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A remarkable property of geophysical fluids is that, even for nonlinear flows, a slow
component can sometimes evolve independently of the fast-wave components. The dry
Boussinesq equations, for instance, are known to exhibit this property for small Froude
(Fr) and Rossby (Ro) numbers (i.e. strong stratification and rapid rotation). Here, we ask:
Do the moist Boussinesq equations also exhibit this property, even if clouds are included
as changes of water between different phases (vapour and liquid)? To investigate, the
authors recently performed an asymptotic analysis and identified several ways in which
phase changes could possibly induce coupling between the slow component and fast
waves; however, these possibilities were not clearly settled from theoretical considerations
alone. Here, to investigate further, a suite of numerical simulations is conducted, using
a sequence of small values Fr = Ro = 1, 10−1, 10−2, 10−3. For Fr = Ro = 10−1, the
influence of waves on the slow component is relatively small, but does not decrease
proportional to Fr and Ro, as Fr and Ro are decreased to 10−2 and 10−3. As an explanation
and physical interpretation, it is shown that, while linear waves have a time average of
zero, the piecewise-linear waves that arise due to phase changes actually have a non-zero
time-averaged component.
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1. Introduction

As a model of atmospheric or oceanic dynamics, the dry Boussinesq equations have a
remarkable property: for small values of the Froude and Rossby numbers, the state vector
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can be decomposed into a slow vortical component and a fast-wave component, and the
slow component obeys its own evolution equation, independent of the dynamics of the fast
inertio-gravity waves (Embid & Majda 1996, 1998; Majda & Embid 1998; Majda 2003).
In a sense, then, in considering the evolution of the slow component, the effects of the
fast waves are averaged out. In earlier work, a similar type of fast-wave averaging property
was also shown for compressible fluid dynamics, for a small Mach number, where the
fast waves correspond to acoustic/sound waves (Klainerman & Majda 1981, 1982; Majda
1984). Many other examples also arise from fluid dynamics, such as the rotating shallow
water equations, and all of these examples fall under the category of fast singular limits
of hyperbolic partial differential equations (PDEs), with unbalanced initial conditions,
which have been the topic of numerous other studies as well (e.g. Schochet 1994; Babin,
Mahalov & Nicolaenko 1996; Babin et al. 1997; Babin, Mahalov & Nicolaenko 1998,
2000; Schochet 2005; Dutrifoy & Majda 2006, 2007; Dutrifoy, Majda & Schochet 2009;
Wingate et al. 2011).

Here, the main question is: What happens if moisture, clouds and phase changes are
included? Does the slow component still evolve essentially independently of the fast-wave
component? Or, do clouds and phase changes create new types of coupling between the
slow and fast components?

To investigate these questions, we use a fast-wave averaging framework that was recently
presented to include the additional effects of clouds and phase changes (Zhang, Smith &
Stechmann 2021). In this case, several new challenges arise, and one of the most significant
challenges is that, while the dry case includes a constant coefficient linear operator, the
phase-change case includes an operator that is spatially and temporally varying. Due to
this additional complexity, while Fourier methods are available for use in the dry case,
they are no longer amenable in the case with clouds and phase changes. As a result, the
formal asymptotic analysis of Zhang et al. (2021) includes some terms that are difficult
to probe analytically. In the present paper, to investigate further, the fast-wave averaging
framework is studied using numerical simulations.

The present study can also be viewed as an investigation of wave and vortical
interactions, a topic that has a long history in the context of the dry Boussinesq equations
and related systems of geophysical fluid dynamics (e.g. Phillips 1968; Greenspan 1969;
Lelong & Riley 1991; Bartello 1995; Embid & Majda 1996; Babin et al. 1996, 1997; Embid
& Majda 1998; Majda & Embid 1998; Smith & Waleffe 1999; Babin et al. 1998, 2000;
Smith & Waleffe 2002; Majda 2003; Remmel & Smith 2009; Wingate et al. 2011). In some
studies of wave–vortical interactions, the main topic of interest is the statistical properties
of forced turbulence or turbulent decay. Note that the present paper focuses instead on
initial value problems, as such a set-up is most directly in line with the fast-wave averaging
framework. It would be interesting to investigate statistical properties of turbulence in the
future.

In the limit of small Rossby and Froude numbers (large rotation and stratification,
respectively), it is the quasi-geostrophic (QG) equations that describe the evolution of the
slow, vortical mode. Two cases should be distinguished, according to the initial conditions
(e.g. Klainerman & Majda 1981, 1982; Majda 1984, 2003). On the one hand, if the initial
conditions contain no waves (or if the waves are sufficiently small in amplitude or norm),
it is said that the initial data are balanced or well-prepared. In this case, the solutions of
the Boussinesq equations will converge to solutions of the QG equations. On the other
hand, if the initial conditions are general and contain wave contributions, it is said that the
initial data are unbalanced or ill-prepared. This latter case is where fast-wave averaging is
relevant. Remarkably, even for unbalanced initial conditions, the QG equations describe
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the limiting dynamics of the slow modes, and the fast waves are also present in the limit
but do not influence the QG evolution.

While much is known about dry dynamics without moisture (for either balanced or
unbalanced initial conditions), much less is known about moist dynamics with phase
changes. In the case of balanced initial conditions, with moisture, a formal asymptotic
derivation of precipitating QG (PQG) equations has been presented (Smith & Stechmann
2017), and some properties of the PQG equations have been investigated (Wetzel, Smith &
Stechmann 2017, 2019a; Edwards, Smith & Stechmann 2020a,b), but no rigorous proofs
have been shown. Unbalanced initial conditions, on the other hand, are the topic of the
present paper. Some main questions are: Do the PQG equations describe the evolution
of the slow modes, in the limit of small Froude and Rossby numbers, even if the initial
conditions are unbalanced? Is the slow-mode evolution influenced by waves, or not?

The investigation here also contributes to the growing body of literature on moist
dynamics of the atmosphere, including analytical studies such as mathematically rigorous
results (e.g. Majda & Souganidis 2010; Zelati & Temam 2012; Zelati et al. 2013; Bousquet,
Zelati & Temam 2014; Zelati et al. 2015; Li & Titi 2016; Hittmeir et al. 2017; Cao et al.
2018; Hittmeir et al. 2020) and asymptotic analysis (e.g. Klein & Majda 2006; Majda
2007; Khouider, Majda & Stechmann 2013; Chen, Majda & Stechmann 2015, 2016; Smith
& Stechmann 2017; Hittmeir & Klein 2018; Rosemeier, Baumgartner & Spichtinger 2018),
as well as computational studies of moist turbulence (e.g. Spyksma, Bartello & Yau
2006; Schumacher & Pauluis 2010; Sukhatme, Majda & Smith 2012). The atmosphere
in nature includes the effects of moisture and changes of water between different phases
(vapour, liquid, etc.), and this growing literature is helping to shrink the gap between our
understanding of dry versus moist atmospheric dynamics.

The remainder of the paper is organized as follows. Background information is presented
in §§ 2 and 3, including the equations of motion (the moist Boussinesq equations with
phase changes) and a summary of the asymptotic theory of fast-wave averaging (§ 2),
followed by a description of the set-up of numerical simulations and data analysis methods
(§ 3). The numerical investigation of fast-wave averaging is then presented in § 4 and
is aimed at the main questions of the paper, such as: Do the slow modes still evolve
independently of the fast waves, even in the presence of phase changes? Following the
numerical experiments, an explanation and physical interpretation are described in § 5.
Conclusions are discussed in § 6.

2. Theoretical background

The model equations are described here in § 2.1. First, we present the equations in a way
that highlights the new features of moisture and phase changes, beyond the simpler case
of dry dynamics. Then the equations are rewritten in a different way, using conserved
thermodynamic variables, in order to facilitate the definition of the slow variables in § 2.2.
Subsequent subsections describe the fast-wave averaging framework.

2.1. The dynamical equations
In past studies of fast-wave averaging (e.g. Embid & Majda 1996), the dry Boussinesq
equations have been investigated. Here, instead, moist Boussinesq equations are
investigated, in order to assess the impact of phase changes between water vapour and
liquid water, following Zhang et al. (2021). The governing equations are

Du
Dt

+ f ẑ × u = −∇φ + ẑb, (2.1)
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∇ · u = 0, (2.2)

Dθ
Dt

+ w
dθ̃
dz

= Lv
cp

C, (2.3)

Dqv
Dt

+ w
dq̃v
dz

= −C, (2.4)

Dql

Dt
= C. (2.5)

Here, u = (uh,w) is the three-dimensional velocity with horizontal components uh =
(u, v) and vertical component w. The material derivative is defined as D/Dt = ∂t + u · ∇,
where the three-dimensional gradient operator is ∇ = (∂x, ∂y, ∂z). The conservation of
momentum equation is in (2.1), including the Coriolis term, f ẑ × u = (−fv, fu, 0)ᵀ, which
represents the effects of rotation. The unit vector in the vertical direction is ẑ = (0, 0, 1)
and the pressure-like variable is φ. A constant Coriolis parameter f is used here.

The buoyancy term ẑb in (2.1) is defined as

b = g
(
θ

θ0
+ Rvdqv − ql

)
, (2.6)

where g = 9.8 m s−2 is the gravitational acceleration, θ0 = 300 K is a reference
background value of potential temperature, and Rvd = (Rv/Rd)− 1 ≈ 0.61, where Rd is
the gas constant for dry air and Rv is the gas constant for water vapour.

Three thermodynamic variables are evolving in time according to (2.3)–(2.5). The
potential temperature is θ , the water vapour mixing ratio is qv and the liquid water
mixing ratio is ql, and all three of these quantities are anomalies. More specifically,
the thermodynamic quantities have been decomposed as θ tot(x, t) = θ̃ (z)+ θ(x, t) and
qtot
v (x, t) = q̃v(z)+ qv(x, t), so that the total quantity is written as the sum of a prescribed,

background function of altitude z and an anomaly. Note that the background state is chosen
to be cloud-free, so q̃l = 0 and qtot

l = ql. Furthermore, the background gradients dθ̃/dz
and dq̃v/dz are chosen to be constants, for simplicity, which helps to render (2.1)–(2.5)
a constant-coefficient system within each phase, and a piecewise-constant-coefficient
system overall, since some coefficients change their values due to phase changes.

Phase changes enter into (2.3)–(2.5) via C, which represents the rate of condensation
and evaporation. Condensation occurs for C > 0 and represents a phase transition from
vapour to liquid, and evaporation occurs for C < 0 and represents a phase transition from
liquid to vapour. The definition of C is

C =
⎧⎨
⎩

0, if qtot
v < qtot

vs ,

−Dqtot
vs

Dt
, if qtot

v = qtot
vs ,

(2.7)

where the threshold qtot
vs is the saturation water vapour mixing ratio. In other words, in

(2.7), if the vapour is below the threshold, then neither condensation nor evaporation
occurs; and if the vapour reaches the threshold, then condensation or evaporation will
occur (so C /= 0) and is defined so as to maintain the vapour value at its threshold
value: qtot

v = qtot
vs . Indeed, from inserting (2.7) into (2.4), one can see that, if qtot

v = qtot
vs ,

then Dqtot
v /Dt = Dqtot

vs /Dt. To close the evolution, the threshold qtot
vs must be specified.

In comprehensive treatments of moist thermodynamics, one would define qtot
vs to be a
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function of temperature and pressure, according to the Clausius–Clapeyron equation (e.g.
Rogers & Yau 1989; Grabowski & Smolarkiewicz 1996; Klein & Majda 2006). Here, as a
more simplistic treatment, it is defined as a function of height z alone, as qtot

vs (z). Such a
treatment arises from assuming that temperature Ttot and pressure ptot are nearly equal to
their background values T̃(z) and p̃(z), in which case qtot

vs (T
tot, ptot) ≈ qtot

vs (T̃(z), p̃(z)) as a
first approximation (e.g. Hernandez-Duenas et al. 2013). In this case, with qtot

vs = qtot
vs (z),

(2.7) becomes

C =
⎧⎨
⎩

0, if qtot
v < qtot

vs ,

−w
dqtot
vs (z)
dz

, if qtot
v = qtot

vs .
(2.8)

In (2.8), the saturation value qtot
vs (z) is usually decreasing as altitude increases, so that

dqtot
vs (z)/dz < 0. As a result, one can see from (2.8) that, within a cloud, upward vertical

velocity (w > 0) is associated with condensation (C > 0) and cloud formation, and, on
the other hand, downward vertical velocity (w < 0) is associated with evaporation of
cloud water (C < 0). Furthermore, condensation is associated with heating in (2.3), and
evaporation is associated with cooling. The latent heat of vaporization is a constant
parameter, Lv = 2.5 × 106 J kg−1, and the specific heat is also a constant parameter,
cp = 103 J kg−1 K−1. Note that the present version of C uses instantaneous saturation
adjustment, whereby the water vapour qv is instantaneously adjusted to maintain the
saturation constraint qt = qvs, whereas this adjustment time scale is finite (but very small)
in nature (e.g. Grabowski & Morrison 2008).

The moist Boussinesq system in (2.1)–(2.8) is used as an idealized model of atmospheric
dynamics with phase changes. Models like (2.1)–(2.8) have also been used for many
purposes and with varying degrees of idealization (e.g. Kuo 1961; Sommeria 1976;
Bretherton 1987; Cuijpers & Duynkerke 1993; Spyksma et al. 2006; Stechmann &
Stevens 2010; Pauluis & Schumacher 2010). Here, the moist Boussinesq system is
intended to be used as an extension of dry Boussinesq models that have previously
been studied in geophysical fluid dynamics (e.g. Embid & Majda (1996), Majda (2003),
Hernandez-Duenas, Smith & Stechmann (2014) and other references described in § 1). The
moist system in (2.1)–(2.8) will reduce to the dry Boussinesq system if water vapour qv ,
liquid water ql and condensation/evaporation C are neglected.

While clouds are included in (2.1)–(2.8), they are included in their most basic form.
Other aspects, such as rain and ice, are not considered here, in order to put emphasis
on the basic vapour–liquid phase change, which already introduces additional non-trivial
behaviour. Therefore, in comparing (2.1)–(2.8) with the set-up of Zhang et al. (2021),
one distinction is that the fall velocity of rain, VT , has been set to zero here, and it is
then cloud liquid water ql that appears here instead of rain water qr. Nevertheless, while
many complicated cloud processes have been neglected here, the system in (2.1)–(2.8)
provides the starting point for extensions that include rainfall and other complexities (e.g.
Grabowski & Smolarkiewicz 1996; Klein & Majda 2006).

For use in the remainder of the paper, it is convenient to rewrite (2.1)–(2.8) in terms
of a different set of thermodynamic variables that are conserved. In particular, define the
anomalies of equivalent potential temperature, θe, and total water mixing ratio, qt, as

θe = θ + Lv
cp

qv, (2.9)

qt = qv + ql. (2.10)
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The evolution equations of θe and qt can be found by taking appropriate linear
combinations of (2.3)–(2.5), and they take the form

Dθe

Dt
+ w

dθ̃e

dz
= 0, (2.11)

Dqt

Dt
+ w

dq̃t

dz
= 0, (2.12)

where the background states are defined, similar to (2.9)–(2.10), as θ̃e(z) = θ̃ (z)+
(Lv/cp)q̃v(z) and q̃t(z) = q̃v(z)+ q̃l(z) = q̃v(z). The important feature of (2.11)–(2.12)
is that the source term of condensation/evaporation, C, has been eliminated. As a
result, (2.11)–(2.12) show that θe + θ̃e(z) and qt + q̃t(z) are conserved along fluid parcel
trajectories. Physically, the equivalent potential temperature is conserved because losses
of water vapour qv are compensated by gains in heat θ , as indicated by the definition in
(2.9); and the total water mixing ratio, qt = qv + ql, is conserved because losses of water
vapour qv are compensated by gains in liquid water ql.

To complete the rewriting, the buoyancy b from (2.6) must also be rewritten in terms of
θe and qt. To do so, the following transformation is used:

θ = θe − Lv
cp

min(qt, qvs), (2.13)

qv = min(qt, qvs), (2.14)

ql = max(0, qt − qvs), (2.15)

which is the reverse of the transformation in (2.9)–(2.10). Note that an anomalous qvs has
been introduced, via a decomposition qtot

vs (z) = q̃vs(z)+ qvs; and the background state is
chosen to be q̃vs = q̃t so that the surplus water above saturation, qtot

t − qtot
vs , can be written

equivalently as qt − qvs and retains essentially the same form when written in terms of
anomalies. The anomaly qvs will be a constant parameter here. By inserting (2.13)–(2.15)
into the definition of buoyancy b in (2.6), one arrives at

b = g

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θe

θ0
+

(
Rvd − Lv

cpθ0

)
qt if qt < qvs,

θe

θ0
+

(
Rvd − Lv

cpθ0

)
qvs − (qt − qvs) if qt ≥ qvs,

(2.16)

which is the desired expression for buoyancy b in terms of the variables θe and qt.
To summarize the rewriting in terms of conserved variables, the original system

(2.1)–(2.8) can be written in alternative form as
Du
Dt

+ f ẑ × u = −∇φ + ẑb, (2.17)

∇ · u = 0, (2.18)

Dθe

Dt
+ w

dθ̃e

dz
= 0, (2.19)

Dqt

Dt
+ w

dq̃t

dz
= 0, (2.20)

along with the definition of buoyancy b from (2.16). The formulation in (2.16)–(2.20) will
be used in the remainder of the paper.
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While the (θ, qv, ql) formulation in (2.1)–(2.8) is helpful for seeing the connection with
a dry system, the (θe, qt) formulation in (2.16)–(2.20) is helpful for another reason that is
central to the goals of the present paper: for defining the slow modes of the system. The
slow modes will be defined below in § 2.2.

As the next two steps of the model specification, we first create a non-dimensional
system, and, second, identify the small parameter ε. To non-dimensionalize the system,
reference values are chosen for all variables as in table 1. For instance, the non-dimensional
velocity u∗ is defined as u∗ = u/U, by dividing the dimensional u by the reference value
U. In terms of non-dimensional quantities, the main system in (2.16)–(2.20) becomes, after
dropping the superscript ∗ to ease notation,

Dhuh

Dt
+ w

∂uh

∂z
+ Ro−1u⊥

h + Eu∇hφ = 0, (2.21)

A2
(

Dhw
Dt

+ w
∂w
∂z

)
+ Eu

∂φ

∂z
− Γ A2b = 0, (2.22)

∇h · uh + ∂w
∂z

= 0, (2.23)

Dhθe

Dt
+ w

∂θe

∂z
+ Fr1

−2(Γ A2)−1w = 0, (2.24)

Dhqt

Dt
+ w

∂qt

∂z
− Fr2

−2(Γ A2)−1w = 0 (2.25)

and the non-dimensional buoyancy definition,

b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θe +

(
Rvd

cpθ0

Lv
− 1

)
qt if qt < qvs,

θe +
(

Rvd
cpθ0

Lv
− 1

)
qvs − cpθ0

Lv
(qt − qvs) if qt ≥ qvs.

(2.26)

Note that the material derivative has been split into its horizontal part, Dh/Dt = ∂t +
uh · ∇h, and vertical part, w∂z, where ∇h = (∂x, ∂y) is the horizontal part of the gradient
operator. In the non-dimensional equations above, the non-dimensional parameters include
the Rossby number Ro, Euler number Eu, aspect ratio A and buoyancy parameter Γ , all
of which are defined by analogy with the dry Boussinesq parameters (e.g. Majda 2003)
and are defined here in table 2. A new parameter arises in (2.26) due to moisture: the
thermodynamic parameter ratio, cpθ0/Lv ≈ 0.1.

Two other parameters, Fr1 and Fr2, also appear in (2.21)–(2.26), and some further
explanation is required to relate them to traditional parameters of the dry Boussinesq
equations. The two parameters Fr1 and Fr2 are similar to Froude numbers, and two of
them appear here because the moist system involves two thermodynamic variables (θe and
qt), as opposed to the dry case with one Froude number and one thermodynamic variable
(θ ). The definitions here are

Fr1 = U
N1H

, Fr2 = U
N2H

, (2.27a,b)

where H is the reference height, U is the reference horizontal velocity and

N1
2 = g

θ0

dθ̃e

dz
= g
θ0

d
dz

(
θ̃ + Lv

cp
q̃v

)
, (2.28a)
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Variable Reference Scale

x, y L
z H
t L/U

u(x, t), v(x, t) U
w(x, t) UH/L
φ(x, t) Φ

θ(x, t), θe(x, t) Θ

qv(x, t), ql(x, t), qt(x, t), qvs(z) cpΘ/Lv
b(x, t) gΘ/θo

Table 1. Reference scales used for each variable to create non-dimensional equations.

Symbol Definition Name (notes)

Ro U(Lf )−1 Rossby number
Eu ΦU−2 Euler number
Fr1 U(N1H)−1 Froude number (1)
Fr2 U(N2H)−1 Froude number (2)
Γ gΘθ−1

o L2(U2H)−1 (buoyancy parameter)
A HL−1 Aspect ratio

Table 2. Non-dimensional parameters.

N2
2 = − g

θ0

Lv
cp

dq̃t

dz
= − g

θ0

Lv
cp

dq̃v
dz
. (2.28b)

The parameters N1 and N2 are constants because the background gradients, dθ̃e/dz and
dq̃t/dz, have been chosen to be constants here, as is typical for a Boussinesq system. The
notation N is used for N1 and N2 in analogy with the notation for the buoyancy frequency of
a dry system, N2 = (g/θ0) dθ̃/dz. For the moist system here, the two buoyancy frequencies
are

Nu
2 = g

θ0

dθ̃
dz
, Ns

2 = g
θ0

dθ̃e

dz
, (2.29a,b)

and they involve θ and θe, respectively, because, from (2.26), the non-dimensional
buoyancy is b ≈ θe − qt = θ in unsaturated regions and b ≈ θe − qvs = θe − const. in
saturated regions. These approximations neglect terms in (2.26) that are proportional
to cpθ0/Lv ≈ 0.1, to simplify the expressions for clarity. The buoyancy frequency, or
Brunt–Väisälä frequency, describes the frequency of buoyancy oscillations, and one can
compute it in either the unsaturated or saturated phase (Durran & Klemp 1982a,b).
More complete expressions for the present model’s Nu and Ns are derived by Smith &
Stechmann (2017) in their appendix without neglecting terms proportional to cpθ0/Lv ≈
0.1. Associated with the buoyancy frequencies Nu and Ns are two Froude numbers,

Fru = U
NuH

, Frs = U
NsH

. (2.30a,b)
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Effects of clouds and phase changes on fast-wave averaging

Finally, then, by comparing (2.28) and (2.29a,b), one can see that the parameter sets
(N1,N2) and (Nu,Ns) are related as

Nu
2 = N1

2 + N2
2, Ns = N1, (2.31a,b)

and therefore the parameter sets (Fr1,Fr2) and (Fru,Frs) are related as

Fr−2
u = Fr−2

1 + Fr−2
2 , Fr−1

s = Fr−1
1 . (2.32a,b)

As a result of these relationships, one can work with either (N1,N2) and (Fr1,Fr2) on the
one hand, or with (Nu,Ns) and (Fru,Frs) on the other hand. Here, (N1,N2) and (Fr1,Fr2)
will be used, since they appear directly in the equations of motion in (2.21)–(2.26) when
using the variables θe and qt.

Parameter values are chosen to represent rapid rotation (small Rossby number) and
strong stratification (small Froude number). The Rossby number is defined to be the small
parameter ε,

Ro = ε, (2.33)

and the other parameters are related to Ro in a distinguished limit as

Fr1 = Ro
L

Ld1

= O(ε), Fr2 = Ro
L

Ld2

= O(ε), Γ A2 = Fr1
−1 = O(ε−1), (2.34a–c)

Eu−1 = Ro = ε,
cpθ0

Lv
= CclRo = O(ε), (2.35a,b)

where Ld1 and Ld2 are similar to Rossby radii of deformation and are defined as

Ld1 = N1H
f
, Ld2 = N2H

f
. (2.36a,b)

With these parameter relationships, the non-dimensional equations from (2.21)–(2.26)
become

Dhuh

Dt
+ w

∂uh

∂z
+ ε−1u⊥

h + ε−1∇hφ = 0, (2.37)

A2
(

Dhw
Dt

+ w
∂w
∂z

)
+ ε−1 ∂φ

∂z
− ε−1 Ld1

L
b = 0, (2.38)

∇h · uh + ∂w
∂z

= 0, (2.39)

Dhθe

Dt
+ w

∂θe

∂z
+ ε−1 Ld1

L
w = 0, (2.40)

Dhqt

Dt
+ w

∂qt

∂z
− ε−1 Ld2

L
Ld2

Ld1

w = 0 (2.41)

and the non-dimensional buoyancy definition,

b =
{
θe + (εRvdCcl − 1) qt if qt < qvs,

θe + (εRvdCcl − 1) qvs − εCcl(qt − qvs) if qt ≥ qvs.
(2.42)

In arriving at (2.37)–(2.42), the scaling scenario is similar to dry fast-wave averaging
(e.g. Embid & Majda 1996), with extensions to the present case with moisture, following
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Y. Zhang, L.M. Smith and S.N. Stechmann

Smith & Stechmann (2017), and discussed further below. While one could proceed
with (2.37)–(2.42), the analysis would be complicated by the many O(1) constants that
appear: A, L/Ld1, L/Ld2,Rvd and Ccl. To simplify the notation in what follows, these O(1)
constants will be set equal to unity, which leads to

Dhuh

Dt
+ w

∂uh

∂z
+ ε−1u⊥

h + ε−1∇hφ = 0, (2.43)

Dhw
Dt

+ w
∂w
∂z

+ ε−1 ∂φ

∂z
− ε−1b = 0, (2.44)

∇h · uh + ∂w
∂z

= 0, (2.45)

Dhθe

Dt
+ w

∂θe

∂z
+ ε−1w = 0, (2.46)

Dhqt

Dt
+ w

∂qt

∂z
− ε−1w = 0 (2.47)

and the non-dimensional buoyancy definition,

b =
{
θe + (ε − 1) qt if qt < qvs,

θe + (ε − 1) qvs − ε(qt − qvs) if qt ≥ qvs.
(2.48)

where each term in (2.43)–(2.48) now has a coefficient that is either unity or ε. This
completes the specification of the model, in non-dimensional units, in (2.43)–(2.48), for
use in the remainder of the manuscript.

To provide some additional physical context, we describe how the scaling regime used
here is reminiscent of the midlatitude atmosphere on synoptic scales, if a value of ε ≈ 0.1
is used (e.g. Majda 2003; Vallis 2006; Smith & Stechmann 2017). For instance, one can
arrive at Ro,Fr1,Fr2 values of approximately 0.1 in the following way. For f = 10−4 s−1,
L = 106 m and U = 10 m s−1, the Rossby number is Ro = 0.1; and for dθ̃/dz = 3 K km−1,
dq̃v/dz = −0.6 g kg−1 km−1 and H = 104 m, one has N2

1 ≈ N2
2 and Fr1 ≈ Fr2 ≈ 0.14.

In this case, the buoyancy frequencies are related as N2
u ≈ 2N2

s , consistent with a moist
(or saturated) buoyancy frequency that is lower frequency than the dry (or unsaturated)
buoyancy frequency. Hence the scaling choice of Fr1 = Fr2 is physically realistic in this
sense. One scaling choice that deviates slightly from established physical values is the
choice of Rvd = 1, where Rvd is a parameter that is related to the gas constants for water
vapour and dry air, as described above, and its value in reality is 0.61; nevertheless, this
term does not arise at leading order in (2.42) and is not a central aspect of the analysis here.
Also, the aspect ratio has been chosen to be A = 1 here, which differs from typical values
for the midlatitude atmosphere on synoptic scales (e.g. Vallis 2006; Smith & Stechmann
2017), but is consistent with earlier studies of fast-wave averaging in the dry case (e.g.
Embid & Majda 1996; Majda 2003). Indeed, in summarizing the parameter choices, the
present study is an investigation of fast-wave averaging, and it uses parameter values that
are consistent with and motivated by the midlatitude atmosphere on synoptic scales, but it
is an idealized set-up, as in earlier fast-wave averaging studies (e.g. Embid & Majda 1996;
Majda 2003). As such, the present paper will consider a variety of different ε values as ε
tends toward zero.
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Effects of clouds and phase changes on fast-wave averaging

For later use, we note that the buoyancy b in (2.48) can be written in an alternative form
as

b = Hubu + Hsbs, (2.49)

where Hu and Hs are Heaviside functions that indicate the unsaturated and saturated
phases, respectively:

Hu =
{

1 for qt < qvs,

0 for qt ≥ qvs,
and Hs = 1 − Hu. (2.50a,b)

In (2.49), the expressions for the unsaturated buoyancy bu and the saturated buoyancy bs
are given by

bu = θe + (ε − 1)qt, bs = θe + (ε − 1)qvs − ε(qt − qvs), (2.51a,b)

which follow from comparison with the earlier expression for b in (2.48). By using
the Heaviside functions, the expression in (2.49) can be used to describe the buoyancy
succinctly, and the Heaviside functions provide a clear indication that the form of the
buoyancy will change in different phases.

2.2. Slow variables
The premise of fast-wave averaging depends on separation of slowly varying and fast-wave
components of the system. On the one hand, when fast waves evolve in time, they are
influenced by the ε−1 terms in the moist Boussinesq system in (2.43)–(2.48). Physically,
the ε−1 terms represent the effects of rapid rotation and strong stratification, which
can cause fast-wave oscillations. On the other hand, slow variables will have evolution
equations that are not influenced by the ε−1 terms.

Keeping these features in mind, we here present an algebraic construction of the slow
variables (a derivation using operator analysis may be found in Zhang et al. (2021)). The
construction draws upon foundations from previous literature regarding dry and moist
dynamics, in particular, to identify potential vorticity variables (see e.g. Majda (2003),
Marquet (2014), Wetzel et al. (2020) and references therein). In addition, for the moist
system described in § 2.1, a second slow variable has been found and named M (Smith &
Stechmann 2017; Wetzel et al. 2019b, 2020).

First, to define the slow variable M, we follow the intuition mentioned above: the goal
is to construct a new quantity whose evolution equation does not involve any ε−1 terms.
We look into the evolution equations for θe and qt in (2.46)–(2.47). In particular, while
the θe evolution in (2.46) involves an ε−1w term, and while the qt evolution in (2.47)
involves a −ε−1w term, if we take their sum we can eliminate the ε−1 terms. Therefore,
it is straightforward to eliminate the ε−1w terms from the θe and qt equations using the
linear combination

M = qt + θe, (2.52)

which obeys the evolution equation of

DM
Dt

= 0. (2.53)

Physically, the quantity M2 also has an interpretation as a moist latent energy that is
released upon change of phase (Marsico, Smith & Stechmann 2019).

Because (2.53) involves no explicit ε−1 terms, M is referred to as a slow variable.
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Note that M can be shown to be slowly evolving only in certain settings where the
notions of slow and fast can be appropriately defined. One could look to either the
linearized or nonlinear setting. In a linearized setting, if (2.53) is linearized about a resting
base state with u = 0, then the resulting linearized equation is ∂M/∂t = 0, so that M is
slowly varying and in fact does not change in time at all. This is true in the linearized
setting for any value of ε, large or small. In a nonlinear setting, one can also show that M
is slowly varying, if one considers the setting of a small ε limit, so that the slow time scale
is defined to be time of O(1) duration, and the fast time scales are of O(ε) duration. The
case of balanced initial conditions was considered by Smith & Stechmann (2017), and the
case of unbalanced initial conditions was considered by Zhang et al. (2021) as well as in
the present paper, further below. These same statements also hold true for the other slow
variable, potential vorticity.

Second, following a similar procedure, one can look for ways to cancel the ε−1 terms
in the momentum evolution, (2.43), to define a slow variable called potential vorticity. By
applying a horizontal curl (∇h×) to the momentum evolution in (2.43), the ε−1 term from
the pressure gradient is eliminated, and the resulting equation is

∂

∂t
∇h × uh + ∇h ×

(
uh · ∇huh + w

∂uh

∂z

)
+ ε−1∇h · uh = 0. (2.54)

Then, one can see that the remaining ε−1 term in (2.54) involves ∇h · uh; to eliminate it,
one can form the potential vorticity variable defined as

PVe = ξ + ∂θe

∂z
, where ξ = ∇h × uh, (2.55)

i.e. ξ is the vertical component of the total vorticity ∇ × u. To find the evolution equation
for PVe, apply ∂z to (2.46) and add the result to (2.54) to arrive at

∂PVe

∂t
+ ∂ (u · ∇θe)

∂z
+ NLξ = 0, (2.56)

where

NLξ = ∇h ×
(

uh · ∇huh + w
∂uh

∂z

)
= u · ∇ξ + ξ(ux + vy)+ (wxvz − wyuz). (2.57)

Then the material derivative of PVe is given by

DPVe

Dt
= −(uz · ∇θe)− ξ(ux + vy)− (wxvz − wyuz). (2.58)

On the right-hand side of this equation, the latter two terms represent vortex stretching,
as can be seen from their origins from the vorticity equation in (2.54) and from (2.57);
and the first term on the right-hand side arises from advection of θe. The main property of
interest here is that, since this PVe evolution equation contains no explicit ε−1 terms, PVe
is referred to as a slow variable.

Note that a variety of different moist PV variables have been proposed and used for
various purposes (e.g. Bennetts & Hoskins 1979; Emanuel 1979; Cao & Cho 1995;
Schubert et al. 2001; Marquet 2014; Smith & Stechmann 2017). Different PV variables
can have different properties, and, in fact, some common choices of moist PV are not
slowly varying. For instance, a moist PV variable based on potential temperature, θ , or
on virtual potential temperature, θv , is not slowly varying (Wetzel et al. 2020). The PVe
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Figure 1. Evolution of slow modes M (a,c,e) and PVe (b,d, f ) on short times of t = O(ε) ∼ 10−1, starting
from large-scale random initial conditions at t = 0. The two-dimensional (2-D) slices are taken with x = π

held fixed. One can see that the slow modes (M,PVe) change very little over short times t = O(ε).

variable, based on θe, is one definition of PV that is slowly varying, and it is therefore
well-suited for the present study.

To visualize that (M,PVe) are slowly varying, figure 1 shows the short-time evolution
of M (a,c,e) and PVe (b,d, f ). The system (2.43)–(2.48) evolves in a triply periodic domain
from random, large-scale initial conditions with ε = O(0.1) (see § 3.1). To the eye, it
is apparent that (M,PVe) are almost invariant for times t = O(ε) ∼ 10−1. We note that
(2.43)–(2.48) have been non-dimensionalized using the advective time scale, such that
one expects variation of the slow variable on the times t = O(1).

While PVe and M represent the slow components, additional variables are needed
to represent the fast components of the system, and thereby to completely specify
the entire dynamics. Formally, we may divide the phase space into (M,PVe) and the
wave complement (W1,W2, um, vm), where (W1,W2) are analogous to dry inertia-gravity
waves involving the vertical velocity w, and (um, vm) are the horizontal mean velocities
corresponding to inertial waves (Gill 1982; Remmel & Smith 2009; Remmel 2010;
Hernandez-Duenas et al. 2014).

Hence, we will make a change of variables to utilize the two quantities PVe and M that
characterize the slowly varying subspace.

The slow variables, M and PVe, will be the central focus of the remainder of the paper.
They are analogous to the dry PV that is the central focus of dry fast-wave averaging
(e.g. Embid & Majda 1996; Majda 2003). In the dry case, in the limit of small ε,
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the PV variable has a remarkable property: it obeys a nonlinear evolution that is decoupled
from the evolution of the fast waves. Here, in the moist case, our goal is to investigate the
evolution of the slow variables M and PVe, and to see whether they have a decoupled
evolution, or whether phase changes bring about coupling with waves.

2.3. Abstract form of the equations
Many systems related to dry atmospheric dynamics may be written in abstract form as

∂v

∂t
+ L(v)+ B(v, v) = 0, (2.59)

where v is the state vector, the linear operator L includes the effects of rotation and
buoyancy, and B is bilinear (Majda 2003). On the other hand, the buoyancy changes its
functional form across phase interfaces in dynamics with phase changes of water. In the
latter case, (2.59) must be rewritten as

∂v

∂t
+ Hu(v)Lu(v)+ Hs(v)Ls(v)+ B(v, v) = 0. (2.60)

This is the abstract form of the model in (2.43)–(2.48), where the linear term L(v) has
been replaced by Hu(v)Lu(v)+ Hs(v)Ls(v) to account for the effect of phase changes
as described in (2.49)–(2.51a,b). Each of the linear operators, Lu and Ls, is by itself
a constant-coefficient operator. However, their prefactors, Hu(v) and Hs(v) depend on v
such that Hu(v)Lu(v)+ Hs(v)Ls(v) is nonlinear.

Here, we assume existence of (2.43)–(2.48), and, consequently, the solution vε(x, t) is
assumed to be known for each value of ε. Then for known vε(x, t), the goal of fast-wave
averaging is to assess the coupling between the slow and fast components of the flow.
From this perspective, we treat the Heaviside functions (Hu,Hs) as given functions of
(x, t) at the stages of the fast-wave-averaging analysis. Thus the abstract formulation is, a
posteriori, restored to its original form (2.59) where L = Hu(x, t)Lu + Hs(x, t)Ls. As a
result, many of the techniques from prior fast-wave-averaging studies can be applied here
to the case with phase changes.

2.4. Fast-wave averaging
Fast waves arise in (2.59) when the operator L has a large O(ε−1) contribution for small
ε → 0. In this case, the operator L may be decomposed as L = ε−1L∗ + L0, so that
(2.59) may be rewritten as

∂v

∂t
+ ε−1L∗(v)+ L0(v)+ B(v, v) = 0, v(x, 0) = v̄(x) (2.61)

where the dominant terms are identified by the multiplier ε−1 and v̄(x) is the initial state.
As discussed, we treat phase boundaries (Hu,Hs) as known functions of (x, t) for the
fast-wave averaging analysis, and proceed to analyse (2.61) together with

L = HuLu + HsLs = ε−1L∗ + L0, (2.62)

for given (Hu,Hs).
The idea of fast-wave averaging is to use a two-time expansion

vε(x, t) = v0(x, t, τ )+ εv1(x, t, τ )+ · · · , ε → 0, (2.63)

where τ = t/ε is the fast time scale. Inserting (2.63) into (2.61), and collecting terms
order-by-order in ε, leads to a series of initial value problems whose solutions may
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be found explicitly in terms of the initial state v̄(x). The condition to suppress secular
growth of v 1 is referred to as the fast-wave-averaged equation (Majda 2003). Since phase
interfaces are determined by the complete (thermo)dynamics, they have a fast component
(dependence on τ in the two-time expansion). Therefore, a main new element of the
formulation is the τ dependence in the linear operator L∗(t, τ ). In the limit ε → 0,
τ = t/ε → ∞ with t = O(1), the fast-wave-averaged equation is thus given by

∂v̄(x, t)
∂t

= lim
τ→∞

1
τ

∫ τ

0

{(∫ s

0

∂L∗(t, s′)
∂t

ds′
)
v̄ − exp

(∫ s

0
L∗(t, s′) ds′

)

×
[
L0(t, s)

(
exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄

)

+B

(
exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄, exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄

)]}
ds. (2.64)

Another significant difference from the dry analysis is that the calculations to assess
coupling on the right-hand side of (2.64) must be performed in physical space, rather
than relying on Fourier analysis, owing to the piecewise nature of the buoyancy operator.

For compactness, most of the details to derive (2.64), and its projection onto (M,PVe)
(see (2.72) and (2.73)), are presented elsewhere (Zhang et al. 2021). A sketch of the steps to
arrive at (2.64) is given in Appendix A. In addition, the terms appearing in the final result
(2.72)–(2.73) can be understood by comparison with the structure of (M,PVe) equations
(2.53) and (2.56), as will be further explained at the end of the next section, § 2.5.

2.5. Fast-wave-averaged equations for M and PVe

To focus on the evolution of the slow variables M and PVe, and possible decoupling of their
evolution from fast oscillations, we may project (2.64) onto the first two components of
v̄ = (M,PVe,W1,W2, um, vm)|τ=0. To this end, let us separate slow and fast components
using the following definitions:

v̄(x, t) = v̄(M,PVe)(x, t)+ v̄(W)(x, t), (2.65)

where

v̄(M,PVe)(x, t) =

⎛
⎜⎜⎜⎜⎜⎝

M(x, t)
PVe(x, t)

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , v̄(W)(x, t) =

⎛
⎜⎜⎜⎜⎜⎝

0
0

W1(x, t, 0)
W2(x, t, 0)
um(x, t, 0)
vm(x, t, 0)

⎞
⎟⎟⎟⎟⎟⎠. (2.66a,b)

The nomenclature ‘slow’ and ‘fast’ follows naturally from L∗v̄(M,PVe) = 0 while
L∗v̄(W) /= 0. For ease of notation in the following evolution equations, we introduce the
quantity

v̄(W ′) = exp
(∫ s

0
L∗(t, s′) ds′

)
v̄(W). (2.67)

The fast-wave-averaged equation for the slow variable M may be written as

∂M(x, t)
∂t

= − lim
τ→∞

(
1
τ

∫ τ

0
u(M,PVe)(x, t, s) ds + 1

τ

∫ τ

0
u(W ′)(x, t, s) ds

)
· ∇M(x, t),

(2.68)
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where ∇M does not depend on τ , and thus may be taken outside of the integrals. The
velocity u(M,PVe) associated with (M,PVe) is found from (M,PVe) inversion,

∇2
hψ + ∂

∂z

[
Hu

(
1
2
∂ψ

∂z
+ 1

2
M

)]
+ ∂

∂z

[
Hs

(
∂ψ

∂z
+ qvs

)]
= PVe, (2.69)

where

u(M,PVe) =
(

−∂ψ
∂y
,
∂ψ

∂x
, 0

)
, θe(M,PVe) = 1

2
Hu

(
∂ψ

∂z
+ M

)
+ Hs

(
∂ψ

∂z
+ qvs

)
.

(2.70a,b)

Relation (2.69) is one of the formulae to prescribe the transformation between
(u, v,w, θe, qt) and (M,PVe,W1,W2, um, vm), with the wave complement set equal to
zero, and is the analogue of PV inversion in the dry dynamics (Smith & Stechmann 2017;
Wetzel et al. 2019b, 2020). Once u(M,PVe) has been found from (M,PVe) inversion, one
may compute u(W) = u − u(M,PVe), and then use (2.67) to compute u(W ′) ∼ u(W), ε → 0.

To aid in the interpretation of (2.68), we use the notation 〈f 〉 to define the time average
of any function f (x, t, τ ), as follows:

〈f 〉(x, t) = lim
τ→∞

1
τ

∫ τ

0
f (x, t, s) ds. (2.71)

Using the bracket 〈 〉 notation, the M-evolution equation (2.68) becomes

∂M(x, t)
∂t

= −〈u(M,PVe)〉(x, t) · ∇M(x, t)− 〈u(W ′)〉(x, t) · ∇M(x, t), (2.72)

in which there are two different contributions involving time-averaged velocity fields,
〈u(M,PVe)〉 and 〈u(W ′)〉.

One of the significant differences between the dry case and phase-change case can now
be seen. In particular, in the dry case, a dichotomy exists: the vortical eigenmode is slow,
and the wave eigenmode is fast. In the phase-change case, this clean dichotomy no longer
exists. As one indication of this, notice that the Heaviside functions Hu and Hs in (2.69) are
influenced by waves. Therefore, the PDE in (2.69) has parameters (Hu and Hs) that include
fast-wave oscillations, and the solution ψ will also be influenced by fast wave oscillations.
Similarly, since the velocity u(M,PVe) is calculated fromψ via (2.70a,b), it too is influenced
by fast-wave oscillations. Interestingly, though, the quantities PVe and M are indeed purely
slow quantities, as indicated above, even though other quantities (ψ,u(M,PVe), etc.) that are
derived from PVe and M are not purely slow quantities. Hence, in the phase-change case,
one must analyse the average 〈u(M,PVe)〉 as τ → ∞ in order to know the evolution of the
slow variable M in (2.72). On the other hand, in the dry case (or purely saturated case
without phase changes), one has 〈u(M,PVe)〉 = u(M,PVe).

Using inversion formulae, and similar to the decomposition u = u(M,PVe) + u(W), all
primary variables (u, v,w, θe, qt) may be decomposed into a component associated with
(M,PVe) and a component associated with the waves (W). Although there is τ dependence
remaining in the (M,PVe) part, for the sake of simplicity and continuity with previous
literature, we proceed to adopt the language convention that slow refers to (·)(M,PVe), while
fast refers to (·)(W). Using that convention, slow–slow (fast–fast) nonlinear interactions
involve products between two quantities associated with (M,PVe) (W). Mixed slow–fast
and fast–slowquadratic terms involve one of each type. Thus the first (second) term on the
right-hand side of (2.72) is a slow–slow (fast–slow) term.

Figure 2 shows the short time evolution of the total water qt (panels (a,d,g)), along with
the slow part qt(M,PVe) and the fast part qt(W). The simulation is the same as in figure 1
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Figure 2. Short-time evolution of total water qt = qt(M,PVe) + qt(W) (a,d,g), slow water qt(M,PVe) (b,e,h) and
fast water qt(W) (c, f,i). The simulation is the same as in figure 1, and 2-D slices have x = π held fixed. The
saturation threshold qvs = 0.5, such that red corresponds to liquid water and blue corresponds to water vapour.
The slow component qt(M,PVe) changes very little on times t = O(ε), while the fast component qt(W) shows
wave-like behaviour with O(1) amplitude variation at fixed x over times t = O(ε).

(decay from large-scale initial conditions with ε = O(0.1)), and short times correspond
to t = O(ε) ∼ 10−1. Despite the τ dependence of qt(M,PVe), it changes very little at large
scales, while the variation of the unbalanced water qt(W) is much more significant. Our
goal is to assess how the slow flow components are influenced by the fast components
on O(1) time scales, and in particular we use fast-wave averaging to study how the slow
modes (M,PVe) are coupled to waves by analysing the nonlinear terms on the right-hand
side of the M-equation (2.72).

To complete the picture, the fast-wave-averaged equation for PVe has also been derived
from (2.64), and may be written as

−∂PVe(x, t)
∂t

= 〈u(M,PVe)〉(x, t) · ∇PVe(x, t)+ 〈u(W ′)〉(x, t) · ∇PVe(x, t)

+ 〈∂u(M,PVe)

∂z
· ∇θe(M,PVe)〉(x, t)+ 〈∂u(W ′)

∂z
· ∇θe(M,PVe)〉(x, t)

+ 〈∂u(M,PVe)

∂z
· ∇θe(W ′)〉(x, t)+ 〈∂u(W ′)

∂z
· ∇θe(W ′)〉(x, t)

+ 〈ξ(M,PVe)(−wz(W ′))〉(x, t)+ 〈ξ(W ′)(−wz(W ′))〉(x, t)
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+ 〈wx(W ′)vz(M,PVe)
− wy(W ′)uz(M,PVe)

〉(x, t)

+ 〈wx(W ′)vz(W ′) − wy(W ′)uz(W ′)〉(x, t). (2.73)

As mentioned above, the details to derive (2.72) and (2.73) are given in Zhang et al. (2021).
However, one can see the origin of the coupling terms by direct comparison with the
original (M,PVe) evolution equations given by (2.53) and (2.56). Notice that the terms
on the right-hand side of (2.72) and (2.73) are appropriate time averages of terms in
(2.53) and (2.56), respectively, after the decomposition of all primary variables (u, θe, qt)
into their (M,PVe) and (W) components. On the other hand, some terms are identically
zero following the decomposition and averaging, which can be shown using the explicit
structure of the operators in L∗,L0 and B appearing in (2.64).

3. Methodology

Here we further explain the set-up of our numerical simulations and the techniques used
to study the different terms in (2.72) and (2.73) at small values of ε.

3.1. Numerical method
The three-dimensional (3-D) moist Boussinesq equations with two phases of water (vapour
and liquid) are simulated in a 2π-periodic domain using a dealiased, pseudo-spectral code.
Calculations with spatial resolutions 128 × 128 × 128 and 256 × 256 × 256 are compared
to ensure that the results are insensitive to resolution, e.g. for the O(1) time averages in
(2.73) contributing to the evolution of the slow variable PVe. The comparison provides
confidence in the robustness of our results, especially for the smallest value of the Rossby
and Froude numbers (ε ∼ 10−3).

After transferring the physical space equations into Fourier space, a third-order
Runge–Kutta time-stepping scheme solves the coupled system of ordinary differential
equations (ODEs) resulting from discretization of the wavevector. Linear rotation and
buoyancy terms are treated explicitly, and the nonlinear terms are calculated in physical
space with implementation of FFTW (http://www.fftw.org/). A pressure solver enforces
the incompressibility constraint, and viscous linear terms are included using an integrating
factor. A hyperviscosity is used instead of the normal viscosity to induce dissipation only
at the smallest scales. For example, in the momentum equation, the hyperviscosity takes
the form

(−1)p+1ν(∇2)pv, (3.1)

where we use p = 8. The coefficient ν has the structure

ν = 2.5
(

Eν(km, t)
km

)1/2

k2−2p
m , (3.2)

where km is the highest available wavenumber and Eν is the kinetic energy in the
wavenumber shell associated with km. The spherical shell associated with wavenumber
ki includes all wavenumbers satisfying (i − 1)
k < (k · k)1/2 ≤ i
k,
k = (2π)/L, and
L is length of the box (in our case L = 2π), where i = 1, . . . ,N (in 1283 spatial resolutions
case N = 43).

Similar expressions are used in the equations for equivalent potential temperature θe and
water qt (Spyksma et al. 2006; Hernandez-Duenas et al. 2013).
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3.2. Discussion of time scales and values of the parameter ε
In the multiscale method to derive the fast-wave-averaging equation (2.64), two time scales
(short and long) arise naturally. The model equations have been non-dimensionalized so
that t = O(ε) is closely linked to the fast waves (time scale τ ), while t = O(1) is associated
with slow motions (time scale t). The wave frequencies in the unsaturated and saturated
domains are, respectively, given by

σu(k) = (Fr−2
u k2

h + Ro−2k2
z )

1/2

k
, σs(k) = (Fr−2

s k2
h + Ro−2k2

z )
1/2

k
, (3.3a,b)

where Fru,Frs are defined in (2.29a,b)–(2.30a,b). Given Frs = Fru = Ro = O(ε), then
σs = O(ε−1) and the time period of waves in the purely saturated region is T ′ = 2π/σs =
O(ε). Time steps in the numerical simulations are chosen small enough to simultaneously
satisfy the Courant–Friedrichs–Lewy (known as CFL) condition and to resolve the
fast-wave oscillations.

We consider the special case Fr1 = Fr2 = Ro = ε and corresponding (Fru,Frs) =
(ε/

√
2, ε), (σu, σs) = (

√
2ε−1, ε−1), with 10−3 ≤ ε ≤ 1. The values of (Ro,Fru,Frs) are

monitored in time by calculating the values of these non-dimensional quantities based on
their definitions in table 2, where L = H = 2π and U is the maximum magnitude of the
velocity field. During O(1) time intervals of our decay simulations with hyperviscosity,
the values of (Ro,Fru,Frs) do not change significantly, helping to stabilize the value of ε
for any given run.

3.3. Cloud fraction
During the simulations, the formulae qv = min(qt, qvs), ql = max(0, qt − qvs) are used to
determine vapour qv and liquid water ql from total water qt and saturation threshold qvs.

By adjusting the constant parameter qvs, one may control the initial cloud fraction
quantified by the cloud indicator Hs(qt − qvs). In § 4, the cloud fraction will be calculated
as the L1 norm of the cloud indicator Hs(qt − qvs). During the O(1)-time evolution, for
a small amount of initial ‖Hs(qt − qvs)‖1 with value less than ≤ 30 % of the domain, the
fluctuation of ‖Hs(qt − qvs)‖1 over time is quite small (1 %–2 %). Thus, for all practical
purposes, the cloud fraction can be considered as fixed for the discussion in § 4.1. We note
that large initial ‖Hs(qt − qvs)‖1, with value ≥ 70 % of the domain, leads to significant
fluctuations of ‖Hs(qt − qvs)‖1 in time.

In §§ 4.1 and 5.1, the large-scale random initial conditions with qvs = 0.5 lead to 22 %
initial cloud fraction. For the moist bubble set-up discussed in § 4.2, we use the value
qvs = 0.1 corresponding to cloud fraction 28 %. For one of the sensitivity studies, we
vary qvs within the context of the large-scale random initial conditions, comparing results
for the values qvs = 10, 1.5, 1, 0.5, 0,−0.5,−0.8,−1.5,−10, such that we obtain cloud
fractions increasing from 0 % to 100 %, respectively.

3.4. Large-scale, random initial conditions
For most cases in § 4, we consider decay from large-scale, random initial conditions. The
spectral density for all variables (u, v,w, θe, qt) is a Gaussian function given by

F(k) = εf
exp(−0.5(k − kf )

2/s2)

(2π)1/2s
(3.4)

where s = 1 is standard deviation, kf = 3 is the peak wavenumber of the force and
εf = O(1) is the energy input rate. Furthermore, the k values are restricted to the
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Figure 3. Two-dimensional slices (at x = π) of the zonal velocity u (a) and the stream function ψ (b) at time
t = 0, visualizing the random large-scale initial conditions for these fields.

interval [1, 5]. Upon the change of variable from (u, v,w, θe, qt) to (M,PVe,W1,W2, um, vm),
the slow (M,PVe) and fast (W) components have comparable spectral density levels in
wavenumbers [1, 5].

As a result, the initial conditions contain substantial contributions from waves, and, in
this sense, the initial conditions are unbalanced.

For specific choices of the initial distinguished parameter ε (based on maximum
magnitude of the initial velocity) and saturation threshold qvs, the system evolves
according to moist Boussinesq dynamics with phase changes of water. Figure 3 shows
2-D slices of the initial variables u and ψ constructed from aforementioned random initial
condition.

3.5. Evaluation of nonlinear terms in the fast-wave-averaged equation for PVe

As discussed in § 2.5, the (M,PVe)-evolution equations derived from fast-wave averaging
have the explicit expressions (2.72) and (2.73). With a closer look at the PVe equation, the
nonlinear terms appearing in the right-hand side of (2.73) contain slow–slow, fast–slow,
slow–fast, fast–fast interactions.

We would like to analyse each of these nonlinear terms from (2.73), in the limit ε → 0.
To provide some context for the terms in (2.73), it is helpful to summarize what happens

as ε → 0 in two related cases from earlier literature, and then to compare with the present
situation. First, for the case of dry dynamics, only the slow–slow term u(PV) · ∇PV is
non-zero, which means the slowly varying evolution is decoupled from the fast waves
(Embid & Majda 1996, 1998; Majda & Embid 1998; Majda 2003). Second, for the moist
case but with balanced initial conditions (i.e. with initial conditions without waves), only
slow–slow terms appear in the (M,PVe) limiting dynamics (Smith & Stechmann 2017).
However, returning now to the setting of the present paper with initial conditions that are
unbalanced, one cannot, a priori, show that all of the fast–fast and fast–slow terms in
(2.72) and (2.73) are zero.

Thus, phase changes lead to potential sources of feedback from fast oscillations onto
the evolution of the slow modes (M,PVe). The feedback may originate directly from the
fast components (W), or indirectly at phase interfaces through (M,PVe) inversion, and is
manifested through time averages over fast time scales.

920 A49-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.427


Effects of clouds and phase changes on fast-wave averaging

Our purpose here is to assess the terms in (2.72) and (2.73) in numerical simulations.
Here we perform a numerical assessment for small values of ε, and investigate trends

for decreasing ε.
For the PVe-equation (2.73), the averages to be measured in the simulations at finite ε

are the following. Slow–slow (terms 1, 3):

1
T

∫ T

0
u(M,PVe)(x, t′) · ∇PVe(x, t′) dt′, (3.5)

1
T

∫ T

0

∂u(M,PVe)(x, t′)
∂z

· ∇θe(M,PVe)(x, t′) dt′. (3.6)

Fast–slow (terms 2, 4, 9):

1
T

∫ T

0
u(W ′)(x, t′) · ∇PVe(x, t′) dt′, (3.7)

1
T

∫ T

0

∂u(W ′)(x, t′)
∂z

· ∇θe(M,PVe)(x, t′) dt′, (3.8)

1
T

∫ T

0
[wx(W ′)vz(M,PVe)

− wy(W ′)uz(M,PVe)
](x, t′) dt′. (3.9)

Slow–fast (terms 5, 7):

1
T

∫ T

0

∂u(M,PVe)(x, t′)
∂z

· ∇θe(W ′)(x, t′) dt′, (3.10)

1
T

∫ T

0
−ξ(M,PVe)wz(W ′)(x, t′) dt′. (3.11)

Fast–fast (terms 6, 8, 10):

1
T

∫ T

0

{
∂u(W ′)(x, t′)

∂z
· ∇θe(W ′)(x, t′)

+
[
−ξ(W ′)wz(W ′) + wx(W ′)vz(W ′) − wy(W ′)uz(W ′)

]
(x, t′)

}
dt′. (3.12)

The numerical quantities we monitor are discrete versions of (3.5)–(3.12) (and similar
terms from the M-equation) with integration over total time T , which means that we
average the data in the time window t ∈ [0, T]. Since the time-averaged quantities reach
statistically steady state at T ≈ 0.3, we present the case T = 0.6 as representative, unless
otherwise stated. Note that long-time averages reflect loss of energy due to viscous decay
in all variables, obscuring trends. Furthermore, a key diagnostic is the L2 norm ‖〈·〉‖2 of
an individual term or group of terms, which will always be normalized by its initial value
for comparison between simulations with phase changes and purely saturated simulations
without phase changes.

3.6. (M,PVe) inversion for finite ε
After each time step of the numerical simulation, the updated state vector (u, v,w, θe, qt)
may be used in a post-processing step to find the updated fields (M,PVe,Hu,Hs). Then to
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compute the slow components u(M,PVe), θe(M,PVe) and qt(M,PVe), we use the finite-ε version
of (2.69) given by

∇2
hψ + ∂

∂z

[
Hu

(
1

2 − ε

∂ψ

∂z
+ 1 − ε

2 − ε
M

)]

+ ∂

∂z

[
Hs

(
1

1 + ε

∂ψ

∂z
+ ε

1 + ε
M + (1 − 2ε)qvs

)]
= PVe. (3.13)

Following inversion of (3.13) to find the streamfuntion ψ , the relations (2.70a,b) are used
to obtain u(M,PVe), θe(M,PVe). Finally, the definition of M given by (2.52), together with
θe(M,PVe), gives qt(M,PVe).

For the numerical solution of (3.13), a centred-difference method was used, which,
owing to the discontinuous coefficients introduced by phase boundaries (Hu,Hs), is
similar to the ghost fluid approach (Liu, Fedkiw & Kang 2000; Liu & Sideris 2003; Tzou
& Stechmann 2019). The conjugate gradient method is then used to solve the discretized
symmetric linear system and determine the stream function ψ . Here we adopt a simple
version of the ghost-fluid method that does not use subcell information about the interface
location, together with a Gaussian smoothing of the resulting ψ , such that gradient fields
may be reliably computed in (3.5)–(3.12). A one-dimensional version of the Gaussian filter
is given by

W[ψ](x) = 1√
4πs

∫ ∞

−∞
ψ(x − y) exp

(−y2

4s

)
dy, (3.14)

where (3.14) is also known as a Weierstrass transformation. For the 3-D version we use the
Gaussian–Weierstrass kernel s = 500 in all three directions for resolution 2563 (s = 200
in all directions for resolution 1283). A simplified test case shows quantitative agreement
between this method and a subcell-location version of the ghost-fluid approach.

4. Results of numerical simulations

In this section, numerical simulations are used to test the fast-wave averaging theory with
phase changes. The most attention will be given to a scenario where the initial conditions
are large scale and randomly selected (§ 4.1). Then some additional sensitivity studies are
also conducted to assess the robustness of the results (§ 4.2).

4.1. A first assessment: fast-wave averaging with phase changes
A first assessment will use random initial conditions, which are generated as described
above in § 3. The parameter of interest is ε, and small values are considered as a
numerical investigation of the limit ε → 0. All other parameters are held fixed, including
the averaging window T = 0.6 and the cloud fraction ‖Hs(qt − qvs)‖1 = 22 %. Strictly
speaking, the cloud indicator Hs and distinguished parameter ε are dynamic quantities
that evolve with the flow. Nevertheless, the simulation is run for only a time of O(1), and
on these time scales, the fluctuations of these two quantities are somewhat small. Hence it
is reasonable to use the initial values of ε and cloud fraction ‖Hs(qt − qvs)‖1 to represent
these two dynamic quantities, and to use these two quantities to help characterize the
physical setting of each simulation.

Figure 4 shows the results of the numerical simulations for several different values of ε
ranging from 1 to 10−3.
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Figure 4. The normalized L2 norm of 〈u(W ′) · ∇PVe〉 versus the control parameter ε in the range 10−3 ≤
ε ≤ 1, for decay simulations starting from random large-scale initial conditions. For simulations with phase
changes (blue curves), the cloud fraction is 22 %. The purely saturated simulations (red curves) show that this
particular fast–slow term in the fast-wave-averaged equation for PVe decays roughly linearly with decreasing
ε. In contrast, these fast–slow terms in the simulations with phase changes decay significantly slower, and will
perhaps remain non-zero as ε → 0.

In this figure, the particular quantity of interest is advection of slow PVe by the fast
velocity u(W ′). The time average of this advection term is (3.7) and denoted 〈u(W ′) · ∇PVe〉,
corresponding to one of the fast–slow terms on the right-hand side of the PVe evolution
equation (2.73).

The normalized L2 norm of this quantity is plotted against the value of ε on a log–log
plot.

As a baseline for comparison, we also set up a case without phase changes, since the
behaviour of the no-phase-change case is already known from past literature (e.g. Embid
& Majda 1996; Majda 2003). For this case, we set up the domain to be purely saturated, so
that Hs = 1 and Hu = 0 everywhere. Such a set-up is achieved by appropriately selecting
the saturation threshold, qvs, as described in § 3.3. For this purely saturated case, the result
is shown in figure 4 in red. In this baseline test, the normalized L2 norm of 〈u(W ′) · ∇PVe〉
decays proportional to ε as ε → 0. Such a result is in agreement with the dry theory (e.g.
Embid & Majda 1996; Majda 2003), and it provides a demonstration of the soundness of
the numerical experiments. Two different numerical resolutions, 1283 and 2563, are also
shown here to support the numerical robustness. Physically, this plot indicates that the
velocity u(W ′), which is associated with fast waves, is essentially averaged out for small
values of ε.

We now turn our attention to the blue curves in figure 4, to assess whether or not
the fast waves are also averaged out in the case with phase changes. For ε = 0.1, the
L2 norm of 〈u(W ′) · ∇PVe〉 is also approximately 0.1, and its magnitude is similar in the
phase-change case and the purely saturated case. Hence, from this ε = 0.1 experiment, one
sees an indication that the fast waves are indeed averaged out, to the extent possible for
ε = 0.1. For smaller values of ε = 10−2 and 10−3, the L2 norm of 〈u(W ′) · ∇PVe〉 remains
somewhat small and in the range of roughly 3 × 10−2 to 10−1, and it may continue to
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Figure 5. Dependence on ε for the normalized L2 norm of terms in the fast-wave-averaged equation for PVe.
All simulations are decay from random initial conditions. Red curves indicate the purely saturated dynamics,
while blue curves are dynamics with phase changes and cloud fraction 22 %. (a) In both cases, the slow–slow
term 〈�u(M,PVe) · ∇PVe〉 remains O(1) as ε is decreased in the range 10−3 ≤ ε ≤ 1. (b) The sum of the fast–fast
terms (3.12) decays in proportion to ε in the purely saturated case (red), but indicates relatively strong feedback
onto PVe when phase changes are present (blue).

decay as ε → 0, but the decay rate is either very slow or tending to zero. In particular, the
decay rate is much slower with phase changes (blue) than the decay rate proportional to
ε in the purely saturated case (red). The phase changes cause the wave component of the
velocity u(W ′) to acquire a time-averaged component that is somewhat small, but possibly
non-negligible.

For comparison, figure 5 shows the L2 norm of other selected terms on the right-hand
side of (2.73), contributing to the evolution of PVe. In particular, panel (a) examines
〈u(M,PVe) · ∇PVe〉 for different values of ε. This is a slow–slow term, in contrast to
the fast–slow term shown earlier in figure 4. For simulations with and without phase
changes, and for all values of ε, and the (normalized) L2 norm of this slow–slow term is
approximately equal to unity. Hence, the term 〈u(M,PVe) · ∇PVe〉 has essentially the same
L2 norm as its initial value, and is not averaged out. In fact, it is the dominant contribution
to PVe advection, in both the phase-change case and the purely saturated case.

Figure 5(b) illustrates the dependence on ε for the sum of all fast–fast terms, (3.12),
arising in (2.73). The red curves correspond to purely saturated dynamics, and show that
the normalized L2 norm of the fast–fast terms decays in proportion to ε, similar to the
fast–slow term in figure 4. On the other hand, the blue curves indicate relatively strong
feedback onto PVe when phase changes are present, again similar to figure 4. Assessment
of figures 4 and 5 together suggest that coupling between fast waves and slow PVe persists
in the range ε ∈ [10−3, 1], and may not decay to zero as ε → 0.

On a somewhat subtle issue, we note that figure 5(b) displays the sum of all fast–fast
nonlinear terms, rather than any single term. In fact, the separate terms do not average to
zero, even in the dry or purely saturated dynamics as ε → 0. This phenomenon can be
understood in the single-phase cases by referring to Fourier analysis. More specifically,
when there is no phase change present, Fourier analysis shows that the fast–fast nonlinear
coefficient Ckpq in Fourier space is identically zero (e.g. Smith & Waleffe 2002). Thus,
when viewed in physical space rather than Fourier space, one needs to combine all four
terms together to obtain the Fourier inversion of Ckpq, and to see the budget terms tending
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Figure 6. Two-dimensional slices of initial zonal velocity u (a) and total water qt (b) for a sensitivity study.
Here the initial conditions involve a turbulent velocity field, along with temperature and water perturbations in
the shape of a bubble centred at x0 = (π,π, 0.625π).

toward zero as ε → 0. This is in contrast to fast–slow terms, such as ‖〈u(W ′) · ∇PVe〉‖2,
which is seen in figure 4 to decay proportional to ε as a separate term on its own,
for the purely saturated dynamics. In the latter case, it is a different mechanism –
the Riemann–Lebesgue lemma for time-averaging of fast temporal oscillations – that is
responsible for the decay as ε tends toward zero (see, e.g. Majda 2003, § 8.5).

4.2. Sensitivity studies and robustness tests
Following the results from the previous § 4.1, naturally one may ask about the robustness
of the results. For instance, are the same results seen for different initial conditions? Does
the cloud fraction have any impact on the outcome? The above questions are answered in
this section using some additional tests.

While the case of randomly selected initial conditions already provides some generality,
we now test an initial condition of a different type (see also Spyksma et al. 2006; Wetzel
et al. 2020). In particular, the goal is to create some initial conditions that are somewhat
simple while also involving the influence of a turbulent flow. Thus, the initial velocity
field is generated from large-scale random initial conditions in the absence of buoyancy
forces. The forcing and Coriolis parameters are chosen to specify the value of Ro = ε. The
simulation is run to statistically steady-state, thereby providing a dry turbulent state for
u = (u, v,w).

At time t = 0, the initial u is superimposed on stable background temperature and
water profiles such that Fr1 = Fr2 = ε, along with temperature and water perturbations
in the shape of a bubble centred at x0 = (π,π, 0.625π). The system is then allowed to
evolve according to moist Boussinesq dynamics with phase changes of water. To illustrate
the initial conditions, figure 6 shows 2-D slices of the zonal velocity u and the total
water qt.

After the moist Boussinesq dynamics have run for one non-dimensional time unit to
spin-up the new state, including nonlinear interactions between all variables u, θe, qt, we
begin to collect data for a budget analysis of PVe evolution given by (2.73). Specifically,
to evaluate terms (3.7) and (3.12), we time-average data from t ∈ [1, 1.6]. During this
time interval, the cloud fraction is approximately 28 % for the case with phase changes.
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Figure 7. The normalized L2 norm of PVe-advection terms versus the control parameter ε in the range 10−3 ≤
ε ≤ 1. Here (a) 〈u(W ′) · ∇PVe〉 (a fast–slow term), (b) 〈u(M,PVe) · ∇PVe〉 (a slow–slow term). Simulations
describe decay dynamics starting from initial conditions involving a turbulent velocity field and a water
perturbation in the shape of a bubble (resolution 1283). For simulations with phase changes, the cloud fraction
is 28 %. Differences between the purely saturated (red) and phase-change (blue) curves lead to the same
conclusions drawn from figures 4 and 5: for small ε and in a time-averaged sense, the dominant contribution
to PVe advection involves the slow velocity u(M,PVe), and the contribution involving the fast velocity u(W ′) is
significantly more important when phase changes of water are present.

The simulation is compared with a purely saturated run with qvs = −10 and cloud
fraction 100 %. Results are shown in figure 7 which demonstrate the same conclusions
as drawn from the case of random initial conditions, illustrated in earlier figures 4
and 5. Specifically, for small ε and in a time-averaged sense, the dominant contribution
to PVe advection involves the slow velocity u(M,PVe), but the contribution involving the
fast velocity u(W ′) is significantly more important when phase changes of water are
present.

As another set of sensitivity studies, we now discuss the impact of cloud fraction. In
particular, recall that figures 4 and 5 showed results for a particular value of cloud fraction
of 22 %, as well as the purely saturated case where cloud fraction is 100 %. We now ask: Do
the results change for different values of cloud fraction? For simplicity, attention will be
focused on ‖〈u(W ′) · ∇PVe〉‖2 only. For this exploration, we freeze ε = O(10−2), T = 0.6
and then vary the initial qvs value to control different initial cloud fractions. The results
of the analysis are shown in figure 8. For the two boundary points of 0 % and 100 %
cloud fraction, for which no phase changes are present, notice that the L2 norm is O(10−2)
and proportional to ε, which indicates that the fast waves are averaged out in these two
cases. On the other hand, for other values of cloud fraction between 0 % and 100 %, the
normalized ‖〈�u(W ′) · ∇PVe〉‖2 values are larger and do not seem to be proportional to an ε
value of O(10−2), which is consistent with the main conclusion in § 4.1. As a finer detail,
notice that the value of ‖〈u(W ′) · ∇PVe〉‖2 increases as cloud fraction increases (away
from the two boundary values of 0 % and 100 % cloud fraction). In other words, fast waves
appear to be averaged out to a greater degree when the cloud fraction is in the range of 0 %
to 20 %, which is also the most relevant range for cloud fractions in nature. When the cloud
fraction is higher, the fast waves are averaged out less, and the value of ‖〈u(W ′) · ∇PVe〉‖2
is higher.
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Figure 8. Dependence of the fast–slow term ‖〈u(W ′) · ∇PVe〉‖2 on cloud fraction ‖Hs(qt − qvs)‖1. The
dynamics evolve from large-scale random initial conditions, the value of ε = 10−2, and the resolution is 1283.

5. Explanation and physical interpretation

5.1. A closer look at simulated data
To explain the mechanism by which phase changes impact fast-wave averaging, we isolate
points in the simulations where O(1) time averages are larger than O(ε). We use the
simulation with ε = O(10−2), random large-scale initial conditions and cloud fraction
22 %. The goal is to explore the physical properties of these points where the time-average
of fast–slow interactions is O(10−1) instead of proportional to ε = O(10−2).

Specifically, we monitor the fast–slow term 〈u(W ′)〉(x, t) · ∇M(x, t) in M-evolution
equation (2.72), starting from random initial conditions. After time averaging, instead of
taking the L2 norm, we check all points (x0, y0, z0) in the 3-D domain. A post-processing
routine computes the absolute value |(1/T) ∫ T

0 u(W ′)(x, t′) · ∇M(x, t′) dt′| for T = 0.67,
and highlights every point whose time-averaged absolute value is greater than O(0.1) (see
figure 9c). Meanwhile, in order to observe the relationship between phase changes and such
points, we also plot the initial cloud distribution (figure 9a), and the time-average 〈Hs〉 of
the cloud indicator function Hs (figure 9b). Note that Hs is shorthand for Hs(qt − qvs).
From the figure, one may observe the following: if the value 〈Hs(x0, y0, z0)〉 is near 0 or
1, then this position (x0, y0, z0) is away from a phase interface (blue colour in panel (b));
values 〈Hs(x0, y0, z0)〉 ∈ [0.2, 0.8] indicate that this position experiences frequent change
of phase (yellow colour in panel (b)).

A closer look at the hot spots (yellow–red colour) in figure 9(c) reveals interesting
physical properties of the flow. For a specific point (x0, y0, z0) = (64, 55, 11) ∗
(2π/128) ≈ (3.14, 2.70, 0.54), figure 10 demonstrates how the location alternates between
unsaturated and saturated states (figure 10a). During the time t ∈ [0, 0.67], there are 23
time windows with Hs(t, x0, y0, z0) = 1, and 22 time windows with Hs(t, x0, y0, z0) =
0. Furthermore, figure 10(b) shows the time ratio that the wave spends in those two
different states as a function of time window (time ratio = time in each window/T ,
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Figure 9. Two-dimensional slices (at x = π) of the initial cloud indicator Hs at t = 0 (a), time-averaged cloud
indicator 〈Hs〉 (b) and absolute value |〈u(W ′) · ∇M〉| of a slow–fast term in the fast-time-averaged M-equation.
Red areas in panel (a) represent clouds (liquid water where qt > qvs = 0.5). Yellow patterns in panel (b)
indicate the regions where phase changes happen frequently; blue indicates that the region has remained vapour
(value zero) or liquid (value unity) for the duration of the averaging window. Hot spots (yellow to red) in panel
(c) indicate high values of the fast–slow coupling term.

where T = 0.67). One can see that more time is spent in the saturated state. Quantitatively,
58 % of the time is spent in the saturated state, compared with 42 % of the time in the
unsaturated state. Close to a phase boundary, a wave spends more time in the saturated
state because the frequencies have the relationship (σu, σs) = (

√
2ε−1, ε−1) (see (3.3a,b)

and recall that Fr1 = Fr2 = ε). Therefore, the non-zero frequency σu in the unsaturated
state is greater than σs in the saturated state. Finally, figure 11 shows that qt has wave
fluctuations crossing the saturation threshold, and it spends more time in the saturated
state. Other physical variables exhibit similar behaviour.

Since more time is spent in the saturated phase (more time is spent in the wave crest
than in the wave valley), O(1) time averages are not zero.

To give a better feel for physical-space variability of the waves, figure 12 shows the wave
part u(W) of the horizontal velocity u = u(M,PVe) + u(W), comparing waves in simulations
with phase changes (panels (a,c,e,g), cloud fraction 22 %) and without phase changes
(panels (b,d, f,h), cloud fraction 100 %). The set-up is decay from random initial conditions
and the resolution is 1283. In panels (a,b) corresponding to time t = 0, notice that the
initial conditions of u(W) are slightly different, and this is because the inversion formula
for extracting the waves involves Heaviside functions when phase changes are present, but
has continuous coefficients when waves are absent. In panels (c,d) and (e,f ), one can see
that the variation of waves in both scenarios is significant for times t = O(ε). Moreover,
smaller scale features are generated during the evolution with phase changes. Finally,
panels (g,h) of figure 12 displays the absolute value of 〈u(W)〉 for the two cases, using the
averaging time T = 0.6. Corroborating the findings in figure 11, there are locations with
significantly higher time-averages 〈u(W)〉 when phase boundaries are present (the white
and red spots on the left).

5.2. ODE system
In this section, we use a model system of ODEs to elucidate the nature of waves that
oscillate between unsaturated and saturated regions of the flow. In particular, the ODE
model has exact solutions corresponding to waves propagating across phase boundaries,
with non-zero time averages, as has been observed in the moist Boussinesq system
(figures 9 and 12).
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Figure 10. (a) Plot of Hs(t, x) versus time t for t ∈ [0, 0.67], with Hs measured from a red-spot position
(x0, y0, z0) ≈ (3.14, 2.70, 0.54) in figure 9. There are 45 total alternating time windows: 23 for the saturated
state and 22 for the unsaturated state. Quantitatively, 58 % of the time is spent in the saturated state,
compared with 42 % time in the unsaturated state. (b) The green triangles represent the time ratio spent
in unsaturated windows, while the red squares correspond to time spent in saturated windows (time ratio =
time in each window/T , where T = 0.67).

The ODE model system arises from the 3-D Boussinesq moist dynamics when spatial
variations are neglected (see Appendix B),

dw
dt

= b = NubuHu + NsbsHs, (5.1)
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Figure 11. Total water qt versus time t at a fixed red point (x0, y0, z0) ≈ (3.14, 2.70, 0.54) in figure 9. The
green line is the saturation threshold qvs = 0.5. The wave (purple curve) has different wavelengths/amplitudes
in the saturated and unsaturated regions, located, respectively, above and below the threshold, leading to
non-zero O(1) time averages 〈qt(t, x0, y0, z0)〉.

dbu

dt
+ Nuw = 0, (5.2)

dbs

dt
+ Nsw = 0. (5.3)

Hence, the ODE system (5.1)–(5.3) describes time variation at a single point in
space. Among the velocity components, only the w equation is retained, leading to the
simplest set-up that still retains waves. Phase boundaries in (5.1)–(5.3) are identified by
the condition bu = bs, and the cloud indicator may be written as Hs = H(bs − bu). In
analogy with (3.3a,b) for the Boussinesq system, the waves represented by (5.1)–(5.3)
have different frequencies associated with the different phases (bu, bs) and buoyancy
parameters (Nu,Ns) (see Durran & Klemp (1982a) and references therein). This is central
for understanding figures 9 and 12.

For the asymptotic theory discussed in the next two sections, we consider the limiting
dynamics for buoyancy frequencies Nu,Ns → ∞, which is analogous to the limiting
dynamics for ε−1 → ∞ in the fast-wave-averaging analysis of the moist Boussinesq
system (2.43)–(2.48). We continue to use the special parameter setting Nu

2 = 2Ns
2 as

in the numerical simulations, where Nu,Ns are both positive.

5.2.1. General solution for ODE system in different phases
In order to solve (5.1)–(5.3) analytically, the key point is to define the invariant variable
M.

For the ODE system, the definition of M is M = N−1
u bu − N−1

s bs, which is defined as
the linear combination of bu and bs that satisfies* dM/dt = 0. In the earlier PDE system
in § 2.2, M was defined in terms of different variables, θe and qt, and in non-dimensional
units, although the different M definitions can be related via the relationship between the
variables (θe, qt) and the variables (bu, bs) as shown in (2.16) or (2.51a,b). For both the
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Figure 12. Zonal waves u(W) in decay from random initial conditions during a simulation with phase changes
(a,c,e,g, cloud fraction 22 %) and a purely saturated simulation (b,d, f,h, cloud fraction 100 %). From the first
three rows at t = 0, 0.02, 0.04, one can see the development of smaller scales when phase changes are present.
Panels (g,h) the absolute value of 〈u(W)〉, using the averaging T = 0.6. There are locations with significantly
higher time-averages 〈u(W)〉 when phase boundaries are present (white and red spots on the left).

ODE system and the PDE system, the motivation for the M definition is the same: find the
quantity that satisfies dM/dt = 0 or DM/Dt = 0.

Since dM/dt = 0, the value of M is a parameter, and then bs = (Ns/Nu)bu − MNs. With
the replacement of bs in the ODE system, we only need two variables at any given time to
describe the evolution as

dw
dt

= NubuHu + Ns

(
Ns

Nu
bu − MNs

)
Hs, (5.4)

dbu

dt
+ Nuw = 0. (5.5)
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The cloud indicator Hs = H(bs − bu) follows from the condition Hs = H(qt − qvs), where
bs ≥ bu corresponds to a saturated region while bs < bu represents an unsaturated region
(Marsico et al. 2019).

For an unsaturated region, bu > MNsNu/(Ns − Nu) yields

b′′
u + N2

ubu = 0, (5.6)

followed by the general solution

bu = cu1 sin(Nut)+ cu2 cos(Nut). (5.7)

For a saturated region, bu ≤ MNsNu/(Ns − Nu) leads to

b′′
u + N2

s bu = MN2
s Nu, (5.8)

followed by the general solution

bu = cs1 sin(Nst)+ cs2 cos(Nst)+ MNu. (5.9)

To find a nonlinear solution that switches phase, as a piecewise sine function, the main
idea is to use variables (w, bu) in the unsaturated phase and then evolve the system forward
in time until the saturation condition is reached. After that, we switch to using variables
(w, bs) while in the saturated phase.

5.2.2. A simple solution example with M = 0
A simple solution of the nonlinear wave in the ODE system is now presented, for any
(bu(t0),w(t0),M), where t0 is the initial time. The interesting case will be an alternating
piecewise wave, which crosses the phase boundary repeatedly, passing back and forth
between unsaturated and saturated regions. For simplicity, we demonstrate using an
example with M = 0, which means that the phase boundary is exactly at bu = 0.

Without loss of generality, assume an initial buoyancy exactly at the phase boundary
such that bu(t0) = 0, and set the initial vertical velocity w(t0) = a, where a is an arbitrary
positive number. Note that b′

u(t0) = −Nuw(t0) = −Nua < 0, which indicates that the
solution will enter the saturated region first. The analytical solution for this initial
condition is given by

bu(t) =

⎧⎪⎪⎨
⎪⎪⎩

−aNu

Ns
sin(Ns(t − t0)) t ∈

[
t0 + nT , t0 + π

Ns
+ nT

]
,

a sin
(

Nu

(
t − t0 − π

Ns

))
t ∈

[
t0 + π

Ns
+ nT , t0 + (n + 1)T

]
,

(5.10)

where T = π/Nu + π/Ns and n = 0, 1, 2, . . .. Then, after one half-period at t = t0 +
π/Ns, the solution meets the phase interface at bu = 0 with bu(t0 + π/Ns) = 0, b′

u(t0 +
π/Ns) = aNu > 0, which is the starting point for wave propagation in the unsaturated
region.

Using (5.10), we can now calculate the time-averaged value |(1/T) ∫ T
0 bu(t) dt|, to

determine if there is a non-zero average when a phase boundary is present. Without loss
of generality, we choose a = 1 and Nu = √

2Ns. On the one hand, consider the purely
unsaturated case without phase changes, in which case the analytical solution for bu(t)
is a simple sine function with frequency Nu. In that case, for fixed averaging interval T ,
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bu (t)

a

t0 t

Saturated

Unsaturated

Phase boundary

bu = 0

aNu
Ns

(π/Ns)

(π/Nu)

–

Figure 13. Sketch of the piecewise solution to (5.10) for M = 0 such that the phase interface is at bu = 0.

the average |(1/T) ∫ T
0 bu(t) dt| ≤ 2/NuT → 0 as Nu → ∞. On the other hand, if the phase

interface is present, then we find the following relation:

2

π(1 + √
2)

− 2
NuT

≤ | 1
T

∫ T

0
bu(t) dt| ≤ 2

π(1 + √
2)

+ 2
NuT

, Nu → ∞, (5.11)

which is strictly bounded away from zero. Figure 13 displays the solution (5.10), and
clearly illustrates how different frequencies Nu /= Ns lead to non-zero time average of
bu(t) as in (5.11). Most importantly, the same essential mechanism is observed in the 3-D
Boussinesq simulations, as seen in figure 11.

6. Concluding discussion

Phase changes of water in atmospheric flows are as fundamental as the presence of fast
inertia-gravity waves generated by the effects of rotation and stable stratification. Here, all
these effects are combined in an idealized model with a Boussinesq dynamical core and
simplified thermodynamics allowing for phase changes of water, from vapour to liquid
and vice versa. We conduct moist Boussinesq simulations designed to support asymptotic
theory in the limit of vanishing Rossby and Froude numbers: Ro = Fr1 = Fr2 = ε → 0
(asymptotically large rotation and strong stable stratification). The theory separates the
state space of the Boussinesq dynamics into fast waves evolving on short times t = O(ε),
and slowly varying (M,PVe) components evolving on times t = O(1). Furthermore, the
initial conditions are assumed to contain fast waves. Then the central goal is to assess the
coupling between fast and slow components on O(1) time scales as ε → 0. Such coupling
is explicitly represented by terms in the fast-wave-averaging equation (2.64). For example,
in the PVe equation, (2.73), the fast–slow, slow–fast and fast–fast terms, (3.7)–(3.12), do
not a priori vanish in an environment with phase changes. This situation is in contrast
to the case of dry dynamics, for which rigorous proofs establish decoupling between the
dry PV and the fast waves (Embid & Majda 1996, 1998; Majda & Embid 1998; Majda
2003). On the other hand, all of the terms (3.5)–(3.12) can be measured in numerical
simulations at finite ε, and thus our companion numerical calculations investigate trends
in their behaviours for decreasing ε in the range 10−3 ≤ ε ≤ 1.

The main suite of simulations starts from random, large-scale initial conditions and
varies the distinguished parameter ε, along with the saturation threshold qvs (which
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determines the resulting cloud fraction). For example, when the cloud fraction is roughly
22 % of the domain, the simulations show that the sum of the fast–fast terms, (3.12), does
not decay with ε (figure 5), and the fast–slow term ‖〈u(W ′) · ∇PVe〉‖2 decays significantly
slower with ε than the analogous term in the dry dynamics (figure 4). For fixed ε,
robustness studies indicate that fast–slow coupling increases with cloud fraction, up to
cloud fractions of at least 80 % of the domain (figure 8). Altogether, the results suggest
that coupling of (M,PVe) dynamics with fast-waves may persist as ε → 0 when the cloud
fraction is in the range [10 %, 85 %].

The limiting equations (2.72) and (2.73) for (M,PVe) may contain non-zero averages
arising mathematically from two sources. Feedback from waves onto (M,PVe) may
originate directly from the fast components (W), or indirectly at phase interfaces through
(M,PVe) inversion, (2.69). To gain insight into the behaviour of waves near a phase
interface, we use a coupled ODE system for vertical velocity w(t), together with
unsaturated buoyancy bu(t) and saturated buoyancy bs(t). In this model, the saturation
condition is given by bu = bs, and the saturation threshold is given in terms of the
parameter M. The buoyancies bu and bs evolve according to different oscillator equations
associated with different frequencies Nu and Ns. To solve the ODE system from an
unsaturated initial bu, one may first integrate the oscillator equation for bu until the
saturation condition bu = bs is reached, and then proceed to integrate the oscillator
equation for bs until bs = bu, and so on. For Nu /= Ns, the exact solution consists of
a piecewise wave solution as in figure 13. By virtue of the different frequencies and
wavelengths on either side of the phase boundary, the time average of bu over t = O(1)
is bounded away from zero for asymptotically large Nu. Such piecewise waves are indeed
observed in the Boussinesq simulations, e.g. as seen in the solution for qt(t, x0) for fixed
location x0 close to a phase boundary (figure 11).

For Boussinesq dynamics with phase changes, the formal asymptotic theory, PDE
numerical simulations and model-ODE exact solutions together indicate that feedback
from waves onto slowly varying flow components may have an impact even as the
Rossby and Froude numbers tend to zero. Especially given the importance of phase
changes for atmospheric applications, several follow-up studies are planned. Theoretically,
the longer-term goal is to perform rigorous analysis in which the phase boundaries
are determined as part of the solution. Future numerical simulations will investigate
convergence of the fast-wave-averaging equations to the PQG equations, starting from
balanced initial conditions, as well as the effects of fast-wave coupling for turbulence
steady states with phase changes.

In terms of the physics of clouds, the set-up here was basic and only considered
the vapour–liquid phase change. It would be interesting in the future to investigate the
influence of other aspects of cloud physics, such as rain water qr, cloud ice qi, or number
density nc of cloud droplets (e.g. Kessler 1969; Lin, Farley & Orville 1983; Seifert &
Beheng 2001, 2006). To do so, it has been suggested by Smith & Stechmann (2017, § 9) that
additional slow M variables arise in association with additional cloud variables such as qr,
qi or nc (see also Wetzel et al. 2019b, 2020). Even in the basic set-up of the present paper,
the fast waves already have an influence on the slow components of the flow. If additional
cloud physics is considered, one might expect to see additional coupling between fast
waves and slow components.
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Appendix A. The fast-wave-averaged equation with phase changes

Here we provide a sketch of the steps to derive the fast-wave-averaged equation (2.64),
starting from the moist Boussinesq system (2.61)–(2.62), including the effects of phase
changes represented by the Heaviside functions Hu(x, t),Hs(x, t). For the purposes
of fast-wave averaging, one may consider a known evolution from initial conditions
containing waves. Then the goal is to determine the dynamical coupling between the
slowly varying and fast-wave components embedded within the evolution (2.61)–(2.62).
The Heaviside functions are part of the known solution, and are therefore treated as given
functions of (x, t).

The idea is to take advantage of the small parameter ε, and thus to use a two-time
scale asymptotic expansion in powers of ε, where the fast time scale is τ = t/ε. Since
the phase boundaries Hu,Hs are determined by the complete (thermo)dynamics, they have
both slowly varying and fast components. A main new element of the formulation is the
τ dependence in the linear operator L∗(t, τ ) in (2.62), leading to differences from the
analysis for the dry Boussinesq equations.

The two-time-scale expansion of the state vector

vε(x, t, τ ) = v0(x, t, τ )|τ=t/ε + εv1(x, t, τ )|τ=t/ε + · · · (A1)

is inserted into the system

∂v

∂t
+ ε−1L∗(t, τ )(v)+ L0(t, τ )(v)+ B(v, v) = 0. (A2)

Collecting O(ε−1) terms leads to the balance

∂v0

∂τ
+ L∗(t, τ )(v0) = 0, (A3)

with solutions

v0(x, t, τ ) = exp
(

−
∫ τ

0
L∗(t, τ ′) dτ ′

)
v̄(x, t), (A4)

where v̄(x, t) is the initial condition for (A3) and thus depends on (x, t), but not on τ . The
next-order O(ε0) balance yields

∂v1

∂τ
+ L∗(t, τ )(v1) = −

(
∂v0

∂t
+ L0(t, τ )(v0)+ B(v0, v0)

)
, (A5)

and one may integrate with respect to τ , keeping t fixed as ε → 0. The calculus is
straightforward, though slightly more complicated than for the dry case, and for illustration
we provide details for the ∂v 0/∂t term on the right-hand side of (A5). The standard
integrating factor method gives

v 1 = − exp
(

−
∫ τ

0
L∗(t, τ ′) dτ ′

)∫ τ

0
exp

(∫ s

0
L∗(t, s′) ds′

)

×∂
(
exp

(− ∫ s
0 L∗(t, s′) ds′) v̄)
∂t

ds + · · ·
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= − exp
(

−
∫ τ

0
L∗(t, τ ′) dτ ′

) ∫ τ

0
exp

(∫ s

0
L∗(t, s′) ds′

) [
∂

(
exp

(− ∫ s
0 L∗(t, s′) ds′))
∂t

v̄

+∂v̄
∂t

exp
(

−
∫ s

0
L∗(t, s′) ds′

)]
ds + · · ·

= − exp
(

−
∫ τ

0
L∗(t, τ ′) dτ ′

)
τ
∂v̄

∂t
− exp

(
−

∫ τ

0
L∗(t, τ ′) dτ ′

)

×
∫ τ

0

(
−

∫ s

0

∂L∗(t, s′)
∂t

ds′
)
v̄ ds + · · · (A6)

where v1 = v1(x, t, τ ) and v̄ = v̄(x, t). To arrive at the final form (A6), we have used the
explicit structure of the operators(

−
∫ s

0

∂L∗(t, s′)
∂t

ds′
)

and exp
(

−
∫ s

0

∂L∗(t, s′)
∂t

ds′
)
. (A7a,b)

Integration of (A5) including all the terms leads to the full equation for v̄ 1, given by

v1 = exp
(

−
∫ τ

0
L∗(t, τ ′) dτ ′

)
v1|τ=0 − exp

(
−

∫ τ

0
L∗(t, τ ′) dτ ′

)

×
{
τ
∂v̄

∂t
−

∫ τ

0

(∫ s

0

∂L∗(t, s′)
∂t

ds′
)
v̄ ds

+
∫ τ

0
exp

(∫ s

0
L∗(t, s′) ds′

) [
L0(t, s)

(
exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄

)

+B

(
exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄, exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄

)]
ds

}
. (A8)

Next, to preserve the ordering of the expansion (A1), one must impose the condition
v1 = o(τ ), thereby constraining ∂v̄/∂t appearing on the right-hand side of (A8). This
sublinear-in-time growth condition is also called the fast-wave-averaged equation. In the
limit ε → 0, τ = t/ε → ∞ with t = O(1), the fast-wave-averaging equation is thus given
by

∂v̄(x, t)
∂t

= lim
τ→∞

1
τ

∫ τ

0

{(∫ s

0

∂L∗(t, s′)
∂t

ds′
)
v̄ − exp

(∫ s

0
L∗(t, s′) ds′

)

×
[
L0(t, s)

(
exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄

)

+B

(
exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄, exp

(
−

∫ s

0
L∗(t, s′) ds′

)
v̄

)]}
ds, (A9)

where the operators L∗, L0 and B are defined in § 2 of (Zhang et al. 2021).

Appendix B.

In this appendix, we expand on the derivation of the ODE system discussed in § 5.2. We
use the dimensional version of (2.16) and write the dimensional moist Boussinesq system
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using variables bu, bs instead of θe, qt (Smith & Stechmann 2017; Marsico et al. 2019),

Dhuh

Dt
+ w

∂uh

∂z
+ f u⊥

h + ∇hφ = 0, (B1)

Dhw
Dt

+ w
∂w
∂z

+ ∂φ

∂z
= (NubuHu + NsbsHs) , (B2)

∇h · uh + ∂w
∂z

= 0, (B3)

Dhbu

Dt
+ w

∂bu

∂z
+ Nuw = 0, (B4)

Dhbs

Dt
+ w

∂bs

∂z
+ Nsw = 0. (B5)

Neglecting spatial variations leads to the ODE system

duh

dt
+ f u⊥

h = 0, (B6)

dw
dt

= NubuHu + NsbsHs, (B7)

dbu

dt
+ Nuw = 0, (B8)

dbs

dt
+ Nsw = 0. (B9)

Hence, the ODE system (B6)–(B9) describes time variation at a single point in space.
Finally, among the velocity components (u, v,w), we only keep the w equation, which is
the simplest set-up that still retains waves

dw
dt

= NubuHu + NsbsHs, (B10)

dbu

dt
+ Nuw = 0, (B11)

dbs

dt
+ Nsw = 0. (B12)

The waves represented by (B10)–(B12) have different frequencies associated with
the different phases (bu, bs) and buoyancy parameters (Nu,Ns). Phase boundaries are
identified by the condition bu = bs, and the cloud indicator may be written as Hs =
H(bs − bu).

For the asymptotic theory discussed in § 5.2, we consider the limiting dynamics
for buoyancy frequencies Nu,Ns → ∞, which is analogous to the limiting dynamics
for ε−1 → ∞ in the fast-wave-averaging analysis of the moist Boussinesq system
(2.43)–(2.48). We continue to use the special parameter setting Nu

2 = 2Ns
2 as in the

numerical simulations, where Nu,Ns are both positive.
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