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Bifurcation of non-radial solutions from radial solutions of a semilinear elliptic
equation with negative exponent in expanding annuli of R

2 is studied. To obtain the
main results, we use a blow-up argument via the Morse index of the regular entire
solutions of the equation

∆u =
λ

u2
in R

2.

The main results of this paper can be seen as applications of the results obtained
recently for finite Morse index solutions of the equation

∆u =
λ

up
in R

N

with N � 2 and p > 0.
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1. Introduction

We study symmetry breaking of radial solutions to the equation

−∆v =
λ

(1 − v)2
in DR,

0 < v < 1 in DR,

v = 0 on ∂DR,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where DR = {x ∈ R
2 : R < |x| < R + 1} with R > 1, with λ a positive parameter.

We will obtain bifurcations of non-radial solutions from the radial solutions of (1.1).
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Problem (1.1) arises from the use of electrostatic forces to provide actuation,
which is a method of central importance in microelectromechanical systems and
in nanoelectromechanical systems; see, for example [21,25]. It has been studied by
many authors in recent years; see, for example, [3–5,7, 9–14,19] and the references
therein.

Let v be a solution to the problem

−∆v =
λ

(1 − v)2
in Ω,

0 < v < 1 in Ω,

v = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

where Ω ⊂ R
2, λ > 0. Denote by Qv the bilinear form associated with v, i.e.

Qv(φ, ψ) =
∫

Ω

∇φ · ∇ψ dx −
∫

Ω

2λ

(1 − v)3
φψ dx, φ, ψ ∈ H1

0 (Ω).

The Morse index at (λ, v), denoted by i(λ, v), is the maximal dimension of a sub-
space X ⊂ H1

0 (Ω) such that

Qv(ψ, ψ) < 0 ∀ψ ∈ X \ {0}.

This is equivalent to saying that i(λ, v) is the number of negative eigenvalues of
−∆−(2λ/(1−v)3)I computed with their multiplicity. If Ω = {x ∈ R

2 : a < |x| < b}
with b > a > 0 and v is a radial solution of (1.2), the radial Morse index at (λ, v),
irad(λ, v), is the number of negative eigenvalues of the problem

ψ′′ +
1
r
ψ′ +

2λ

(1 − v)3
ψ = −µψ, r ∈ (a, b),

ψ(a) = ψ(b) = 0.

For any fixed R > 1, variants of the arguments in the proof of theorem 1.1 of [6]
imply that there exists a λ∗

R ∈ (0,∞) such that problem (1.1) admits no radial
solutions for λ > λ∗

R, one and only one radial solution v∗
R for λ = λ∗

R, and exactly
two radial solutions 0 < vλ

R < v̄λ
R for 0 < λ < λ∗

R. It is well known that vλ
R

(0 < λ < λ∗
R) and v∗

R are stable, i.e. i(λ, vλ
R) = irad(λ, vλ

R) = 0 for λ ∈ (0, λ∗
R].

Moreover, v∗
R is the unique radial solution of (1.1) at which the first eigenvalue of

the linearized problem is 0. Note that v̄λ
R is radially non-degenerate for λ ∈ (0, λ∗

R).
To see this, we notice that if µ is an eigenvalue of the problem

−φ′′(r) − 1
r
φ′(r) − 2λ

(1 − v̄λ
R)3

φ = µφ, R < r < R + 1,

φ(R) = φ(R + 1) = 0,

then µ is simple. By the bifurcation theory on the critical point of odd multiplic-
ity [23, 24], if there is some µ = 0, it is actually a secondary bifurcation point,
i.e. there is a new radial solution branch of (1.1) coming from (λ, v̄λ

R) (note that the
nonlinearity of (1.1) is convex). This contradicts the fact that (1.1) has exactly two
radial solutions for λ ∈ (0, λ∗

R). It was also shown in [6] that the upper branch of
radial solutions of (1.1) has non-radially symmetric bifurcations at infinitely many
λN ∈ (0, λ∗

R).

https://doi.org/10.1017/S0308210516000512 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000512


Symmetry breaking 1217

Arguments similar to those in the proof of theorem 1.1 of [6] imply that a similar
result is also true for the problem

−v′′ =
λ

(1 − v)2
in (0, 1),

0 < v < 1 in (0, 1),

v(0) = 0 = v(1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.3)

i.e. there exists a λ∗
0 ∈ (0,∞) such that problem (1.3) admits no solutions for λ > λ∗

0,
one and only one solution v∗

0 for λ = λ∗
0, and exactly two solutions 0 < vλ

0 < v̄λ
0 for

0 < λ < λ∗
0. It is well known that vλ

0 (0 < λ < λ∗
0) and v∗

0 are stable and the Morse
index of v̄λ

0 (0 < λ < λ∗
0) is not less than 1. Moreover, v∗

0 is the unique solution of
(1.3) at which the first eigenvalue of the linearized problem is 0.

In this paper we are interested in studying the asymptotic behaviours of the
radial solutions and bifurcation of non-radial solutions from a radial solution of
(1.1) when R varies. To do this, we first need to know the asymptotic behaviour
of λ∗

R as R → ∞. The main results of this paper can then be expressed as the
following theorems.

Theorem 1.1. We have
lim

R→+∞
λ∗

R = λ∗
0. (1.4)

Moreover, for λ ∈ (0, λ∗
0), vλ

R(R + t) → vλ
0 (t) uniformly for t ∈ [0, 1] as R → ∞,

and v∗
R(R + t) → v∗

0(t) uniformly for t ∈ [0, 1] as R → ∞.

Theorem 1.2. For any fixed λ ∈ (0, λ∗
0) there exist R∗ � 1 and a sequence {Rj}

with Rj � R∗ and Rj → ∞ as j → ∞ such that the Morse index i(λ, v̄λ
Rj

) → ∞ as
j → ∞.

Theorem 1.3. For any fixed λ ∈ (0, λ∗
0) there exists a sequence {Rk} with Rk � R∗

and Rk → ∞ as k → ∞ such that a non-radial bifurcation occurs at (λ, Rk, v̄λ
Rk

).

Bifurcation and symmetry breaking of positive radial solutions of the equations
with ‘positive exponent’ in annular domains have been studied by many authors;
see, for example, [1, 8, 15–18] and references therein.

2. Preliminaries

In this section we obtain some results on the spectrum of the linearized operator
associated with a radial solution v of the problem

−∆v =
λ

(1 − v)2
in D,

0 < v < 1 in D,

v = 0 on ∂D,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where D = {x ∈ R
2 : α < |x| < β} (0 < α < β < ∞), λ > 0. Note that v depends

on λ. The linearized operator at v is defined as

Lv = −∆ − 2λ

(1 − v)3
I.
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We recall that a solution v to (2.1) is degenerate if the equation

−∆z − 2λ

(1 − v)3
z = 0 in D,

z = 0 on ∂D,

⎫⎬
⎭ (2.2)

admits non-trivial solutions.
In order to study the spectrum of the operator Lv, as in [1] we introduce the

operators L̃ : H2(D) ∩ H1
0 (D) → L2(D),

L̃v := |x|2
(

− ∆ − 2λ

(1 − v)3
I

)
, x ∈ D, (2.3)

and L̂ : H2(α, β) ∩ H1
0 (α, β) → L2(α, β),

L̂v(w) := r2
(

− w′′ − 1
r
w′ − 2λ

(1 − v)3
w

)
, r ∈ (α, β). (2.4)

Note that the eigenvalues of L̃v are given by

µ̃i = inf
W⊂H1

0 (D), dim W=i
max

w∈W, w �=0

∫
D

|∇w|2 −
∫

D
(2λ/(1 − v)3)w2∫

D
|x|−2w2 (2.5)

and the eigenvalues µ̂i of L̂v are obtained in the same way just replacing the space
H1

0 (D) by H1
0 (α, β).

The proofs of the following lemmas can be obtained by arguments similar to
those in the proofs of lemmas 2.1–2.3 in [8].

Lemma 2.1. Let v be a radial solution to (2.1). Then the Morse index i(λ, v) of v
is equal to the number of negative eigenvalues µ̃v of the operator L̃v.

Denoting by σ(·) the spectrum of a linear operator, we have the following lemma.

Lemma 2.2. Let v be a radial solution to (2.1). Then

σ(L̃v) = σ(L̂v) + σ(−∆S1).

Let us denote by λk, k = 0, 1, 2, . . . , the eigenvalues of the operator −∆S1 :=
−∂2/∂θ2 and by φk the corresponding eigenfunctions. It is known that λk = k2. Let
us denote by µ̂i the eigenvalues of L̂v and by wi the corresponding eigenfunctions
with ‖wi‖∞ = 1.

Lemma 2.3. Let v be a radial solution to (2.1) that is non-degenerate in the space
H1

0,rad(D). Then problem (2.2) has a non-trivial solution if and only if there exists
k � 1 such that

µ̂1 + λk = 0. (2.6)

Moreover, the solutions z to (2.2) can be written as

z(x) = w1(|x|)φk

(
x

|x|

)
,

where w1(r) is the first positive eigenfunction of L̂v and φk(θ) is the eigenfunction
of −∂2/∂θ2 relative to the eigenvalue λk.
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Remark 2.4. It follows from the lemmas above that the Morse index of L̃v depends
only on µ̂1.

3. Asymptotic behaviours and Morse index of the radial solutions

In this section we consider the asymptotic behaviours and Morse index of the radial
solutions of (1.1). Note that the domains DR are expanding annuli when R varies.
We will present the proof of theorems 1.1 and 1.2 in this section.

Lemma 3.1. Let 0 < a < 1
4 and Aa = {x : 1 − a < |x| < 1} ⊂ R

2. Then there is a
0 < λ∗

a < ∞ such that for λ ∈ (0, λ∗
a) the problem

−∆u =
λ

(1 − u)2
in Aa,

0 < u < 1 in Aa,

u = 0 on ∂Aa,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

admits exactly two radial solutions 0 < ua
λ < ūa

λ with maxAa ūa
λ → 1 as λ → 0+;

(3.1) admits exactly one radial solution ua
∗ for λ = λ∗

a; (3.1) does not admit a
solution for λ > λ∗

a. Moreover, λ∗
a is a decreasing function with respect to a and

lima→0+ λ∗
a = ∞.

Proof. For each fixed a ∈ (0, 1
4 ), it is known from [6] that

λ∗
a = sup{λ ∈ (0,∞) : (3.1) admits a minimal radial solution}

is bounded, and, for λ ∈ (0, λ∗
a), (3.1) admits exactly two radial solutions 0 < ua

λ <
ūa

λ with maxAa ūa
λ → 1 as λ → 0+; (3.1) admits exactly one radial solution ua

∗ for
λ = λ∗

a; (3.1) does not admit a solution in H1
0 (Aa) for λ > λ∗

a.
For any a1, a2 ∈ (0, 1

4 ), a2 > a1, we see that Aa1 ⊂ Aa2 and ua2
∗ is a supersolution

to the problem

−∆u =
λ∗

a2

(1 − u)2
in Aa1 ,

0 < u < 1 in Aa1 ,

u = 0 on ∂Aa1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

This implies that (3.1) with a = a1 admits a minimal radial solution for λ = λ∗
a2

(note that u ≡ 0 is a subsolution to (3.2)). Therefore, λ∗
a2

� λ∗
a1

. This shows that
λ∗

a is a decreasing function with respect to a, and lima→0+ λ∗
a exists and can be

+∞.
To show that lima→0+ λ∗

a = +∞, we first notice that meas(Aa) → 0 as a → 0+.
Thus, for any sufficiently small a > 0, we can choose a proper annulus A′

a that
contains Aa with meas(A′

a) → 0 as a → 0+ such that the first eigenfunction ϕa
1

with ‖ϕa
1‖∞ = 1 of the problem

−∆ϕ = σϕ in A′
a,

ϕ = 0 on ∂A′
a,

}
(3.3)

satisfies that 1
2 < ma � ϕa

1 � 1 on Aa. Indeed, for any sufficiently small a > 0,
there is a constant 1 � M � 1/2a, which is independent of a and will be determined
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later, such that 1 − aM � 1
2 (note that M can be chosen to be sufficiently large if

a is sufficiently small). Set A′
a = {x : 1 − aM < |x| < 1 + aM}. Then ϕ1 := ϕa

1 is a
positive radial solution of (3.3) and

−ϕ′′
1 − 1

r
ϕ′

1 = σ1ϕ1,

1 − aM < r < 1 + aM,

ϕ1(1 − aM) = ϕ1(1 + aM) = 0,

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

where σ1 := σa
1 is the first eigenvalue of (3.3) corresponding to the first eigenfunction

ϕ1. Set r = 1 + aρ and ϕ̃1(ρ) = ϕ1(r). Then we have that

−ϕ̃′′
1 − a

1 + aρ
ϕ̃′

1 = σ1a
2ϕ̃1,

−M < ρ < M,

ϕ̃1(−M) = ϕ̃1(M) = 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

By comparing σ1 with the first eigenvalue of the eigenvalue problem on the ball
BaM (x0), we obtain

−∆ϕ = σϕ in BaM (x0), ϕ = 0 on ∂BaM (x0),

where x0 = (1, 0), and we find that there is a constant C(M) such that

σ1a
2 � C(M),

since BaM (x0) ⊂ A′
a. We now can apply the Lq estimate and embedding theorems

to conclude that there is a sequence of a → 0+, say an, such that ϕ̃an
1 → ψ on

C1([−M, M ]) as n → ∞, where ψ(ρ) is the positive function satisfying

−ψ′′ = µψ on (−M, M), ψ(−M) = ψ(M) = 0,

with ‖ψ‖∞ = 1 and some constant µ ∈ [0, C(M)]. Clearly, µ = (π/2M)2 and
ψ(ρ) = cos(πρ/2M). By a compactness and uniqueness argument we have

ϕa
1(1 + aρ) → cos

(
πρ

2M

)
in C1([−M, M ]) and a2σa

1 →
(

π

2M

)2

as a → 0+.

Therefore, for sufficiently small a > 0 and 1 − aM/3 < r < 1 + aM/3, we have

ϕa
1(r) > 1

2 and
π2

8M2a2 < σa
1 <

π2

2M2a2 . (3.6)

Fix an M � 6. We have Aa ⊂ A′
a and ϕa

1 > 1
2 on Aa. Clearly, 1

3ϕa
1 is a supersolution

to (3.1) with λa = 4
27σa

1ma, where ma := infAa
ϕa

1 > 1/2. This implies that

λa � λ∗
a. (3.7)

From (3.6) we have σa
1 → +∞ as a → 0+. It follows that λa → +∞ as a → 0+,

and hence λ∗
a → +∞ as a → 0+ by (3.7).
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Lemma 3.2. Let DR = {x ∈ R
2 : R < |x| < R+1} with R > 1. There exists λ∗

R > 0
such that the problem

−∆v =
λ

(1 − v)2
in DR,

0 < v < 1 in DR,

v = 0 on ∂DR,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

admits no radial solutions for λ > λ∗
R, one and only one radial solution v∗

R for
λ = λ∗

R and exactly two radial solutions 0 < vλ
R < v̄λ

R for 0 < λ < λ∗
R. Moreover,

there exists C > 0 independent of R such that, for all R sufficiently large,

λ∗
R � C. (3.9)

Proof. We only need to show (3.9). Making the transformation

u(ρ) = v(r), ρ =
r

R + 1
,

we see that u satisfies the problem

−∆u =
λ(R + 1)2

(1 − u)2
in A1/(R+1),

0 < u < 1 in A1/(R+1),

u = 0 on ∂A1/(R+1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

It follows from lemma 3.1 that

λ∗
R(R + 1)2 = λ∗

1/(R+1). (3.11)

It is known from (3.7) and (3.6) that, for R > 0 sufficiently large, there exists C > 0
independent of R such that

λ∗
1/(R+1) � C(R + 1)2. (3.12)

Both (3.11) and (3.12) imply (3.9).

Let R∗ � 1 be a large number. For each R � R∗, we now study the linearized
problem at the solution (λ, vλ

R) of (3.8):

∆h +
2λ

(1 − v̄λ
R)3

h = −µh in DR,

h = 0 on ∂DR.

⎫⎬
⎭ (3.13)

It is known from Crandall and Rabinowitz [2] that the Morse index at (λ, v̄λ
R),

i.e. the number of negative eigenvalues of the problem (3.13), satisfies i(λ, v̄λ
R) � 1,

and irad(λ, v̄λ
R) � 1 for λ ∈ (0, λ∗

R), since f(s) = 1/(1 − s)2 is a convex function for
s ∈ (0, 1).

Let Λ∗ = infR�R∗ λ∗
R. It is known from (3.9) that Λ∗ � C.

Proof of theorem 1.1. Let σ1
R be the first eigenvalue of the problem

−∆φ = σ1
Rφ in DR,

φ = 0 on ∂DR.
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It is known from [18, lemma A.1] that σ1
R → π2 as R → ∞. Arguments similar to

those in the proof of theorem 3.1 of [6] imply that, for R sufficiently large,

λ∗
R � 4

27σ1
R � 8

27π2.

It is also known from lemma 3.2 that λ∗
R � C for some C > 0 independent of R.

Therefore, there is an R∗∗ > R∗ such that, for R � R∗∗,

C � λ∗
R � 8

27π2. (3.14)

For any λ ∈ (0, infR�R∗∗ λ∗
R], we know that i(λ, vR) = 0 for all R � R∗∗. Then

we claim that there is a C := C(λ) > 0, which is independent of R, such that, for
all R � R∗∗,

(1 − vR(x))−3/2 � C dist−1(x, ∂DR) ∀x ∈ DR. (3.15)

Note that we write vλ
R as vR. Equation (3.15) implies that

1 − vR(x) � C dist2/3(x, ∂DR) ∀x ∈ DR, (3.16)

which provides a uniform positive lower bound of 1 − vR and means that vR is a
classical solution.

Assume that (3.15) fails. Then there exist sequences {Rk}, {vk} ≡ {vRk
}, yk ∈

DRk
, such that vk solves the problem

−∆v =
λ

(1 − v)2
in DRk

,

0 < v < 1 in DRk
,

v = 0 on ∂DRk
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

and the functions

Mk(x) := (1 − vk(x))−3/2, k = 1, 2, . . . ,

satisfy
Mk(yk) > 2k dist−1(yk, ∂DRk

).

By a doubling lemma (see [22, lemma 5.1]), we see that there exists xk ∈ DRk
such

that
Mk(xk) � Mk(yk), Mk(xk) > 2k dist−1(xk, ∂DRk

)

and
Mk(z) � 2Mk(xk), |z − xk| � kM−1

k (xk).

Now we rescale 1 − vk by setting

wk(y) := τ
−2/3
k (1 − vk(xk + τky)), |y| � k with τk = M−1

k (xk).

The function wk solves

∆wk =
λ

w3
k

wk, |y| � k.

Moreover,
w

−3/2
k (0) = τkMk(xk) = 1

https://doi.org/10.1017/S0308210516000512 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000512


Symmetry breaking 1223

and
λ

w3
k(y)

� 4λ, |y| � k for all k.

By the Harnack inequality, there is a constant C, independent of k, such that

wk(y) � C, |y| � k/2.

Note that since the Morse index of i(λ, vk) = 0 for all k, we see that i(λ, wk) =
i(λ, vk) = 0 for all k. By using elliptic Lq estimates and standard embeddings,
we deduce that some subsequence of {wk} converges in C1

loc(R
2) to a (classical)

solution w of the equation

∆w =
λ

w2 in R
2.

Moreover, w−3/2(0) = 1 and i(λ, w) = 0 (see step 1 in the proof of theorem 1.2
below). On the other hand, it is known from [4, theorem 1.1] and [3, theorem 1.1]
that the Morse index of any regular entire solution z of the equation

∆z =
λ

zp
in R

N

is ∞, provided that p > pc(N) for some pc(N) given there. Therefore, we obtain
that i(λ, w) = ∞ (note that pc(2) = 0 if N = 2 and 2 > 0 in our case here). This
contradicts i(λ, w) = 0 obtained above and hence (3.15) and (3.16) hold.

We now use the blow-up argument again to get a lower bound for 1 − vR. We
have that there exists ε := ε(λ) > 0 independent of R such that, for all R � R∗∗,

1 − vR � ε in DR. (3.18)

If, on the contrary, there is a sequence {Rk} with Rk → ∞ as k → ∞ such
that 1 − vRk

(xk) → 0 as k → ∞, where vRk
(xk) = maxDRk

vRk
, then define

δk := 1 − vRk
(xk) (which tends to 0 as k → ∞), where vRk

(xk) = maxDRk
vRk

.
Setting

y = δ
−3/2
k (x − ηk), ṽk(y) = vRk

(x),

where ηk ∈ ∂DRk
such that dist(xk, ηk) = dist(xk, ∂DRk

), we see that ṽk satisfies
the problem

−∆y ṽk =
λδ3

k

(1 − ṽk)2
in Ωk,

ṽk = 0 on ∂Ωk,

where Ωk = {y = δ
−3/2
k (x − ηk) : x ∈ DRk

}. Moreover,

1 − ṽk = 1 − vRk
� δk in Ωk.

Therefore,
λδ3

k

(1 − ṽk)2
=

λδk

((1 − ṽk)/δk)2
� λδk.

On the other hand, it follows from (3.15) that

δ
−3/2
k dist(xk, ∂DRk

) � C as k → ∞.
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By using elliptic Lp estimates and standard embeddings, we deduce that some
subsequence of {ṽk} converges in C1

loc(Γ ) to a (classical) solution ṽ of

−∆y ṽ = 0 in Γ ,

ṽ = 0 on ∂Γ ,

where Γ is a half-space of R
2, which implies that ṽ ≡ 0. This contradicts the fact

that ṽ(ỹ) = 1 and dist(ỹ, 0) � C, where ỹ = limk→∞ δ
−3/2
k (xk − ηk). Thus, (3.18)

holds.
We now show that

vR(R + t) → v0(t) uniformly for t ∈ [0, 1] as R → ∞, (3.19)

where v0 is the minimal solution of the problem

−v′′
0 =

λ

(1 − v0)2
in (0, 1),

0 < v0 < 1 in (0, 1),

v0(0) = v0(1) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.20)

Set ṽR(t) = vR(t + R). Then, for all R � R∗∗,∫ 1

0

λṽR

(1 − ṽR)2
dt =

∫ R+1

R

λvR

(1 − vR)2
dr

� 1
R

∫ R+1

R

λrvR

(1 − vR)2
dr

� C, (3.21)

where C > 0 is independent of R (we use (3.18) here).
Multiplying (3.8) by vR and integrating, we see from (3.21) that∫ R+1

R

r(v′
R)2 dr =

∫ R+1

R

λrvR

(1 − vR)2
dr � CR.

This implies that

R

( ∫ 1

0
(ṽ′

R)2 dt

)
�

∫ R+1

R

r(v′
R)2 dr � CR,

and hence ∫ 1

0
(ṽ′

R)2 dt � C. (3.22)

Observe that ṽR satisfies the problem

−ṽ′′
R − 1

t + R
ṽ′

R =
λ

(1 − ṽR)2
in (0, 1),

0 < ṽR < 1 in (0, 1),

ṽR(0) = ṽR(1) = 0.
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Therefore, since, by (3.22), ṽR is bounded in H1
0 (0, 1), it is also bounded in C1(0, 1).

Consequently, there is a sequence {Rk} with Rk → ∞ as k → ∞ such that ṽRk
→ v̂0

uniformly for t ∈ [0, 1] as k → ∞, where v̂0 satisfies (3.20). Let us show that v̂0 = v0.
We know that

i(λ, vRk
) = irad(λ, vRk

) = i(λ, ṽRk
) = irad(λ, ṽRk

) = 0 for all Rk � R∗∗.

Then irad(λ, v̂0) = 0 (note that i(λ, v̂0) = irad(λ, v̂0)), and hence v̂0 ≡ v0. By a
compact and uniqueness argument we have that vR(R + t) → v0(t) uniformly for
t ∈ [0, 1] as R → ∞. This also implies that minR�R∗∗ λ∗

R � λ∗
0.

We now show (1.4). If, on the contrary, there is a sequence {Rk} with Rk → ∞
as k → ∞ such that λ∗

Rk
→ λ̂ �= λ∗

0 as k → ∞, then it follows from (3.14)
that 0 < λ̂ < ∞. Arguments similar to those in the proof of (3.19) imply that
v∗

Rk
(Rk + t) → v̂(t) uniformly for t ∈ [0, 1] as k → ∞, where v̂ solves the ordinary

differential equation

−v̂′′ =
λ̂

(1 − v̂)2
in (0, 1),

0 < v̂ < 1 in (0, 1),

v̂(0) = v̂(1) = 0.

On the other hand, we know that for all k the first eigenvalues µ1(v∗
Rk

) of the
problem

−φ′′ − 1
r
φ′ −

2λ∗
Rk

(1 − v∗
Rk

)3
φ = µφ in (Rk, Rk + 1),

φ(Rk) = φ(Rk + 1) = 0,

equal 0 for all k. By the continuity of µ, we easily see that 0 = µ1(v∗
Rk

) = µ1(ṽ∗
Rk

) →
µ1(v̂) as k → ∞, where ṽ∗

Rk
(t) = v∗

Rk
(R+ t), and µ1(v̂) is the first eigenvalue of the

problem

−ψ′′ − 2λ̂

(1 − v̂)3
ψ = µψ in (0, 1),

ψ(0) = ψ(1) = 0.

Therefore, λ̂ = λ∗
0 and v̂ ≡ v∗

0 . This contradicts our assumption that λ̂ �= λ∗
0, and

hence (1.4) holds and for any λ ∈ (0, λ∗
0), vR(R + t) → v0(t) uniformly for t ∈ [0, 1]

as R → ∞, v∗
R(R + t) → v∗

0(t) uniformly for t ∈ [0, 1] as R → ∞. It follows from
(3.11) that

lim
R→∞

λ∗
1/(R+1)

(R + 1)2
= λ∗

0. (3.23)

This also implies that
lim

a→0+
a2λ∗

a = λ∗
0, (3.24)

where λ∗
a is as in lemma 3.1.

Proof of theorem 1.2. Since λ ∈ (0, λ∗
0) and limR→∞ λ∗

R = λ∗
0, we can choose R∗∗

(given above) such that λ ∈ (0, λ∗
R), provided that R > R∗∗.
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Suppose that the conclusion of theorem 1.2 does not hold; we see that there exists
an integer θ � 1 independent of R such that

i(λ, v̄λ
R) � θ ∀R � R∗∗. (3.25)

For convenience, we write v̄λ
R as v̄R in the following.

The proof can be divided into several steps.

Step 1. We show that there is a C > 0 independent of R such that, for any
R � R∗∗,

(1 − v̄R(x))−3/2 � C dist−1(x, ∂DR) ∀x ∈ DR. (3.26)

Equation (3.26) implies that

1 − v̄R(x) � C dist2/3(x, ∂DR) ∀x ∈ DR, (3.27)

which provides a uniform positive lower bound of 1 − v̄R and means that v̄R is a
classical solution of the problem

−∆v =
λ

(1 − v)2
in DR,

0 < v < 1 in DR,

v = 0 on ∂DR.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.28)

The proof of (3.26) is similar to that of (3.15) provided that (3.25) holds. Indeed,
we use the blow-up argument as in the proof of (3.15) and (3.18). If we define
M̃k(x) := (1 − v̄k(x))−3/2 and

w̃k(y) := τ̃
−2/3
k (1 − v̄k(xk + τ̃ky)), |y| � k with τ̃k = M̃−1

k (xk),

we see that w̃k solves

∆w̃k =
λ

w̃2
k

, |y| � k.

Moreover,
w̃

−3/2
k (0) = τ̃kM̃k(xk) = 1

and
w̃

−3/2
k (y) � 2, |y| � k.

On the other hand, we see that for the first eigenvalue we have

µ
(k)
1 = inf

ϕ∈H1
0 (DRk

), ϕ �≡0

∫
DRk

[|∇xϕ|2 − (2λ/(1 − v̄k)3)ϕ2] dx∫
DRk

ϕ2 dx

= inf
ψ∈H1

0 (D̃Rk
), ψ �≡0

∫
D̃Rk

[|∇yψ|2 − (2λ/w̃3
k)ψ2] dy

τ̃2
k

∫
D̃Rk

ψ2 dy
,

where D̃Rk
= {y : xk + τ̃ky ∈ DRk

}, ψ(y) := ϕ(x) and x = xk + τ̃ky. This implies
that

µ̃
(k)
1 = τ̃2

kµ
(k)
1 ,
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where

µ̃
(k)
1 = inf

ψ∈H1
0 (D̃Rk

), ψ �≡0

∫
D̃Rk

[|∇yψ|2 − (2λ/w̃3
k)ψ2] dy∫

D̃Rk

ψ2 dy
.

By the fact that

µ
(k)
j = inf

A⊂H1
0 (DRk

), dim A=j
max

ϕ∈A, ϕ �=0

∫
DRk

[|∇xϕ|2 − (2λ/(1 − v̄k)3)ϕ2] dx∫
DRk

ϕ2 dx
,

we also see that
µ̃

(k)
j = τ̃2

kµ
(k)
j ,

where

µ̃
(k)
j = inf

B⊂H1
0 (D̃Rk

), dim B=j
max

ψ∈B, ψ �=0

∫
D̃Rk

[|∇yψ|2 − (2λ/w̃3
k)ψ2] dy∫

D̃Rk

ψ2 dy
.

(Note that τ̃2
k → 0 as k → ∞.) This and (3.25) imply that

i(λ, w̃k) � θ. (3.29)

Therefore, the maximal dimension of all subspaces X of C1
0 (D̃Rk

) such that∫
D̃Rk

[
|∇yψ|2 − 2λ

w̃3
k

ψ2
]

dy < 0 ∀ψ ∈ X \ {0}

is not bigger than θ.
On the other hand, arguments similar to those in the proof of (3.15) imply that

{w̃k} converges in C1
loc(R

2) to a (classical) solution w̃ of the equation

∆w̃ =
λ

w̃2 in R
2.

Moreover, w̃−3/2(0) = 1. It follows from (3.29) that the maximal dimension of all
subspaces X of C1

0 (R2) such that∫
R2

[
|∇yψ|2 − 2λ

w̃3 ψ2
]

dy < 0 ∀ψ ∈ X \ {0}

is not bigger than θ, and thus
i(λ, w̃) � θ. (3.30)

It is known from [4, theorem 1.1] and [3, theorem 1.1] that i(λ, w̃) = ∞ (note that
pc(2) = 0 if N = 2). This contradicts (3.30).

Using (3.27) and arguments similar to those in the proof of (3.18), we have that
there exists ε̄ := ε(λ) > 0 such that, for R > R∗∗,

1 − v̄R � ε̄ > 0 in DR.
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Step 2. We show that v̄R(R+ t) → vλ
0 (t) uniformly for t ∈ [0, 1] as R → ∞, where

v̄λ
0 (t) is the solution on the upper solution branch of the problem

−v′′
0 =

λ

(1 − v0)2
in (0, 1),

0 < v0 < 1 in (0, 1),

v0(0) = v0(1) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.31)

The proof of this step is similar to that of (3.19). To guarantee that the limit is
v̄λ
0 , we need to notice that irad(λ, v̄R) � 1 for all R � R∗∗.

Step 3. We show that if µ̂1(R) is the first eigenvalue of the operator L̂R defined
by L̂R : H2(R, R + 1) ∩ H1

0 (R, R + 1) → L2(R, R + 1),

L̂R(w) = r2
(

− w′′ − 1
r
w′ − 2λ

(1 − v̄R)3
w

)
, r ∈ (R, R + 1),

then

µ̂1(R) = σ1R
2 + o(R2) as R → ∞, (3.32)

where σ1 < 0 is the smallest eigenvalue for the problem

−w′′ − 2λ

(1 − v̄λ
0 )3

w = σw in (0, 1),

w(0) = w(1) = 0,

⎫⎬
⎭ (3.33)

and v̄λ
0 is as in step 2.

The eigenvalue µ̂1(R) can be characterized as

µ̂1(R) = inf
w∈H1

0 (R,R+1), w �≡0

∫ R+1
R

r(w′)2 dr −
∫ R+1

R
2λr(1 − v̄R)−3w2 dr∫ R+1

R
r−1w2 dr

. (3.34)

To estimate µ̂1(R), let us consider a function φ̂ ∈ C∞
0 (0, 1), φ̂ � 0, and set φ(r) =

φ̂(r − R). Then

µ̂1(R) �
∫ R+1

R
r(φ′)2 dr −

∫ R+1
R

2λr(1 − v̄R)−3φ2 dr∫ R+1
R

r−1φ2 dr

=

∫ 1
0 (R + t)(φ̂′)2 dt −

∫ 1
0 2λ(R + t)(1 − ṽR)−3φ̂2 dt∫ 1

0 (R + t)−1φ̂2 dt

� CR2. (3.35)

In order to get the reverse inequality, let us denote by w1,R the eigenfunction
associated with µ̂1(R) with ‖w1,R‖L∞(DR) = 1. Inserting w1,R into (3.34), we have,
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for a positive constant C > 0,

µ̂1(R) =

∫ R+1
R

r(w′
1,R)2 dr −

∫ R+1
R

2λr(1 − v̄R)−3w2
1,R dr∫ R+1

R
r−1w2

1,R dr

�
−2λK

∫ R+1
R

rw2
1,R dr∫ R+1

R
r−1w2

1,R dr

� −CR2 (3.36)

since we know from step 1 that (1 − v̄R)−3 � K.
Now we define w̃1,R(t) = w1,R(t + R) in (0, 1), and see that w̃1,R satisfies the

problem

−w̃′′
1,R − 1

t + R
w̃′

1,R − 2λ

(1 − ṽR)3
w̃1,R = µ̂1(R)

w̃1,R

(t + R)2
in (0, 1),

w̃1,R(0) = w̃1,R(1) = 0.

⎫⎬
⎭ (3.37)

It is known from (3.35) and (3.36) that |µ̂1(R)/R2| � C for R sufficiently large.
Since ‖w̃1,R‖∞ = 1, the regularity argument as above implies that there is a
sequence {Rk} with Rk → ∞ as k → ∞ such that w̃1,Rk

→ ξ1 � 0 uniformly
in [0, 1] as k → ∞, and ξ1 with ‖ξ1‖L∞(0,1) = 1 is a solution to the problem

−ξ′′
1 − 2λ

(1 − v̄λ
0 )3

ξ1 = σ1ξ1 in (0, 1),

ξ1(0) = ξ1(1) = 0,

⎫⎬
⎭ (3.38)

where v̄λ
0 is as in step 2 and σ1 = limk→∞(µ̂1(Rk)/R2

k). The strong maximum
principle implies that ξ1 > 0 in (0, 1). Hence, σ1 is the first eigenvalue of problem
(3.33) and obviously σ1 < 0; ξ1 is the corresponding eigenfunction. The uniqueness
of the first eigenvalue and corresponding eigenfunction of (3.38) implies that

lim
R→∞

µ̂1(R)
R2 = σ < 0, w̃1,R → ξ1 uniformly in [0, 1] as R → ∞.

Then we have, with a change of variable, from (3.36),

µ̂1(R) =

∫ 1
0 (t + R)(w̃′

1,R)2 dt −
∫ 1
0 2λ(t + R)(1 − ṽR)−3w̃2

1,R dt∫ R+1
R

(t + R)−1w̃2
1,R dt

,

and hence, passing to the limit, as R → ∞,

µ̂1(R)
R2 =

∫ 1
0 (ξ′

1)
2 dt − 2λ

∫ 1
0 (1 − v̄λ

0 )−3ξ2
1 dt∫ 1

0 ξ2
1 dt

+ o(1).

From this and (3.38) we obtain (3.32).

Step 4. We complete the proof of this theorem.
It is known from lemma 2.2 that µ̃(R, k) := µ̂1(R)+k2, k = 0, 1, 2, . . . , are eigen-

values of the operator L̃v̄λ
R
. Note that v̄λ

R is non-degenerate in the space H1
0,rad(DR).
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Then, for any large R, µ̃(R, k) < 0 for k = 0, 1, . . . , [
√

−µ̂1(R)], where [a] is the
integer part of a. It follows from step 3 that there are infinitely many negative
µ̃(R, k) as R → ∞. Therefore, lemma 2.1 implies that

i(λ, v̄R) → +∞ as R → ∞.

This contradicts (3.25) and completes the proof of this theorem.

Corollary 3.3. There exists a sequence {Rk} with Rk � R∗∗ and Rk → +∞ as
k → ∞ such that, for each k, v̄λ

Rk
is degenerate.

Proof. It is known from theorem 1.2 that there exists a sequence {Rj} with Rj �
R∗∗ and Rj → ∞ such that i(λ, v̄λ

Rj
) → ∞ as j → ∞. We can choose a subsequence

of {Rj} (still denoted by {Rj}) such that, for any j,

i(λ, v̄λ
Rj

) < i(λ, v̄λ
Rj+1

).

By the continuity of the eigenvalues of Lv̄λ
R

with respect to R, we easily see that
for each j there exists k = k(j) such that Rk ∈ [Rj , Rj+1] and v̄λ

Rk
is degenerate.

It is known from lemma 2.3 that Rk can be obtained from µ̂1(Rk) + λk = 0. This
implies our conclusion.

4. Bifurcation results

In this section we obtain the non-radial bifurcation from the radial solution v̄R by
showing that there is a change in the Leray–Schauder degree of certain associated
maps as R crosses Rk, where Rk is given in corollary 3.3. The main ideas are similar
to those in [8].

Let α, β ∈ R such that 0 < α < β, and let D := {x ∈ R
2, α < |x| < β}. For any

R ∈ (1,∞), let
hR : DR → D

be the diffeomorphism that maps DR into D, i.e.

hR(r, θ) = (α + (β − α)(r − R), θ).

This map hR induces the map

h∗
R : C0

0 (DR) → C0
0 (D̄)

defined by h∗
R(v)(x) = v(h−1

R (x)) for x ∈ D.
Then our (1.1) in DR becomes

LRw =
λ

(1 − w)2
in D,

0 < w < 1 in D,

w = 0 on ∂D,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where LR(w) = h∗
R(−∆((h∗

R)−1(w))). Finally, we can rewrite (4.1) as w = TR(w),
where TR(w) = L−1

R (λ/(1 − w)2). It is easy to see that, for any R > R∗∗, TR is
well defined from the set E = {w ∈ C0

0 (D̄); 0 < w < 1 in D} into C0
0 (D̄) and is a

compact operator.
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If F is an open bounded set in E such that I − TR �= 0 on ∂F , then the Leray–
Schauder degree for the map I − TR, i.e. deg(I − TR,F , 0) is well defined.

Applying [20, proposition 2, p. 243], we have that

deg(I − TR,F , 0) = deg(I − PR, (h∗
R)−1(F), 0), (4.2)

where PR(u) = (−∆)−1(λ/(1 − u)2) and is defined in ER := {u ∈ C0
0 (DR) : 0 < u <

1 in DR}.
The operator PR is differentiable at v̄R, and, as we have seen before, the operator

I − P ′
R(v̄R) is invertible if R �= Rk and, near Rk, Rk > R∗∗ is as in corollary 3.3.

Hence, we have that, for any R �= Rk and near Rk,

deg(I − PR, (h∗
R)−1(F), 0) = deg(I − P ′

R(v̄R), (h∗
R)−1(F), 0) = (−1)i(λ,v̄R) (4.3)

if (h∗
R)−1(F) is a neighbourhood of v̄R in ER such that v̄R is the only solution of

(I − PR)(u) = 0 in the closure of (h∗
R)−1(F).

Proof of theorem 1.3. We consider the set HR of C0(DR) given by

HR = {u ∈ ER, u(x1, x2) = u(−x1, x2)}.

It follows from [26, proposition 5.2] that for any i the eigenspace Vi of the operator
−∆S1 , spanned by the eigenfunctions φi(x) corresponding to the eigenvalue λi,
which are invariant for x1, i.e. φi(x1, x2) = φi(−x1, x2), is one dimensional. Thus,
the Morse index i(λ, v̄R) in HR grows by 1 when R crosses Rk. Then i(λ, v̄Rk+ε) =
i(λ, v̄Rk−ε) + 1 if ε is small enough.

Then for any positive, small enough ε, letting wR = h∗
R(v̄R), we obtain from (4.2)

and (4.3) that

deg(I − TRk−ε,FRk−ε, 0) = − deg(I − TRk+ε,FRk+ε, 0)

if FR is a neighbourhood of wR in E and the functions in FR are invariant for
x1. This implies that there is a change in the degree at the point (λ, Rk, wRk

) and
then bifurcation must occur. Moreover, the bifurcating solutions are regular and
non-radial, since for each R and λ, (1.1) admits exactly two radial solutions vR and
v̄R. This completes the proof.
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