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This paper presents three-dimensional numerical simulations of non-Brownian
concentrated suspensions in a Couette flow at zero Reynolds number using a fictitious
domain method. Contacts between particles are modelled using a discrete element
method (DEM)-like approach, which allows for a more physical description, including
roughness and friction. This work emphasizes the effect of friction between particles
and its role on rheological properties, especially on normal stress differences. Friction
is shown to notably increase viscosity and second normal stress difference |N2|
and decrease |N1|, in better agreement with experiments. The hydrodynamic and
contact contributions to the overall particle stress are particularly investigated. This
shows that the effect of friction is mostly due to the additional contact stress since
the hydrodynamic stress remains unaffected by friction. Simulation results are also
compared with experiments, such as normal stresses or effective friction coefficient
µ(Iv), and the agreement is improved when friction is accounted for. This suggests
that friction is operative in actual suspensions.
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1. Introduction
Concentrated suspensions of small particles in low-Reynolds-number flows are

ubiquitous in industry (food transport, cosmetic products, civil engineering, to mention
but a few) as well as in biological or natural flows (blood, mud or lava flows). Fresh
concrete or uncured solid rocket fuel are two examples of industrial concentrated
suspensions in which a very high particle volume fraction is desired while keeping
correct rheological properties and flowing behaviour. Such dense suspensions do
exhibit an intricate physics which is hitherto far from being understood completely.
This complexity partly arises from the wide variety of interactions between particles:
Brownian, colloidal, hydrodynamic, frictional or collisional (see Coussot & Ancey
(1999) for a review on those different regimes) as well as from the physical properties
of particles (roughness, shape, size distribution, etc.). Even the case of non-Brownian
non-colloidal single-sized spherical particles embedded in a Newtonian fluid, which
will be the system investigated in this study, is likely to show complex non-Newtonian
behaviours (Stickel & Powell 2005; Morris 2009).

† Email address for correspondence: stany.gallier@herakles.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

50
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:stany.gallier@herakles.com
https://doi.org/10.1017/jfm.2014.507


Rheology of suspensions of frictional particles 515

The rheological behaviour of non-Brownian suspensions was initially described by
an effective suspension viscosity ηs, and considerable effort focused on determining
this viscosity as a function of particle volume fraction φ. Experimental studies
have confirmed that suspension viscosity ηs increases with φ and diverges as φ

approaches a maximal fraction φm approximately 0.6 (Ovarlez, Bertrand & Rodts
2006). Despite some differences among the various experimental results, the relation
between viscosity and particle volume fraction is now reasonably well documented
(Stickel & Powell 2005). By contrast, the normal stresses Σxx, Σyy and Σzz (where x,
y and z refer to the direction of velocity, velocity gradient and vorticity, respectively)
are much less studied and available results are still controversial. From experiments
in parallel-plate and Couette geometries, Zarraga, Hill & Leighton (2000) measured
negative normal stress differences N1 = Σxx − Σyy and N2 = Σyy − Σzz with similar
dependence on the volume fraction. The second normal stress difference |N2| is
found to be larger than |N1| with N2/N1 ≈ 3.6. Later measurements by Singh & Nott
(2003) using similar devices have confirmed that N1 and N2 are both negative but
with a ratio N2/N1 which depends on φ. Dai et al. (2013) used a combination of
a parallel-plate rheometer and the open semicircular trough method to measure N1
and N2. They found a good agreement with previous works with negative normal
stress differences and |N1| � |N2|. Those three studies measured negative normal
stress differences with |N1| smaller than |N2|. In contrast, some recent experimental
works have obtained very different results, especially on the magnitude of |N1|. By
studying the deformation of the free surface of a suspension flowing in a narrow
inclined channel, Couturier et al. (2011) concluded that N1 was very small compared
with N2 and within the experimental uncertainty, they were unable to determine the
sign of N1. Likewise, a detailed experimental study by Dbouk, Lobry & Lemaire
(2013) using a parallel-plate geometry has found this time that N1 is positive over the
entire range of volume fraction investigated 0.26 φ 6 0.47. The value of N2 however
remains as in the other studies. Numerical simulations of concentrated suspensions
using Stokesian dynamics (SD) (Sierou & Brady 2002) or force-coupling method
(FCM) (Yeo & Maxey 2010a) show that N1 and N2 are both negative with N1 ≈ N2,
which actually does not match any experiments.

Numerical simulation is instrumental in shedding light on the complex physics of
suspensions. Among the most widely employed method for low-Reynolds-number
suspensions is the SD (Bossis & Brady 1984; Brady & Bossis 1985, 1988). SD has
provided among the most relevant results in the field of suspensions (Drazer et al.
2002, 2004; Sierou & Brady 2002). This technique resembles a molecular dynamics
method in which the driving forces are the hydrodynamic interactions, possibly
complemented with Brownian or collisional forces. Hydrodynamic interactions are
written as a truncated multipole expansion and further split into a far-field multibody
contribution and near-field lubrication contribution. Another popular method relevant
to low-Reynolds-number suspension flows is the FCM (Maxey & Patel 2001; Lomholt
& Maxey 2003; Yeo & Maxey 2010a,b,c). Similarly, hydrodynamic interactions are
written using a multipole expansion in which the standard Dirac delta function is
replaced by a localized force envelope. The latter is incorporated as a body-force in
the Stokes equations that are subsequently solved using classical flow solvers. More
recently, direct numerical simulations (DNS) have emerged as a valuable alternative
to the aforementioned SD and FCM methods, such as lattice-Boltzmann methods
(Ladd 1994a,b; Ladd & Verberg 2001) or fictitious domain methods (Glowinski, Pan
& Periaux 1998; Glowinski et al. 2001; Yu & Shao 2007; Wachs 2009; Gallier et al.
2014). Because they directly solve the governing equations (Navier–Stokes or Stokes
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equations) without any further assumptions other than numerical approximations,
they are more general and appropriate to deal with inertial flows, arbitrary-shaped
particles or non-Newtonian fluid. For any methods, however, dealing with concentrated
suspensions requires a detailed modelling of lubrication forces since the average
separation distance becomes extremely small. Lubrication forces arise between
particles in near-contact because of the draining of interstitial fluid in the gap,
and are known to be singular in the limit of touching particles. Consequently,
lubrication-induced dissipation increases and modifies the rheology of suspensions.
A last essential physical ingredient for accurate simulations of suspension is the
modelling of collisions, or contacts, between particles. Contacts inevitably occur in
concentrated Stokesian suspensions despite lubrication because of particle roughness.
It is now well-accepted that contacts are responsible for fore–aft asymmetry and
non-zero normal stress differences. They are also the source of irreversibility and
chaos in sheared suspensions (Metzger & Butler 2010; Metzger, Pham & Butler
2013).

As stressed previously, there is a large discrepancy between experiments on N1 and
N2, but also between experiments and simulations, and this has not received much
attention so far. On the other hand, normal stresses are crucial since they determine
the migration of particles in suspensions subjected to an inhomogeneous shear field
(Nott & Brady 1994; Mills & Snabre 1995; Morris & Boulay 1999; Lhuillier 2009;
Nott, Guazzelli & Pouliquen 2011). This paper therefore intends to address this
issue by considering numerical simulations of suspensions accounting for friction
and roughness. Friction implies an additional tangential force during contact that
is likely to alter normal stresses. Using Stokesian dynamics simulations, Sierou &
Brady (2002) investigated the effect of sliding friction on the rheological behaviour
of a concentrated suspension at φ = 0.4 and showed that friction slightly changes
the microstructure which, in turn, modifies N1 and N2. For a friction coefficient
µd = 0.5, they noted an overall 50 % reduction in |N1| and a similar increase in
|N2| as well as a moderate rise in the suspension viscosity ηs (approximately 10 %).
The study was however limited to a single volume fraction and the model used
was deliberately simple (for instance, particles are supposed to slip irrespective of
the magnitude of the normal force). This effect of friction was also confirmed by
Wilson & Davis (2002) and Davis et al. (2003) who reported a moderate effect of
friction with a slight increase in the viscosity and decrease in |N1|. The friction
coefficient is known to depend strongly on normal force, surface roughness, etc. and
this could possibly explain the discrepancy between experiments. Note that friction
is also believed to play a major role in jamming and discontinuous shear thickening
(Seto et al. 2013; Wyart & Cates 2014). A second potential cause for the noted
scatter in normal stresses is the presence of particle roughness. Particles are never
perfectly smooth and a dimensionless roughness height of approximately 10−3–10−2

is generally reported (Smart & Leighton 1989). Such surface asperities promote an
early contact and impose the surface-to-surface separation between particles and
the magnitude of lubrication stress consequently. Surface roughness can therefore
significantly modify the rheological properties and the microstructure of suspensions,
as confirmed by many numerical studies (DaCunha & Hinch 1996; Drazer et al.
2002, 2004; Sierou & Brady 2002). Theoretical studies in dilute regimes show that
large roughness can decrease viscosity as well as increase |N1| and |N2| (Zarraga &
Leighton 2001; Wilson & Davis 2002; Davis et al. 2003; Wilson 2005). Zarraga &
Leighton (2001) found for small roughness that |N1| > |N2| due to a depletion of
particles in the extension quadrant. The effect is reversed for large roughness due to
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the additional stress induced by contact forces and N2 becomes the prevailing normal
stress difference. In dense regimes, however, SD simulations from Wilson & Davis
(2002) attested that |N1| decreased with increasing roughness height, which suggests
that the role of roughness is not completely understood so far.

This paper intends to contribute to the physics of sheared non-Brownian suspensions
with emphasis on rheology, especially normal stress differences, using numerical
simulations. We aim at providing insights that could help understand the discrepancy
between computations and experiments as well as between experiments themselves.
The study specifically addresses the role of friction forces between particles. In present
work, we make use of a fictitious domain approach as detailed in Gallier et al. (2014).
Our method explicitly solves long-range hydrodynamics and incorporates a modelling
of lubrication interactions as well as discrete element method (DEM)-based contact
forces. This allows for a straightforward implementation of tangential friction forces
or particle roughness. Section 2 presents a brief description of the fictitious domain
approach used. In § 3, we consider the simulation of a pair of particles in a shear
flow with an eye to demonstrating that friction and roughness are correctly modelled.
Section 4 presents suspension simulation results in a Couette geometry and highlights
the important role of friction forces during contact.

2. DNS simulation: fictitious domain method

This section briefly describes the numerical method used; more details can be found
in a previous paper (Gallier et al. 2014). In a fictitious domain method, solid particles
are supposed to be filled with a fluid having the same properties as the actual fluid.
From a computational viewpoint, this means that a classical fluid problem is solved
in the whole domain. Particles are thus considered as some regions of the fluid
constrained to have a rigid-body motion.

2.1. Governing equations
Let D be the whole computational domain including a fluid domain Df and a solid
particle domain Dp with D =Df ⊕Dp. The solid domain is made up of particles P
that are supposed to be rigid and homogeneous. In this study, the fluid is assumed
incompressible and Newtonian and is governed by the Stokes equations (although
Navier–Stokes can also be readily considered). Mass and momentum conservation
equations are written in the whole domain D and read

∇ · u= 0 (2.1)
∇ ·Σ + ρλ= 0 (2.2)

where ρ and u are the fluid density and velocity, respectively, while λ is a momentum
forcing term used to enforce the rigid-body motion inside particles. Consequently, λ
is non-zero in the particle domain Dp and zero elsewhere. For a Newtonian fluid, the
stress tensor Σ reads

Σ =−pI + 2ηE (2.3)

where p is the pressure, η the fluid viscosity and E the rate-of-strain tensor E= (∇u+
∇uT)/2. The fluid velocity inside each particle must comply with a rigid-body motion,
so that

u=U+Ω × (x− xg) in Dp (2.4)
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where U and Ω stand for the particle translational and rotational velocities and xg is
the position of the centre of gravity of the particle.

Particle motion is given by Newton’s equations. Assuming spherical particles and
neglecting inertia, they read

Fh +Fc +Fe = 0 (2.5)
Th + Tc + Te = 0 (2.6)

where forces F and torques T are decomposed into their hydrodynamic part (h),
contact part (c) and external part (e) that includes any external forces, such as gravity.
In the absence of inertia, hydrodynamic interactions can be defined as Yu & Shao
(2007) and Gallier et al. (2014)

Fh =−ρ
∫
P
λ dx (2.7)

Th =−ρ
∫
P
(x− xg)× λ dx. (2.8)

Contact forces and torques are modelled as usually in DEM, as addressed in a
subsequent section.

2.2. Numerical procedure
The system (2.1)–(2.8) forms the set of governing equations to be solved. A fractional-
step time scheme is used to decouple this system into two subproblems. The first
subproblem (2.1)–(2.3) is a standard fluid problem. It is solved using finite differences
on a staggered Cartesian grid and incompressible equations are then resolved by a
standard projection method (Chorin 1968) with implicit time-stepping for the diffusive
terms (Crank–Nicolson scheme). The resulting linear systems are inverted using a
geometric multigrid technique. At each iteration n, solving this fluid subproblem yields
the new fluid velocity un+1 and pressure pn+1.

The particle subproblem (2.4)–(2.8) consists in enforcing the rigid-body motion
inside particles, as well as updating the new forcing term λn+1 and eventually
computing particle velocities. Details are skipped in the frame of this overview and
may be found in Gallier et al. (2014). Once particle velocities are known, their
position can be tracked by solving

dX
dt
=U (2.9)

where X and U are the vectors of particle positions and velocities, respectively. This
equation is solved using a second-order Adams–Bashforth scheme.

2.3. Lubrication correction
Lubrication forces play a major role in the rheology of concentrated suspensions.
Since they are very short-range in nature, they can usually not be fully resolved
with the typical grids used in the numerical model and they consequently require an
ad hoc model. Our lubrication model rests on the ideas already used in SD (Durlofsky,
Brady & Bossis 1987; Brady & Bossis 1988) and FCM (Yeo & Maxey 2010a).
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Let us consider a system of Np spherical particles suspended in a linear Stokes flow
and let U be the 6Np vector of translational/rotational velocities U = (U, Ω)T and
F = (F, T)T the 6Np vector of hydrodynamic forces/torques exerted by the fluid on
the particles. Due to the linearity of the Stokes equations, there are linear relations
between the forces/torques and the flow parameters, and the velocities of particles can
be written in resistance form as Kim & Karrila (1991)

F = RFU · (U∞ −U)+ RFE : E∞. (2.10)

The key idea is to split the resistance matrix describing the hydrodynamic interactions
into long-range interactions, explicitly resolved by the numerical model, and a short-
range lubrication contribution that cannot be resolved numerically since it is subgrid

R ≈ R̃ + R sub (2.11)

where the tilde (·̃) denotes the explicitly resolved part and the superscript sub
refers to the subgrid unresolved part of the interaction. It can be shown that the
actual lubrication-corrected particle velocity U can be obtained from the numerically
resolved velocity Ũ by adding in the numerical procedure an external force F lub

given as Gallier et al. (2014)

F lub = R sub
FU · (U∞ −U)+ R sub

FE : E∞. (2.12)

This force/torque represents the portion of hydrodynamic interactions that cannot be
resolved by the numerical approach and is directly included in (2.5) and (2.6) as an
external force and torque. The subgrid resistance matrices R sub

FE and R sub
FU are computed

by subtracting the two-body resistance matrix R̃
2B

, obtained numerically on two-sphere
configurations, from the exact theoretical two-sphere resistance matrices R2B

theo known
from lubrication theory (Kim & Karrila 1991). For a many-particle system, matrices
R sub are constructed assuming a pairwise additivity of forces.

The hydrodynamic stresslet Sh is corrected from lubrication as well using a similar
procedure. The deviatoric stresslet is written in resistance form as

Sh = RSU · (U∞ −U)+ RSE : E∞ (2.13)

and is similarly decomposed into a resolved and a subgrid part

Sh = S̃ + R sub
SU · (U∞ −U)+ R sub

SE : E∞ (2.14)

where S̃ corresponds to the resolved stresslet computed by the numerical method. It
can be obtained directly from the momentum forcing λ and, neglecting inertia, is given
as (Yu & Shao 2007)

S̃ =−ρ
2

∫
P
[(x− xg)⊗ λ+ λ⊗ (x− xg)] dx. (2.15)

Subgrid resistance matrices R sub
SU and R sub

SE are obtained as described previously while
theoretical expressions are found in Kim & Karrila (1991). Finally, a similar correction
procedure is also applied to the trace of Sh, which represents the hydrodynamic
contribution to particle pressure Π , using the theoretical resistance functions from
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a

hr

FIGURE 1. Sketch of roughness modelling: δ is the actual separation distance, hr the
roughness height and contact occurs when δ′ = δ − hr 6 0.

Jeffrey, Morris & Brady (1993). Particle–wall lubrication interactions are also included
using a similar strategy.

Despite its complexity, an accurate treatment of lubrication is crucial for quantitative
simulations of dense suspensions. Some computations without lubrication correction
were attempted but generally failed unless extremely small time steps were considered.
In the latter case, very noisy signals were observed. This is likely to result from
large particle relative velocities implying very intense collisions. Likewise, a too crude
lubrication correction model (e.g. neglecting logarithmic singularities) also involves
discrepancies, such as an underestimation of viscosity.

2.4. Contact modelling
In order to implement a more physical modelling of contact between particles, contact
forces are modelled as in a DEM, which is a very popular method in the field of
granular physics (Pöschel & Schwager 2005; Radjaï & Dubois 2011). For a pair of
spherical particles Pi and Pj (of radius a) undergoing contact, the contact force Fc

exerted by particle Pj on particle Pi is classically decomposed into its normal Fc
n and

tangential Fc
t components:

Fc =Fc
n +Fc

t . (2.16)

The normal contact force is modelled using a Hertz law

Fc
n =−kn|δ|3/2n (2.17)

in which δ = ‖r‖ − 2a is the overlap distance with r = xj − xi, and n is the normal
vector n= r/‖r‖.

Surface roughness can be readily accounted for in the model, although in a simple
way. Assuming sparse asperities of size hr, contact is supposed to occur whenever
‖r‖ 6 2a + hr. An easy way to implement roughness thus consists in defining a
modified overlap distance as δ′ = δ − hr. Hence, contact occurs if δ′ 6 0. Figure 1
presents a sketch depicting this roughness modelling between two particles. Note that
lubrication forces are however still evaluated with actual distance δ = δ′ + hr.

The normal stiffness kn in (2.17) can be expressed theoretically using particle
mechanical properties (Young modulus and Poisson coefficient). For real materials,
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however, the resulting stiffness is extremely high, which is prejudicial to numerical
stability unless the time step is reduced drastically. For numerical reasons, it is
therefore preferred to prescribe a lower stiffness, which is here given in terms of
an average roughness deformation ε̄ = |δ̄′|/hr. Balancing contact and hydrodynamic
forces (in dilute regimes) yields 6πηγ̇ a2= kn(ε̄hr)

3/2 from which kn can be estimated.
In the forthcoming computations, we set ε̄ = 0.05, i.e. the stiffness kn is such that
the roughness deformation is 5 % under the hydrodynamic force 6πηγ̇ a2. Parametric
simulations on ε̄ (and so kn) have shown that there are no effects on rheology
as long as it is sufficiently small, typically below 0.2. However, the actual force
exerted on particles is larger than 6πηγ̇ a2 for dense systems. This means that the
roughness deformation can exceed the prescribed value of 0.05. Its value was checked
systematically and was found to be always lower than 0.1. This limited variation in
ε̄ is related to the nonlinear nature of the Hertzian force which scales as δ3/2. The
relative importance of contacts with respect to hydrodynamics can be estimated using
parameter Γ̇ , which is analogous to a Péclet number:

Γ̇ = 6πηγ̇ a2

F0
(2.18)

where F0 is a typical scale for the contact force. Taking F0 as the force needed to
deform completely a roughness F0= knh3/2

r gives Γ̇ = ε̄3/2≈ 10−2. Since ε̄ is fixed, this
means that the relative contribution of contact remains similar regardless of roughness
height.

The physical relevance of keeping a constant Γ̇ is questionable. However, present
work primarily focuses on friction and the effect of Γ̇ will not be investigated in
detail here. Its role on shear-thickening for instance was studied in other works,
see e.g. Seto et al. (2013) for very dense systems. We have already mentioned that
parametric simulations (for φbulk = 0.4 and frictionless particles) show no effects of
ε̄ if it is small enough. This is tantamount to varying Γ̇ since Γ̇ = ε̄3/2. Results are
found independent of Γ̇ in the range 10−3–10−1. Values below 10−3 have not been
attempted but are expected to give similar results because we stay in the asymptotic
regime of nearly hard spheres. For Γ̇ above 10−1, a shear-thickening behaviour is
however noted: since roughness is softened, the interparticle distance is reduced and
the viscosity increases because of lubrication-induced dissipation. All of the results
presented in this paper are obtained with Γ̇ ≈ 10−2 but are valid at least in the range
10−3–10−1. Keeping Γ̇ constant implies that knh3/2

r is also held constant for the same
shear rate. Obviously, this is irrelevant for zero roughness (hr= 0), causing an infinite
stiffness kn. In that case, an arbitrary high value of kn should be prescribed instead.
However, dense suspensions of perfectly smooth particles were not investigated in
this work.

The tangential force is given by

Fc
t =−ktΥ (2.19)

in which Υ is defined by integrating the slip velocity Us during the contact

Υ =
∫ t

0
Usdt (2.20)

where the slip velocity is

Us =Ui −Uj − [(Ui −Uj) · n] · n+ (aΩ i + aΩ j)× n. (2.21)
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z

r

+

+

x

y

FIGURE 2. Sketch of a pair of particles interacting in a shear flow.

Using the classical Amontons–Coulomb law of friction, the actual tangential force is
modified if it exceeds the friction limit µd|Fc

n| and is then given by

Fc
t =µd|Fc

n|
Fc

t

|Fc
t |

(2.22)

where µd is the dynamic friction coefficient. This work does not consider the static
friction coefficient µs and we implicitly set µs = µd. The tangential stiffness kt is
linked with the normal stiffness kn and a classical choice is kt/kn = 2δ1/2/7 (Shäfer,
Dippel & Wolf 1996; Silbert et al. 2001). Finally, the corresponding contact torque is

Tc = an×Fc. (2.23)

Contact forces also induce an additional contact stresslet which is given for a particle
as

Sc = 1
2

(
Fc ⊗ r

2
+ r

2
⊗Fc

)
. (2.24)

This stresslet is not traceless and its trace determines the contribution of contact to
particle pressure. Also note that since Fc ⊗ r may not be symmetric, there exists an
antisymmetric contact contribution to the particle stress due to contact torques. Contact
torques are balanced by hydrodynamic torques by virtue of (2.6).

3. A pair of rough frictional spheres in a shear flow
The numerical model presented previously has been validated thoroughly on

different configurations in Gallier et al. (2014). However, before turning to the
suspension simulations in § 4, we here consider the case of a sheared pair of
rough frictional spheres. This preliminary computational study can be viewed as
an additional relevant validation since results will be compared with a reference
theoretical solution. It also gives a foretaste of the forthcoming suspension simulations
and allows the reader to become familiar with rough frictional particles interacting in
a shear flow.

Two equally sized spherical particles (of radius a) are freely suspended in a simple
shear with separation vector r connecting the two sphere centres. A shear flow is
generated by moving the upper and lower boundaries with opposite velocities while
the other boundary conditions (in x and z directions) are periodic. Figure 2 presents a
sketch of this two-particle configuration. A cubic computational domain of size 20a in
the three directions is used. The spheres are initially separated by rinit= (−6a, 0.5a, 0).
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2.5
Theory

2.0

1.5

0.5

0
–6 –4 –2 0 2 4 6

1.0

FIGURE 3. Relative trajectories for a pair of particles having non-dimensional roughness
εr = 0, 10−3, 10−2: theory (solid lines) and computations for µd = 0 (◦) and µd = 0.3 (�).

Due to the imposed shear flow, the spheres will hydrodynamically interact and
possibly touch in the case of rough spheres. A theoretical reference solution is
computed using the approach already presented in other works (DaCunha & Hinch
1996; Zarraga & Leighton 2001; Metzger et al. 2013). The relative trajectories
are integrated in time using the theoretical resistance functions R2B

theo. We have
implemented this approach using Matlabr. In addition, this model is supplemented
with a DEM-like contact model such as described in § 2.4 to allow us to consider
theoretical solutions accounting for friction.

Simulations are three-dimensional and performed using a grid spacing ∆= a/5 and
a time step 1t= 10−3γ̇ −1 where γ̇ is the imposed shear rate.

Figure 3 displays the computed and theoretical relative trajectories in the plane of
shear (z = 0) for particles having different non-dimensional roughness εr = hr/a and
friction coefficient µd. The case εr = 0 corresponds to smooth particles. Note that in
this figure, the vertical coordinate y has been stretched for the sake of clarity. The
reference particle is depicted in black while the steric exclusion limit (non-overlapping
region) by a dotted line. A very good accordance between simulation and theory is
noted, which validates lubrication and contact modelling. As expected, the smooth
particle trajectory remains symmetric by virtue of the reversibility of the Stokes
equations. In contrast, rough particles undergo contact since the distance between
their surface is smaller than the roughness height at some point. Since contact forces
are compressive but not tensile, they eventually result in a fore–aft symmetry breaking
and the development of anisotropic microstructures. This asymmetry is clearly visible
in the relative trajectories as a net displacement in the vertical direction which is
seen to increase with roughness. This means that particles separate on streamlines
further apart than on their approach. Surprisingly, friction does not modify trajectories,
i.e. frictional or frictionless particles result in hardly distinguishable trajectories.

Because this paper primarily focuses on rheology, especially normal stress
differences, we plot in figure 4 the non-dimensional normal stress differences N∗1
and N∗2 as a function of the pair orientation angle θ measured from the flow direction
(positive x). The non-dimensional normal stress differences are here defined by

N∗1 = 2
(Sh

xx + Sc
xx)− (Sh

yy + Sc
yy)

S∞
(3.1)
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FIGURE 4. Non-dimensional normal stress differences N∗1 and N∗2 as a function of pair
orientation angle θ for three roughness εr = 0, 10−3, 10−2: computations (open symbols)
and theory (lines). Particles are frictionless.

N∗2 = 2
(Sh

yy + Sc
yy)− (Sh

zz + Sc
zz)

S∞
. (3.2)

They are made dimensionless using the stresslet S∞ of a sheared pair of spheres
without hydrodynamic interactions S∞= 20/3πa3γ̇ . The results presented are obtained
for the case of rough frictionless particles. Here again, the agreement between
theory and simulations is satisfactory. The main effect of roughness lies in the
extension quadrant (π− θ > π/2) where particles are further away, thereby reducing
hydrodynamic stresses. In the compression quadrant (π− θ <π/2), the contact force
itself is expected to increase the normal stress due to the additional contact dipole
Fc ⊗ r. As this contact dipole rises, the hydrodynamic dipole decreases, which leads
to a very limited effect on the total stress as can be seen in figure 4. In Zarraga &
Leighton (2001), similar results are obtained but with a stronger contact contribution
in the compression region because non-dimensional roughness εr could be as high
as 0.5. Surface roughness εr in the range 10−3–10−2 is typical of particles used in
suspension studies (Smart & Leighton 1989). Since it decreases the positive values of
N∗1 (θ) and N∗2 (θ) in the extension quadrant, roughness contributes to overall negative
N∗1 and N∗2 . Likewise, |N∗1 | and |N∗2 | are expected to increase with surface roughness
in agreement with Zarraga & Leighton (2001), Wilson & Davis (2002) and Davis
et al. (2003).

The role of friction is investigated in the case of the largest roughness εr = 10−2

and the obtained results are presented in figure 5 for µd = 0 (frictionless case) and
µd = 0.3. Unlike roughness, friction alters normal stresses only in the compression
quadrant and not in the extension region. This is coherent with the fact that friction
does not change the pair relative trajectories as pointed out previously. Friction only
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FIGURE 5. Non-dimensional normal stress differences N∗1 and N∗2 as a function of pair
orientation angle θ for frictionless (µd=0) and frictional particles (µd=0.3): computations
(open symbols) and theory (lines).

acts during contact since it implies an additional tangential contribution Fc
t ⊗ r to the

overall stress. The kind of result presented in figure 5 can be used to estimate the role
of friction on the rheology of dilute suspensions by integrating over all possible pair
trajectories. This was done by Wilson & Davis (2000) who found that friction induces
a slight rise in |N1| and |N2| with negative values of N1 and N2, and |N1| > |N2|.
However, this may hold only for dilute suspensions since our simulations for dense
systems will show a reverse trend, i.e. friction leads to a decrease in |N1| and increase
in |N2| and |N1| < |N2|. This was already pointed out by Wilson & Davis (2002)
using monolayer SD simulations. Let us conclude by stressing again that the previous
single-trajectory simulations should be only viewed as a validation. As pointed out,
statistical consideration is required to infer relevant information on the rheology of
dilute suspensions.

4. Suspension flow simulations: results and discussion
The objective of this study is to investigate the role of roughness and friction on

suspension rheology. Numerical simulations of dense suspensions are performed for
different volume fractions 0.16 φ 6 0.45. The number Np of particles is in the range
600–1000, depending on the volume fraction. The computational domain is a Couette
cell of size Ly= 20a, Lz= 20a and Lx > 20a. The length Lx is actually modified so as
to adjust the number of particles in the desired range and can reach Lx= 60a for the
lowest volume fraction φ = 0.1. A shear flow of magnitude γ̇ is imposed by moving
upper and lower walls with opposite velocities. Periodic boundary conditions are used
in x (velocity direction) and z (vorticity direction). The numerical parameters used
are the same as in the previous section, i.e. a grid spacing ∆= a/5 and a time step
1t= 10−3γ̇ −1. For simulations including friction, the time step is however decreased
to 5× 10−4γ̇ −1 to allow for a better time resolution of the rapidly varying tangential
forces. Note that unlike inertial collisional regimes (where the collision duration
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is very small), dense suspensions are rather in a frictional regime and a contact
lasts longer, about γ̇ −1. During most of the contact duration, the tangential force
generally changes mildly, except at the beginning of the contact (initial tangential
spring stretching) where rapid variations are captured in only a few (∼5) time steps.
This explains the time step reduction for frictional simulations. A further decrease
does not change results significantly.

All runs are started using random hard-sphere equilibrium configurations obtained
from a Monte Carlo procedure, and the first 50 strains γ̇ t are discarded so that the
system is allowed to reach a steady-state configuration before computing averages.
After this transient regime, the simulation is continued for another 100–150 strains.
The run is then divided into five statistically independent time segments of 20–30
strains each. The standard deviation is computed over the means of those five
subintervals and then divided by

√
5. This represents the statistical variation of the

properties and will be given as error bars on the numerical plots. The resulting
statistical error is usually less than 1 % for ηs, typically 2–4 % for N2, and can reach
5–10 % for N1 or Π . Despite the large number of particles, normal stress differences,
most notably N1, do experience large intermittent fluctuations. As postulated by Singh
& Nott (2000), this might be in connection with the formation of large gap-spanning
network of particles, although this was not investigated further in this work.

To determine the rheological properties, we recall that the bulk stress in a
suspension of rigid particles subjected to a strain rate E∞ij is defined as Batchelor &
Green (1972)

Σij =−pδij + 2ηE∞ij +Σp
ij (4.1)

where Σp
ij is the particle contribution to the bulk stress. For a statistically significant

number of particles in the suspension, it is given by

Σ
p
ij =Σh

ij +Σ c
ij (4.2)

with

Σh
ij = n〈Sh

ij〉 (4.3)
Σ c

ij = n〈Sc
ij〉 (4.4)

where Sh
ij and Sc

ij are the hydrodynamic and contact stresslets, respectively, n is the
number density of particles and the brackets 〈·〉 imply an ensemble average. The
splitting of Σp

ij into its hydrodynamic part Σh
ij and contact part Σ c

ij will be often used
throughout this study.

For a linear shear flow, the relative viscosity ηr = ηs/η of the suspension is

ηr = 1+ Σ
p
xy

ηγ̇
. (4.5)

The normal stress differences are given by

N1 = Σp
xx −Σp

yy (4.6)
N2 = Σp

yy −Σp
zz (4.7)

and the particle pressure by

Π =− 1
3(Σ

p
xx +Σp

yy +Σp
zz). (4.8)
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FIGURE 6. Local volume fraction 〈φ(y)〉 in the channel width for Ly= 20a and three bulk
fractions φbulk= (0.3, 0.4, 0.5). Open symbols are computations by Yeo & Maxey (2010a).
Particles are frictionless.

Since we compute a wall-bounded flow with periodicity imposed only in x and z
directions, average quantities depend on vertical position y. As proposed by Yeo &
Maxey (2010a), an average volume fraction 〈φ(y)〉 can be defined as

〈φ(y)〉 = 1
LxLz

〈∫∫
χ(x) dx dz

〉
(4.9)

where χ(x) is the particle indicator function which is 1 in the particle and 0 elsewhere.
Note that 〈φ(y)〉 is rather an areal fraction but it is known from stereology theory
to be equal to the volume fraction (Delesse principle). Figure 6 presents the average
volume fraction 〈φ(y)〉 for three bulk fractions φbulk in the case Ly = 20a. Some
simulation results by Yeo & Maxey (2010a) at φbulk = 0.4 are also plotted. Local
peaks in the wall region indicate the presence of a stable particle layering, which has
been attested in other computations (Kromkamp et al. 2006; Yeo & Maxey 2010a)
and in experiments (Blanc 2011). Results presented in figure 6 are obtained for
frictionless particles: friction actually has a weak influence but the effect of friction
on wall-induced ordering is not detailed here and will be part of a future work. In
this case Ly = 20a, and for bulk volume fraction φbulk below 0.5, there is still a
flat profile in the core flow which indicates that the suspension is devoid of wall
effects there and is therefore expected to behave like an unbounded suspension. On
the opposite, for φbulk = 0.5, wall effects are dominant across the whole channel. For
low volume fractions, this suggests, as proposed by Yeo & Maxey (2010a), to split
the whole suspension domain D into a core region DC and a wall region DW . For
Ly = 20a, this core region DC exists only if φbulk < 0.5 and is chosen as

DC = [0, Lx] × [Ly/4, 3Ly/4] × [0, Lz]. (4.10)

This choice follows the works of Yeo & Maxey (2010a) and here corresponds to 5<
y/a< 15.

The present study intends to highlight the role of friction and roughness for
homogeneous suspensions because we believe that those effects must be well
understood in that case before adding wall and confinement effects. The reader
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Volume fraction φbulk 0.1–0.45
Friction coefficient µd 0–0.8
Reduced roughness εr 10−4–10−2

Contact Péclet Γ̇ 10−3–10−1

TABLE 1. Range of parameters investigated.

may wonder why the authors did not consider triperiodic Lees–Edwards boundary
conditions to remove wall effects. The reason is that we are also currently studying
the effects of confinement, although this will be deferred to a subsequent paper. Thus,
we have kept the walls in our simulations; this is moreover expected to be closer to
experimental reality. Consequently, all of the results presented in this paper are for
the core region DC. As shown by Yeo & Maxey (2010a), rheological properties and
microstructure in this core region agree well with results obtained in an unbounded
domain. For computational time reasons, most results are presented for a channel
width Ly = 20a, which is suitable for bulk volume fractions φbulk up to 0.4. Some
simulations at φbulk= 0.4 and Ly= 40a did not result in significant changes. Due to the
need to keep a homogeneous core, results presented for φbulk= 0.45 are obtained for a
wider channel Ly= 40a. Here again, the results remain unchanged when considering a
larger channel width. Therefore, all of the results presented in this paper, even for the
highest fractions, are checked to be independent of wall effects. Such wall-induced
layering effects on suspension rheology are complex and out of the scope of the
present study. Note that Lees–Edwards boundary conditions are not so difficult to
implement but for higher volume fractions (above 0.5), ordering in monodisperse
suspensions is nevertheless expected even in fully periodic conditions (Sierou &
Brady 2002; Kulkarni & Morris 2009). An improvement would rather be to consider
polydispersity.

A last remark is that due to confinement effects, the average volume fraction φcore
in DC might slightly differ from φbulk, typically by a few per cent. We do consider the
actual value φcore when presented on the numerical plots. Similarly, the particle-phase
velocity profile in the core region is linear but with a slope γ̇core that can vary by a few
per cent from the imposed shear rate γ̇ . This is an apparent wall slip, as also observed
experimentally in concentrated suspensions. The actual value γ̇core is considered when
computing rheological properties, such as (4.5).

Table 1 compiles the range of the various parameters investigated in this study.

4.1. Effect of roughness
Although this study focuses on friction, we have briefly investigated the role of
roughness for frictionless particles with an eye to assessing to what extent roughness
could affect suspension rheology. Figure 7 presents the relative viscosity (a) and the
normal stress differences (b) as a function of the reduced roughness εr = hr/a for a
suspension of frictionless particles at φbulk = 0.4. Rheological properties are evaluated
in the core region DC as discussed above. The total relative viscosity is decomposed
into its hydrodynamic and contact parts as suggested by (4.2). Note that the solvent
contribution (the 1 in (4.5)) is lumped into the hydrodynamic contribution.

The relative viscosity decreases monotonically as the roughness increases as seen
in figure 7(a). Hydrodynamic and contact parts vary in a similar way so that their
relative contribution to suspension viscosity remains constant and independent of
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FIGURE 7. Relative viscosity (a) and normal stress differences (b) as a function of
roughness for φbulk = 0.4. Total (T) relative viscosity is decomposed into hydrodynamics
(H) and contact (C) parts.

roughness: ηh≈ 0.68ηr and ηc≈ 0.32ηr. Contact forces are balanced by hydrodynamic
forces and as the hydrodynamic contribution to viscosity decreases, so does the
contact contribution. The hydrodynamic contribution decreases because as asperities
grow, the separation distance between particles becomes larger which, in turn, lowers
the lubrication dissipation. The decrease in viscosity is however modest and is less
than 20 % for a hundred-fold increase in roughness. This weak decrease in viscosity
with increasing roughness is also found in SD (Singh & Nott 2000; Sierou & Brady
2002) and FCM simulations (Yeo & Maxey 2010a). Note that in SD and FCM
simulations, there is no roughness properly speaking but a repulsive interparticle
force whose range is analogous to an interaction distance that can be viewed as a
roughness.

Figure 7(b) shows the normal stress differences normalized by the shear stress τ =
ηrηγ̇ . The first and second normal stress differences are negative and have very similar
values N1/τ ≈N2/τ ≈−0.15. This is in good agreement with SD simulations in which
N1/τ ≈ N2/τ ≈ −0.135 (Sierou & Brady 2002). An interesting feature is that N1/τ

and N2/τ are independent of roughness within statistical uncertainty. This means that,
as roughness becomes larger, |N1| and |N2| slightly decreases. This is in accord with
the monolayer SD simulations of Wilson & Davis (2002) that have showed that |N1|
increases with increasing roughness for dilute systems (this is also expected from our
two-particle results in § 3) but that the trend is reversed in concentrated regimes. This
effect of roughness on the normal stress differences cannot explain the experimental
results since |N1|/|N2| ≈ 1, in contrast with experiments. Roughness could, at most, be
involved in some discrepancies between experiments.

Additional simulations were also performed for another volume fraction (φbulk=0.2):
the ratio normal stress differences over shear stress has a different value (N1/τ ≈
N2/τ ≈ −0.03) but remains independent of roughness. The fact that the differences
N1/τ and N2/τ are independent of roughness could suggest that normal stresses may
persist in the limit of vanishing roughness. Nevertheless, we have not investigated this
hardly realistic case of perfectly smooth spheres. As addressed by Melrose & Ball
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FIGURE 8. Non-dimensional particle pressure Π/τ (a) and normal stresses −Σp
ii/τ (b)

as a function of roughness for φbulk = 0.4.

(1995), simulations of sheared suspensions of perfectly smooth spheres inevitably
result in overlaps (hence, contacts) even for vanishing time steps and high-order
integration schemes. As a consequence, we believe that, at least numerically, normal
stress differences may exist in dense sheared suspensions with zero roughness.
Furthermore, we recall that, in our contact model, the contact Péclet Γ̇ (see (2.18))
is constant, irrespective of roughness. We have then conducted simulations with
constant normal stiffness kn: in this case, Γ̇ now depends on roughness. The same
results were obtained (at least, in the tested range 10−3 . Γ̇ . 10−1). This means that
the constant Ni/τ with respect to roughness is not related to our peculiar choice of
roughness-independent Γ̇ .

Full three-dimensional simulations reporting the effect of roughness on normal
stress differences are scarce. Sierou & Brady (2002) investigated the role of the
range of the interparticle force (as pointed out, this range might be viewed as a
kind of roughness) but only on the particle pressure Π . They noted that Π was
rather constant, implying a moderate 25 % increase in Π/τ when the force range
was increased from 10−4 to 10−2. Actually, our results are quite similar with Π
being relatively constant and Π/τ increasing by 35 % for a roughness in the range
10−4–10−2, as seen in figure 8(a). A similar trend is noted for the three normal
stresses Σ

p
ii with a limited rise in |Σp

ii |/τ as roughness height grows (figure 8b).
Interestingly, this variation is similar for the three normal stresses, which results in
differences N1/τ and N2/τ relatively unchanged by roughness. As already pointed
out by Singh & Nott (2000), the fact that simulations predict rather constant normal
stresses (or particle pressure) contrasts with the theoretical predictions of Brady &
Morris (1997) that, in dilute suspensions, the normal stresses vanish as ε0.22

r .

4.2. Effect of friction on viscosity
We now turn to simulations with frictional particles having a roughness maintained
to εr = 5 × 10−3 throughout the forthcoming simulations. This value is typical for
particles used in suspension studies (Smart & Leighton 1989; Blanc, Peters & Lemaire
2011). Figure 9 presents the φ dependence of the suspensions relative viscosity ηr
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FIGURE 9. Relative viscosity ηr as a function of volume fraction φ for different friction
coefficients µd. Also shown are experiments from Zarraga et al. (2000) and Dbouk et al.
(2013). Non-dimensional roughness is εr = 5× 10−3.

for different friction coefficients µd. A number of experimental results by Zarraga
et al. (2000) and Dbouk et al. (2013) are also shown. For frictionless particles
(µd = 0), the agreement is moderate with predicted viscosities systematically lower
than experimental results. This was already noticed in previous simulations (Sierou &
Brady 2002; Yeo & Maxey 2010a). When friction is taken into account, a substantial
increase in viscosity is noted and the agreement with experiments is significantly
improved. The effect of friction is quite limited at low volume fractions φ . 0.3
because there are less particles in contact. For dense suspensions however friction
gives rise to a notable increase in viscosity. This result suggests that the use of
frictionless contact model could explain the systematic underprediction of viscosity
reported in previous simulations. Indeed, it has been stressed in the previous section
that roughness can only result in limited variations in the viscosity and can therefore
not explain experimental results per se.

Sierou & Brady (2002) studied a suspension at φ = 0.4 and noted a limited 10 %
rise in ηr for µd = 0.5. For present simulations at φ = 0.4, the effect is stronger with
almost a two-fold increase. This quantitative difference is likely due to the friction
model. The model used by Sierou & Brady (2002) was deliberately kept simple in
order to explore the effect of friction. It was assumed that particles were sliding (no
roll-slip behaviour) and that the frictional force was always opposing the bulk shearing
motion.

The role of friction on viscosity can be better understood by studying the
hydrodynamic and contact contribution to viscosity, as already done in § 4.1. Figure 10
presents the hydrodynamic and contact contribution to viscosity as a function of
volume fraction for the frictionless case (µd = 0) and a frictional case µd = 0.5. The
high-frequency dynamic viscosity η∞ is also plotted. It was obtained by simulations
on frozen equilibrium configurations of hard smooth spheres. Note that this viscosity
is purely hydrodynamic in origin and corresponds to the viscous contribution to the
stress for an equilibrium microstructure, i.e. not affected by the flow. A first significant
result is that the hydrodynamic contribution to viscosity is not sensitive to friction: it
can be seen in figure 10 that frictionless and frictional hydrodynamic contributions
collapse onto the same curve. The only difference between the frictionless and
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FIGURE 10. Hydrodynamic (H) and contact (C) contribution to relative viscosity ηr as a
function of volume fraction φ for friction coefficient µd = 0 (white) and µd = 0.5 (grey).
Non-dimensional roughness is εr = 5 × 10−3. The high-frequency viscosity η∞ is also
shown.

frictional cases lies in the contact contribution which significantly increases with
friction. Another interesting result is that the hydrodynamic contribution to viscosity
ηh remains very close to the high-frequency viscosity, at least for moderate volume
fractions. This agreement might be fortuitous since it is clear from figure 7 that ηh

depends on roughness. However this dependence is very limited for usual roughness
with a mere 5 % decrease between εr= 10−3 and 10−2. As a reasonable assumption, it
can be argued that ηh≈η∞. This result hints at a very limited impact of microstructure
anisotropy on hydrodynamic viscosity ηh. As a consequence, this means that the
well-known excess viscosity 1η= ηr − η∞ can be assimilated to the contact viscosity,
i.e. 1η≈ ηc.

4.3. Effect of friction on normal stress differences
Figure 11 presents the results obtained on the normal stress differences (non-
dimensional using the shear stress τ = ηrηγ̇ ) for different friction coefficients µd.
The effect of friction on normal stress differences is significant with a reduction
in |N1| and a rise in |N2|. This effect is in accordance with the scarce previous
studies (Sierou & Brady 2002; Wilson & Davis 2002). As already discussed, the only
three-dimensional simulations with friction are the works from Sierou & Brady (2002)
who reported for φ= 0.4 and µd = 0.5, a 40 % reduction in |N1| and a 75 % increase
in |N2|. Our simulations show a slightly different effect with a 30 % reduction in |N1|
as well as a three-fold increase in |N2|. The differences are likewise possibly due to
a simpler friction model used by Sierou & Brady (2002) but the qualitative behaviour
is similar. In particular, the effect of friction is more pronounced on N2. Because
contacts predominantly take place in the shear plane (x, y), friction gives rise to
larger normal stresses Σxx and Σyy, resulting in a marked increase in N2 =Σyy–Σzz.

The trends observed are an interesting result since experimental studies show that
the second normal stress difference is always significantly larger than the first normal
difference, i.e. N2/N1 > 1. Figure 12 plots our results in terms of N2/N1 as a function
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FIGURE 11. Non-dimensional N1/τ (a) and N2/τ (b) as a function of volume fraction φ
for different friction coefficients µd. Non-dimensional roughness is εr = 5× 10−3.
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FIGURE 12. Ratio N2/N1 as a function of volume fraction φ for different friction
coefficients µd. Non-dimensional roughness is εr = 5× 10−3.

of volume fraction and friction coefficient. In accordance with simulations from the
literature, frictionless particles (µd = 0) are reported to give N2/N1 ≈ 1. This ratio is
relatively independent of the volume fraction. For low φ however, N2/N1 is slightly
smaller than unity in qualitative agreement with the theoretical results of Zarraga
& Leighton (2001) in dilute regimes. Friction results in a larger N2/N1 ratio that
grows with friction coefficient and volume fraction. For dense regimes φ & 0.4 and
large friction coefficients µd & 0.3, N2/N1 is in the range 3–4, which matches quite
well the experiments from Zarraga et al. (2000) who found N2/N1 ≈ 3.6. Unlike
their results, however, our simulations suggest that N2/N1 has a φ-dependence which
is well-marked in the range 0.2–0.4. Below φ ≈ 0.2, the effect of friction is very
limited. Even though our simulations with frictional particles are closer to some
experimental results from the literature, they are not likely to explain all of them.
Although the values of |N1| in the core flow are smaller, N1 remains negative unlike
some measurements from Couturier et al. (2011) and Dbouk et al. (2013) where
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FIGURE 13. Hydrodynamic (H) and contact (C) contribution to N1/τ and N2/τ as a
function of volume fraction φ for friction coefficient µd = 0 (white) and µd = 0.5 (grey).
Non-dimensional roughness is εr = 5× 10−3.

N1 is about zero or even positive. Friction contributes partly, but not wholly, to the
smaller experimental values of |N1|.

Figure 13 displays the hydrodynamic (H) and contact (C) contribution to the normal
stress differences N1/τ (a) and N2/τ (b) for frictionless (µd = 0) and frictional case
(µd = 0.5). For the first normal stress difference in figure 13(a), it is found that the
hydrodynamic contribution is independent of friction while the contact contribution
is less negative in the frictional case. The noted decrease in |N1| is therefore solely
due to a reduction in the contact contribution. This predominant role of contact
contribution in the case of friction has also been noticed previously for viscosity. For
moderate volume fractions, the hydrodynamic stress represents the major contribution
to N1 while for denser regimes, contact and hydrodynamic stresses contribute in
a similar way. For the second normal stress difference in figure 13(b), similar
conclusions hold: friction weakly affects the hydrodynamic contribution while it
considerably increases the contact contribution. Figure 13(b) clearly shows that the
hydrodynamic contribution to N2 is always small. Therefore, normal stress differences
do not have the same origin: for N1, it is mostly hydrodynamic, at least for low
and intermediate volume fractions, while for N2 it comes entirely from contacts.
This is anticipated since contacts preferentially occur in the shear plane and in the
compression quadrant, so that |Σ c

zz| � |Σ c
yy| ≈ |Σ c

xx|.

4.4. Effect of friction on normal stresses
The previous section was entirely dedicated to normal stress differences because of
their importance in rheology. From a more fundamental viewpoint however, the study
of normal stresses is essential. Furthermore, there exist only very scarce experimental
data on normal stresses in suspensions (Zarraga et al. 2000; Boyer, Pouliquen &
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FIGURE 14. Normal stress −Σp
xx (a), −Σp

yy (b), −Σp
zz (c) and particle pressure Π (d)

as a function of volume fraction φ for friction coefficient µd = 0 (•) and µd = 0.5 (�).
Non-dimensional roughness is εr = 5× 10−3.

Guazzelli 2011b; Couturier et al. 2011; Garland et al. 2012; Dbouk et al. 2013).
This section considers the role of friction on normal stresses and comparisons with
experiments will be provided in the forthcoming sections.

Figure 14 presents the obtained results on normal stresses Σp
ii and particle pressure

Π for frictionless particles (µd= 0) and frictional particles with µd= 0.5. All of those
quantities are made non-dimensional using the shear stress τ . The effect of friction is
similar for all of the normal stresses, i.e. friction results in a substantial increase in the
stresses for φ& 0.3. Friction implies a doubling of Π/τ , which basically corresponds
to a three-fold increase in Π . It will be shown hereinafter (§ 4.7) that the contact
particle pressure Π c also rises significantly because of friction. Since Π c ∝ 〈Fc

· r〉 is
a measure of normal forces, this shows that friction also involves a much higher level
of normal forces.

4.5. Microstructure
In figure 15, the pair-distribution function g(r) is plotted as a function of the angle θ
for µd = 0 and µd = 0.5. Given a particle at the origin, the pair-distribution function
g(r) describes the probability density of finding a second particle at distance r,
normalized by the particle number density in the suspension. It is here determined
in the usual manner by discretizing the area around each particle and counting the
number of neighbouring particles within the area. In spherical coordinates, r= (r, θ,ψ)
where r is the radial distance, θ the azimuthal angle measured from the flow direction
(positive x) and ψ the polar angle measured from the vorticity direction (positive
z). Figure 15(a) shows the pair-distribution computed in the plane of shear and for
r< 2.1a, i.e. g(θ)= g(r/a< 2.1, θ,π/2) while figure 15(b) presents the actual contact
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FIGURE 15. Angular dependence of the pair-distribution function g(θ) for a system at
φbulk = 0.4 and µd = 0 (•); µd = 0.5 (�). g(θ) is computed for r/a < 2.1 (a) and for
contact r/a < 2 + εr (b). Non-dimensional roughness is εr = 5 × 10−3. Also shown are
results from Yeo & Maxey (2010a).

pair distribution, i.e. gc(θ) = g(r/a < 2 + εr, θ, π/2) with εr = 5 × 10−3. For both
cases, this pair-distribution function is calculated in the core region. Considering the
mirror symmetry, only 0< θ <π is shown in figure 15.

Both pair-distribution functions have an asymmetric shape with a high probability
to encounter another particle in the compression region (π− θ < π/2) and a marked
depletion zone around the extension axis π− θ ≈ 3π/4. This depletion zone is much
more apparent for particles at contact (figure 15b). This fore–aft asymmetry is well-
known to be responsible for the non-Newtonian behaviour of dense suspensions and
has been observed in experiments (Parsi & Gadala-Maria 1987; Blanc et al. 2011).
Our results in figure 15(a) show an excellent agreement with FCM simulations by
Yeo & Maxey (2010a) for frictionless particles (this paper does not report the contact
pair distribution, so that the comparison is not shown in figure 15b).

The effect of friction on the microstructure is clear in the compression region,
especially for particles at contact. Friction involves less particles in the direction
of velocity π − θ ≈ 0 but more particles in the region π/4 < π − θ < π/2. This
corresponds to a smaller density of normal force that would give rise to a negative
N1 and a larger density of normal force that would give rise to a positive N1. As
a result, the values of N1 become less negative with friction. The opposite effect
occurs for N2. Overall, this angular redistribution of particles leads to a rather flat
g(θ) profile in the compression region, which is consistent with small Nc

1 as noted in
figure 13(a). This effect of friction on microstructure is in qualitative agreement with
the simulations from Sierou & Brady (2002).
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FIGURE 16. Relative viscosity ηr (a) and non-dimensional normal stress differences
N1/τ and N2/τ (b) as a function of µd. Simulations are performed at φbulk = 0.4.
Non-dimensional roughness is εr = 5× 10−3.

4.6. Dependence on the friction coefficient
We have investigated the dependence of viscosity and normal stress differences on the
friction coefficient for a suspension at φbulk = 0.4, as shown in figure 16. The relative
viscosity ηr increases monotonically with friction coefficient, although a slope break
is noted for µd ≈ 0.5. In contrast, the non-dimensional normal stress differences N1/τ

and N2/τ vary notably at low friction coefficients but saturate at some point, for µd≈
0.5. This means that the ratio N2/N1 rapidly changes for low friction coefficients but
then becomes independent of µd for µd & 0.5. Note that even in that regime, N1 and
N2 keep changing, albeit moderately, since τ = ηrηγ̇ increases with µd.

It is apparent from figure 17(a) that the normal stresses Σ
p
ii are actually more

affected by friction than the shear stress τ because the ratio |Σp
ii |/τ keeps increasing

with µd. It typically doubles for µd between 0 and 0.8. Figure 17(b) presents the
contact contribution Σ c

ii to the normal stress Σ
p
ii . The values of contact normal

stresses Σ c
xx and Σ c

yy come closer as friction coefficient grows and for µd & 0.5,
we have Σ c

xx ≈ Σ c
yy. As a consequence, Nc

1 → 0 as friction increases and this
results in N1/τ = Nh

1/τ + Nc
1/τ ≈ Nh

1/τ , which is independent of µd as already
seen in figure 13(a). Figure 17(b) shows that the contact normal stresses Σ c

ii/τ

are rather constant for sufficiently high friction coefficients. This, in turn, implies
that Nc

2/τ = (Σ c
yy − Σ c

zz)/τ is independent of friction coefficient and so does
N2/τ =Nh

2/τ +Nc
2/τ .

This splitting between contact and hydrodynamic contributions reveals more clearly
the important role of contacts in dense suspensions. Results in figure 17 can be used
to provide the relative contribution of contacts at φ=0.4 as a function of µd. For µd=
0.5 for instance, we calculate Σ c

xx/Σ
p
xx ≈ 0.83, Σ c

yy/Σ
p
yy ≈ 0.91 and Σ c

zz/Σ
p
zz ≈ 0.82. It

means that in this case, contacts are responsible for 80–90 % of the total particle stress.
This predominant role of contact in dense frictional suspensions will be confirmed in
the following sections as well.
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FIGURE 17. Normal stresses −Σp
ii (a) and contact normal stresses −Σ c

ii (b) as a
function of µd. Simulations are performed at φbulk = 0.4. Non-dimensional roughness is
εr = 5× 10−3.

Our results show that the normal stress differences are very sensitive to friction,
especially for µd . 0.5, which is the typical range of friction coefficient for usual
materials. This means that friction could be at the origin of some discrepancies
between experiments since particles used in suspension studies are made of different
material and hence have different friction coefficients. It is also known that the
dynamic friction coefficient µd may depend upon normal contact force, slip velocity,
roughness, temperature, etc. which may also contribute to the overall discrepancy.

4.7. Continuum models
Particle-resolved simulations offer an inestimable insight into the detailed physics of
suspensions. However, they are too computationally expensive to apply for large-scale
industrial systems with complex geometries. Therefore, there have been attempts to
develop continuum models where the suspension is assimilated to an homogeneous
fluid with some constitutive laws for the particle stress Σp. A successful approach for
shear flows was proposed by Morris & Boulay (1999), referred to as the suspension
balance model (SBM), in which

Σp =−ηγ̇Q+ 2ηηrE (4.11)

with

Q= ηp
n

1 0 0
0 λ

p
2 0

0 0 λ
p
3

 (4.12)

where ηp
n is the normal stress viscosity and λp

2 and λp
3 are anisotropy parameters λp

2=
Σp

yy/Σ
p
xx and λp

3 =Σp
zz/Σ

p
xx. Superscript p is here added to recall that those quantities

are computed using the particle stress Σp.
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FIGURE 18. Anisotropy parameters λp
2 (a) and λp

3 (b) as a function of volume fraction φ
for friction coefficient µd = 0 and µd = 0.5. Non-dimensional roughness is εr = 5× 10−3.
Also shown are simulations from Yeo & Maxey (2010a) (µd = 0) and experiments from
Dbouk et al. (2013). The dotted lines are the values taken in the SBM model (Morris &
Boulay 1999).

Due to the lack of experimental data, Morris & Boulay (1999) proposed constant
anisotropy parameters λp

2 ≈ 0.8 and λp
3 ≈ 0.5. The SBM rests on the idea that the

overall behaviour of the suspension is driven by the particle stress Σp. However, the
exact nature of the particle stress to be included in the model is still controversial.
In particular, Lhuillier (2009) and Nott et al. (2011) demonstrated that the contact
contribution to the particle stress, namely Σ c, should be considered in the SBM model
instead of Σp. This possible flaw in the SBM might not impair the good prediction
capabilities of this model, for two reasons. First, the anisotropy parameters have been
chosen by Morris & Boulay (1999) to match experimental results on migration, so that
their exact nature is unimportant; and, second, we have shown that in dense frictional
suspensions, contact stress is the prevailing stress.

In this section, we present simulation results on the SBM parameters, i.e. normal
viscosity and anisotropy parameters. The main purpose is to study the role of
friction but also to analyse whether the particle stress or the contact stress should
be considered in the model. Direct measurements of SBM parameters are very
scarce (Dbouk et al. 2013) because the three normal stresses must be measured
simultaneously. Furthermore, strong theoretical arguments are still missing to
determine whether experiments actually measure the particle stress Σp (as defined
by Batchelor, see (4.1)), or the contact contribution Σ c to particle stress, or another
stress.

Our results for anisotropy parameters λp
2 =Σp

yy/Σ
p
xx and λp

3 =Σp
zz/Σ

p
xx are presented

in figure 18 for frictionless (µd = 0) as well as frictional particles µd = 0.5. For
frictionless particles, our simulations are close to Yeo & Maxey (2010a) and a
moderate linear increase in the anisotropy parameters is found. Friction has a modest
effect and induces a slight rise in λp

2 and λp
3. The obtained values remain close to

those proposed in the SBM model. However, computations suggest that λp
i may have
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FIGURE 19. Contact anisotropy parameters λc
2 (a) and λc

3 (b) as a function of volume
fraction φ for friction coefficient µd = 0 and µd = 0.5. Non-dimensional roughness is εr =
5× 10−3. Experiments are from Dbouk et al. (2013) (same as in figure 18). The dotted
lines are the values taken in the SBM model (Morris & Boulay 1999).

a φ-dependence. Anisotropy parameter λp
2 is experimentally noted to increase linearly

with φ but with values slightly above the predictions. Conversely, experimental λp
3 is

found to be relatively constant and close to 0.5, which is the value introduced by
Morris & Boulay (1999) in their model to represent the lack of migration in torsional
flows.

Figure 19 presents similar plots for the contact anisotropy parameters, defined as
λc

2 = Σ c
yy/Σ

c
xx and λc

3 = Σ c
zz/Σ

c
xx. Those parameters are expected to replace the usual

λ
p
i if the contact stress were to be considered instead of the particle stress. On the

figure are also shown the experimental results from Dbouk et al. (2013). They are the
same as on figure 18 since it is not clear whether they are representative of Σp or Σ c.
Interestingly, the agreement with experiments is clearly improved for both parameters.
In particular, there is an excellent match for λc

3 which is relatively constant and close
to 0.5 for all volume fractions. λc

2 is closer to experiments as well, although the
φ-dependence seems to differ since λc

2 decreases with φ. Just as for λp
i , the effect

of friction on λc
i is weak and the values remain close to those chosen by Morris

& Boulay (1999). The fact that λc
i parameters match experiments better than λp

i is
puzzling. We however believe it is too premature to conclude whether experiments
actually measure the contact particle stress.

The computed normal viscosity ηp
n and contact normal viscosity ηc

n are shown in
figure 20 together with experiments from Dbouk et al. (2013). Experimental data
are here again duplicated in both figure 20(a,b) due to the uncertainty on their
physical meaning. Simulation results from Yeo & Maxey (2010a) are also displayed
(available only for ηp

n and frictionless particles) and a good agreement is noted.
Unlike anisotropy parameters, normal viscosities ηp

n and ηc
n strongly increase with

friction; this was already the case for the shear viscosity ηr. Accounting for friction
(µd = 0.5) allows us to match closely the experimental data. This good agreement
with experiments is obtained for both usual normal viscosity ηp

n and contact normal
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FIGURE 20. Normal viscosity ηp
n (a) and contact normal viscosity ηc

n (b) as a function of
volume fraction φ for friction coefficient µd= 0 and µd= 0.5. Non-dimensional roughness
is εr = 5× 10−3. Also shown in (a) are simulations from Yeo & Maxey (2010a) (µd = 0).
Experiments are from Dbouk et al. (2013) and are the same in (a,b).

viscosity ηc
n. This is an additional evidence that friction must be considered for

relevant simulations of dense suspensions. The ratio ηc
n/η

p
n can be calculated from

those results and is found to be relatively constant for φ& 0.3 with ηc
n/η

p
n ≈ 0.8. This

again confirms that contact stress prevails in dense suspensions. Morris & Boulay
(1999) proposed an empirical law for the normal viscosity given as

ηp
n =Kn

(
φ/φm

1− φ/φm

)2

, (4.13)

with Kn = 0.75 and φm = 0.68. If this law were plotted in figure 20, it would
come close to frictionless simulation results, i.e. would significantly underestimate
experiments. A fit on our frictional (µd = 0.5) simulations for ηp

n gives Kn= 1.13 and
φm = 0.58.

The contact particle pressure can be recast in terms of ηc
n and reads Π c/ηγ̇ =ηc

n(1+
λc

2 + λc
3)/3, so that Π c ∝ ηc

n. From the results in figure 20(b), we can infer that Π c

rises significantly with friction, by a factor of two between µd = 0 and µd = 0.5 for
φ = 0.4. As pointed out in § 4.4, this increase in Π c is related to a higher level of
normal contact forces exerted on particles.

4.8. Global µ(Iv) rheology
In a recent work, Boyer, Guazzelli & Pouliquen (2011a) intended to unify suspension
and granular rheology. They showed that dense confined suspensions have a
viscoplastic behaviour similar to dry granular media that can be described using
a single viscous parameter Iv. This viscous number is defined as Iv = ηγ̇ /Pp where
Pp is the confining pressure. This parameter is the ratio between a flow strain time
γ̇ −1 and a viscous time η/Pp. It is analogous to the inertial number I used in granular
rheology I = aγ̇

√
ρp/Pp where ρp is the particle density. Using a pressure-imposed

cell, they found that the effective friction coefficient µ and the volume fraction φ
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Simulations (frictionless)
Simulations (frictional)

Boyer et al. (2011a)
Model

0.5

0.4

0.2
10–3 10–2 10–1 100 101

0.3

FIGURE 21. Volume fraction φ as a function of Iv for frictionless (◦) and frictional (�)
simulations. The solid line is Boyer et al.’s results as represented by (4.14) with φm =
0.585 and n= 0.5. The dashed line is for φm = 0.64 and n= 0.4.

were uniquely defined by Iv, i.e. µ = µ(Iv) and φ = φ(Iv) whatever the confining
pressure and for two different types of particles. However, only dense suspensions
(φ > 0.4) and consequently very small viscous numbers Iv were investigated.

Here, we intend to compare our simulations, for frictional as well as frictionless
particles, with their results. Our goal is to gauge the effect of friction as well as to
check whether their experimental observations still hold for large Iv regimes. In their
measurements, the confining pressure was prescribed by applying a normal force to
the suspension using a porous plate. In order to parallel experiments, this suggests
to consider the normal stress Σp

yy as the confining pressure Pp. To be more specific,
we actually have investigated Σ c

yy as well as Σp
yy and have found that results are

closer to Boyer et al.’s experiments if we consider Σ c
yy. This could again suggest that

actual measurements determine Σ c rather than Σp. If the viscous number is defined
as Iv = ηγ̇ /Σ c

yy, our simulation results are found to collapse onto a single φ = φ(Iv)
curve as expected from Boyer et al. (2011a). Of course, for high volume fractions,
considering Σ c

yy rather than Σp
yy brings little improvement since Σp

yy≈Σ c
yy as discussed

hereinbefore. Figure 21 shows a semilogarithmic plot of φ(Iv) for our computations
while the solid line is the model proposed by Boyer et al. (2011a):

φ = φm

1+ In
v

, (4.14)

with φm = 0.585 and n = 0.5. The dashed line is a fit of (4.14) on our results
and yields φm ≈ 0.64 and n ≈ 0.4. Our simulation results compile different volume
fractions, roughness, friction coefficients, etc. and reasonably collapse onto a single
curve, which confirms the scaling proposed by Boyer et al. (2011a). For low volume
fractions, a deviation between Boyer et al.’s results and our simulations is clearly
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15
Simulations (frictionless)
Simulations (frictional)

Boyer et al. (2011a)
Model

10

0
10–1 100 101

5

FIGURE 22. Friction coefficient µ = τ/Σ c
yy as a function of Iv for frictionless (◦) and

frictional suspension (�) simulations. Solid line is Boyer et al.’s results as represented by
(4.16) with φm = 0.585. Dashed line is (4.20) with φm = 0.64 and n= 0.4.

noted and grows with increasing Iv. Yet, let us recall that their experimental results
are obtained for dense suspensions with Iv in the range 10−6–10−1 while our results
are restricted to much higher viscous numbers 10−1–102. It is then questionable
whether their experimental law can be extended to very large Iv. Simulations show
that φm and n should be slightly adjusted in the semidilute case with φm ≈ 0.64 and
n≈ 0.4. Note that (4.14) is obtained considering the divergence of viscosity near the
maximum packing fraction and there is little chance that very dilute suspensions can
be modelled by laws obtained through the behaviour of suspensions near jamming.
The fact that our fitted value φm≈ 0.64 is close to the random-close packing fraction
is probably fortuitous.

The second constitutive law addresses the effective friction coefficient µ (not to be
mistaken with material dynamic friction coefficient µd) defined as

µ= τ/Pp, (4.15)

where τ is the shear stress τ = ηrηγ̇ . Here again, Pp is assimilated to Σ c
yy in our

simulations. Boyer et al. (2011a) proposed to model the friction law as the sum of
the hydrodynamic µh and contact µc contribution by

µ(Iv)=µ1 + µ2 −µ1

1+ I0/Iv︸ ︷︷ ︸
µc

+ Iv + 5
2
φmI1/2

v︸ ︷︷ ︸
µh

. (4.16)

Using granular rheology results, they prescribed µ1 = 0.32, µ2 = 0.7 and I0 = 0.005.
Figure 22 presents our simulations for the friction coefficient µ. Similarly, there is a

reasonable collapse of all our results onto a single curve. This is an interesting result
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10

5

0

2.0

1.5

1.0

0.5

0

Simulations (frictionless)
Simulations (frictional)
Boyer et al. (2011a)
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FIGURE 23. Hydrodynamic friction coefficient µh (a) and contact friction coefficient µc

(b) as a function of Iv for frictionless (◦) and frictional (�) simulations. The solid line is
(4.16) with φm = 0.585. The dashed line is (4.20) with φm = 0.64 and n= 0.4.

since computations span very different roughness or friction coefficient. Like the φ(Iv)
curve, the agreement with Boyer et al.’s results is good for small Iv but a deviation
is noted for dilute suspensions (large Iv). Again, this might be expected since their fit
was obtained for Iv smaller than 10−1. The dashed line represents an improved model
for dilute systems which is described hereafter.

In order to improve the friction law in dilute regimes, we first study separately the
hydrodynamic and contact contribution to µ, defined as

µh = ηhηγ̇

Σ c
yy

(4.17)

µc = ηcηγ̇

Σ c
yy

. (4.18)

This is straightforward in computations but complex from an experimental
viewpoint. Those two contributions can then be compared with the expressions
of µh and µc proposed in (4.16). Results are presented in figure 23(a,b) for the
hydrodynamic and contact parts, respectively. As seen in figure 23(b), the contact
contribution to µ shows a reasonable agreement with the model (4.16). Note that
because Iv is rather large (Iv� I0), equation (4.16) boils down to µc≈µ2= 0.7. This
good agreement is a striking result because the value of µ2 is taken from experiments
reported in dry granular media. This means that the contact contribution in dry
granular media and dilute suspensions is similar. Note that the contact contribution
is moderately dependent on friction (frictional particles would give a mere µ2 ≈ 0.8),
at least for this range of Iv. Simulation results are however in a too dilute regime to
provide a refined modelling of µc for a wide range of Iv, and only the high-Iv limit
µ2 can be inferred here.

For moderately dense suspensions, the most important contribution comes from
hydrodynamics as seen in figure 23(a) (note the difference in scale with figure 23(b)).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

50
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.507


Rheology of suspensions of frictional particles 545

Actually, (4.16) predicts µc ' µh for Iv ≈ 10−1. Therefore, for dilute systems it is
of prime importance to first improve the hydrodynamic contribution to µ. We have
previously mentioned that ηh ≈ η∞ seems a reasonable assumption in the semidilute
regime. The relation η∞(φ) can be readily inferred from simulations unequivocally.
Since it is obtained from a hard-sphere equilibrium non-touching configuration, it
does not involve contacts and is neither related to a distorted microstructure. Past
computations (Gallier et al. 2014) show that the high-frequency viscosity can be
correctly modelled using a Krieger–Dougherty law

η∞ =
(

1− φ

φ′m

)−[η]φ′m
(4.19)

with [η] ≈ 2.4 and φ′m ≈ 0.68. The approximation ηh ≈ η∞ is used, with η∞ given by
(4.19), and further combined with (4.14). This finally gives

µh = Iv

(
1− φm

φ′m

1
1+ In

v

)−[η]φ′m
. (4.20)

When Iv is large, and noting that φ′m ≈ φm, this expression becomes

µh = Iv + [η]φmI1−n
v (4.21)

which essentially gives back Boyer et al.’s model equation (4.16) with a slight change
in the exponent, i.e. 1− n= 0.6 instead of 0.5 in the original model.

The previous results in figures 21–23 display all of our available simulations in
order to illustrate that results do collapse onto a single master curve regardless of
particle characteristics (e.g. roughness or friction coefficient). Although the overall
collapse is reasonable, a closer look reveals some slight dispersions, meaning that an
effect of particle characteristics, although limited, does exist. Among the investigated
parameters (stiffness, roughness, friction), friction is found to play the most important
role. Figure 24 reconsiders the φ(Iv) results already presented in figure 21, but
only retains the frictionless and frictional (µd = 0.5) particles. The aforementioned
deviations are here more distinct and this suggests that, rigorously speaking, a unique
master curve is not likely to exist due to friction. This effect was not noted in
Boyer et al.’s measurements: first, because of the experimental difficulty to vary the
friction coefficient significantly; and, second, because they considered very small Iv
numbers where the role of friction might be different. Interestingly, figure 24 shows
that frictional simulations are closer to the experimental correlation, suggesting that
friction is operative in actual suspensions. This is especially true for high volume
fractions (small Iv). A separate fit on our µd = 0 and µd = 0.5 results gives φm≈ 0.69
and φm ≈ 0.62, respectively, i.e. the frictional φm is in better agreement with the
experimental φm ≈ 0.585.

Let us summarize this section. The overlapping range (in volume fraction) between
Boyer et al.’s experiments and our simulations is very small which hinders any
further validations in dense regimes. Yet, one of our primary purpose was to check
the existence of the master curves µ = µ(Iv) and φ = φ(Iv) and our results show
that this reasonably works. The experimental laws seem to be less accurate in dilute
regimes and we have therefore proposed a modified Boyer-like correlation to fit our
dilute results. Also, it seems that friction is responsible for some slight deviations
from a unique φ(Iv) curve; as a consequence, master curves might not exist, rigorously
speaking. Frictional simulations are much closer to experiments, substantiating a role
of friction in actual suspensions.
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Boyer et al. (2011a)

0.5

0.4

0.3

0.2
10–2 10–110–3 100 101

FIGURE 24. Volume fraction φ as a function of Iv for frictionless (◦) and frictional µd=
0.5 (�) particles. Non-dimensional roughness is εr = 5× 10−3. Solid line is Boyer et al.’s
experimental fit (4.14) with φm = 0.585 and n= 0.5.

5. Conclusions
In this paper, we have presented some three-dimensional numerical simulations of

concentrated suspensions in a Couette flow using a fictitious domain method. Our
numerical method includes a lubrication model as well as a contact model between
particles similar to DEM. This contact model assumes a Hertz law and includes
roughness and friction. Some validations on a pair of particles are presented in order
to demonstrate that our numerical model is adequate to deal with rough frictional
particles.

This work particularly focuses on the effect of friction and its role on rheological
properties, especially the relative viscosity ηr and the normal stress differences N1
and N2. A relatively new and significant result is that friction has a profound impact
on suspension rheology. Friction increases ηr and |N2| and decreases |N1|, in better
agreement with available experiments. In particular, the N2/N1 ratio is typically
approximately 3–4, which corroborates experiments from Zarraga et al. (2000). Yet,
we have not found quasi-zero or positive N1 as attested by some other measurements
(Couturier et al. 2011; Dbouk et al. 2013). Interestingly, friction is shown to act
mostly through the contact stress since the hydrodynamic stress is found to remain
unaffected by friction. Slight modifications of the microstructure in the compression
region are likely to explain the noted effects on N1 and N2. The systematic splitting
between hydrodynamic and contact contributions to the stress reveals that N1 and
N2 have not the same origin since N1 is mostly hydrodynamic while N2 arises from
contact. This also shows that the contact stress is the prevailing stress in dense
suspensions; this is particularly true for the normal stresses. The dependence on the
friction coefficient µd is investigated as well and is found to be significant in the
range 0–0.4.

The link with continuum models is also studied in the frame of the SBM. Some
important parameters of the model, such as the normal viscosity or the anisotropy
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parameters, are computed and are found to be in better agreement with experiments
when friction is accounted for. Similarly, our results are compared with recent
µ(Iv) global rheology and appear to collapse onto a single curve, as expected from
the works of Boyer et al. (2011a). Here, again, the agreement with experiments
is improved for frictional particles, meaning that friction is operative in actual
suspensions.
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