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In this paper, we consider the existence and multiplicity of periodic solutions for the
Duffing equation x′′ + g(x) = p(t) with a singularity. When the time map has
oscillating properties, g(x) possesses a singularity at the origin and tends to +∞ as
x → +∞ and other conditions hold. We obtain the existence of harmonic solutions
and the multiplicity of subharmonic solutions of the given equation by using the
phase-plane analysis methods and the generalized Poincaré–Birkhoff twist theorem.

1. Introduction

We are concerned with the existence and multiplicity of periodic solutions of the
Duffing equation

x′′ + g(x) = p(t), (1.1)

where g : R
+ → R is locally Lipschitz continuous and has a singularity at the origin,

p(t) is continuous and has the least period 2π.
The existence and multiplicity of periodic solutions of equations with singularities

have been investigated extensively because of their background in applied sciences
(see [2,3,8–10,12,14,16–18] and the references therein). For example, the Brillouin
electron-beam-focusing problem [6, p. 264] is to find the existence of positive 2π-
periodic solutions of

x′′ + a(1 + cos 2t)x =
1
x

, a > 0,

satisfying periodic boundary conditions

x(0) = x(π) > 0, x′(0) = x′(π) = 0.

Lazer and Solimini [10] first studied the existence of periodic solutions of (1.1)
with a singularity. Assume that g : (−∞, 0) ∪ (0, +∞) → R is continuous and
satisfies

g(x)x > 0, x �= 0,

and
lim

|x|→+∞
g(x) = 0, lim

x→0+
g(x) = +∞, lim

x→0−
g(x) = −∞.
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They proved that (1.1) has at least one 2π-periodic solution if and only if∫ 2π

0
p(s) ds �= 0.

When g(x) is sublinear at infinity and has a singularity at the origin, Fonda et
al . [8] proved the existence of infinitely many subharmonic solutions for (1.1) by
using the critical-point theory. The superlinear case on a bounded interval was also
studied in [8] by using the generalized Poincaré–Birkhoff fixed-point theorem.

Del Pino et al . [3] studied the existence of periodic solutions of

x′′ + f(t, x) = 0, (1.2)

where f : R × R
+ → R is continuous and 2π-periodic in t. Assume that there exist

positive constants c, c′, δ and r � 1 such that

c

xr
� −f(t, x) � c′

xr
, (1.3)

where t ∈ [0, 2π], 0 < x < δ. Furthermore, there is an integer n � 0 such that, for
t ∈ [0, 2π],

n2

4
< lim

x→+∞
inf

f(t, x)
x

� lim
x→+∞

sup
f(t, x)

x
<

(n + 1)2

4
. (1.4)

They proved that (1.2) has at least one periodic solution under conditions (1.3)
and (1.4).

The multiplicity of periodic solutions of the superlinear equation (1.2) with a
singularity was studied in [2]. Assume that

−∞ � lim
s→0+

sup sf(t, s) < 0

and

lim
s→+∞

f(t, s)
s

= +∞.

It was proved in [2] that there exists an integer n0 > 0 such that, for any n � n0,
(1.2) has two 2π-periodic solutions x+

n (t) and x−
n (t).

The generalization of [3] was done for equation of the type of (1.1) in [16]. Assume
that g(x) satisfies

lim
x→0+

g(x) = −∞, (g0)

and
n2

4
< lim

x→+∞
inf

g(x)
x

� lim
x→+∞

sup
g(x)
x

<
(n + 1)2

4
,

and the primitive function G(x) of g(x) satisfies

lim
x→0+

G(x) = +∞, G(x) =
∫ x

1
g(s) ds. (G0)

It was proved in [16] that (1.1) has at least one 2π-periodic solution.
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Here we will deal with the existence and multiplicity of periodic solutions for
(1.1) with a singularity under generalized conditions. Assume that g(x) satisfies

lim
x→+∞

g(x) = +∞, (g1)

and that G(x) satisfies a similar condition to that in [1]:

for all c1 > 0, there exists c2 > 0 such that if x � 1, y � 1

and |
√

G(x) −
√

G(y)| < c1, then |x − y| < c2. (G1)

One can check that the condition (G1) is satisfied if g(x) satisfies semilinear condi-
tion, as follows:

0 < lim inf
x→+∞

g(x)
x

� lim sup
x→+∞

g(x)
x

< +∞.

It is well known that time map plays an important role in studying the existence
and multiplicity of periodic solutions of (1.1). We now introduce the time map.
Consider the autonomous system

x′′ + g(x) = 0,

or its equivalent system
x′ = y, y′ = −g(x). (1.5)

The first integral of (1.5) is the curve

Γc : 1
2y2 + G(x) = c,

where c is an arbitrary constant.
From (g0), (G0) and (g1) we know that, for c sufficiently large, Γc is a closed curve.

Let (x(t), y(t)) be any solution of (1.5) whose orbit is Γc. Clearly, this solution is
periodic. Let τ(c) denote the least positive period of this solution. It is not hard to
check that

τ(c) =
√

2
∫ d(c)

h(c)

dx√
c − G(x)

, (1.6)

where 0 < h(c) < d(c), G(h(c)) = G(d(c)) = c, limc→+∞ h(c) = 0, limc→+∞ d(c) =
+∞. We note that there is little difference between this time map τ(c) and the time
map in [4].

Assume that τ(c) satisfies the following conditions, as in [4, 7, 13].

(τ0) There exist a constant σ > 0, an integer m > 0 and two sequences {ak} and
{bk}, with ak → +∞ and bk → +∞ as k → +∞ such that

τ(ak) <
2π

m
− σ, τ(bk) >

2π

m
+ σ.

(τ1) There exist two positive integers m and n with (m, n) = 1, a positive constant
β > 0 and two sequences {ak} and {bk}, with ak → +∞ and bk → +∞ as
k → +∞ such that

τ(ak) <
2nπ

m
− β, τ(bk) >

2nπ

m
+ β.
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We obtain the following theorems.

Theorem 1.1. Assume that conditions (g0), (g1), (G0), (G1) and (τ0) hold. Then
(1.1) has infinitely many 2π-periodic solutions.

Theorem 1.2. Assume that conditions (g0), (g1), (G0), (G1) and (τ1) hold. Then
(1.1) has at least one harmonic solution and infinitely many n-order subharmonic
solutions.

2. Several lemmas

In this paper, we will use the generalized Poincaré–Birkhoff twist theorem to study
the existence and multiplicity of periodic solutions of (1.1). We now introduce this
theorem.

Let D denote an annular region in the (x, y)-plane. The boundary of D consists
of two simple closed curves: the inner boundary curve C1 and the outer boundary
curve C2. We denote by D1 the simple connected open set bounded by C1.

Consider an area-preserving homeomorphism T : D ⊂ R
2 → R

2. Suppose that
T (D) ⊂ R

2 −{O}, where O is the origin. Let (r, θ) be the polar coordinate of (x, y).
That is, x = r cos θ, y = r sin θ. Assume that T is given by

r∗ = f(r, θ), θ∗ = θ + g(r, θ),

where f and g are continuous in (r, θ), and 2π-periodic in θ.

Theorem 2.1 (generalized Poincaré–Birkhoff twist theorem [5]).
Besides the above-mentioned assumptions, we assume that

(1) C1 is star-shaped about the origin,

(2) O ∈ T (D1),

(3) g(r, θ) > 0( < 0), (r cos θ, r sin θ) ∈ C1; g(r, θ) < 0( > 0), (r cos θ, r sin θ) ∈
C2.

Then T has at least two fixed points in D.

In order to use the phase-plane analysis methods conveniently, we consider the
equation

x′′ + g(x) = p(t), (2.1)

where g : (−1, +∞) → R is continuous and exhibits a singularity at −1. In fact, we
can take a transformation x = 1+u to achieve this aim. Under this transformation,
(2.1) becomes u′′ + g(1 + u) = p(t). Set

ĝ(u) = g(1 + u), Ĝ(u) =
∫ u

0
ĝ(s) ds.

We then have

lim
u→−1+

ĝ(u) = −∞ and lim
u→−1+

Ĝ(u) = +∞.
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For simplicity, from now on, we assume that g satisfies the following conditions:

lim
x→−1+

g(x) = −∞, (g′
0)

and

lim
x→−1+

G(x) = +∞, G(x) =
∫ x

0
g(s) ds. (G′

0)

In this case, h(c) and d(c) in (1.6) satisfy

lim
c→+∞

h(c) = −1, lim
c→+∞

d(c) = +∞.

We will prove theorems 1.1 and 1.2 under conditions (g′
0) and (G′

0) instead of
conditions (g0) and (G0).

Consider the system equivalent to (2.1):

x′ = y, y′ = −g(x) + p(t). (2.2)

Let (x(t), y(t)) = (x(t; x0, y0), y(t; x0, y0)) be the solution of (2.2) through the initial
point

x(0; x0, y0) = x0, y(0; x0, y0) = y0.

Lemma 2.2. Assume that conditions (G′
0) and (g1) hold. Then every solution of

system (2.2) exists uniquely on the whole t-axis.

Proof. Define a potential function

V (x, y) = 1
2y2 + G(x). (2.3)

It follows from (G′
0) and (g1) that we can find a constant M > 0 such that G(x) +

M � 0. Set
V (t) = V (x(t), y(t)).

Then we have

V ′(t) = y(t)y′(t) + g(x(t))x′(t)
= y(t)(−g(x(t)) + p(t)) + g(x(t))y(t)
= y(t)p(t)

� 1
2 (y2(t) + p2(t))

� 1
2 (y2(t) + M ′)

� 1
2y2(t) + G(x(t)) + M ′′

= V (t) + M ′′,

where M ′ = max{p2(t) | t ∈ R}, M ′′ = M + 1
2M ′. Hence,

V (t) � V (t0)eτ + M ′′eτ , t ∈ [t0, t0 + τ).

Therefore, there is no blow-up in any finite interval for every solution (x(t), y(t))
of system (2.2). This shows that every solution of system (2.2) is defined uniquely
on the whole t-axis. This completes the proof of lemma 2.2.
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According to lemma 2.2, the Poincaré map P : (−1, +∞)×R → R
2 is well defined

by
P : (x0, y0) 	→ (x1, y1) = (x(2π; x0, y0), y(2π; x0, y0)).

Obviously, the fixed points of the Poincaré map P correspond to 2π-periodic solu-
tions of system (2.2).

To depict the position of orbit (x(t), y(t)) for t ∈ [0, 2π], we introduce a function
l : (−1, +∞) × R → R

+,

l(x, y) = x2 + y2 +
1

(1 + x)2
.

Lemma 2.3. Assume that (G′
0) and (g1) hold. Then, for any r > 0, there exists

� > 0 sufficiently large that, for l(x0, y0) � �2,

l(x(t), y(t)) � r2, t ∈ [0, 2π],

where (x(t), y(t)) is the solution of system (2.2) through the initial point (x0, y0).

Proof. Define V (x, y) as in (2.3). From (G′
0) and (g1) we know that there is a

constant M > 0 such that G(x) + M � 0 and

lim
l(x,y)→+∞

(V (x, y) + M) = +∞. (2.4)

Write
W (t) = V (x(t), y(t)) + M.

Then
W ′(t) = y(t)p(t) � −2

√
W (t)L, L = max

t∈[0,2π]
|p(t)|,

and thus √
W (t) �

√
W (0) − Lt. (2.5)

For each r > 0, set
m(r) = max

l(x,y)�r2
(V (x, y) + M).

It follows from (2.4) that there exists a � > 0 sufficiently large that, if l(x, y) � �2,
then

V (x, y) + M > (
√

m(r) + 2πL)2.

Assume that l(x0, y0) � �2. From (2.5) we get√
V (x(t), y(t)) + M >

√
V (x0, y0) + M − Lt

>
√

m(r) + 2Lπ − Lt

�
√

m(r), t ∈ [0, 2π].

Consequently, we have

l(x(t), y(t)) � r2, t ∈ [0, 2π].
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According to lemma 2.3, if l(x0, y0) is sufficiently large, then x2(t) + y2(t) > 0,
t ∈ [0, 2π]. Therefore, we can take the polar coordinate transformation x = r cos θ,
y = r sin θ. Thus, system (2.2) becomes

dr

dt
= r sin θ cos θ − g(r cos θ) sin θ + p(t) sin θ,

dθ

dt
= − sin2 θ − 1

r
g(r cos θ) cos θ +

1
r
p(t) cos θ.

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

Let (r(t), θ(t)) = (r(t; r0, θ0), θ(t; r0, θ0)) denote the solution of (2.6) satisfying

r(0) = r0, θ(0) = θ0.

Then we can rewrite the Poincaré map P as follows:

P : (r0, θ0) → (r1, θ1) = (r(2π; r0, θ0), θ(2π; r0, θ0)),

with r0 cos θ0 = x0 > −1, r0 sin θ0 = y0.

Lemma 2.4. Assume that (g′
0) and (g1) hold. Then there exists a l0 > 0 such that,

for l(x, y) � l0, θ′(t) < 0, t ∈ [0, 2π].

Proof. It follows from (g′
0) and (g1) that there exist positive constants c1, c2, c2 < 1,

such that

g(x) − p(t) > 0, x ∈ (c1, +∞), t ∈ [0, 2π]; (2.7)
g(x) − p(t) < 0, x ∈ (−1,−c2), t ∈ [0, 2π]. (2.8)

If x(t) > c1 or −1 < x(t) < −c2, t ∈ [0, 2π], then we conclude from (2.6)–(2.8) that

dθ

dt
< − sin2 θ � 0. (2.9)

If −c2 � x(t) � c1, t ∈ [0, 2π], then there exists a constant l0 > 0 such that

|sin θ(t)| � 1
2 and

|g(x(t)) − p(t)|
r

� 1
8

for l(x0, y0) � l0. Consequently,

dθ

dt
� −1

4
+

1
8

< 0, t ∈ [0, 2π]. (2.10)

From (2.9) and (2.10) we get the conclusion of lemma 2.4.

Consider the autonomous system

x′ = y, y′ = −g(x). (2.11)

Lemma 2.5. Assume that (g′
0), (G′

0) and (g1) hold. There then exists a c0 > 0 such
that, for c � c0, Γc : 1

2y2+G(x) = c is a star-shaped closed curve about the origin O.

Proof. From (G′
0) and (g1) we have

lim
x→−1

G(x) = +∞ and lim
x→+∞

G(x) = +∞.
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It is easy to show that there exists a c′
0 > 0 such that Γc is a closed curve for c � c′

0.
In fact, it follows from (g′

0) and (g1) that, for sufficiently large c, Γc intersects with
the x-axis at exactly two points. On the other hand, Γc is symmetric about the x-
axis. Hence, Γc is a closed curve for sufficiently large c. Under the polar coordinate
transformation

x = ρ cos ϕ, y = ρ sin ϕ,

system (2.11) becomes

ρ̇ = ρ sin ϕ cos ϕ − g(ρ cos ϕ) sin ϕ,

ϕ̇ = −sin2 ϕ − 1
ρ
g(ρ cos ϕ) cos ϕ.

⎫⎪⎬
⎪⎭ (2.12)

Let
(ρ(t), ϕ(t)) = (ρ(t; ρ0, ϕ0), ϕ(t; ρ0, ϕ0))

be the solution of (2.12) through (ρ0, ϕ0). Using the same method as in the proof of
lemma 2.4, we can prove that there exists c′′

0 > 0 such that ϕ̇(t) < 0 for (ρ0, ϕ0) ∈ Γc,
c � c′′

0 . Therefore, ϕ(t) is strictly decreasing. Set c0 = max{c′
0, c

′′
0}. We then obtain

the conclusion of lemma 2.5.

Lemma 2.6. Assume that (g′
0) and (G′

0) hold. Let t1 < t2 < t3 < +∞, x(t1) = 0,
y(t1) < 0; x(t2) < 0, y(t2) = 0; x(t3) = 0, y(t3) > 0 and x(t) � 0, t ∈ [t1, t3], where
(x(t), y(t)) is any solution of system (2.2). Then t3 − t1 = o(1), as l(x0, y0) → +∞.

Proof. We now deal with solutions of system (2.2). First we estimate t2−t1. Assume
that |p(t)| � L. Set

W (x, y) = 1
2y2 + G(x) + Lx, W (t) = W (x(t), y(t)).

Thus, we get

W ′(t) = y(t)y′(t) + g(x(t))x′(t) + Lx′(t) = (L + p(t))y(t) � 0.

Therefore, W (t) is decreasing in the interval [t1, t2]. For t ∈ [t1, t2], we have

1
2y2(t) + G(x(t)) + Lx(t) � 1

2y2(t2) + G(x(t2)) + Lx(t2).

Therefore,
y2(t) � 2(G(x(t2)) − G(x(t))) + 2L(x(t2) − x(t)).

Thus,
−x′(t) = −y(t) �

√
2(G(x(t2)) − G(x(t))) + 2L(x(t2) − x(t)).

Accordingly,
−x′(t)√

2(G(x(t2)) − G(x(t))) + 2L(x(t2) − x(t))
� 1.

Integrating both sides of the above inequality in the interval [t1, t2], we get

t2 − t1 �
∫ 0

s

dx√
2(G(s) − G(x)) + 2L(s − x)

,
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where s = x(t2). By lemma 2.3, s → −1+ as l(x0, y0) → +∞. We claim that

lim
s→−1+

∫ 0

s

dx√
2(G(s) − G(x)) + 2L(s − x)

= 0.

Let η > 0 be a sufficiently small constant. Write

I1 =
∫ s+η

s

dx√
2(G(s) − G(x)) + 2L(s − x)

,

I2 =
∫ 0

s+η

dx√
2(G(s) − G(x)) + 2L(s − x)

.

If x ∈ (s, s + η), then

G(s) − G(x) = g(ξ)(s − x) = −g(ξ)(x − s), ξ ∈ (s, x) ⊂ (s, s + η).

Set µ(s, η) = inf{−g(x) | x ∈ (s, s + η)}. Then

G(s) − G(x) � µ(s, η)(x − s).

We know from (g′
0) that µ(s, η) → +∞ as s → −1+ and η → 0+. Hence,

I1 �
∫ s+η

s

dx√
2[µ(s, η) − L](x − s)

=
√

2η√
µ(s, η) − L

.

Obviously, I1 → 0 for s → −1+, η → 0+. It follows from (G′
0) that

lim
s→−1+

(G(s) − G(x)) = +∞ for all x ∈ (s + η, 0),

which implies that I2 → 0 as s → −1+. Thus, we have finished the proof of the
claim. Set

W̄ (x, y) = 1
2y2 + G(x) − Lx.

Analogously to the estimate of t2 − t1, we may obtain t3 − t2 = o(1) as l(x0, y0) →
+∞. Consequently, the conclusion of lemma 2.6 holds.

Remark 2.7. In particular, if (g′
0) and (G′

0) hold, then we have

lim
c→+∞

∫ 0

h(c)

dx√
c − G(x)

= 0.

We can get this conclusion by putting p(t) = 0 in lemma 2.6. Furthermore, if (g0)
and (G0) hold, then we have

lim
c→+∞

∫ 1

h(c)

dx√
c − G(x)

= 0.

Similar conclusions can also be found in [1].
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Lemma 2.8. Assume that (g1) holds. If 1 � x, y � c and |x − y| � E for a fixed
positive constant E, then

lim
c→+∞

∫ y

x

ds√
G(c) − G(s)

= 0.

Proof. Without loss of generality, we assume that 1 � x � y � c. From (g1) we
know that there exists a constant x0 (where x0 � 1 + E) such that g(x) � 0, for
x � x0 −E. Obviously, the conclusion holds provided that 1 � x � y � x0. In what
follows, we assume that y � x0. Thus, x � x0 − E. We shall proceed in two steps.

Step 1 (y � 1
2c). For x � s � y, we have

G(c) − G(s) =
∫ c

s

g(u) du � min
s�ξ�c

g(ξ)(c − s)

� min
x�ξ�c

g(ξ)(c − s)

� min
y−E�ξ�c

g(ξ)(c − s)

� min
1
2 c−E�ξ�c

g(ξ)(c − s)

= µ(c)(c − s),

where µ(c) = min{g(ξ) : 1
2c − E � ξ � c}. From (g1) we know that µ(c) → +∞(c →

+∞). As a result, we have

0 �
∫ y

x

ds√
G(c) − G(s)

�
∫ y

x

ds√
µ(c)(c − s)

� 1√
µ(c)

∫ y

y−E

ds√
c − s

� 1√
µ(c)

∫ c

c−E

ds√
c − s

=
2
√

E√
µ(c)

.

Since

lim
c→+∞

2
√

E√
µ(c)

= 0,

we obtain

lim
c→+∞

∫ y

x

ds√
G(c) − G(s)

= 0.

Step 2 (y � 1
2c). For x � s � y, we have

G(c) − G(s) � G(c) − G(1
2c).

Thus,

0 �
∫ y

x

ds√
G(c) − G(s)

�
∫ y

x

ds√
G(c) − G( 1

2c)
� E√

G(c) − G( 1
2c)

,
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which implies that

lim
c→+∞

∫ y

x

ds√
G(c) − G(s)

= 0.

From steps 1 and 2 we obtain the conclusion of lemma 2.8.

Denote by τ(r0, θ0) the time for the solution (x(t), y(t)) of (2.2) to make one turn
around the origin.

Lemma 2.9. Assume that conditions (g′
0), (g1), (G′

0) and (G1) hold. Let τ1 be a
positive constant. Then, for any ε > 0, there exists a constant c(ε, τ1) > 0 such
that, if c � c(ε, τ1) and τ(c) � τ1, then

|τ(r0, θ0) − τ(c)| < ε, (r0 cos θ0, r0 sin θ0) ∈ Γc.

Proof. From (G′
0) and (g1) we know that there is a constant M > 0 such that

2G(x) + M > 0. Set
u(t) =

√
y2(t) + 2G(x(t)) + M.

Then

|u′(t)| =
|y(t)p(t)|√

y2(t) + 2G(x(t)) + M
� |p(t)|.

In what follows, we will first estimate τ(r0, θ0) with (r0 cos θ0, r0 sin θ0) = (x0, y0) ∈
Γc and τ(c) � τ1 for sufficiently large c under the additional assumption that
τ(r0, θ0) � 2τ1. For t, s ∈ [0, 2τ1], we have

|u(t) − u(s)| � e, e =
∫ 2τ1

0
|p(s)| ds. (2.13)

Since u(0) =
√

y2
0 + 2G(x0) + M =

√
2c + M , we have

√
2c + M − e � u(t) �

√
2c + M + e, t ∈ [0, 2τ1].

Consequently, √
2G(d) + M − e � u(t) �

√
2G(d) + M + e,

where d = d(c). According to (g1), if x is sufficiently large, then
√

2G(x) + M is
increasing and tends to +∞. Hence, there exist constants a > d > b > 1 such that√

2G(a) + M =
√

2G(d) + M + e,
√

2G(b) + M =
√

2G(d) + M − e, (2.14)

and √
2G(b) + M � u(t) �

√
2G(a) + M. (2.15)

From (2.14) we get √
2G(a) + M −

√
2G(b) + M = 2e.

As a result,
G(a) − G(b)√

2G(a) + M +
√

2G(b) + M
= e.
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Accordingly,
(
√

G(a) −
√

G(b))(
√

G(a) +
√

G(b))√
2G(a) + M +

√
2G(b) + M

= e.

Therefore,
|
√

G(a) −
√

G(b)| < 2e.

It follows from (G1) that there exists a constant ς > 0 such that

|a − b| < ς. (2.16)

From (2.15) we have

2G(b) � y2(t) + 2G(x(t)) � 2G(a)

or
2(G(b) − G(x(t))) � y2(t) � 2(G(a) − G(x(t))). (2.17)

Now, we proceed in two steps. We will always assume that τ(c) � τ1 for sufficiently
large c.

Step 1 ((x0, y0) = (0,
√

2c)). Let 0 = t0 < t1 < t2, satisfying

x(t1) > 0, y(t1) = 0; x(t) � 0, y(t) � 0, t ∈ [t0, t1];

x(t2) = 0, y(t2) < 0; x(t) � 0, y(t) � 0, t ∈ [t1, t2].

First we estimate t1 − t0. Let tb ∈ (t0, t1), satisfying x(tb) = b, 0 � x(t) � b,
t ∈ [0, tb]. It follows from (2.17) that√

2(G(b) − G(x(t))) � ẋ(t) �
√

2(G(a) − G(x(t))).

Hence,
ẋ(t)√

2(G(a) − G(x(t)))
� 1 � ẋ(t)√

2(G(b) − G(x(t)))
.

Integrating the above inequality over the interval [t0, tb], we derive∫ b

0

dx√
2(G(a) − G(x))

� tb − t0 �
∫ b

0

dx√
2(G(b) − G(x))

.

By the equality∫ b

0

dx√
2(G(a) − G(x))

=
∫ a

0

dx√
2(G(a) − G(x))

+
∫ b

a

dx√
2(G(a) − G(x))

,

using lemma 2.8 and (2.16), we obtain∫ b

0

dx√
2(G(a) − G(x))

=
∫ a

0

dx√
2(G(a) − G(x))

+ o(1), c → +∞.

Thus, ∫ a

0

dx√
2(G(a) − G(x))

+ o(1) � tb − t0 �
∫ b

0

dx√
2(G(b) − G(x))

. (2.18)
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Using [1, lemma 5.4], we have∫ b

0

dx√
2(G(b) − G(x))

=
∫ a

0

dx√
2(G(a) − G(x))

+ o(1)

=
∫ d

0

dx√
2(G(d) − G(x))

+ o(1)

as c → +∞. From (2.18), we get

tb − t0 =
∫ d

0

dx√
2(G(d) − G(x))

+ o(1). (2.19)

Next, we estimate t1 − tb. Write δ(b) = inf{g(x) : x � b}. Since ẋ(t1) = y(t1) = 0,
for t ∈ (tb, t1), we have

ẋ(t) = ẋ(t) − ẋ(t1) =
∫ t

t1

ẍ(s) ds =
∫ t

t1

ẏ(s) ds = −
∫ t

t1

g(x(s)) ds +
∫ t

t1

p(s) ds.

Therefore,

ẋ(t) �
∫ t1

t

δ(b) ds −
∫ t1

t

p(s) ds � (t1 − t)δ(b) − e.

Consequently, ∫ t1

tb

ẋ(s) ds �
∫ t1

tb

(t1 − s)δ(b) ds − 2eτ1.

Thus,
1
2 (t1 − tb)2δ(b) − 2eτ1 � x(t1) − x(tb) � a − b < ς,

which yields

(t1 − tb)2 � 2ς + 4eτ1

δ(b)
.

From (g1) we know that δ(b) → +∞, b → +∞. Therefore,

t1 − tb = o(1), b → +∞. (2.20)

It follows from (2.19), (2.20) and remark 2.7 that

t1 − t0 = (t1 − tb)+(tb − t0) =
∫ d

0

dx√
2(G(d) − G(x))

+o(1) = 1
2τ(c)+o(1). (2.21)

Similarly,
t2 − t1 = 1

2τ(c) + o(1). (2.22)

From (2.21), (2.22) and lemma 2.6 we have

τ(r0, θ0) =
√

2
∫ d(c)

0

dx√
c − G(x)

+ o(1) = τ(c) + o(1), c → +∞.

Thus, we have proved that, for any ε > 0, there exists c(ε, τ1) > 0 such that, if
c � c(ε, τ1) and τ(c) � τ1, then |τ(r0, θ0) − τ(c)| < ε.
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Step 2 ((x0, y0) ∈ Γc, (x0, y0) �= (0,
√

2c)). Without loss of generality, we assume
that x0 > 0, y0 > 0. The other cases can be treated similarly. Using the same
methods as in step 1, we can prove that the required time for solution (x(t), y(t))
((x0, y0) ∈ Γc) to pass through the regions {(x, y) : x � x0, y � 0} and {(x, y) : 0 �
x � x0, y � 0} is 1

2τ(c) + o(1) for c → +∞. Therefore, we only need to prove that
the time ∆t for solution (x(t), y(t)) to pass through the region

D =
{

(x, y) ∈ R2
∣∣∣∣ x � x0, y � y0

x0
x, G(b) � 1

2y2 + G(x) � G(a)
}

or

D =
{

(x, y) ∈ R2
∣∣∣∣ x � x0, 0 � y � y0

x0
x, G(b) � 1

2y2 + G(x) � G(a)
}

.

satisfies ∆t = o(1) for c → +∞. Assume that x0 < b. The other case can be shown
by using the conclusion in step 1. We will estimate the time ∆t in two cases.

Case 1 (G(x0) � 1
2G(d)). Assume that the ray line y = y0x/x0 intersects with

x = x0,
1
2y2 + G(x) = G(b) and 1

2y2 + G(x) = G(a) at points (x0, y0), (x−, y−) and
(x+, y+), respectively. We then have

1
2y2

− + G(x−) = G(b), 1
2y2

+ + G(x+) = G(a). (2.23)

Recalling (2.14), we know that

G(b) = G(d) − e
√

2G(d) + M + 1
2e2, (2.24)

G(a) − G(b) = 2e
√

2G(d) + M. (2.25)

On the basis of (2.23) and (2.24), we get

G(x−) = G(b) − 1
2y2

− � G(b) − 1
2y2

0

= G(b) + G(x0) − G(d) � G(b) − 1
2G(d)

= 1
2G(d) − e

√
2G(d) + M + 1

2e2.

Since
G(x+) − G(x−) = (G(a) − G(b)) − 1

2 (y2
+ − y2

−),

and y+ � y−, we have

G(x+) − G(x−) � G(a) − G(b).

It follows from (2.25) that

G(x+) − G(x−) � 2e
√

2G(d) + M.

Accordingly,
√

2G(x+) −
√

2G(x−) =
2(G(x+) − G(x−))√
2G(x+) +

√
2G(x−)

� G(x+) − G(x−)√
2G(x−)

� 2e
√

2G(d) + M√
G(d) − 2e

√
2G(d) + M + e2

.
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Since

lim
d→+∞

2e
√

2G(d) + M√
G(d) − 2e

√
2G(d) + M + e2

= 2
√

2e,

there exists a constant c1 > 0 such that

|
√

G(x+) −
√

G(x−)| < c1.

From condition (G1), there exists c2 > 0 such that

|x+ − x−| < c2. (2.26)

In the case when (x(t), y(t)) ∈ D, then 1
2y2(t) + G(x(t)) � G(b). Thus,√

2(G(b) − G(x(t))) � y(t) = ẋ(t).

If x− � x(t) � x+ � b, then we have

∆t �
∫ x+

x−

ds√
2(G(b) − G(s))

.

It follows from (2.26) and lemma 2.8 that ∆t < ε when b is sufficiently large. If
x+ � b, we divide the interval [x−, x+] into two intervals: [x−, b] and [b, x+]. In
[x−, b], using the fact that |b − x−| < c2 and lemma 2.8, we know that the time
∆t1 for solution (x(t), y(t)) to go through field {(x, y) ∈ R2 | x− � x � b, y � 0}
satisfies ∆t1 < 1

2ε for sufficiently large b. On the other hand, using the same method
as in estimating tb − t1 in step 1, we know that the time ∆t2 taken for solution
(x(t), y(t)) to go through the field {(x, y) ∈ R2 | x− � x � b, y � 0} satisfies
∆t2 < 1

2ε for sufficiently large b. Consequently, we know that the time ∆t taken
for solution (x(t), y(t)) to go through region {(x, y) ∈ R2 | x− � x � x+, y � 0}
satisfies ∆t < ε.

Case 2 (G(x0) � 1
2G(d)). Since

y2
0 + 2G(x0) = 2G(d),

we have
y2
0 � G(d).

Hence,
x0

y0
� d√

G(d)
�

∫ d

0

2ds√
G(d) − G(s)

=
√

2τ(c).

Recalling (2.23), we get

1
2y2

− = G(b) − G(x−) � G(b) − G(x0) � G(b) − 1
2G(d).

Thus,

|y+ − y−| �
√

|y2
+ − y2

−| �
√

2(G(a) − G(b))

and
|y+ − y−|

y−
�

√
2(G(a) − G(b))√
2G(b) − G(d)

.
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We conclude from (2.24) and (2.25) that

lim
d→∞

√
2(G(a) − G(b))√
2G(b) − G(d)

= lim
d→∞

√
4e

√
2G(d) + M√

2G(d) − 2e
√

2G(d) + M + e2 − G(d)

= lim
d→∞

√
4e

√
2G(d) + M√

G(d) − 2e
√

2G(d) + M + e2
= 0.

Consequently, ∫ x+

x−

dx

y
� |x+ − x−|

y−
=

|(x0y+/y0) − (x0y−/y0)|
y−

=
|y+ − y−|

y−

x0

y0

� |y+ − y−|
y−

√
2τ(c),

which implies that ∫ x+

x−

dx

y
< ε

for sufficiently large d.

Combining cases 1 and 2, we obtain

|τ(r0, θ0) − τ(c)| < ε, (r0 cos θ0, r0 sin θ0) ∈ Γc.

So far, we have proved the conclusion of lemma 2.9 under additional assumption
τ(r0, θ0) � 2τ1 with (r0 cos θ0, r0 sin θ0) ∈ Γc and τ(c) � τ1 for c sufficiently large.

Finally, we shall show that τ(r0, θ0) � 2τ1 holds for (r0 cos θ0, r0 sin θ0) ∈ Γc

with τ(c) � τ1 and sufficiently large c. Suppose that there exist arbitrarily large c
and some point (r0, θ0) such that τ(r0, θ0) > 2τ1 for (r0 cos θ0, r0 sin θ0) ∈ Γc and
τ(c) � τ1. We also see that (2.17) holds during the time interval [0, 2τ1]. Applying
(2.17), lemma 2.6 and the conclusion in steps 1 and 2, we can derive τ(r0, θ0) < 2τ1
for sufficiently large c. This is a contradiction.

Denote by τj(r0, θ0) the time taken for the solution (r(t), θ(t)) of system (2.6) to
make j clockwise turns around the origin.

Lemma 2.10. Assume that (g′
0), (g1), (G′

0) and (G1) hold. Let τ2 be a positive
constant. Then, for any ε > 0, there exists C(ε, τ2) > 0 such that, if c � C(ε, τ2)
and τ(c) � τ2, then

|τj(r0, θ0) − jτ(c)| < jε.

Proof. Using the similar methods to those in the proof of lemma 2.9, we see that
there exists a positive constant e′ such that, for t, s ∈ [0, (j + 1)τ2],

|u(t) − u(s)| � e′, e′ =
∫ (j+1)τ2

0
|p(s)| ds,
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where u(·) is given in the proof of lemma 2.9. Let (x(t), y(t)) be the solution of (2.2)
through (x0, y0) ∈ Γc. There then exist positive constants ς ′, a′ and b′ (with a′, b′

depending on c) satisfying |a′ − b′| � ς ′ such that, for t ∈ [0, (j + 1)τ2], (x(t), y(t))
lies between

ΓA : 1
2y2 + G(x) = G(a′)

and

ΓB : 1
2y2 + G(x) = G(b′).

Following lemma 2.9 and its proof, we can estimate one by one the required time
for the solution (x(t), y(t)) to make j turns around the origin. From [1, lemma 5.4]
we know that the conclusion of lemma 2.10 holds.

3. Proof of the theorems

Proof of theorem 1.1. Consider the Poincaré map P : (r0, θ0) 	→ (r1, θ1),

r1 = r(2π; r0, θ0), θ1 = Θ(r0, θ0) + θ0,

where Θ(r0, θ0) = θ(2π; r0, θ0)− θ0 +2mπ. The map P is an area-preserving home-
omorphism. Let 0 < ε < σ. It follows from lemma 2.10 and condition (τ0) that

τm(r0, θ0) < mτ(ak) + mε < 2π − m(σ − ε), (r0 cos θ0, r0 sin θ0) ∈ Γak
, (3.1)

τm(r0, θ0) > mτ(bk) − mε > 2π + m(σ − ε), (r0 cos θ0, r0 sin θ0) ∈ Γbk
. (3.2)

Then, from (3.1), (3.2) we have

θ(2π; r0, θ0) − θ0 < −2mπ, (r0 cos θ0, r0 sin θ0) ∈ Γak
,

θ(2π; r0, θ0) − θ0 > −2mπ, (r0 cos θ0, r0 sin θ0) ∈ Γbk
.

Thus, we have proved that the twist condition (3) of the generalized Poincaré–
Birkhoff twist theorem (theorem 2.1) is satisfied for the Poincaré map P . Moreover,
condition (1) of theorem 2.1 holds by lemma 2.5. Finally, from lemma 2.3 we know
that, if l(x0, y0) is sufficiently large, then r(2π; r0, θ0) > 0. Therefore, O ∈ P (D1),
where D1 is an open region with boundary Γak

(k is sufficiently large). Thus,
condition (2) of theorem 2.1 is satisfied. Hence, the map P has at least two fixed
points in D (D is the annulus bounded by Γak

and Γbk
). These two fixed points

correspond to two 2π-periodic solutions of system (2.2). For brevity, we assume
that ak < bk < ak+1, k ∈ N . Otherwise, we could take two subsequences of {ak}
and {bk} satisfying this inequality. Then for every sufficiently large k, the map P
has at least two fixed points in annulus bounded by Γak

and Γbk
. Therefore, the

map P has infinitely many fixed points. Consequently, equation (1.1) has infinitely
many 2π-periodic solutions.

Proof of theorem 1.2. Let P i be the ith iterate of the Poincaré map P for any
positive integer i. Namely, P 1 = P , P 2 = P ◦ P and so on. Thus, Pn can be
expressed in the form Pn : (r0, θ0) 	→ (r∗, θ∗),

r∗ = r(2nπ; r0, θ0), θ∗ = Θ(r0, θ0) + θ0,
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where Θ(r0, θ0) = θ(2nπ; r0, θ0) − θ0 + 2mπ. Since (m, n) = 1, we can get

min
j∈N,i=1,2,...,n−1

∣∣∣∣2nπ

m
− 2iπ

j

∣∣∣∣ > 0.

For simplicity, we assume that

0 < β � min
j∈N,i=1,2,...,n−1

∣∣∣∣2nπ

m
− 2iπ

j

∣∣∣∣.
Set ε0 < 1

4β, β̃ = 1
4β. Since τ(c) is continuous for sufficiently large c, we can find

two sequences {ãk}, {b̃k} with

ãk, b̃k > C

(
ε0,

2nπ

m
+

β

2

)
, ãk < b̃k

and limk→+∞ ãk = limk→+∞ b̃k = +∞ such that

τ(ãk) =
2nπ

m
− β̃, τ(b̃k) =

2nπ

m
+ β̃,

and
2nπ

m
− β̃ < τ(c) <

2nπ

m
+ β̃, c ∈ (ãk, b̃k).

For c ∈ [ãk, b̃k], we derive from lemma 2.10 and the choice of β̃ that, for all j ∈ N ,
i = 1, 2, . . . , n − 1,

|θ(2iπ; r0, θ0) − θ0 + 2jπ| > 0, (r0 cos θ0, r0 sin θ0) ∈ Γc.

In fact, suppose that there exist some j ∈ N , 1 � i � n − 1, and r0, θ0 ∈ R such
that

|θ(2iπ; r0, θ0) − θ0 + 2jπ| = 0, (r0 cos θ0, r0 sin θ0) ∈ Γc.

This is to say that (r(t), θ(t)) makes j turns around the origin during time 2iπ. On
the other hand, from lemma 2.10 we have that, for sufficiently large c,

|τj(r0, θ0) − jτ(c)| < jε0, (r0 cos θ0, r0 sin θ0) ∈ Γc.

Hence, ∣∣∣∣2iπ

j
− τ(c)

∣∣∣∣ < ε0.

Furthermore,∣∣∣∣2iπ

j
− 2nπ

m

∣∣∣∣ <

∣∣∣∣2iπ

j
− τ(c)

∣∣∣∣ +
∣∣∣∣τ(c) − 2nπ

m

∣∣∣∣ < ε0 + β̃ < 1
2β,

which is contrary to the choice of β. Therefore, from the Poincaré–Bohl theorem [11]
we know that the map P ( = P 1) has at least one fixed point in the region bounded
by Γãk

and thus the system (2.2) has at least one harmonic solution. Meanwhile,
P i has no fixed point on the annulus Ak = {(x, y) ∈ Γc | ãk < c < b̃k} for
i = 1, 2, . . . , n − 1. On the other hand, from lemma 2.10 we have

τm(r0, θ0) < mτ(ãk) + mε0 = 2nπ − m(β̃ − ε0), (r0 cos θ0, r0 sin θ0) ∈ Γãk
, (3.3)

τm(r0, θ0) > mτ(b̃k) − mε0 = 2nπ + m(β̃ − ε0), (r0 cos θ0, r0 sin θ0) ∈ Γb̃k
. (3.4)
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According to (3.3) and (3.4), we know that

(2nπ; r0, θ0) − θ0 < −2mπ, (r0 cos θ0, r0 sin θ0) ∈ Γãk
;

θ(2nπ; r0, θ0) − θ0 > −2mπ, (r0 cos θ0, r0 sin θ0) ∈ Γb̃k
.

Thus, Pn is twisting on the annulus Ak. Moreover, O ∈ Pn(Bk) as k is sufficiently
large, where Bk is the region surrounded by Γb̃k

. We recall, by lemma 2.5, that
Γãk

is star-shaped with respect to the origin O. Therefore, all assumptions of the
generalized Poincaré–Birkhoff twist theorem are satisfied for the map Pn. Hence,
Pn has at least two fixed points on the annulus Ak. However, P i, 1 � i � n − 1,
has no fixed point on the annulus Ak. Thus, the fixed points of the map Pn on Ak

correspond to n-order subharmonic solutions of system (2.2). Consequently, (1.1)
has infinitely many n-order subharmonic solutions.

Corollary 3.1. Assume that (g0), (g1), (G0) and (G1) hold and

∆τ = lim sup
c→+∞

τ(c) − lim inf
c→+∞

τ(c) > 0.

Then (1.1) has at least one harmonic solution and there exists an integer l0 > 0
such that (1.1) has infinitely many l-order subharmonic solutions for l � l0.

Proof. The proof of [7, theorem 2.3] and theorem 1.2 yields the conclusion of corol-
lary 3.1.

Remark 3.2. Let γ > 0 be an arbitrary fixed constant. Write

τγ(c) =
√

2
∫ d(c)

γ

dx√
c − G(x)

.

From remark 2.7 and lemma 2.6 we know that, if (g0), (G0) hold and τγ(c) satisfies
(τ0) or (τ1), then τ(c) also satisfies (τ0) or (τ1) (σ or β may be different). Thus,
theorems 1.1 and 1.2 still hold, provided that τγ(c) satisfies (τ0) or (τ1).

4. An example

In this section, we construct an example to show an application of our conclusions.
Assume that h : R+ → R is continuous and satisfies the following conditions:

(1) h(x) � √
x − x;

(2) there is a constant M > 0 such that

|H(x)| =
∣∣∣∣
∫ x

1
h(s) ds

∣∣∣∣ � M ;

(3) h(xn) =
√

xn − xn for xn = e2nπ, n ∈ N ∪ {0}.

Define g : R+ → R as follows:

g(x) =

⎧⎪⎨
⎪⎩

lnx

x
+ 1, 0 < x � 1,

2x − x cos ln x + h(x), x > 1.
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Obviously,
lim

x→0+
g(x) = −∞, lim

x→+∞
g(x) = +∞.

Thus, g(x) satisfies (g0) and (g1). Furthermore,

G(x) =

{
1
2 ln2 x + x − 1, 0 < x � 1,

x2 − 1
5x2(sin lnx + 2 cos ln x) − 3

5 + H(x), x > 1,

where

H(x) =
∫ x

1
h(s) ds.

It is easy to see that
lim

x→0+
G(x) = +∞.

Therefore, condition (G0) is satisfied. Since ĝ(x) = 2x − x cos ln x satisfies the
semilinear condition for large positive x, as far as the function ĝ(x) is concerned,
condition (G1) is satisfied. Using [15, lemma 2.3], we know that the function g(x)
also satisfies (G1). By a simple calculation, we obtain

G∗ = lim inf
x→+∞

2G(x)
x2 = 2

(
1 −

√
5

5

)
, G∗ = lim sup

x→+∞

2G(x)
x2 = 2

(
1 +

√
5

5

)
.

It follows from remark 2.7 and [7] that[
π√
G∗

,
π√
G∗

]
⊂ [τ∗, τ

∗],

where
τ∗ = lim inf

c→+∞
τ(c), τ∗ = lim sup

c→+∞
τ(c).

Therefore,
∆τ = lim sup

c→+∞
τ(c) − lim inf

c→+∞
τ(c) = τ∗ − τ∗ > 0.

According to corollary 3.1, we know that (1.1) has at least one harmonic solution
and there exists l0 > 0 such that, for l � l0, (1.1) has infinitely many l-order
subharmonic solutions.
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