination of imag-
inaries to establish rosiness for many of the examples in Section 3. This subject has
been previously investigated in some cases. In particular, rosiness for the random
graph and generic Krn -free hypergraphs (for r > 2) follows from the fact that these
theories are simple. Other examples are known to be rosy due to previous proofs of
weak elimination of imaginaries. In particular, weak elimination of imaginaries is
shown for U3 by Casanovas and Wagner [4], and for the Hrushovski genericsMf

by Wong [30].
On the other hand, rosiness for the general class of Fraı̈ssé limits in Example
3.2.1, does not appear in previous literature. This includes even the specific case
of the generic Kn-free graphs. Rosiness for the generic (Kn + K3)-free graphs of
Example 3.2.2 is also a new result.
We first state the definition of thorn-forking, which follows [2].
Definition 6.1. Suppose T is a complete theory and M is a monster model
of T .

(1) A ternary relation |� satisfies local character if, for all A ⊂ M, there is a
cardinal κ(A) such that, for all B ⊂ M, there is C ⊆ B such that |C | < κ(A)
and A |�C

B.
(2) Define algebraic independence |�

a :

A |�
a

C
B ⇔ acl(AC ) ∩ acl(BC ) = acl(C ).
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(3) DefineM -independence |�
M by “forcing base monotonicity” on |�

a :

A |�
M

C
B ⇔ A |�

a

D
B for all C ⊆ D ⊆ acl(BC ).

(4) Define thorn independence |�
þ by “forcing extension” on |�

M :

A |�
þ
C
B ⇔ for all B̂ ⊇ B there is A′ ≡BC A such that A′ |�

M

C
B̂.

T is rosy (resp. real rosy) if |�
þ satisfies local character inMeq (resp. inM).

Thorn-forking was developed in order to define the weakest ternary relation
satisfying enough basic axioms to be considered a reasonable notion of indepen-
dence. In many ways, rosy theories are to thorn-forking as simple theories are to
forking. However, the region of rosy theories properly extends the simple theories
(e.g., o-minimal theories are rosy). See [9,23] for further details.
Since rosiness is defined as a property of T eq, an understanding of imaginaries
greatly simplifies the work required to determine if a theory is rosy. In particular,
if T has weak elimination of imaginaries, then it suffices to check that T is real
rosy. This fact is shown explicitly in [8], implicitly in [9], and is also an informative
exercise in forking calculus.

Fact 6.2. Any real rosy theory, with weak elimination of imaginaries, is rosy.

Corollary 6.3. Any real rosy free amalgamation theory is rosy.

In checking real rosiness for our specific examples, the following facts from [2]
will be useful. Recall that a ternary relation |� satisfies base monotonicity if, for all
A,B,C,D ⊂ M, with D ⊆ C ⊆ B, if A |�D

B then A |�C
B.

Definition 6.4. A theory T is modular if |�
a satisfies base monotonicity inM.

Recall that if acl satisfies Steinitz exchange in T , then the resulting dimension
function is used to define a notion of “modularity” for T . One may show that, in
this case, the two notions are equivalent (see [1,2] for details).

Proposition 6.5. Suppose T is a complete theory andM is a monster model of T .

(a) T is modular if and only if, for all algebraically closed sets A,B,C ⊂ M, with
C ⊆ B, we have acl(AC ) ∩ B = acl((A ∩ B)C ).

(b) Suppose T is modular. Then, for any A,B ⊂ M, there is C ⊆ B, with
|C | < max{| acl(A)|+,ℵ0}, such that A |�

a

C
B.

(c) If T is modular then |�
a = |�

þ inM; so |�
þ satisfies local character inM.

(d) If algebraic closure in T is disintegrated then T is modular.

Proof. Part (d) follows easily from part (a). Parts (a) and (c) can be found in
[2, Proposition 1.5], which, moreover, includes a general argument that |�

a satisfies
local character, evenwithout themodularity assumption.However, our formulation
of part (b) uses modularity to conclude a stronger bound on the cardinal κ(A) in
the local character axiom, and so we detail the argument.
Part (b). Let D = acl(A) ∩ acl(B). For any singleton d ∈ D, we may fix a finite
subset Cd ⊆ B such that d ∈ acl(Cd ). Let C =

⋃
d∈D Cd ⊆ B. Then D ⊆ acl(C )
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and |C | < max{| acl(A)|+,ℵ0}. Let A′ = acl(A), B ′ = acl(B) and C ′ = acl(C ).
Then C ′ ⊆ B ′ and so, using part (a), we have

acl(AC ) ∩ acl(BC ) ⊆ acl(A′C ′) ∩ B ′ = acl((A′ ∩ B ′)C ′) = acl(DC ′) = acl(C ).

Therefore A |�
a

C
B, as desired. �

Altogether, if T is modular with weak elimination of imaginaries, then T is rosy
and |�

a = |�
þ in M (and also in Meq; see Lemma 7.11). Therefore, we have

following conclusion.

Corollary 6.6. If T is a modular free amalgamation theory then T is rosy.

Recall that acl is disintegrated in Examples 3.2.1 and 3.2.2, and so these theories
are modular by Proposition 6.5(d ). Combined with the fact that acl is locally finite,
we can use Proposition 6.5 to conclude that the structures in these examples yield
superrosy theories (i.e., in Meq, |�

þ satisfies the strengthening of local character
obtained by demanding κ(A) = ℵ0 for all finite A). Note that superrosiness is
also a property of T eq and so, to justify the previous remark, one must verify that
Fact 6.2 still holds when “rosy” is replaced by “superrosy”. We again leave this
to the reader, and instead turn our attention to calculating the Uþ-rank of these
examples.

Definition 6.7. Suppose T is a complete theory andM is a monster model of T .
Given n < �, Uþ(T ) ≥ n if there is a singleton a ∈ M and subsets ∅ = B0 ⊆ B1 ⊆
· · · ⊆ Bn ⊂ Meq such that a � |�

þ
Bi
Bi+1 for all i < n.

Similar to before, if T has weak elimination of imaginaries, then the subsets Bi
in the previous definition may be taken fromM. We can now calculate theUþ-rank
of the structures in Examples 3.2.1 and 3.2.2. For Example 3.2.1, the following
observation implies that the Uþ-rank is 1.
Proposition 6.8. Suppose T is modular with weak elimination of imaginaries.
Then Uþ(T ) = 1 if and only if algebraic closure inM satisfies Steinitz exchange.
Proof. The reverse direction is left to the reader, and in fact holds just under the
assumption of geometric elimination of imaginaries (see [9, Theorem 4.12]). For
the forward direction, if acl fails exchange then we may fix some a, b ∈ M, and
C ⊂ M such that b ∈ acl(aC )\ acl(C ) and a �∈ acl(bC ). In other words, a � |�

a

C
b

and a � |�
a

bC
a. Since T is modular with weak elimination of imaginaries, this gives

Uþ(a/C ) ≥ 2. �
For Example 3.2.2, we first set some notation (taken from [25]). Given n ≥ 3, let
Tn = Th(Gn) denote the theory of the generic (Kn + K3)-free graph. A singleton
a ∈ M |= Tn is type I if it lies on exactly oneKn inM, and on noK3 other than those
occurring as subgraphs of this Kn. It is easy to see that type I vertices exist in M.
For example, consider the graph obtained by freely amalgamating two copies ofKn
over Kn−1. This graph is (Kn +K3)-free and so we may assume it is a subgraph of
M. Moreover, the two vertices not on the common Kn−1 are each type I. One may
also show that if a is type I then acl(a) is precisely the unique Kn on which a lies.
The following technical observations follow from the analysis of algebraic closure
found in [5] or [25].
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Lemma 6.9. Fix n ≥ 3 and let M |= Tn. If a, b ∈ M are singletons such that
b ∈ acl(a) and a �∈ acl(b), then a is type I and acl(a) = acl(b) ∪ {a}. Conversely, if
a is type I then acl(a)\{a} is nonempty and a �∈ acl(b) for any b ∈ acl(a)\{a}.
Theorem 6.10. For all n ≥ 3, Uþ(Tn) = 2.
Proof. We have Uþ(Tn) ≥ 2 by Proposition 6.8, Lemma 6.9, and the fact that
acl(∅) = ∅. For the other direction, recall that by weak elimination of imaginaries
and modularity, we may work inM with |�

þ = |�
a . Suppose, toward a contradic-

tion, there is a singleton a ∈ M andB0 ⊆ B1 ⊆ B2 ⊆ B3 ⊂ M such that a � |�
a

Bi
Bi+1

for all i < 3. Given i < 3, fix a singleton bi+1 ∈ (acl(aBi) ∩ acl(Bi+1))\ acl(Bi ).
Since acl is disintegrated, we must have bi+1 ∈ acl(a) for all i < 3.
Since b1 ∈ acl(B1) and b2 ∈ acl(a)\ acl(B1), we have a �∈ acl(b1). By Lemma 6.9,
a is type I and acl(a) ⊆ acl(B1)∪{a}. Then b2 = a, which contradicts b2 ∈ acl(B2)
and b3 ∈ acl(a)\ acl(B2). �
Finally, for the sake of completeness, we summarize the previously known result
that the Hrushovski constructions in Example 3.2.3 are rosy. This argument works
in general, and does not require the assumptions we have imposed in order to obtain
free amalgamation theories. LetMf be a monster model of Th(Mf). Consider the
relation A |�

dim
C
B if and only if A |�

a

C
B and, for all finite a ∈ A, d (a/BC ) =

d (a/C ) (see [10, 12]).4 By results in [10], |�
dim satisfies the axioms of a strict

independence relation (see [2]), and so, by [2, Theorem 4.3], |�
þ satisfies local

character inMf (this fact is observed by Wong in [30]). Using weak elimination of
imaginaries (shown in [30]), it follows that Th(Mf) is rosy. As noted in [10], if the
predimension d is discrete then |�

dim satisfies the strengthening of local character
required to conclude that Th(Mf) is superrosy.

§7. Simplicity. Many free amalgamation theories are known to be much more
well-behaved than what we have shown so far, in particular because they are simple
(and therefore NSOP3). For example, this is true for the random graph and generic
Krn -free hypergraphs (with r > 2). Moreover, simplicity of Hrushovski construc-
tions is a well-studied topic (see [10]). On the other hand, the documented examples
of nonsimple free amalgamation theories all exhibit a gap in complexity, in the sense
that they have both SOP3 and TP2. In this section, we investigate the persistence of
this behavior.
Fix a complete first-order theory T and a monster modelM. We first define TP2;
and then we give a reformulation of SOP3 resembling [26, Claim 2.19].

Definition 7.1. T has the tree property of the second kind, TP2, if there are tuples
a, b ∈ M, an array (bmn )m,n<� inM, and an integer k < � such that

(i) for all m < � and n1 < · · · < nk < �, there does not exist a tuple a∗ such
that a∗bmni ≡ ab for all 1 ≤ i ≤ k;

(ii) for all � : � −→ � there is a tuple a∗ such that a∗bm�(m) ≡ ab for all m < �.
T is NTP2 if is does not have TP2.

4In the literature, the notation for this ternary relation is |�d . We use |� dim to avoid confusion with
nondividing. However, if Th(Mf) is simple then it follows from work in [10, 12] that |� dim coincides
with nonforking (and thus also nondividing).

https://doi.org/10.1017/jsl.2016.42 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.42


AN AXIOMATIC APPROACH TO FREE AMALGAMATION 663

Proposition 7.2. T has SOP3 if and only if there are sequences (ai)i<� , (bi)i<�
and types p(x, y), q(x, y), with �(x) = �(a0) and �(y) = �(b0), such that
(i) p(ai , bj) for all i < j and q(ai , bj) for all i ≥ j;
(ii) for all i < j, p(x, bi) ∪ q(x, bj) is inconsistent.
Proof. We prove the reverse implication (which is the only direction we will use),
and leave the forward implication to the reader. Suppose we have (ai)i<� , (bi)i<� ,
p(x, y), and q(x, y) as described. We may assume (ai , bi)i<� is indiscernible. Let
r(x0y0, x1y1) = tp(a0b0, a1b1). If

(c1d1, c2d2, c3d3) |= r(x1y1, x2y2) ∪ r(x2y2, x3y3) ∪ r(x3y3, x1y1),
then we have d2d3 ≡ b0b1 and c1 |= p(x, d2) ∪ q(x, d3), which is a contradiction.
Therefore (aibi)i<� witnesses SOP3. �
Finally, we recall definitions of nondividing and simplicity.

Definition 7.3.
(1) Let a, b be tuples inM and C ⊂ M. Then tp(a/bC ) does not divide over C ,
written a |�

d

C
b, if, for every C -indiscernible sequence (bi)i<� with b0 = b,

there is a′ such that a′bi ≡C ab for all i < �.
(2) T is simple if |�

d is symmetric inM.

Fact 7.4 ([2, Remark 5.4]). Given a, b, C ⊂ M, we have a |�
d

C
b if and only if

acl(aC ) |�
d

acl(C )
acl(bC ).

We now return to free amalgamation theories. Given a sequence (bi)i<	 in M,
and some i < 	, we will use the notation b<i to denote {bj : j < i}.
Definition 7.5. Let |� be a ternary relation on M. Suppose 	 is an ordinal,
(bi)i<	 is a sequence of tuples, and C ⊆ b0. Then (bi)i<	 is |� -independent over C
if, for all i < 	, bi ≡C b0 and bi |�C

b<i .

Note that if (bi)i<	 is |� -independent over a closed set C , b0 is closed, and |�
satisfies closure, then b≤i is closed for all i < 	. We will tacitly use this observation
throughout the section. The next result is a key lemma, which says that if |� is a free
amalgamation relation then |� -independent sequences can only witness dividing
exemplified by a failure of |�

a .
Lemma 7.6. Suppose |� is a free amalgamation relation for T . Fix closed tuples
a and b and let C = a ∩ b (so a |�

a

C
b). Suppose (bi)i<	 is |� -independent over C ,

with b0 = b. Then there is a∗ such that a∗bi ≡C ab for all i < 	.
Proof. By compactness, it suffices to assume 	 < �. By induction on n < 	,
we will find tuples an such that anbi ≡C ab for all i ≤ n. For the base case, set
a0 = a. Assume we have constructed an−1 as required. By full existence, there is
b′ ≡an−1 bn−1 such that b′ |�an−1

b<n. Note that C ⊆ an−1.
Claim. an−1 ∩ b′b<n = C .
Proof. First, since b′ ≡an−1 bn−1, we have an−1 ∩ b′ = an−1 ∩ bn−1. Therefore, it
suffices to show an−1∩b<n = C . For any i < n, we have an−1bi ≡C ab by induction.
Therefore, a ∩ b = C implies an−1 ∩ bi = C . �
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By the claim and freedom, we have b′ |�C
b<n. We also have bn |�C

b<n and
b′ ≡C bn−1 ≡C bn. Therefore b′b<n ≡C bnb<n by stationarity. Let an ∈ M be such
that an−1b′b<n ≡C anbnb<n. If i < n then, by induction, anbi ≡C an−1bi ≡C ab.
We also have anbn ≡C an−1b′ ≡C an−1bn−1 ≡C ab. Therefore an is as desired. �
Using this, we obtain the following characterization of simplicity for free
amalgamation theories.
Theorem 7.7. Given a free amalgamation theoryT , the following are equivalent.
(i) T is simple.
(ii) T is NTP2.
(iii) |�

d and |�
a coincide inM.

Proof. (iii)⇒ (i)⇒ (ii) is true for any theory (see [17,19]).
(ii) ⇒ (iii): Suppose (iii) fails. Recall that, in general, |�

d implies |�
a and so,

using Fact 7.4, we may fix a closed set C and closed tuples a, b such that a ∩ b = C
and a � |�

d

C
b. Let (bi)i<� be a C -indiscernible sequence such that b0 = b and, for

some k < �, there is no tuple a∗ such that a∗bi ≡C ab for all i < k.
Fix a free amalgamation relation |� , and let b0<� = b<�. Using the full existence
axiom, we inductively construct sequences bn<�, for n < �, such that b

n
<� ≡C b0<�

and bn<� |�C
b<n<�. We show that a, b, and b

<�
<� together witness TP2 for T .

Fix n < �. Since bn<� ≡C b0<� , it follows that there is no tuple a∗ such that
a∗bni ≡C ab for all i < k. Next, fix a function � : � −→ �. By construction and
monotonicity, (bn

�(n))n<� is |� -independent overC . Let â be such that âb0�(0) ≡C ab.
Then â ∩ b0

�(0) = C , and so, by Lemma 7.6, there is some a∗ such that a∗b
n
�(n) ≡C

âb0
�(0) ≡C ab for all n < �. �
Recall that all of our concrete examples of free amalgamation theories are
modular, with locally finite algebraic closure. Therefore, we note the following
consequence of the previous theorem.
Corollary 7.8. Suppose T is a simple free amalgamation theory. Then T is
modular and, if T has locally finite algebraic closure, then T is supersimple.

Proof. Recall that |�
d satisfies base monotonicity in any theory, and so T is

modular by Theorem 7.7. If T has locally finite algebraic closure then, combining
Proposition 6.5(b) with condition (iii) of Theorem 7.7, we obtain supersimplicity. �
We can use the results of Section 5 to refine these conclusions. Recall that the
ternary relation of nonforking independence |�

f is defined by “forcing extension”

on |�
d ; precisely, a |�

f

C
b if and only if, for all b̂ ⊇ b, there is a′ ≡bC a such

that a′ |�
d

C
b̂. Recall also that, for simple theories, |�

d and |�
f coincide (see e.g.,

[17, 18]). In generalizing important concepts concerning forking in stable theories,
Hart, Kim, and Pillay [13] introduced hyperimaginaries to define canonical bases
and the notion of a 1-based simple theory.

Definition 7.9. A simple theory T is 1-based if, for all A,B ⊂ Meq, we have
A |�

f

bdd(A)∩bdd(B) B inM
heq.

Fact 7.10. If T is simple, with elimination of hyperimaginaries, then the following
are equivalent.
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(i) T is 1-based.
(ii) |�

a and |�
f coincide inMeq.

(iii) T eq is modular.

Proof. This is essentially identical to Exercise 3.29 of Adler’s thesis [1], and we
sketch the proof. First, the equivalence of (i) and (ii) follows from elimination of
hyperimaginaries and Fact 7.4. Since |�

f satisfies base monotonicity in any theory,

(ii)⇒ (iii) is trivial. Finally, if (iii) holds then, by Proposition 6.5(c), |�
þ coincides

with |�
a inMeq, and so (ii) follows from the fact that ifT is simple with elimination

of hyperimaginaries then |�
f and |�

þ coincide inMeq (see [9, Theorem 2.8]). �
Altogether, for simple theories with elimination of hyperimaginaries, 1-basedness
expresses that forking in T eq is as trivial as possible. Unsurprisingly, this has strong
consequences for the theory. For example, Kim [17] shows that any simple 1-based
theory, with elimination of hyperimaginaries, satisfies the stable forking conjecture.
We will use Fact 7.10 to conclude that simple free amalgamation theories are
1-based. First, we show that under the additional assumption of geometric elimina-
tion of imaginaries, conditions (ii) and (iii) of Fact 7.10 may be checked inM rather
thanMeq. The proof of this only requires the following lemma, which is similar to
the techniques in [8]. We could not find a reference for this exact result, and so we
outline the proof.

Lemma 7.11. Suppose T is a complete theory with geometric elimination of imagi-
naries. Given e ∈ Meq, let g(e) be a geometric canonical parameter for e ( for a ∈ M,
assume g(a) = a). Given A ⊂ Meq, let g(A) =

⋃{g(e) : e ∈ A}.
(a) If A,B,C ⊂ Meq then A |�

a

C
B inMeq if and only if g(A) |�

a

g(C )
g(B) inM.

(b) T is modular if and only if T eq is modular.

Proof. Part (a). First, note that acleq(A) = acleq(g(A)) for any A ⊂ Meq. Note
also that, for any A,B ⊂ Meq, we have g(AB) = g(A)g(B) and, if A ⊆ B,
then g(A) ⊆ g(B). Using these observations, we see that A |�

a

C
B in Meq if

and only if g(A) |�
a

g(C )
g(B) in Meq. So it remains to show g(A) |�

a

g(C )
g(B)

in Meq if and only if g(A) |�
a

g(C )
g(B) in M. The forward direction is trivial, so

suppose g(A) |�
a

g(C )
g(B) in M, and e ∈ acleq(g(AC )) ∩ acleq(g(BC )). Since

g(e) ∈ acleq(e) and g(e), g(A), g(B), and g(C ) are all subsets of M, it follows
that g(e) ⊆ acl(g(AC )) ∩ acl(g(BC )) = acl(g(C )). Since e ∈ acleq(g(e)), we have
e ∈ acleq(g(C )), as desired.
Part (b). Use part (a) to transfer base monotonicity for |�

a betweenM andMeq

(this uses that g(A) = A for all A ⊂ M). �
Theorem 7.12. If T is simple, with elimination of hyperimaginaries and geometric
elimination of imaginaries, then the following are equivalent.

(i) T is 1-based.
(ii) |�

a and |�
f coincide inM.

(iii) T is modular.

Proof. The equivalence of (i) and (iii) is immediate from Fact 7.10 and
Lemma 7.11(b). Since |�

f satisfies base monotonicity (in M), (ii) implies (iii)
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is trivial. For (i) to (ii), assume T is 1-based. Fix A,B,C ⊂ M such that A |�
a

C
B

inM. ThenA |�
a

C
B inMeq by Lemma 7.11(a), and soA |�

f

C
B inMeq by Fact 7.10.

Therefore A |�
f

C
B inM. �

Corollary 7.13. Any simple free amalgamation theory is 1-based.

It is worth restating this result explicitly for the structures in Example 3.2.1.

Corollary 7.14. If M is a countable, simple, ultrahomogeneous structure in a
finite relational language L, and the age ofM is closed under free amalgamation of
L-structures, then Th(M) is 1-based.
In particular, this gives an alternate proof of a recent result of Koponen [21]
showing that the generic tetrahedron-free 3-hypergraph is 1-based.We also give this
as a partial response to the observation, made in [21], that all known examples of
countable, simple, ultrahomogeneous structures, in finite relational languages, have
1-based theories.5

Returning to the initial motivations for this section, we have shown that simplicity
and NTP2 coincide for free amalgamation theories. We previously observed that all
documented nonsimple examples have SOP3, and so a reasonable conjecture is that
simplicity and NSOP3 also coincide for free amalgamation theories. We will prove
this for the class of modular free amalgamation theories. Recall that all of our
concrete examples of free amalgamation theories are modular, and so it seems quite
possible that the modularity assumption is redundant.

Lemma 7.15. Suppose |� satisfies invariance, monotonicity, full existence and
stationarity. Then, for any closed tuples a, b and closed sets C , with C ⊆ a ∩ b, if
a |�C

b then a |�
d

C
b (and hence a |�

a

C
b).

Proof. Let (bi)i<� be a C -indiscernible sequence, with b0 = b. By full existence,
there is a′ ≡C a such that a′ |�C

b<�. Given i < �, let ai be such that aibi ≡C ab.
For all i < �, we have ai |�C

bi and a′ |�C
bi by invariance and monotonicity.

Since a′ ≡C ai , we apply stationarity to obtain a′bi ≡C aibi ≡C ab, as desired. �
Remark 7.16. The reader may have noticed that, so far, none of our results has
required transitivity. In fact, we will not use transitivity in any part of this paper.
It is included in Definition 2.3 in anticipation of its usefulness in future work.
For example, one may show that if |� satisfies invariance, transitivity, and full
existence, then |� satisfies extension: for all a,B, B̂ , C , with B,C closed, B ⊆ B̂ ,
and C ⊆ a ∩ B, if a |�C

B then there is a′ ≡B a such that a′ |�C
B̂. Using this,

one may prove the version of Lemma 7.15 obtained by adding transitivity to the
assumptions and demanding a |�

f

C
b in the conclusion (see [7, Theorem 4.1]).

Theorem 7.17. Suppose T is a modular free amalgamation theory. Then T is
simple if and only if T is NSOP3.

Proof. First, recall that any simple theory is NSOP3 (see, e.g., [26, Claim 2.7]).
Conversely, if T is not simple then, in particular, |�

d does not coincide with |�
a

(this is true for any theory since |�
a is symmetric). Using Fact 7.4, we may fix a

5Corollary 7.14 has also been independently obtained in recent work of Palacı́n [24].
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closed set C ⊂ M and closed tuples a, b such that a ∩ b = C and a � |�
d

C
b. Let

(bi)i<� be a C -indiscernible sequence such that b0 = b and, for some k < �, there
is no tuple a′ such that a′bi ≡C ab for all i < k.
Claim 1. We may assume k = 2.

Proof. First, assume k > 1 is minimal such that there is no tuple a′ with a′bi ≡C
ab for all i < k. Let a∗ be such that a∗bi ≡C ab for all i < k − 1. For i < �, let
b∗i = acl(bi(k−1)bi(k−1)+1 · · · bi(k−1)+k−2). Let b∗ = b∗0 and C ∗ = a∗ ∩ b∗, and note
thatC ⊆ C ∗. Suppose, toward a contradiction, that for some i < j, there is a tuple
a′ with a′b∗i ≡C∗ a∗b∗ ≡C∗ a′b∗j . Then, for all s ∈ {i, j} and t < k − 1, we have
a′bs(k−1)+t ≡C a∗bt ≡C ab. Since |{s(k−1)+t : s ∈ {i, j}, t < k−1}| ≥ k (recall
i < j), it follows by indiscernibility that there is a tuple a′′ such that a′′bt ≡C ab
for all t < k, which contradicts the choice of k.
Now replace (b∗i )i<� with a C

∗-indiscernible realization of its EM-type over C ∗,
while still assuming b∗0 = b

∗. Then a∗ ∩ b∗ = C ∗, and there is no a′ such that
a′b∗i ≡C∗ a∗b∗ for all i < 2. �
Claim 2. We may assume b0 ∩ b1 = C .
Proof. LetC ∗ = b0∩b1 anda∗ = acl(aC ∗).Note thatC ⊆ C ∗ and (bi)i<� isC ∗-
indiscernible. Moreover, there is clearly no a′ such that a′bi ≡C∗ a∗b for all i < 2.
Finally, since T is modular, we have a∗ ∩ b = acl(aC ∗)∩ b = acl((a ∩ b)C ∗) = C ∗

by Proposition 6.5(a). �
Fix a free amalgamation relation |� . By full existence, there is b∗0 ≡a b0 such that
b∗0 |�a

b0. By freedom, and since a∩b0 = C , wehave b∗0 |�C
b0. Then b0b∗0 ≡C b∗0 b0

by Lemma 4.3. By Lemma 7.15, we have b0 |�
a

C
b∗0 which implies b0 ∩ b∗0 = C

(recallC ⊆ b0∩b∗0 sinceC ⊆ a and b∗0 ≡a b0). We inductively construct a sequence
(bn1 , b

n
2 )n<� such that:

(i) for all m ≤ n < � and i, j ∈ {1, 2},

bmi b
n
j ≡C

{
b0b1 if m < n, i = 1, and j = 2,
b0b

∗
0 otherwise;

(ii) for all n < �, bn1 |�C
b<n1 b

<n
2 ;

(iii) for all n < �, bn2 |�C
b<n2 b

n
1 .

Let (b01 , b
0
2) = (b0, b

∗
0 ). Suppose we have constructed (b

i
1, b
i
2)i<n as above. By full

existence, we may find bn1 ≡C b0 such that bn1 |�C
b<n1 b

<n
2 . Then (ii) is immediate.

For (i), we want to show bit b
n
1 ≡C b0b∗0 for all i < n and t ∈ {1, 2}. If i < n − 1

then we have bn1 |�C
bit , b

n−1
1 |�C

bit , and b
n
1 ≡C b ≡C bn−11 . By stationarity and

induction, bit b
n
1 ≡C bit bn−1t ≡C b0b∗0 . Now suppose i = n−1, and let s = 3−t. Then

bn1 |�C
bn−1t , bn−1s |�C

bn−1t (by induction and possibly symmetry), and bn1 ≡C
b ≡C bn−1s . By stationarity and induction, we have bn−1t bn1 ≡C bn−1t bn−1s ≡C b0b∗0 .
Next, we must construct bn2 . First, note that (b

i
1)i<n is |� -independent over C

and b1∩b01 = b1∩b0 = C . By Lemma 7.6, there is b∗ such that bi1b∗ ≡C b01b1 = b0b1
for all i < n. Let B = b<n1 , which is closed by the closure axiom for |� . By full
existence, there is bn2 ≡B b∗ such that bn2 |�B

b<n2 b
n
1 .
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Claim 3. b≤n2 b
n
1 ∩ B = C .

Proof. Fix i < n. Then bi1b
n
1 ≡C b0b∗0 and b0 ∩ b∗0 = C . It remains to show that,

for all j ≤ n, bi1 ∩ bj2 = C . If j < n then this follows by induction and property (i).
For j = n, we have bi1b

n
2 ≡C bi1b∗ ≡C b0b1, and so bi1 ∩ bn2 = C . �

By the claim, and freedom, we have bn2 |�C
b<n2 b

n
1 , which gives property (iii).

It remains to verify the pertinent parts of property (i). First, we have bn2 |�C
bn1 ,

bn−12 |�C
bn1 , and b

n
2 ≡C bn−12 . By stationarity and choice of bn1 , we have b

n
1b
n
2 ≡C

bn1b
n−1
2 ≡C b0b∗0 .Next, if i < n thenwehavebn2 |�C

bi2, b
n
1 |�C

bi2, andb
n
2 ≡C bn1 . By

stationarity and choice of bn1 , we have b
i
2b
n
2 ≡C bi2bn1 ≡C b0b∗0 (recall b0b∗0 ≡C b∗0 b0).

Finally, for i < n, we have bi1b
n
2 ≡C bi1b∗ ≡C b0b1.

This finishes the construction of the sequence (bn1 , b
n
2 )n<� . Fix n < �. Define

the sequence (cni )i<� where, if i ≤ n then cni = bi2, and, if i > n then cni = bi1.
By (ii), (iii), and monotonicity, (cni )i<� is |� -independent over C . We also have
acn0 = ab

∗
0 ≡C ab and so a ∩ cn0 = C . By Lemma 7.6, there is an such that

anc
n
i ≡C ab for all i < �.
Let r(x, y) = tp(a, b/C ). Recall that, by assumption, r(x, b0)∪ r(x, b1) is incon-
sistent. For i < �, set di = (bi1, b

i
2). Fix variables z = (y1, y2), and define the types

p(x, z) = r(x, y1) and q(x, z) = r(x, y2). We use (ai)i<� , (di)i<� , p(x, z), q(x, z),
and Proposition 7.2 to show that T has SOP3.
If i < j then aib

j
1 = aic

i
j ≡C ab, and so p(ai , dj). If i ≥ j then aibj2 = aicij ≡C

ab, and so q(ai , dj). Finally, fix i < j. Then

p(x, di) ∪ q(x, dj) = r(x, bi1) ∪ r(x, bj2 ).
By (i), bi1b

j
2 ≡C b0b1, and so r(x, bi1) ∪ r(x, bj2 ) is inconsistent. �

Remark 7.18. ByworkofEvans andWong [12], simplicity coincideswithNSOP3
in the full class of Hrushovski genericsMf . However, the interesting counterex-
amples produced by such constructions are often simple and nonmodular, and
therefore do not fall into our framework.6

Question 7.19. Is every free amalgamation theory modular?

7.1. Simplicity in Fraı̈ssé limits with free amalgamation. For a final application,
we take a closer look at simplicity for Th(M), whereM is countable and ultraho-
mogeneous, in a finite relational language. Our motivation is the well-known fact
that the (binary) generic Kn-free graphs are not simple (due to Shelah [26]), while
their higher arity analogs, the generic Krn -free r-hypergraphs for r > 2, are simple
(due to Hrushovski [16]).
For the rest of the section, we fix a finite relational language L.
Definition 7.20. SupposeA is anL-structure.We say that singletonsa1, . . . , ak ∈
A are related in A if there is a tuple b̄ ∈ A such that each ai is a coordinate of b̄ and
A |= R(b̄) for some relation R ∈ L. Given k ≥ 2, A is k-irreducible if any k distinct
elements of A are related in A.7

6For example, ifL consists of one ternary relation then, with appropriate choice of predimension and
control function f, Th(Mf) is supersimple and nonmodular. See, e.g., [18, Section 6.2].
7This notion usually appears in the literature only for k = 2 and, in this case, 2 is omitted.
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We assume that all classes of finite L-structures are closed under isomorphism.
Given L-structures A and B we say A is a weak substructure of B if there is an
injective map from A to B which preserves the relations in L.
Definition 7.21. Suppose F is a class of finite L-structures.
(1) An L-structure A is F -free if no weak substructure of A is in F . Let KF
denote the class of finite F -free L-structures.

(2) F is minimal if, for any A ∈ F , no proper weak substructure of A is in F .
Suppose now that K is a class of finite L-structures such that K = KF∗ for some
classF∗. LetF be the class of finiteL-structuresA such thatA is not inK, but every
proper weak substructure ofA is in K. Then F is minimal, and it is straightforward
to show that K = KF . We call F the minimal forbidden class for K. The reader
may verify that, if K is a Fraı̈ssé class, then K is closed under free amalgamation of
L-structures if and only if every structure in F is 2-irreducible.
Theorem 7.22. SupposeM is a countable ultrahomogeneous L-structure. Let K
be the age of M, assume K = KF∗ for some class F∗, and let F be the minimal
forbidden class for K.
(a) If every structure in F is 3-irreducible then Th(M) is simple.
(b) Assume K is closed under free amalgamation of L-structures. Then Th(M) is
simple if and only if every structure in F is 3-irreducible.

Proof. LetM be a monster model of Th(M).
Part (a). Using a straightforward generalization of Hrushovski’s proof [16] of
simplicity of the generic Krn -free r-hypergraphs for r > 2, we show |�

d coincides
with |�

a in M (which, since |�
a is symmetric, gives the simplicity of Th(M)).

First, we show that if A,B,C are pairwise disjoint subsets ofM, then A |�
d

C
B.

Let a = (a1, . . . , an) and b = (b1, . . . , bm) be disjoint tuples from M and fix
C ⊂ M disjoint from both a and b. Fix an infiniteC -indiscernible sequence (bl )l<� ,
with b0 = b. We want to find a′ = (a′1, . . . , a

′
n) such that a

′bl ≡C ab for all l < �.
By passing elements from b to C , we may assume b0 ∩ b1 = ∅.
Let E = C ∪ ⋃

l<� b
l . Define an L-structure D with universe a′E where

a′ = (a′1, . . . , a
′
n) is a tuple disjoint from E. Define relations on D so that E is

a substructure ofD and, for each l < �, a′bl ∼=C ab. No other relations hold in D;
in particular, if a′i ∈ a′, blj ∈ bl , and bmk ∈ bm, with l �= m, then a′, blj , bmk are not
related in D.
Note that, if D is F -free, then we may embed D inM over E, and the image of
a′ inM is as desired. Therefore it suffices to show thatD is F -free.
Suppose, toward a contradiction, that some A ∈ F is a weak substructure of D.
Since E is F -free, we must have some a′i ∈ A ∩ a′. Moreover, for any fixed l < �,
we have a′bl ∼=C ab, and so, since abC is F -free, it follows that A is not entirely
contained in any single a′blC . Therefore, we may fix l < m < �, and elements
blj ∈ bl\bm and bmk ∈ bm\bl , such that blj , bmk ∈ A. Since A is 3-irreducible, it
follows that a′i , b

l
j , b

m
k are related in D, which is a contradiction.

Now suppose A,B,C ⊂ M are arbitrary with A |�
a

C
B. Let A′ = acl(AC )\

acl(C ), B ′ = acl(BC )\ acl(C ), and C ′ = acl(C ). Then A′, B ′, C ′ are pairwise
disjoint, and so A′ |�

d

C ′ B
′. Then A′C ′ |�

d

C ′ B
′C ′, and so A |�

d

C
B by Fact 7.4.
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Part (b). Assume M is closed under free amalgamation of L-structures, and
suppose A ∈ F is not 3-irreducible. We show that |�

a does not coincide with |�
d

inM, which, by Theorem 7.7, suffices to show that Th(M) is not simple.
Enumerate A = {a1, . . . , an} so that a1, a2, a3 are not related in A. Let â =
(a4, . . . , an). We define an L-structure E with universe {b4, . . . , bn} ∪

⋃
l<�{bl2, bl3}

and define relations such that, setting b̂ = (b4, . . . , bn):

(1) blt b̂ ∼= atâ for all l < � and t ∈ {2, 3};
(2) bl2b

m
3 b̂

∼= a2a3â for all l < m < �;
(3) no other relations hold in E.

Suppose, toward a contradiction, that some A′ ∈ F is a weak substructure of E.
Recall that every element of F is 2-irreducible. By construction of E, it follows
that A′ is a substructure of bl2b

m
3 b̂ for some l < m < �. But b

l
2b
m
3 b̂ is isomorphic

to a proper substructure of A by definition, which contradicts that F is minimal.
Therefore E is F -free and so we may assume E ⊂ M. Note that (bl2, b

l
3)l<� is

b̂-indiscernible.
Let b2 = b02 and b3 = b

0
3 . Since F is minimal, we may use similar arguments

to find b1 ∈ M such that b1btb̂ ∼= a1atâ, for t ∈ {2, 3}. We use (bl2, bl3)l<� to
show b1 � |�

d

b̂
b2b3 (since algebraic closure is trivial, we have b1 |�

a

b̂
b2b3, and so

this suffices to finish the proof). Suppose, toward a contradiction, there is b∗ ∈ M

such that b∗bl2b
l
3b̂

∼= b1b2b3b̂ for all l < �. Then, by construction, b∗b02 b̂ ∼= a1a2â,
b∗b13 b̂ ∼= a1a3â, and b02b13 b̂ ∼= a2a3â. Since a1, a2, a3 are not related in A, it follows
that A is a weak substructure of b∗b02b

1
3 b̂, which contradicts thatM is F -free. �
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