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Abstract

Second-harmonic generation of the relativistic self-focused chirped laser pulse in plasma has
been studied with the exponential plasma density ramp profile in the presence of a planar
magnetostatic wiggler. It is evident that the exponential plasma density ramp is helpful in
enhancing second-harmonic generation as, with the introduction of the exponential plasma
density ramp, self-focusing becomes stronger and hence, it leads to enhance the harmonic
generation of the second order in the plasma. Also, it is observed that the efficiency of sec-
ond-harmonic generation enhances significantly with an increase in the value of the chirp
parameter. Further, the magnetostatic wiggler helps in enhancing the harmonic generation
of the second order. This is due to the fact that dynamics of the oscillating electrons is altered
due to the Lorentz force which, in turn, modifies the plasma wave and, hence, results in the
efficient second-harmonic generation.

Introduction

The interaction of the high-power laser beams with plasma gives rise to a number of non-
linear effects (Ganeev et al., 2012). Some of these non-linear phenomena includes THz radi-
ation generation (Kumar et al., 2011; Vij et al., 2019), wakefield acceleration (Ibbotson et al.,
2010), self-focusing (Aggarwal et al., 2016; Kumar et al., 2018; Thakur et al., 2019), and har-
monic generation (Tripathi et al., 2009; Vij et al., 2017; Sharma et al., 2019). The phenomenon
of harmonic generation is noteworthy in terms of laser–plasma interaction and has brought
remarkable notice due to its various applications. Over the last few years, a great progress
in the laser technology has been witnessed in which intensity of the laser beam has been
amplified progressively. As the electric field of such lasers is relatively high and this forces elec-
trons in the plasma channel to oscillate with the relativistic energy.

A Gaussian laser expels the electrons radially away from the central axis which is referred to
as the electron cavitation. This charge displacement because of the expelled electrons removes
ions and forms a channel having density depression on the axis. Hence, under the influence of
ultra-intense Gaussian laser pulse, the plasma channel gets depleted from the region of high
field to low field, which results in the establishment of the transverse density gradient.
Sharma and Sharma (2012) investigated the second-harmonic generation in the presence of
the static magnetic field with the extended paraxial ray approximation. They considered
both the relativistic and ponderomotive non-linearity simultaneously and concluded that
when a laser beam incident on the inhomogeneous magneto-plasma, a density gradient is cre-
ated which is parallel to a static magnetic field. Further, the plasma wave at the pump wave
frequency is caused which leads to the generation of second harmonic.

In most of the laser interactions with homogeneous plasma, it is observed that odd har-
monics with laser frequency are produced (Mori et al., 1993; Zeng et al., 1996). However,
in the presence of density gradient, second harmonics have been noticed. This is because of
the laser-induced quiver motion of the electrons across the density gradient, which, in turn,
gives rise to the perturbation in electron density. Density perturbation couples with quiver
motion of electrons, which produces the source current at the second-harmonic frequency.

In this paper, for the first time, we point out the probability of the second-harmonic gen-
eration when the laser beam propagates in the homogeneous plasma under the influence of a
planar magnetostatic wiggler with the exponential density profile. With the increase in the
value of the positive chirp parameter, the second-harmonic generation enhances. Influence
of cyclotron frequency associated with the plasma electrons is also seen in the enhancement
of second-harmonic generation. It is due to the fact that dynamics of the oscillating electrons
is altered due to the Lorentz force which, in turn, modifies the plasma wave and, hence, results
in the efficient second-harmonic generation. As we know that the exponential plasma density
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ramp is crucial for stronger self-focusing which further enhances
the second-harmonic generation. In addition to this chirped pulse
laser is considered as it increases the laser–plasma interaction for
a longer duration. Also, wiggler magnetic field is introduced here,
as it provides the necessary phase-matching condition. Therefore,
the combined influence of exponential density ramp, wiggler
magnetic field, and chirped pulse laser are considered here for
an efficient second-harmonic generation. The construction of
the manuscript is as follows: In the section “Theoretical consider-
ations”, non-linear current density and the dispersion relations for
the fundamental/pump and the second-harmonic frequencies
have been observed. In the section “Second-harmonic genera-
tion”, the normalized wave amplitude of second harmonic and
its conversion efficiency are derived. Numerical results and con-
clusions are given in the sections “Result and discussion” and
“Conclusion”.

Theoretical considerations

Consider a linearly polarized chirped pulse laser propagating
along the z direction under the influence of planar magnetostatic
wiggler field �Bw. The wiggler field and vector potential of chirped
pulse laser can be written as follows (Esmaeildoost et al., 2017):

�Bw = B0(êy sin(kwz)), (1)

�A = êxA(z, t) sin(k1z − v1)t, (2)

where B0 is the amplitude of the magnetic field, kw = 2π/λw repre-
sents the wave number of the wiggler field, ω1 = ω0(1 + b(ω0t−
ω0z/c)) is the frequency of chirped pulse laser, b represents the
chirp parameter, c represents the velocity of the light in the vac-
uum, ω0 is the laser frequency, k1 = ω0(1 + b(ω0t− ω0z/c))μ1/c is
the propagation vectors at frequencies ω0, and μ1 is the refractive
index for fundamental wave. Further, following Jha et al. (2007),
penetration of laser beam through the transversely magnetized
plasma generates transverse current density at the frequency
2ω0 and acts as the source for the generation of second harmonic.
As a result, for frequencies ω0 and 2ω0, the vector potential can be
given as follows:

�A1 = êxA1 sin(k1z − v1t), (3)

�A2 = êxA2 sin (k2z − 2v1t), (4)

where A1 and A2 are amplitudes of the laser beam and its second
harmonic, respectively, k2 = 2ω0(1 + b(ω0t− ω0z/c))μ2/c is the
propagation vector at the frequency 2ω0, and μ2 is the refractive
index for the second-harmonic wave.

Further, using Maxwell’s equations, we obtain the wave equa-
tion as follows:

−∇2 + 1
c2

∂2

∂t2

( )
A = 4p

c
J, (5)

J = −neeve, (6)

where J is the current density of plasma electrons, ne is the elec-
tron density, e is the magnitude of electron charge, and ve repre-
sents the electron velocity.

Also, the relativistic equation of motion for the electrons is
written as follows:

∂(gm0eve)
dt

= −e E + 1
c
ve × Bw

[ ]
− 1

ne
∇pe, (7)

and the continuity equation is

∂n
∂t

+ �∇.(ne�ve) = 0, (8)

where pe represents the pressure of electrons, and m0e is electron’s
rest mass. Further, the continuity equation is
∂n/∂t + �∇.(ne�ve) = 0, where g = ��������������

1+ p2e/m
2
0ec2

√
is the relativis-

tic factor. By substituting Eq. (1) into Eq. (7), velocity in x- and
z-directions are given by ∂v(1)x /∂t = −e E1/m0e + v(1)z vw sin(kwz)
and ∂v(1)z /∂t = −e E(1)

z /m0e − v(1)x vw sin(kwz), respectively,
where E(1)

z , E1 = −∂A1/∂t,vw = eB0/m0ec are first-order pertur-
bation for the polarization field, the amplitude of the laser field,
and the wiggler frequency, respectively. Further, first-order trans-
verse and longitudinal velocities can be given as follows:

v(1)x = ca1(v2
0 − v2

p)
(v2

0 − v2
p − v2

wsin
2(kwz))

× sin(kwz) cos(k1z − v0(1+ b(v0t − v0z/c))t),
(9)

v(1)z =− ca1vwv0

(v2
0 − v2

p − v2
wsin

2(kwz))
× sin(kwz) cos(k1z − v0(1+ b(v0t − v0z/c))t),

(10)

where a1 = eA1/mcω0 is the normalized amplitude of the pump
wave, ωP = (4πn(z′)e2/m0e)

1/2 represents plasma frequency,
vp0 = 4pn0e2/m0e, z′ = ω0z/c is the normalized distance of prop-
agation, k′w = kwc/v is the normalized wiggler wave number.
The plasma density profile is considered as n(z′) = n0exp(z′/d),
where d is the adjustable constant, n0 is the equilibrium electron
density, and e is the charge of the electron.

J(1)x (v0) =
a1en0(v2

0 − v2
p0 exp(z′/d))

(v2
0 − v2

p0 exp (z′/d)− v2
wsin

2(k′wz′))
× sin(k′wz′) sin(k1z − v0(1+ b(v0t − z′))t).

(11)

By using Eqs (5) and (11), non-linear dispersion relation can
be obtained as follows:

c2k21 = v2
0 −

(v2
0 − v2

p0 exp (z
′/d))v2

p0 exp (z
′/d)

(v2
0 − v2

p0 exp (z′/d)− v2
wsin

2(k′wz′)) . (12)

Further, in the absence of the wiggler field, Eq. (12) reduces to
dispersion relation in the linear limit. The refractive index
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associated with the frequency ω0 can be written as follows:

n1 = 1− (v2
0 − v2

p0 exp (z
′/d))v2

p0 exp (z
′/d)

v2
0(v2

0 − v2
p0 exp (z′/d)− v2

wsin
2(k′wz′))

( )1/2

. (13)

Similarly, for the frequency 2ω0, we have

n2 = 1− (v2
0 − v2

p0 exp (z
′/d))v2

p0 exp (z
′/d)

4v2
0(4v2

0 − v2
p0 exp (z′/d)− v2

wsin
2(k′wz′))

( )1/2

.

(14)

By employing perturbation theory and Eq. (8), we can derive
the first-order plasma electron density as follows:

n(1) = a1cn0k1vw sin(k′wz′) cos(k1z − v0(1+ b(v0t − z′))t)
(v2

0 − v2
p0 exp (z′/d)− v2

wsin
2(k′wz′)) .

(15)

In a similar way, the second-order velocity component can be
given as follows:

v(2)x = c2a21k1vw[(v2
0 − v2

p)2 − (v2
wsin

2(kwz))((4v2
0 − v2

p))]
2(v2

0 − v2
p − v2

wsin
2(kwz))(4v2

0 − v2
p − v2

wsin
2(kwz))

× sin(kwz) sin 2(k1z − v0(1+ b(v0t − v0z/c))t).
(16)

Following the same steps to calculate the first order n(1), the
second-order plasma electron density can be given as follows:

n(2) = −

a21c
2n0k21[(v2

0 − v2
p0 exp (z

′/d))2−
v2
w sin

2(k′wz′)(4v2
0 − v2

p0 exp (z
′/d))]

(v2
0 − v2

p0 exp (z
′/d)− v2

w sin
2(k′wz′))2(4v2

0

−v2
p0 exp (z

′/d)− v2
w sin

2(k′wz′))

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

× cos 2(k1z − v0(1+ b(v0t − z′)).

(17)

As we know harmonics are driven by the non-linear current den-
sity; hence, we can derive second-order equations of the non-
linear current density for second harmonic by using
J(2)x = −e(n0v(2)x + n(1)v(1)x ) and Eq. (16). As a result, one can have

J (2)x (2v0) =

3a21c
2en0k1vwv

2
0(v2

0

−v2
p0 exp (z

′/d)+ v2
w sin

2(k′wz′))
2(v2

0 − v2
p0 exp (z

′/d)− v2
w sin

2(k′wz′))
×(4v2

0 − v2
p0 exp (z

′/d)− v2
w sin

2(k′wz′))

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

× sin(k′wz′) sin 2(k1z − v0(1+ b(v0t − z′))t).

(18)

Second-harmonic generation

By using Eqs (5) and (18), one can derive the expression for the
amplitude of the second-harmonic field. We are considering that
distance over which ∂a2(z)/∂z changes considerably is large as
compared with the wavelength (∂2a2(z)/∂z2 <<k2∂a2(z)/∂z) and
that A1 reduces very slightly. Here, a2(z) represents the normal-
ized amplitude of the second-harmonic wave. The quantity a21
can be assumed to be independent of z and growth of the second
harmonic is given as follows:

a2(z) =

3a21vw sin(k′wz′)v2
p0 exp (z

′/d) 1−

v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 1− v2

p0 exp (z
′/d)

v2
0(1+ b(v0t − z′))2

( )

1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )
⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1/2

× 1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 +

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )
exp

iDkz
2

[ ] sin Dkz
2

( )
Dk

16cv2
0

1−

v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 1− v2

p0 exp (z
′/d)

4v2
0(1+ b(v0t − z′))2

( )

1− v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
4v2

0(1+ b(v0t − z′))2
( )

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1/2

× 1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )2

× 1− v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
4v2

0(1+ b(v0t − z′))2
( )

,

(19)
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where Δk = 2k1− k2. Further, the second-harmonic conversion
efficiency η2(z) can be given as follows:

h2(z) =
n1
n2

∂a2
∂t

∣∣∣∣
∣∣∣∣2

∂a1
∂t

∣∣∣∣
∣∣∣∣2
. (20)

By using Eqs (19) and (20), we obtain the following equation:

h2(z) =

9a21v
2
w sin

2(k′wz′)v4
p0 exp (z

′/d) 1−

v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 1− v2

p0 exp (z
′/d)

v2
0(1+ b(v0t − z′))2

( )

1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

1/2

× 1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 +

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( ) sin
Dkz
2

( )
Dk

⎛
⎜⎜⎝

⎞
⎟⎟⎠

2

128c2v4
0 1−

v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 1− v2

p0 exp (z
′/d)

4v2
0(1+ b(v0t − z′))2

( )

1− v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
4v2

0(1+ b(v0t − z′))2
( )

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

1/2

× 1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )4

× 1− v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
4v2

0(1+ b(v0t − z′))2
( )2

. (21)

The minimum value of the z for which the value of η is found
to be maximum can be given as follows:

z = lc = p

Dk
, (22)

where lc represents the plasma length. Further, the maximum sec-
ond harmonic efficiency is written as follows:

hmax =

9a21v
2
w sin

2(k′wz′)v4
p0 exp (z

′/d) 1−

v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 1− v2

p0 exp (z
′/d)

v2
0(1+ b(v0t − z′))2

( )

1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

1/2

× 1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 +

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )
1
Dk

( )2

128c2v4
0 1−

v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 1− v2

p0 exp (z
′/d)

4v2
0(1+ b(v0t − z′))2

( )

1− v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(kwz)
4v2

0(1+ b(v0t − z′))2
( )

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

1/2

× 1− v2
p0 exp (z

′/d)

v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
v2
0(1+ b(v0t − z′))2

( )4

× 1− v2
p0 exp (z

′/d)

4v2
0(1+ b(v0t − z′))2 −

v2
wsin

2(k′wz′)
4v2

0(1+ b(v0t − z′))2
( )2

.

(23)
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Result and discussion

In order to obtain conversion efficiency of the second-harmonic
generation, Eq. (21) is solved numerically. Consider plasma irra-
diated by a 1.06 μm Nd:YAG laser (intensity I0≈ 5 × 1017 W/
cm2). Figure 1 depicts the dependence of conversion efficiency
(η) upon the normalized distance of propagation z′ for different
values of vp0/v0 = 0.4, 0.6, and 0.8 (corresponding electron
density values are 1.58 × 1019, 3.01 × 1019, and 6.05 × 1019 cm−3,
respectively). Rest of the values are d = 10, b = 0.7, and ωw/ω0 =
0.06. The maximum value of η is found to be 0.08% for
vp0/v0 = 0.8 at normalized distance z′ = 0.6. It is because, with
the density of the plasma channel, the second-harmonic genera-
tion shows an oscillatory behavior and peaks at certain plasma
density. Lorentz force influences the dynamics of oscillating elec-
trons which, in turn, alters the plasma wave. This, in turn,
enhances the second harmonic significantly. Further, it is
observed that cyclotron frequency related to the plasma electrons
in the presence of the exponential density ramp profile plays a key
role in the enhancement of the harmonic generation of the second
order. Similar effects were obtained previously in our work
(Thakur et al., 2018) and reported that the conversion efficiency
of second-harmonic generation depends on the laser and plasma
frequencies.

Figure 2 shows the variation of the conversion efficiency (η)
with z′ for different values of vw/v0 = 0.02, 0.04, and 0.06.
Rest of the parameters are same as detailed in Figure 1. It is stud-
ied that with an increase in the transverse magnetic field effi-
ciency of the second-harmonic generation enhances
considerably. Cyclotron frequency related to plasma electrons
under exponential density transition plays a key role in enhance-
ment of the harmonic generation of the second order. Figure 3
shows the conversion efficiency (η) for the various values of the
chirped parameter b = 0.3, 0.5, and 0.7. Rest of parameters
are same as taken in Figure 1. The sharp rise in the conversion
efficiency (≈ 0.08%) of the second-harmonic amplitude is
noticed for b = 0.7. This is because of the efficient electron heating

by the shorter wavelength component of the chirped pulses which
results in higher second-order susceptibility. The results are in
good agreement with Jha et al. (2009). Equations describing the
evolution of the phase shift and laser spot size were derived to
analyze the propagation of the chirped laser pulses in a plasma
channel. The enhancement in the conversion efficiency is
observed with an increase in the chirp parameter value for posi-
tive chirp as shown in Figure 3. The physics behind this is that
chirped laser pulse either positive or negative causes in the heat-
ing of the electrons which results in the enhancement of the
second-harmonic generation as studied by Guo et al. (2001).
Further, the influence of the exponential plasma density ramp
is observed in making the self-focusing of the laser beam efficient
which, in turn, enhances the second-harmonic generation.

Fig. 1. Dependence of the conversion efficiency (η2) on the normalized propagation
distance z′ for different values of ωp0/ω0. Other parameters are d = 10, b = 0.7, and ωw/
ω0 = 0.06.

Fig. 2. Dependence of the conversion efficiency (η2) on the normalized propagation
distance z′ for different values of ωw/ω0. Rest of the parameters are same as taken in
Figure 1.

Fig. 3. Dependence of the conversion efficiency (η2) on the normalized propagation
distance z′ for different values of the chirped parameter b. Rest of the parameters are
same as taken in Figure 1.
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Conclusion

In present work, we investigate the second-harmonic generation
of the relativistic self-focusing chirped pulse laser under the influ-
ence of the exponential density transition with a planar magneto-
static wiggler. It is observed that conversion efficiency for the
second harmonic increases as the wave progresses along the z
direction under the exponential density transition. Under the
influence of exponential density transition, fundamental laser
beam propagates up to larger distance without getting so much
divergence, and hence, plasma density ramp plays a major role
in enhancing self-focusing. Also, with the increase in the chirp
parameter value in the positive direction, the enhancement in
the second-harmonic generation is observed. Further, the magne-
tostatic wiggler helps in enhancing the harmonic generation of the
second order. This is due to the fact that dynamics of the oscillat-
ing electrons is changed due to the Lorentz force which, in turn,
modifies the plasma wave and, hence, results in the efficient
second-harmonic generation.
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