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SUMMARY
This paper presents a novel kinematic approach for controlling the end-effector of a continuum
robot for in-situ repair/inspection in restricted and hazardous environments. Forward and inverse
kinematic (IK) models have been developed to control the last segment of the continuum robot
for performing multi-axis processing tasks using the last six Degrees of Freedom (DoF). The
forward kinematics (FK) is proposed using a combination of Euler angle representation and
homogeneous matrices. Due to the redundancy of the system, different constraints are proposed
to solve the IK for different cases; therefore, the IK model is solved for bending and direction
angles between (−π /2 to +π /2) radians. In addition, a novel method to calculate the Jacobian
matrix is proposed for this type of hyper-redundant kinematics. The error between the results
calculated using the proposed Jacobian algorithm and using the partial derivative equations of the
FK map (with respect to linear and angular velocity) is evaluated. The error between the two models
is found to be insignificant, thus, the Jacobian is validated as a method of calculating the IK for six DoF.

KEYWORDS: Continuous robots; Inverse kinematic; Kinematics model; Jacobian for hyper-
redundant systems.

1. Introduction
Inside the human body and some animals, there are specific muscular organs responsible for
controlling the movements, manipulations and different types of locomotion in a continuum bendable
form. These muscles are called muscular hydrostats1,2 such as mammalian tongues, elephant trunks,
cephalopod tentacles and so on. Hydrostatic skeletons do not possess rigid elements but the stiffness
is created by internal pressure in the muscles. Other animals such as snakes, worms and slugs are
considered as hyper-redundant morphologies. In snake animals, the locomotion is produced by the
lateral vertebral flexion that generates the adequate propulsive force for three types of locomotion:
lateral undulation, concertina and sidewinding.3 These types of locomotion have inspired some
researchers in the design of snake robots.4

The biomechanical behaviour of the previous biological examples represents a complex redundant
kinematic behaviour due to the ‘hyper-redundancy’ of continuous rotations in the same plane of
movement. The term ‘hyper-redundancy’ was introduced by Chirikjian and Burdick,5,6 and refers ‘to
have a very large or infinite redundant degrees of freedom’. The first hyper-redundant manipulator
(tensor arm) was designed in the late of 1960s by Anderson and Horn.7 Since then, numerous
hyper-redundant robots have been designed based on biological inspiration.

The elephant’s trunk robot8 is designed as a segmented backbone with a total of 32 DoF; the
actuation is provided via series of tendons routed through the structure. Another example of an
elephant’s trunk robot is the bionic handling assistant (BHA),9 a flexible continuum manipulator
based on pneumatic actuators that uses three sections of three DoF each. The octopus tentacle was
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the inspiration behind the design of the Tentacle Manipulator,10 a highly flexible robot consisting
of an elastic backbone actuated with four DoF. A snake inspired manipulator from OC Robotics
(OCR) is used for nuclear inspection and maintenance;11 comprised of a number of sub-sections,
the arm is driven by a set of actuators that pulls the wires to control the bend angles of the snake
arm. Another OCR demonstrator consists of five sections and 10 DoF. An additional example of a
snake-like manipulator12 is controlled by three linear actuators and provides tunable-stiffness by a
layer jamming mechanism.

For constrained environments, a hyper-redundant miniature manipulator driven by high-strain
shape memory alloy (SMA) was presented in ref. [13], composed of four identical modules with a
total of 12 DoF. While for medical applications, the Active Cannulas (Re-curved Tube)14 is composed
of super-elastic tubes; this device is very small with diameters of (0.8 mm–2.39 mm), controlled by
a simple manual actuation of six DoF.

This paper describes a novel method for controlling the end-effector of a Hyper-Redundant Snake
Arm (HRSA) based on a proposed kinematic model. The difference between several IK and FK
approaches for hyper-redundant manipulators is described below.

In reference to the kinematic calculations for snake arms, the Compact Formulation15 is a method
of solving the IK of hyper-redundant robots. Compact Formulation is derived by applying Gaussian
elimination to transform the underspecified matrix into a row-reduced echelon form. This method
uses the pseudo-inverse formulation to solve an underspecified set of linear equations and therefore
leads to longer computational times, depending on the number of variables that the algorithm has to
process.

The spline solution method16 is based on cubic and quartic splines in order to perform a
parameterization of the backbone curve that allows for the inclusion of the constraints of the end-
effector pose into the parametric equations of the backbone curve; this method requires parallel
processing techniques that require excessive computational resources from the controller. A faster
technique using the Recursive Fitting Method is proposed17 to solve nonlinear algebraic equations
that guarantee the existence of solutions for the IK problem at the velocity level; here, the backbone
curve is approximated with a number of lines of specified lengths, thus causing small errors in the
end-effector depending on the number of segments and DoF.

A continuous-variable-based optimization method for the IK of binary manipulators was presented
in ref. [18]. In this optimization, the distance between the end-effector and the target is constrained,
leading to solutions of low accuracy. A geometric method for solving the equations pertaining to
a planar hyper-redundant manipulator has been proposed by;19 however, this approach fails for
backbones with more than one DoF in each disc, while some solutions result in errors due to
the redundancy in the system. Also, closed form solutions for continuum robots composed of a
continuously bendable backbone have been proposed;20 however, the method is presented as a single-
section solution and no information was provided about the errors produced in multiple sections for
desired vs. calculated trajectories.

Another approach is to express the kinematics as a constrained optimization problem, minimizing
the position error and simultaneously avoiding any collision of the manipulator with either the
obstacles or within its links;21 this technique is based on the classical augmented Lagrangian method
for solving the resulting constrained optimization problem. Similarly, the Sequential Quadratic
Programming (SQP) algorithm22 can be used to solve the IK, minimizing a function with local
kinematic constrains.

In ref. [23], the Product-Of-Exponentials (POE) formula24,31 and the Lie Bracket method from
group theory is employed to derive the instantaneous kinematic model while the IK are solved using
the Newton–Raphson numeric method. Also, screw theory was proposed for a modular spatial hyper-
redundant manipulator25 to analyse the kinematics, velocity and acceleration; while in ref. [26], the
closed-loop IK algorithm is based on the Jacobian pseudo-inverse and Jacobian transpose.

The main contribution of this paper is the provision of the forward and IK models between ±
π /2 rad for two, four and six DoF respectively, to enable the use of continuum robots for multi-axis
machining processes in restricted/hazardous environments; these algorithms allow for the generation
of tool path trajectories for the end-effector.

The proposed kinematics of the HRSA robot is composed of 24 DoF in total, divided into four
stages, each of which is controlled in six DoF. The objective is to move the robot in a specific area for
a machining process and, in particular, to control the last segment where the end-effector is located.
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Fig. 1. Kinematic representation of the HRSA.

In this way, the previous segments are fixed and only the last segment needs to be controlled to enable
multi-axis machining. Thus, the end-effector, mounted at the extremity of the last segment, can be
controlled with dexterity and precision in order to perform complex in-situ inspections/machining
tasks in industrial applications reducing the direct exposure of the human operator.

The FK model is presented using a combination of multiplication of homogenous transformation
(4× 4) matrices and an original method to eliminate important singularity points. In this case,
the methodology of Hartenberg and Denavit27 is not useful for the type of joint configuration that
describes the arc of each section produced by the bend angle of the continuum robot. The combination
of matrices proposed provides the kinematic behaviour of the compliant joints in the flexible backbone
construction; the FK eliminates any twist motion around the central axis of each joint.

A novel method for solving the IK is presented only for the last six DoF. This problem was
addressed using analytical equations and constraints for bending angles. The range of movement of
each DoF is from −π /2 to +π /2 radians; the solutions of the IK are in a closed form for this range of
movement. The Jacobian of the last six DoF is designed based on a novel algorithm for the specific
transformations in the FK. In this case, a Jacobian algorithm with the dimensions (6× 6) is proposed
for the last section. This algorithm proves that this methodology can be used for real-time applications
of similar hyper-redundant systems.

2. Kinematic Description
The full HRSA is divided in four stages (Si), each with a different diameter (Fig. 1) and containing
three sections Si,k ∈ �+; where i = {1, 2, 3, 4} is the number of stages and k = {1, 2, 3} is the number
of sections. Each section is afforded two DoF by means of a compliant joint construction such as it
is described in ref. [32] (these types of joints are not universal joints). Thus, each stage contains six
DoF and the entire HRSA has 24 DoF in total. The kinematic analysis is based on the behaviour of a
backbone curvature structure.

Vector ui denotes the position of the frame of reference (x18, y18, z18) with respect to the frame of
reference of the base (x0, y0, z0); note that the six DoF of the stage 4 (S4) are located in frames of
refs. [18]–[24]. In this paper, only the last stage S4 will be used for machining tasks because moving
the lower sections (S1 − S3) may induce vibrations in the end-effector; therefore, when the robot is
in an optimal position for machining tasks, the position of sections (S1 − S3) are fixed. Thus, this
part of the robot can considered rigid due to the use of a rigidizing system28 up until point 18 and
the end-effector can be controlled for machining processes. The initial navigation path is generated
using a tip-following algorithm30 for navigation tasks. However, the navigation of the entire HRSA
and the rigidizing system is not the objective of this paper. Finally, P = (PX, PY , PZ)T and R ∈ �3×3

represent the final position and orientation of the end-effector.
The general kinematic representation of the bend and direction angles for a section is shown in

Fig. 2. The arc of Si,k is produced by the bend angle (qbi,k ∈ �) and the radius (ri,k ∈ �+). By
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Fig. 2. Kinematic representation for a section Si,k formed by bend qbi,k and direction qdi,k angles.

Fig. 3. General kinematic representation of stage 4 controlled by six DoF. The backbone of each section is
represented by Bi,j and each two degrees of freedom of each section by qdi,k and qbi,k .

definition, the arc of Si,k is given by the product of the bend angle (qbi,k) and the radius (ri,k).
Moreover, the direction angle (qdi,k ∈ �) is the matrix product of two rotations about the Z axis
(clockwise and anticlockwise) as described in section 3.1. In this model, the direction angle does not
correspond to a pure rotation about the Z axis; the movement of the robot is in the XZ plane when the
direction angle is equal to zero.

The kinematic representation of stage S4 is shown in Fig. 3. The stage is divided in three sections
and the length of the backbone (Bi,j ∈ �+) between each section/disc is the same; where i = {1,
2, 3, 4} is the number of stages and j = {1, 2, 3} is the number of the backbone segment. In this
representation, the length of the backbone between each joint is represented by B4,1 to B4,3. In each
section, two DoF are controlled (see Fig. 2): the direction angle (qdi,k) and the bending angle (qbi,k).
Finally, ri,k is the radius formed by the bending angle and the arc trajectory between each joint. The
bending angle (bi,k) can be considered to be in the XZ plane when qdi,k = 0. Hence, a combination of
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matrices is proposed in order to eliminate the rotation about the central axis of the backbone induced
by qdi,k; this is very important in order to avoid twist about the backbone. Similar solutions of three
sequential rotations with dimensions of (3 × 3) (Rz, Ry, R-z) (where positive rotations are clockwise)
can be seen in refs. [19] and [21]. The difference between these approaches and the proposed method
is the use of homogenous matrices and the proposed equations. In the next section, the kinematic
model is described in detail.

3. Novel Approach to Calculating the Kinematic Model
The FK of the last stage of the HRSA can be written as

xef = f (r4, q4). (1)

Equation (1) maps the six joint angles of the last segment of the end-effector in terms of position
and orientation. In this equation, xef ∈ �4×4 is a homogeneous matrix that represents the position
and orientation. Similarly, xef can be described in the form

xef =
[

n o a P

0 0 0 1

]
, (2)

where n ∈ �3×1, o ∈ �3×1 and a ∈ �3×1 are an orthonormal triple, representing the orientation; q0
6 =

(qd4,1, qb4,1, qd4,2, qb4,2, qd4,3, qb4,3)T is the vector of the six bending/direction angles and r0
3 =

(r4,1,, r4,2, r4,3)T is the vector of the three instantaneous radii that change for different combinations
of bending angles. Thus, the FK of the end-effector can be controlled in task space of six dimensions.

3.1. Forward kinematics for a general kth section
The proposed method calculates the FK based on the combination of Euler angles and homogeneous
transformation matrices. The matrices are presented in the following way:

T1 =

⎡
⎢⎢⎢⎣

cos(qdi,k) −sin(qdi,k) 0 ri,k cos(qdi,k)

sin(qdi,k) cos(qdi,k) 0 ri,k sin(qdi,k)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (3)

T2 =

⎡
⎢⎢⎢⎣

cos(qbi,k) 0 sin(qbi,k) −ri,k cos(qbi,k)

0 1 0 0

−sin(qbi,k) 0 cos(qbi,k) ri,k sin(qbi,k) + bi,j

0 0 0 1

⎤
⎥⎥⎥⎦ (4)

T3 =

⎡
⎢⎢⎢⎣

cos(qdi,k) sin(qdi,k) 0 0

−sin(qdi,k) cos(qdi,k) 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (5)

Therefore, the FK of a kth section is obtained multiplying Eqs. (3), (4) and (5).

Tk = T1T2T3. (6)
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In Eqs. (3) and (4), the radius (ri,k) can be calculated as

ri,k = Si,k

qbi,k

. (7)

The reader can check that this equation depends on the bend angle. However, in this equation,
if the bend angle is equal to zero the result is infinite. In order to avoid this problem, the variable
bi,j ∈ �+ has been added to Eq. (4). The variable bi,j is defined using the following algorithm:

If qbi,k == 0,

ri,k = 0;

bi,j = Si,k;

Else

ri,k = Si,k

qbi,k

bi,j = 0; End.

In this algorithm, the logic structure indicates that when the bending angle is equal to zero, the
distance between the frame of reference j and the next frame of reference j+1 is equal to the distance
Si,k , i.e. a straight line is produced when qbi,k = 0.

3.2. Forward kinematics of stage 4 (S4)
The FK of last segment is obtained using the concept of the FK for kth section. In this case, six DoF
are considered. The matrices are presented in the following way:

T1 =

⎡
⎢⎢⎢⎣

cos(qd4,1) −sin(qd4,1) 0 r4,1 cos(qd4,1)

sin(qd4,1) cos(qd4,1) 0 r4,1 sin(qd4,1)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (8)

T2 =

⎡
⎢⎢⎢⎣

cos(qb4,1) 0 sin(qb4,1) −r4,1 cos(qb4,1)

0 1 0 0

−sin(qb4,1) 0 cos(qb4,1) r4,1 sin(qb4,1) + b4,1

0 0 0 1

⎤
⎥⎥⎥⎦ (9)

T3 =

⎡
⎢⎢⎢⎣

cos(qd4,1) sin(qd4,1) 0 0

−sin(qd4,1) cos(qd4,1) 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (10)

T4 =

⎡
⎢⎢⎢⎣

cos(qd4,2) −sin(qd4,2) 0 r4,2 cos(qd4,2)

sin(qd4,2) cos(qd4,2) 0 r4,2 sin(qd4,2)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (11)
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T5 =

⎡
⎢⎢⎢⎣

cos(qb4,2) 0 sin(qb4,2) −r4,2 cos(qb4,2)

0 1 0 0

−sin(qb4,2) 0 cos(qb4,2) r4,2 (sin(qb4,2) + b4,2

0 0 0 1

⎤
⎥⎥⎥⎦ (12)

T6 =

⎡
⎢⎢⎢⎣

cos(qd4,2) sin(qd4,2) 0 0

−sin(qd4,2) cos(qd4,2) 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (13)

T7 =

⎡
⎢⎢⎢⎣

cos(qd4,3) −sin(qd4,3) 0 r4,3 cos(qd4,3)

sin(qd4,3) cos(qd4,3) 0 r4,3 sin(qd4,3)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ (14)

T8 =

⎡
⎢⎢⎢⎣

cos(qb4,3) 0 sin(qb4,3) −r4,3 cos(qb4,3)

0 1 0 0

−sin(qb4,3) 0 cos(qb4,3) r4,3 (sin(qb4,3) + b4,3

0 0 0 1

⎤
⎥⎥⎥⎦ (15)

T9 =

⎡
⎢⎢⎢⎣

cos(qd4,3) sin(qd4,3) 0 0

−sin(qd4,3) cos(qd4,3) 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (16)

Using Eqs. (8) to (16), the end-effector positions and orientations can be expressed as

xef = T1T2T3T4T5T6T7T8T9. (17)

The algorithm presented for the kth section has to be executed first for each bending (qbi,k) angle
prior to using Eq. (17) in order to avoid singularity points. Finally, the FK was tested in several
simulations in a Matlab environment, an example of which is shown in Fig. 4. This simulation was
tested by introducing Si,k = 100 mm for each section.

3.3. Work space generation
The validity of the FK proposed is proven by the Work Space Generation (WSG) that the FK can
map.33,34 This WSG represents the possible end positions and orientations that the stage S4 can
reach. Figure 5(a) shows the possible end positions of stage S4 in one dimension. The dashed lines
in black represent the trajectory of the HRSA, while the dots in red, blue and green represent the end
positions of section 1, 2 and 3 respectively. This figure proves the expected position for each section.
Figure 5(b) shows the work volume of the end-effector. In this figure, the possible positions that the
end-effector can reach are represented in red. Figure 5(c) shows that the maximum height is 363.66
mm and the maximum diameter is 423.2 mm.

3.4. Inverse kinematics of section 4 (S4)
The IK is presented for two, four and six DoF; therefore, three methods are solved in this manner
because the manipulation space is restricted and the range of motion of the HRSA is affected. Thus,
depending on the restricted environment, two, four or six DoF can be selected to perform machining
tasks. Figure 6 shows a general representation of the vectors used to solve the IK.
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Fig. 4. Virtual model of stage 4 in Matlab. Several positions are represented using the forward kinematics. The
blue curves represent the backbone trajectory of the HRSA and the red marks the end position of each section.
The units of each axis are in mm.

Fig. 5. (a) Work space representation in one dimension of stage S4 in two dimensions. These final points were
obtained using the forward kinematics for a range of −π /2 to π /2 radians. (b) Work volume of the end-effector
in 3D. (c) The units of each axis are in mm.
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x18x18
y18y18

z18z18

xef

P2 2, R

End-Effector

P1 1, R

P3 3, R

Fig. 6. General representation of the kinematic problem. The matrix xef represents the final orientation and
position of the end-effector; each position and orientation are represented for each section (P1, R1, P2, R2, P3
and R3).

3.4.1. Inverse kinematics for the last two DoF. The proposed method is based on the Taylor Series
approximation of order 429 to obtain the bending angle qb4,3 using only the information of Pz3 with
respect the previous frame of reference (see Fig. 6). The vector P3 = (Px3, Py3, Pz3)T of the last
section (S4,3) is obtained from Eq. (18)

T 7
9 = xef (T 1

6 )−1. (18)

The vector Pz3 can be expressed as Eq. (19) and the radius as Eq. (20)

PZ3 = r4,3 sin(qb4,3) (19)

r4,3 = S4,3

q2
sin(qb4,1). (20)

Substituting Eq. (20) into Eq. (19), yields

sin(qb4,3)

qb4,3
= PZ3

S4,3
. (21)

The Taylor Series approximation for sine is given by

sin(x) ≈ x + x5

5!
− x3

3!
. . . . (22)

Using Eq. (22), Eq. (21) can be expressed as

qb4,3 + qb5
4,3

120
− qb3

4,3

6
≈ qb4,3

PZ3

S4,3
. (23)

Therefore, qb4,3 is solved by the roots of Eq. (23)

qb4
4,3 − 20qb2

4,3 + 120 − 120
PZ3

S4,3
= 0. (24)

In this case, S4,3 is the length of the arc and is constant. For our experiments, S4,3 = 100 mm.
The roots of Eq. (24) generate four solutions; the best solution is the minimum error between

Pz3/S4,3 and sin(qb4,3)/qb4,3.
The direction angle qd4,3 can be obtained as

If Px3 == 0

qd4,3 = 0 (25)

Else
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Pz

z

y

s4,2

x

P2,0

P3,1

P2,1

Pz3

Pz2

s4,3

V1 V2

V3

Fig. 7. Vector representation of two bending angles when the direction angles have the same value.

qd4,3 = tan−1

(
Py3

Px3

)
(26)

End.

This algorithm avoids the singularity point when Px3 is equal to zero.

3.4.2. Inverse kinematics for the last four DoF. In the same way, as section 3.4.1, the vector P3 for
the last two sections (2 and 3) is obtained from Eq. (27)

T 4
9 = xef (T 1

3 )−1. (27)

In this case, the IK problem becomes very complex due to the redundancy of the system; therefore,
it is proposed to control two bending angles using the direction angles given below:

1. Case I: All direction angles are the same, in other words, qd4,2 ≡ qd4,3. Therefore, qd4,2 is obtained
as

If Px3 == 0

qd4,2 = 0;

Else

qd4,2 = tan−1

(
Py3

Px3

)
(28)

End

2. Case II: The relationship between the bending angles φ = qb4,2 + qb4,3 is given by

If Px3 >= 0

ϕ = cos−1(az) (29)

Else

ϕ = −cos−1(az) (30)

End,

where az ∈ � is the third element of vector a = (ax, ay,az)T (see Eq. (2)).
Let us consider the initial position, P2,0, when qb4,2 = 0 rad (see Fig. 7). In this case, S4,2 is

considered to be 100 mm. The modulus of vector |�v1| represents the length of the arc S4,2. The rest
of the vector modules of Fig. 7 can be calculated as

|�v1| = S4,2 (31)
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Table I. Constrains between bending angles.

Constrain: c = qb4,3/qb4,2 κ

1 1
0.9 1.0249
0.8 1.0512
0.7 1.0791
0.6 1.1086
0.5 1.1399
0.4 1.1732
0.3 1.2087
0.2 1.2464
0.1 1.2867

−0.1 1.3760
−0.2 1.4255
−0.3 1.4787
−0.4 1.5361
−0.5 1.5981
−0.6 1.6653
−0.7 1.7382
−0.8 1.8177
−0.9 1.9046
−1 2

|�v2| =
√

P 2
x + P 2

y + P 2
z (32)

|�v3| =
√

P 2
x + P 2

y + (Pz − S4,2)2. (33)

The angle α is calculated using the law of cosines as

α = cos−1

( �v2
2 + �v2

1 − �v2
3

2 |�v1| |�v2|
)

. (34)

Angle α will be used to calculate the bending angle qb4,2 according to Eq. (35) and the constraints
of Table I.

qb4,2 = κα, (35)

where κ ∈ � is correlated to the constraint, c ∈ �. The κ values of Table I were obtained, minimizing
the error between the desired constraint (c) by means of the FK and the output of Eqs. (34) and (35).
The following polynomial regression model is proposed to generate the values of κ according to
Table I:

κ = 0.0183c4 − 0.0555c3 + 0.1518c2 − 0.4441c + 1.3299. (36)

The coefficients of Eq. (36) were obtained in order to generate an exact correlation between the
predictors κ and c using the values given in Table I.

The various values of c can be implanted in a for-loop algorithm evaluating the maximum error
between the desired position and orientation and the result obtained by Eq. (36).
qb4,3 can be obtained using Eqs. (29) or (30):

qb4,3 = φ − qb4,2. (37)

Finally, the last direction angle, qd4,3, can be obtained using Eqs. (18) and (26).
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Fig. 8. Linear trajectories using the inverse of the Jacobian.

3.4.3. Inverse kinematics for the last six DoF. In section 3.4.2, it was shown that many cases can
be obtained due to the lack of information relating to the final positions of each section and the fact
that the radius of the bending angle is not constant for different values of qb4,1, qb4,2 and qb4,3.
For this reason, traditional approaches are impractical or unfeasible when the numbers of DoF are
increasing. However, a numerical implementation based on the inverse of the Jacobian, J−1(q4), can
be implemented for a previous instant in time, such as

q4(tk+1) = q4(tk) + J−1(q4(tk))ve(tk)�t, (38)

where tk ∈ �+ is the time instant; tk+1 ∈ �+ is the next period of time; J−1(q4(tk)) ∈ �6×6 is the
inverse of the Jacobian for stage 4 in the time instant; ve(tk) ∈ �6×1 is the vector of instant velocities
of the end-effector and �t ∈ � is an scalar that minimize the error.

This method implies that the joint variables, q4, corresponding to a given desired end-effector
pose (xef d ) are precisely computed only when the error between the desired end-effector pose and the
candidate end-effector pose (xef c) is reduced to within a given threshold; therefore, the computing time
depends on the dynamic characteristics that are produced by the error of the differential equations.
Figure 8 shows a linear trajectory of the end-effector (black line) with a length of 30 mm. The blue
pose is the initial position and the green lines are the result of the IK. This figure shows precise poses
following the straight line using the inverse of the Jacobian. The maximum vertical error produced
is less than 30 μ. The next section shows the method proposed to compute the Jacobian used for this
experiment.

4. Approach to Calculate the Jacobian
The method proposed uses the vectors (nk,ok,ak) that correspond to the matrix transformation of each
DoF. In other words, the vectors selected represent the axis of each virtual joint around the backbone.

The matrix transformation is represented as T 0
k ∈ �4×4 for joint k; where

T 0
k is the transformation from the first frame to the next k joint frame;

nk ∈ �3×1 is the vector used for joints about the X axis;
ok ∈ �3×1 is the vector used for joints about the Y axis;
ak ∈ �3×1 is the vector used for joints about the Z axis;
k ∈{1, 2, . . ., n} is the joint number.

The virtual joints along the backbone for each disc are represented as combinations of ok and ak

for the purpose of obtaining the Jacobian. The overall Jacobian of linear and angular velocities is
defined as

Ji =
[

Jv,k . . . Jv,n

Jω,k . . . Jω,n

]
. (39)
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For linear velocities, the kth column Jv,k is defined according to the joint axis of each joint k. In this
instance, two cases are proposed to take into account the fact that all the virtual points are considered
joints about the Y and X axis. The proposed definitions are defined as

1. For direction angles:

Jv,k = (ak+ϕ − ak+1+ϕ) × (P − Pk+ϕ) (40)

Jω,k = (ak+ϕ − ak+1+ϕ) (41)

2. For bending angles:

Jv,k = ok+ϕ × (P − P(k−1+ϕ)) (42)

Jω,k = ok+ϕ. (43)

In these two equations, the new term φ is given by

φ = ns − 1, (44)

where ns ∈ �+ is the number of sections.
The symbol × represents the cross product of Eqs. (40) and (42). The Jacobian for the last stage

can be obtained using the components of Jv,k and Jω,k

Js,4 =
[

Jv,1 · · · Jv,6

Jω,1 . . . Jω,6

]
. (45)

The Jacobian for each section is calculated using the previous method, as described below: the
first direction angle (k = 1) is located in section 1, hence, ns = 1, using the vector ak and φ = 0.
Thus, J1 is computed using Eqs. (40) and (41)

J1 =
[

Jv,1

Jω,1

]
=

[
(a1 − a2) × (P − P1)

a1 − a2

]
, (46)

where a1 is the vector along the X axis of T 0
1 ; P1 is the position of T 0

1 ; a2 is the vector along the X
axis of T 0

2 and P is the final position of the end-effector T 0
9 .

The first bend angle (k = 2) is located in section 1, hence, ns = 1, using the vector ok and φ = 0;
J2 is computed using Eqs. (42) and (43)

J2 =
[

Jv,2

Jω,2

]
=

[
o2 × (P − P1)

o2

]
, (47)

where o2 is the vector along the Y axis of T 0
2 .

The second direction angle (k = 3) is located in section 2, hence, ns = 2, using the vector ak and
φ = 1; J3 is computed using Eqs. (40) and (41) such as

J3 =
[

Jv,3

Jω,3

]
=

[
(a4 − a5) × (P − P4)

a4 − a5

]
, (48)

where a4 is the vector along the X axis of T 0
4 , P4 is the position of T 0

4 and a5 is the vector along the
X axis of T 0

5 .
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The second bend angle (k = 4) is located in section 2, hence, ns = 2, using the vector ok and φ =
1; J4 is computed using Eqs. (42) and (43)

J4 =
[

Jv,4

Jω,4

]
=

[
o5 × (P − P4)

o5

]
, (49)

where o5 is the vector along the Y axis of T 0
5 .

The third direction angle (k = 5) is located in section 3, hence, ns = 3, using the vector ak and
φ = 2; J5 is computed using Eqs. (40) and (41):

J5 =
[

Jv,5

Jω,5

]
=

[
(a7 − a8) × (P − P7)

a7 − a8

]
, (50)

where a7 is the vector along the X axis of T 0
7 , P7 is the position of T 0

7 and a8 is vector along the X axis
of T 0

8 . Finally, the third bend angle (k = 6) is located in section 3, hence, ns = 3, using the vector ok

Fig. 9. Trajectories of analytical (blue) and proposed (red) models for sections 1, 2 and 3. Panels (a), (c), (e),
(g), (i) and (k) show the two trajectories in three dimensions for J1, J2, J3, J4, J5 and J6 respectively. Panels
(b), (d), (f), (h), (j) and (l) show the two trajectories in two dimensions.
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Fig. 9. Continued

Table II. Mean average error between the analytical and proposed models.

Jacobian Mean average error

[Jx1, Jy1, Jz1] [0.0505E-17, −0.2983E-17, −0.0081E-17]
[Jx2, Jy2, Jz2] [0.0246E-16, −0.0049E-16, −0.1954E-16]
[Jx3, Jy3, Jz3] [0.0951E-17, −0.1029E-17, 0.0314E-17]
[Jx4, Jy4, Jz4] [−0.1489E-17, 0.0555E-17, −0.0760E-17]
[Jx5, Jy5, Jz5] [−0.0067E-16, −0.1028E-16, −0.0060E-16]
[Jx6, Jy6, Jz6] [−0.0315E-16, 0.0034E-16, −0.3227E-16]

and φ = 2, J6 is computed using Eqs. (42) and (43):

J6 =
[

Jv,6

J6

]
=

[
o8 × (P − P7)

o8

]
, (51)

where o8 is the vector along the Y axis of T 0
8 .

The matrix of the Jacobian allows the determination of joint velocities q̇i,k necessary to achieve a
desired end-effector velocity ξ . In this case, the minimum norm solution is given by

q̇i,k = Jξ. (52)
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4.1. Justification
Equations (40)–(43) are proposed in this form because the kinematic model is composed of the
product of the two matrices for the direction angle. These types of multiplications produce quadratic
terms in sine and cosine and the correct behaviour between each section has to be identified correctly.
Therefore, using this method, the vectors of position (Pk+φ or Pk−1+φ) and the rotation vectors
(ak+φ, ak+1+φ, ok+φ) correspond to the correctly selected vectors required for the cross product for
each section. As proof of verification, this method is compared with the partial differential equations
(analytical method) of the Jacobian and the error is measured between the two methods. Figure 9
shows the trajectories between the analytical (blue line) and proposed (red line) models for each
element of the Jacobian, Ji . The error between the two models is quantified in Table II and Fig. 9.
The errors are very small; proving that the method proposed is useful for similar hyper redundant
HRSA systems.

5. Conclusion
The kinematic model to control the end-effector of a HRSA based on backbone curvature was
presented in detail; the equations reported provide the forward and inverse models to control an
efficient trajectory in a closed form between ± π radians, consequently, the singularity points are
eliminated for the range of movement of each section, Si,k , for both kinematic models. The proposed
IK method is useful for real-time applications that require precision control and a fast computing
process; therefore, it can be used for machining processes where the base stages of the HRSA are fixed
in a specific pose. The method for obtaining the Jacobian is of key importance for hyper-redundant
robots where the number of DoF is high and difficulties are encountered in finding correct analytical
equations or numerical approximations, due to the complexity of the elements of the matrix. These
findings are useful for multi-axis manipulations of the end-effectors of continuum robots so that
processing tasks are possible in closely confined environments (e.g. aero-engines) where complex
snake motions are required to reach specific areas to repair internal parts. For future work, these
methods will be used to control a machining process, where interpolations of trajectories or control
forces are required for implementation.
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