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Vision navigation using environmental features has been widely applied when satellite signals
are not available. However, the matching performance of traditional environmental features such
as keypoints degrades significantly in weakly textured areas, deteriorating navigation perfor-
mance. Further, the user needs to evaluate and assure feature matching quality. In this paper, a
new feature, named Line Segment Intersection Feature (LSIF), is proposed to solve the availabil-
ity problem in weakly textured regions. Then a combined descriptor involving global structure
and local gradient is designed for similarity comparison. To achieve reliable point-to-point
matching, a coarse-to-fine matching algorithm is developed, which improves the performance
of the point set matching algorithm. Finally, a framework of matching quality evaluation is
proposed to assure matching performance. Through the comparison, it is demonstrated that the
proposed new feature has superior overall performance especially on correctly matched num-
bers of keypoints and matching correctness. Also, using real image sets with weak texture, it is
shown that the proposed LSIF can achieve improved navigation solutions with high continuity
and accuracy.
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1. INTRODUCTION. The next generation of navigation systems aim to obtain position
and orientation of a moving platform anywhere at any time. Among many emerging navi-
gation techniques, vision-based navigation has become a promising and popular approach
to achieve ubiquitous navigation as it is accurate, passive and low-cost (Jin et al., 2016;
Liu et al., 2012; Xian et al., 2015). In this domain, natural environmental features includ-
ing edges, corners and keypoints (points of interests or features) play an important role as
they can be automatically detected, described and matched, which provides the capability
of storing and transferring the geospatial information. As a type of natural environmen-
tal feature, keypoints attract interest from researchers due to their detector repeatability
and descriptor distinctiveness. Repeatability is defined as robustness of keypoint location
with regard to environment change such as translation, scaling, rotation and viewpoint
change. Distinctiveness means the generated descriptor should be distinctive from others
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Figure 1. The relationship between keypoints and navigation performance.

(a) (b) (c)

Figure 2. Illustrative examples for keypoint matching, line segment matching and point set matching.

in the same image. The former characteristic enables keypoints to be tracked and the latter
provides the possibility for keypoints to be distinguished and matched.

Keypoints are closely related to the performance of vision-based navigation, which is
illustrated in Figure 1. The presence or absence of keypoints directly affects the continu-
ity since geo-spatial information contained in the keypoints cannot be obtained if matched
keypoints do not exist. The number and distribution of keypoints affect the accuracy of
navigation solutions through error propagation (Li et al., 2016). If there are mismatched
keypoints, the correctness of the navigation solution may be violated, degrading the
integrity of the navigation system.

Traditional keypoints such as Scale-Invariant Feature Transform (SIFT) (Lowe, 1999)
are generally good natural features in rich texture areas as illustrated in Figure 2(a). How-
ever, keypoint matching in ubiquitous weakly textured areas such as homogenous walls
and man-made objects is challenging. Most traditional keypoint detection and description
methods are based on intensity or colour variation (e.g. gradients). If the intensity or colour
is stable, it will be difficult to detect keypoints. Moreover, although a number of keypoints
may be detected, the descriptor of such a keypoint will tend to lose its distinctiveness as
the descriptor comes from the neighbouring area of the detected keypoint, eventually affect-
ing matching performance. In this scenario, the continuity of the vision-based navigation
system will be seriously affected. Although some keypoints may be detected and matched
correctly, they tend to be located in certain small rich texture areas. Besides, the number
is significantly reduced, hence the geometry of vision-based navigation will deteriorate,
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finally affecting the accuracy of navigation solutions (Li et al., 2016). Also, the ratio of
mismatches will be enlarged, threatening the integrity of the navigation system.

There have been studies aiming to improve navigation performance in texture-less areas.
One aspect is to directly match the detected line segments to achieve vision-based naviga-
tion. As Figure 2(b) shows, line segments with the same number are correctly matched.
The geo-spatial information contained in the line segments can be transferred through line
segment matching. Then the position of the camera can be determined by space resec-
tion. Zhou et al. (2015) put forward Structural Simultaneous Localisation And Mapping
(StructSLAM) that made use of the structured lines to reduce the error of navigation,
and simultaneously generated maps made up of detected line segments. However, for line
segment matching, it is difficult to assure its correctness in weakly textured areas as the dis-
tinctiveness of description depends on the neighbouring areas. Another aspect is to develop
new keypoints. As illustrated in Figure 2(b), the intersection points with the same shape
are correctly matched. Similarly, Kim and Lee (2012) employed the line segment pair to
generate a Line Intersection Context Feature (LICF) that was invariant under perspective
projection in weakly textured areas. The matched LICFs provided the clue for line segment
matching, point-to-point matching and epipolar geometry reconstruction in weakly textured
areas. However, original LICF employs the Normalised Cross-Correlation (NCC) method
for matching tentative points. There is still room to improve its matching performance as
NCC is not invariant to scale, rotation and shearing differences (Lewis, 1995).

Point set registration is related to keypoint matching. As shown in Figure 2(c), the main
objective of point set registration is to find the correspondence between two point sets
only using the positions of the point sets as the input, which is beneficial for keypoint
matching in weakly textured areas. The transformation of the two point sets often includes
not only rigid transformation such as rotation and scaling, but also non-rigid deformation,
noise and outliers. However, one difference between the traditional point set and detected
keypoints is that the mismatch ratio can be very high (e.g. larger than 50%) in the texture-
less environment, which poses a challenge for the robustness of the traditional point set
matching algorithm. Therefore the robustness of the point set matching algorithm needs to
be enhanced through the appropriate design.

In this paper, we address the limitation of natural features in weakly textured areas in the
indoor environment by the detection of a new feature – Line Segment Intersection Feature
(LSIF). Considering the difficulty of matching in texture-less areas, its description is given
and the matching algorithm is designed. Quality control is conducted to provide a measure
of the trust for matching correctness and to further ensure matching correctness. The rest of
this paper is structured as follows. Sections 2, 3, 4 and 5 propose the detailed design for the
LSIF detection, description, matching and validation algorithm respectively. In Section 6,
real images for weakly textured areas in indoor environment are employed to compare and
analyse the matching and navigation performance of LSIF. Section 7 presents concluding
remarks.

2. LINE SEGMENT INTERSECTION FEATURE DETECTION. LSIFs originate
from the intersections of line segment pairs. Here, a Line Segment Detector (LSD) (Von
Gioi et al., 2008) with sub-pixel accuracy and controlled false detection rate is employed.
It creates a level-line field, and then pixels with similar orientations are segmented to form
line support regions. In each region, the principal inertial axis is used as the main rectangle
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Figure 3. The critical region
∏

of L1

direction. Pixels whose level-line angles are within a certain tolerance are identified as
aligned points. After the validation process based on a contrario approach using the number
of aligned points, the detected line segments are extracted with two end points.

However, the simple intersection for the detected line segments will not contribute to
the following matching performance since there are several chaotic intersection points from
unnecessary line segment pairs. Normally these line segments have small lengths. The main
line segments tend to be vertical with others in a man-made indoor environment, which is a
beneficial characteristic for eliminating unnecessary line segments. Therefore, a filter based
on the line segments’ lengths and intersection angles with others is applied. That is, only
the line segments with lengths larger than a predefined threshold (e.g. ten pixels), and at the
same time, intersection angles with others lying in a range such as [80◦100◦], are preserved.
The retained line segments can be represented by L1, L2, . . . , Lk.

As shown in Figure 3, a neighbouring area alongside L1 is named as the critical region∏
within the image coordinate system, which can be defined as a rectangle Q1 Q2 Q3 Q4

by extending two squares with the length being equal to D from the two ending points
respectively. The squares always lie on different sides of L1. The rule for detecting LSIFs
from L1 is that if intersections between L1 or L1’s extensions and other line segments or
their extensions lie in

∏
, they are detected as LSIFs. For example, K1, K2 and K3 are

detected LSIFs as their corresponding line segments or extensions intersect with L1 in
∏

.
The intersection between L5’s extension and L1’s extension does not lie in

∏
, therefore its

intersection is discarded.
The coordinates of the detected LSIFs can be represented by:

CLSIF =
{

INEPT(Li, Lj) | INEPT(Li, Lj) ∈
∏}

(1)

where INEPT represents the intersection’s coordinates of the two detected line segments or
their corresponding extension lines. The main differences between the proposed LSIF and
LICF proposed by Kim and Lee (2012) lie in two aspects: firstly, the critical region of LSIF
is a square for simplified calculation, while the boundary of determining LICF involves the
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calculation of two circles. Secondly, the filter based on the length and intersection angle
excludes the unnecessary line segments which contribute little for structure description.

3. LINE SEGMENT INTERSECTION FEATURE DESCRIPTION. The aim of LSIF
description is to generate descriptors according to gradients and structure information (e.g.
geometric relationship), and provide tentative correspondences by similarity comparison.

Although the number and distribution of detected LSIFs vary for each image, the global
structure of the detected LSIFs, which can be referred to as the general 2D geometric rela-
tionship between one keypoint and others, is comparatively stable. For example, if one
detected LSIFa in image I correctly matched with another LSIFb in image II, significant
similarities will exist between LSIFa’s geometric relationship (e.g. distance and relative
position) with other LSIFs in image I, and LSIFb’s geometric relationship with other LSIFs
in image II, and vice versa. The benefit of this is that the stable global structure descrip-
tion purely uses LSIFs’ image coordinates without the extraction of gradients or colour
information from texture-less areas. Therefore, global structure should be the main clue for
LSIF matching.

Compared with pure point set matching, the image itself also brings benefits for LSIF
description. Although the uniqueness of neighbouring gradient information (e.g. variation
of intensity) for the detected LSIFs from a texture-less area is reduced, it can provide
the secondary clues for LSIF matching if the weighting factor is appropriately controlled
(Section 4.1). Besides, a few detected LSIFs may exist in the small areas with rich texture.
Therefore, the description of local gradient contributes to reducing the matching ambiguity.

Considering these two aspects, this paper has designed a combined descriptor that
utilises local gradient and global structure of the detected LSIF and is illustrated as follows:

DC = (DS, DI ) (2)

where I and S are local gradient descriptor and global structure descriptor respectively.

4. LINE SEGMENT INTERSECTION FEATURE MATCHING. The matching cor-
rectness is important as it will affect the integrity of the vision-based navigation system.
This section designs a coarse to fine matching strategy to assure correctness.

4.1. Coarse Matching using Combined Descriptors. Compared with point set regis-
tration where the coordinates of all the keypoints are directly used as the description, the
coarse matching preserves the keypoints with high possibility to be correctly matched. The
coarse matching procedure for two sub-descriptors should consider their own characteris-
tics. In this paper, Shape Context (Belongie et al., 2002) and SIFT descriptor (Lowe, 1999)
are chosen as the global structure descriptor and local gradient descriptor, respectively.
Therefore, the similarity between the sub-descriptors is measured by a χ2 test statistic
and L2 norm respectively. Assume there are m and n keypoints in the two images. For
each sub-descriptor, a m × n cost matrix can be generated. Lower cost means that the two
corresponding descriptors have a higher possibility to be matched.

The cost matrix can be generated as follows: originally the similarity measure for Shape
Context is constrained between 0 and 1 by χ2 test statistic. Similarly, to combine with
the Shape Context, the similarity measure of the SIFT descriptor needs to be normalised
between 0 and 1. Assume the cost matrix generated by S is CS and the one generated by I is
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CI . Since the distinctiveness of local gradient descriptors is weakened in texture-less areas,
more weight should be assigned to a global structure descriptor. Hence wS should be larger
than wI (e.g. wS = 0·6 and wI = 0·4). Therefore, the final cost matrix CC of the combined
descriptor DC can be denoted as:

CC = wSCS + wI CI (wS > wI ) (3)

The establishment of point-to-point correspondences is done by the Hungarian method
(Kuhn, 1955). Other algorithms for finding the optimal path of the cost matrix can still
be applied. After that, epipolar geometry-based Random Sample Consensus (RANSAC)
(Hartley and Zisserman, 2003) is employed to further reduce mismatches. Then the initial
point-to-point matching is generated.

As expected, the initial matching result purely from the coarse matching stage is not
completely reliable. The ratio of mismatches depends on the distinctiveness of keypoints’
global structure and local gradient.

4.2. Original Affine Coherent Point Drift Algorithm. For completeness, affine Coher-
ent Point Drift (CPD) matching (Myronenko and Song, 2010) is briefly described in this
section. The affine CPD algorithm models one point sets as the centroids from the Gaussian
Mixture Model (GMM), and the other set is then generated by GMM. If one data point is
correctly matched, its GMM posterior probability is maximised. In the matching process,
the topological structure of the point is preserved as the centroids move coherently as a
group.

Assume XN×2 and YN×2 are the coordinates of the tentative matches in two images
respectively after coarse matching. XN×2 is the data point set and YN×2 is the set of GMM
centroids. An additional uniform distribution represents the noise and mismatches. The
mixture model is constructed as:

p(x) = w
1
N

+ (1 − w)
N∑

n=1

1
N

p(x | n) (4)

where p(x|m) = 1
2πσ 2 e− ‖x−yn‖

2σ2 , and w(0 < w < 1) is the weight for the uniform distribution.
The location of the GMM centroid can be determined by the affine parameter B and t by
minimising the negative log-likelihood function in Equation (5).

E(B, t, σ 2) = −
N∑

n=1

log
N+1∑
n=1

p(n)p(xn|n) (5)

An Expectation Maximisation (EM) algorithm is employed to find B and t. In the Expec-
tation step, the objective function shown in Equation (6) is the upper bound of the negative
log-likelihood function in Equation (5).

Q(B, t, σ 2) =
1

2σ 2

N∑
n=1

N∑
n=1

Pold(n|xn)‖xn − Byn − t‖2 + Nplogσ 2 (6)

where Np =
∑N

n=1
∑N

n=1 pold(n|xn). According to Bayes’ theorem, the components of the
posteriori probability matrix pold equals:

pold(n|xn) = P(i, j ) =
exp(− 1

2σ 2 ‖xi − (Byj + t)‖2)∑N
n=1 exp(− 1

2σ 2 ‖xi − (Byj + t)‖2) + 2πσ 2 w
1−w

(7)
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Figure 4. LSIF description and matching process.

where σ 2 equals 1
2N 2

∑N
k

∑N
k ‖xk − yk‖. As the number of the two tentatively matched

LSIFs is the same, a N × N posterior probability matrix P can be constructed as the
indicator for matching correctness.

The affine parameter B and t can be directly deduced by the partial derivatives from
Equation (6) in the Maximisation step of EM process. The EM process will iterate Expec-
tation and Maximisation steps until convergence. More details can be seen in the work by
Myronenko and Song (2010).

4.3. Modified Coherent Point Drift Algorithm. As mentioned above, the original
affine CPD employs the initial values of affine parameters to estimate the probability of
matching correctness (E step). However, the constraints from global structure similarity
can be beneficial in assuring the matching correctness in the EM process.

Shape Context is applied as the descriptor for the global structure similarity compari-
son. The cost matrix of Shape Context for each initial keypoint pair can be transferred to
the prior matching probability matrix, which imposes constraints on the original matching
probability matrix in Equation (7).

The construction of the prior probability matrix PPrior is as follows. The weighting factor
for the ‘correct’ correspondence in the coarse matching stage is set as WPrior (e.g. 0.8). In
the first iteration, the prior probability matrix is a N × N diagonal matrix with diagonal
elements equalling to WPrior, and remaining elements equals to 1−WPrior

N−1 . For the following
iterations, the elements on the optimal path of the cost matrix from the Hungarian method
are set as WPrior, and similarly, the other elements are set as 1−WPrior

N−1 . Therefore the new
matching probability matrix is set as the multiplication of P(n, n) and PPrior(n, n) as shown
in Equation (8).

PNew(n, n) = P(n, n)PPrior(n, n) (8)

By using Equation (8), the correct correspondences are preserved, while the weights
of mismatches are controlled. In summary, the description and matching process is
summarised in Figure 4.

5. MATCHING VALIDATION. After the above three steps, a few mismatches may
still exist in the pairs. Moreover, if the matching quality does not meet the requirement for
correctness, the algorithm should have the ability to warn users. Therefore matching val-
idation and quality evaluation are necessary to further detect and exclude the mismatches
as well as to assess the matching quality. Assume XN×2 and YN×2 are tentative matching
pairs. With the obtained affine transformation with B and t, each keypoints’ coordinates
in XN×2 can be transferred to ŶN×2. If they are correctly matched, the Euclidean distance
between estimated coordinates ŶN×2 and YN×2 will be small. If mismatches exist, their
corresponding distances will be distant from the majority. Therefore, mismatch elimination
is transferred to a one-dimensional outlier detection problem. Based on this, a Minimum
Covariance Determinant (MCD) is applied in this paper to detect and exclude mismatches.

https://doi.org/10.1017/S0373463317000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000224


1140 ZEYU LI AND OTHERS VOL. 70

Figure 5. The validation processes.

The details of MCD can be found in Humenberger et al. (2010). Other outlier detection
algorithms can still be applied.

After mismatch detection and exclusion based on MCD, all the obtained matching pairs
Pairi = {(xi, yi) | i = 1, 2, . . . , N can be modelled in a linear form based on affine trans-
formation as the functional model, and its corresponding stochastic model as illustrated
below:

Ax = l + v (9)

� = σ 2
o Q = σ 2

o P−1 (10)

where x represents unknowns in the affine transformation matrix, l is the 2N × 1 observa-
tion vector composed of yi, v is the residual vector and A is the 2N × 6 design matrix
coming from xi. For the stochastic model, σ 2

o is the a priori variance factor, Q is the
2N × 2N cofactor matrix, and P is the 2N × 2N weight matrix.

To evaluate the quality of correspondences, a two-step outlier detection procedure
including global test and data snooping is conducted as shown in Figure 5.

The global test will verify the global consistency between the observation and the model
including functional model and stochastic model. The test statistic can be formulated as
(Knight et al., 2010):

f σ̂ 2
0

σ 2
0

=
vTPv

σ 2
0

∼ χ2
1−α,f (11)

where f is a number for redundancy which equals to 2N − 6, σ̂ 2
0 is the posteriori vari-

ance factor, σ 2
0 is the a priori variance factor, v is the residual vector and P is the weight

matrix. The local test (data snooping) shown in Equation (12) is to further find the faulty
observations according to outlier statistics:

wi =
eT

i Pv

σ0

√
eT

i PQvPei

∼ N (0, 1) (12)

where ei is a n × 1 vector containing zeros but one is in the corresponding position for
the assumed outlier. If the test statistic is larger than the critical value determined by the
confidence level, the observations may be faulty.

6. EXPERIMENTS AND ANALYSIS. A pre-calibrated Digital Single Lens Reflex
(DSLR) camera Canon 450D was used to capture the images. Three data sets, which
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(a)

(b)

(c)

Figure 6. Samples of collected datasets

were named as Office (94 images), Corridor (66 images) and Kitchen (27 images) respec-
tively, were collected in large weakly textured regions inside the UNSW Civil Engineering
Building, which were shown in Figure 6.

Each image contained a set of targets (e.g. Ground Control Points - GCPs) whose image
coordinates and world coordinates were precisely known, which could be applied as the
input to generate ground truth such as affine parameters and navigation solutions. It should
be noted that in the mapping stage, the GCPs are used only to transfer the geo-information
to the matched LSIFs by bundle adjustment. In the navigation stage (Sections 6.3 and 6.4),
the LSIFs detected on these coded targets are removed. Therefore LSIFs are employed as
natural features for navigation.

6.1. Illustrative example for LSIF Keypoint Matching Algorithm. This section aims
to provide an insight into the proposed LSIF detection, description, matching and validation
algorithm with an example.

As shown in Figure 7(a), in total 230 line segments were detected. Depending on the
LSD’s performance, some vertical line segments laid on the left half of the images were
not detected, potentially reducing the number of detected LSIFs. However, the detected
line segments still capture the main structure. It was observed that there still existed small
and chaotic line segments that did not contribute much in capturing the main structure.
Therefore the line segments, whose lengths were less than 0·02H and intersection angles
were out of the range between 80 and 100 degrees, were excluded, where H was the height
of image in pixels. For example, the line segments detected in sub-figure 1 of Figure 7(a)
were removed as their length were less than 0·02H . Sub-figure 2 was also excluded due to
the intersection angle being less than 80◦. Only the line segments that met the aforemen-
tioned conditions in Section 2 were preserved. Sub-figure 3 was an example. Sub-figures 4
and 5 of Figure 7(b) were typical detected LSIF. Finally 102 LSIFs from 98 preserved line
segments were detected.

With the designed detector, 102 and 120 LSIFs were detected for the two images respec-
tively, as shown in Figure 8. In Figure 8(a), with the designed descriptor and coarse
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(a)

(b)

Figure 7. Line segment detection, filtering line segments and detected LSIFs

(a)

(b)

Figure 8. Matching solution after coarse matching and fine matching.
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Figure 9. The histogram of W test statistics in the validation stage.

matching algorithm, 56 of 66 detected LSIFs were correctly matched. But there were still
ten mismatches. The coordinates of tentatively matched keypoints were then employed as
the input for the modified CPD-based matching approach. Using Shape Context and LSIF
validation, the mismatches could be completely eliminated as illustrated in Figure 8(b).
The degree of freedom after fine matching was 96 according to Equation (11). If the con-
fidence level was set as 99·5%, the critical value should be 135·433, since the calculated
global test statistic (42.275) was less than the critical value. The global test showed that
the correspondences were consistent with the affine transformation model. W tests were
also conducted for each matched keypoint pair, and the histogram of W test statistics is
illustrated in Figure 9. The critical value was set as 3·29 if the confidence level was 99·9%.
Since W test statistics for each correspondence were less than 3·29, it was validated that
there were no mismatches in the generated correspondences.

6.2. Matching Performance Comparison and Analysis. To compare the performance
of LSIF with LICF and SIFT, 30 pairs of images from the aforementioned datasets were
employed as the testing data. The algorithms shown in Table 1 included three parts: LICF-
based approaches (Algorithms 1–4), LSIF-based approaches (Algorithms 5–8) and SIFT-
based approaches (Algorithm 9–12), which all applied different description and matching
strategies. All the tentatively matched keypoints were refined by RANSAC algorithm based
on epipolar constraints except Algorithms 4, 8 and 12. Algorithms 3, 7 and 11 directly used
the detected keypoints’ coordinates as the input for original affine CPD matching approach.
In the following paragraphs, all the algorithms are represented by Detector/Descriptor for
better readability. For example, Algorithm 8 is represented by LSIF/PCD.

The matching performances are compared in five aspects. NoF represents the num-
ber of matched keypoints after RANSAC or corresponding validation approaches. NoM
represents the number of mismatches. Matching accuracy is quantified by Average
Transformation Error (ATE) illustrated in Equation (13):

ETrans =
1

2N

N∑
i=1

(d(x′
i, Fxi) + d(xi, FTx′

i)) (13)
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Table 1. Matching performance comparison for LICF based approaches, LSIF based approaches and SIFT based approaches.

Algorithm No. Detector Descriptor Matching Algorithm NoF NoM Continuity ATE (SD) (Pixel) Processing Time (s)

1 LICF Shape Context (SC) χ2 test statistic 2179 532 96·67% 0·193 (0·194) 221·109
2 LICF SIFT L2 norm 1520 68 100% 0·182 (0·181) 201·773
3 LICF Coordinates (CO) CPD matching 1241 52 70·00% 0·470 (1·459) 209·773
4 LICF Proposed Combined Descriptor (PCD) Proposed Matching algorithm 2043 25 100% 0·156 (0·142) 254·851
5 LSIF Shape Context (SC) χ2 test statistic 3118 488 100% 0·201 (0·330) 57·320
6 LSIF SIFT L2 norm 2347 29 100% 0·196 (0·207) 71·957
7 LSIF Coordinates (CO) CPD matching 3831 134 76·67% 0·274 (0·399) 42·540
8 LSIF Proposed Combined Descriptor (PCD) Proposed Matching algorithm 3138 0 100% 0·159 (0·145) 117·174
9 SIFT Shape Context (SC) χ2 test statistic 2396 1160 86·67% 0·449 (0·304) 783·881
10 SIFT SIFT L2 norm 1238 1213 26·67% 0·215 (0·250) 49·397
11 SIFT Coordinates (CO) CPD matching 1941 793 66·67% 0·688 (0·638) 125·248
12 SIFT Proposed Combined Descriptor (PCD) Proposed Matching algorithm 3036 303 96·67% 0·331 (0·426) 981·275
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where N is the number of correctly matched keypoint pairs and xi and x′
i are image coor-

dinates of correctly matched keypoints respectively. F is the estimated fundamental matrix
from RANSAC using the correctly matched keypoints. d(x′

i, Fxi) represents the epipolar
distance from the keypoint x′

i to epipolar line. Continuity is defined as the ratio between the
number of image pairs where at least four keypoints are finally matched and the number
of all the image pairs. The threshold for continuity is set as three because if the number of
matched keypoints is equal or less than three, the solution for the camera’s position cannot
be unique (Thompson, 1966). The processing time is also compared.

LICF/PCD shows superior performances with the largest NoF and the smallest NoM.
However, merely using a global structure descriptor such as Shape Context (LICF/SC)
does not contribute to improving continuity and eliminating mismatches. Because LICF
detection involves the calculation of two curves as the boundary, which takes more
time, the processing time for LICF-based approaches are larger than for LSIF-based
approaches.

NoFs of LSIF-based approaches are larger than those of LICF-based approaches. In
terms of NoM, the LSIF-based approach shows similar performances to LICF-based
approaches. However, LSIF/PCD does not contain any mismatches. The two groups’
matching accuracy is similar, which are all around one pixel. LICF/PCD and LSIF/PCD
have the highest matching accuracy. LICF/SC, LICF/CO and LSIF/CO contained images
whose numbers of matched keypoints are less than three, which are caused by the limited
ability of description and matching.

NoFs for SIFT-based approaches are similar to those of LICF-based approaches. How-
ever, NoMs of SIFT-based approaches are the largest among the three groups, which is
caused by the deteriorated distinctiveness of the descriptor. Also, their continuity perfor-
mances are the worst among the three groups. Using SIFT/SIFT, the NoFs for most image
pairs are fewer than four. Therefore it has the minimum continuity. SIFT/PCD has the
largest NoF among the four algorithms but its NoM is larger than those of LICF/PCD and
LSIF/PCD.

The NoM for LSIF/PCD is the smallest among all the algorithms, showing the superior-
ity of the proposed description and matching approach. Both NoF and ATE for LSIF/PCD
are the second best among all the algorithms. The processing time for LSIF/PCD is mod-
erate and acceptable and it still can be optimised. The comparison demonstrates that LSIF
has the most balanced performances over the five studied aspects.

The time complexity analysis for LSIF/PCD is as follows. Assume the number of pix-
els in the left and right image is Np pixels. In LSIF detection, the time complexity of line
segment detection is O(Np ) (Von Gioi et al., 2008). The computation time for filtering and
intersection is proportional to the number of detected line segments. Assume there are mL
and mR detected LSIFs respectively (mL > mR). In the description stage, the computation
time for SIFT and Shape Context is proportional to mL and mR respectively. In the coarse
matching stage, the complexity of Hungarian optimisation is O(mL

3). In the fine matching
stage, assume there are nf tentative correspondences to be further matched. The computa-
tion time for the modified CPD algorithm is kEM O(n2

f ) if the EM process converges after
kEM iterations. In the validation stage, assume the global test is passed after kG iterations.
The time complexity is kGO(nf ). Therefore for LSIF/PCD, the processing time mainly
depends on the number of detected keypoints since it directly affects the computation time
of the Hungarian optimisation.
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(a)

(b)

Figure 10. Geometric relationship and corresponding accuracy histogram for Office

6.3. Navigation Performance Comparison. In the framework of navigation using
reality-based 3D maps (Li et al., 2011), this section aims to compare the navigation perfor-
mance of LSIF/PCD with three other competitive algorithms (LICF/PCD, SIFT/SIFT and
SIFT/PCD).

Using LSIF/PCD, the geometric relationship between the camera, geo-referenced key-
points (e.g. Pseudo GCPs - PGCPs) and GCPs of the three data sets are shown in Figure 10,
where the crosses show the mapping cameras’ moving path, the asterisks are the man-
ually configured targets which act as GCPs, and the triangles are geo-referenced LSIFs.
The approximate reference is set as the planar determined by GCPs. The coarse map-
ping accuracy indicator is defined as the distance from the geo-referenced LSIFs to the
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(a)

(b)

Figure 11. Geometric relationship and corresponding accuracy histogram for Corridor.

defined reference since the ground-truth position of each geo-referenced LSIF is difficult to
obtain.

With the designed detection, description, matching and validation procedure, a total of
4968 LSIFs are geo-referenced from 59 images of the Office dataset. The LSIF’s distribu-
tion and density are shown in Figure 10(a). It is noted that LSIFs cover most areas of one
wall for the Office data set. There are fewer geo-referenced LSIFs for the other two walls.
The reason for this is physically there are fewer line segments from the actual environment,
reducing the number of matched LSIFs. It is observed that the position errors of most geo-
referenced LSIF lie between −0·05 m to 0·05 m as illustrated in Figure 10(b), indicating
that the mapping accuracy is promising. Some of geo-referenced LSIFs’ accuracies are
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(a)

(b)

Figure 12. Geometric relationship and corresponding accuracy histogram for Kitchen

larger than 0·1 m. This can be explained by the fact that the physical positions of these
geo-referenced LSIFs are not strictly on the wall.

Similarly, Figure 11(a) shows the coordinates of 2972 geo-referenced LSIFs from 40
images of the Corridor dataset, and Figure 11(b) shows the geo-reference accuracy of
LSIFs, demonstrating that the majority of LSIFs’ position error lies in [−0·05, 0·05] m
as well. Figure 12(a) illustrates the 1186 geo-referenced LSIFs from 14 images of the
Kitchen. Since physically most of the geo-referenced LSIFs lie on the wall, the coarse
accuracy indicator shown in Figure 12(b) is higher than the other two data sets.
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Table 2. Navigation solution accuracy of Office using LSIF.

Position and orientation Mean σ Max Min

E (m) 0·010 0·016 0·097 0·000
N (m) 0·028 0·024 0·093 0·002
Z (m) 0·020 0·023 0·093 0·000
Omega (degree) 0·524 0·592 2·405 0·004
Phi (degree) 0·083 0·073 0·270 0·002
Kappa (degree) 0·755 0·639 2·400 0·048

Table 3. Navigation solution accuracy of Corridor using LSIF.

Position and orientation Mean σ Max Min

E (m) 0·018 0·019 0·061 0·001
N (m) 0·006 0·006 0·022 0·000
Z (m) 0·011 0·013 0·051 0·002
Omega (degree) 0·356 0·407 1·632 0·058
Phi (degree) 0·065 0·047 0·195 2·027
Kappa (degree) 0·591 0·614 2·027 0·001

Table 4. Navigation solution accuracy of Kitchen using LSIF.

Position and orientation Mean σ Max Min

E (m) 0·015 0·011 0·034 0·000
N (m) 0·004 0·003 0·009 0·000
Z (m) 0·018 0·014 0·044 0·000
Omega (degree) 0·548 0·415 1·278 0·008
Phi (degree) 0·052 0·034 0·103 0·013
Kappa (degree) 0·426 0·309 1·020 0·002

It can be concluded that LSIFs have the feasibility to be correctly matched and geo-
referenced. The generated reality-based 3D map acts as the resource to provide geo-spatial
information for navigation. The navigation solution is obtained in an epoch-by-epoch
manner.

35, 26 and 13 querying images from the three datasets are matched with the reference
images of generated maps to obtain geo-referenced keypoints’ world coordinates respec-
tively. All the querying images can obtain their navigation solutions. As each querying
image contains at least four GCPs with known image coordinates and world coordinates,
the ground truth of the navigation solution can be obtained uniquely by space resection,
which can be used for accuracy evaluation. Four statistics for navigation error including
average value, standard deviation, maximum value and minimum value are calculated for
the position and orientation error.

These statistics for Office, Corridor and Kitchen are illustrated in Tables 2, 3 and 4
respectively. Due to the larger number of matched keypoints with favourable distribution,
most position errors are less than 5 cm, and the largest error is less than 10 cm. All the
errors in orientation generally were less than 3◦.

LSIF’s navigation performance is compared with LICF/PCD, SIFT/SIFT and SIFT/PCD
in five aspects, namely continuity, number of PGCPs (NoPGCP), availability, position
error and orientation error. The definition of continuity is the same as that in Section 6.2.
NoPGCP reflects the geometric strength of navigation. Based on the typical accuracy in
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Table 5. Continuity and average number of PGCPs for the four algorithms.

SIFT/SIFT SIFT/PCD LICF/PCD LSIF/PCD

Datasets Continuity NoPGCP Continuity NoPGCP Continuity NoPGCP Continuity NoPGCP

Office 17·14% 6 85·71% 12 100% 12 100% 82
Corridor 6·67% 6 53·33% 14 60% 20 100% 51
Kitchen 0% 0 84·61% 9 100% 17 100% 53

position and orientation, it is reasonable to consider the epochs whose position and ori-
entation errors are less than 0·1 m and 5◦ respectively are available for indoor navigation.
Therefore, the availability is defined as the ratio between the number of epochs whose
navigation solutions meet the above criteria and the number of epochs that can obtain nav-
igation solutions. Continuity indicates whether the epoch can obtain a navigation solution
or not, while on the basis of continuity, availability puts more concerns on accuracy. As it is
meaningless to involve incorrect navigation solutions in the discussion about accuracy, the
accuracy is calculated and compared using only available epochs. Continuity of the four
algorithms with regard to the three datasets is illustrated in Table 5. Through the compar-
ison, classical SIFT/SIFT has the lowest continuity and NoPGCP due to the weak texture.
SIFT/PCD and LICF/PCD have slightly higher continuity and NoPGCP. Using LSIF/PCD
we can obtain a navigation solution for all the epochs, and its NoPGCP is the highest among
the four algorithms.

As illustrated in Table 6, SIFT/SIFT completely loses availability. Therefore its position
and orientation error are not applicable. The availability’s variation for SIFT/PCD and
LICF/PCD depends on the number of correctly matched keypoints. The availability of
LSIF/PCD for all the datasets is 100%. The accuracy of available epochs for SIFT/PCD,
LICF/PCD and LSIF/PCD are similar.

Continuity is closely related to the number of correctly matched keypoints. The accu-
racy of navigation solutions are influenced by a number of factors, such as the geometry
between geo-referenced keypoints and camera, the accuracy of geo-referenced keypoints’
world coordinates in the mapping stages, and the matching accuracy of keypoint match-
ing algorithms. It could be concluded that by using LSIFs as the environmental feature,
most navigation solutions could achieve centimetre-level accuracy in positioning, and the
accuracy of orientation could be controlled to a few degrees.

6.4. Navigation Performance Evaluation Based on the Trajectory. This section aims
to evaluate the performance of LSIF/PCD in a comparatively larger indoor environment.
A total of 152 mapping images and 277 querying images were collected from a lobby with
weak texture in the Civil Engineering Building on the University of New South Wales
(UNSW) campus.

The 2D trajectory of navigation solutions and the simplified surrounding environment is
illustrated in Figure 13. The 2D trajectory is consistent with the reality of the motion. All
the epochs can obtain their navigation solutions, which means the continuity for LSIF is
100%. On average, 91 LSIFs can be matched on each querying image. If the same definition
of availability as that in Section 6.3 is followed, its availability is 97.47% as the navigation
solutions of eight epochs are not available. However, their position error is slightly larger
in only a certain direction (e.g. E direction) and navigation solutions are still reasonable.
One possible reason is the weak geometric distribution of PGCPs in the mapping stage.
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Table 6. Availability, position error and orientation error for the four algorithms.

Dataset Office Corridor Kitchen

SIFT/SIFT Position (m) N/A N/A N/A
Orientation (degree) N/A N/A N/A
Availability 0% 0% 0%

SIFT/PCD Position (m) 0·041 0·065 0·031
Orientation (degree) 1·025 2·741 0·932
Availability 26·67% 12·50% 81·82%

LICF/PCD Position (m) 0·023 0·013 0·024
Orientation (degree) 0·437 0·406 0·731
Availability 20% 66·67% 30·77%

LSIF/PCD Position (m) 0·019 0·011 0·012
Orientation (degree) 0·454 0·337 0·344
Availability 100% 100% 100%

Figure 13. Aerial view of the camera’s trajectory

Table 7. Navigation accuracy of position and orientation for the large
indoor environment.

Position and orientation Mean σ Max Min

E (m) 0·005 0·010 0·086 0·000
N (m) 0·009 0·013 0·078 0·000
Z (m) 0·007 0·011 0·071 0·000
Omega (degree) 0·176 0·291 2·185 0·001
Phi (degree) 0·027 0·036 0·370 0·000
Kappa (degree) 0·237 0·365 2·168 0·001

Similarly, the accuracy of all the available navigation solutions can be evaluated
using the GCPs, which is illustrated in Table 7. The accuracy is similar with that in
Section 6.3, where position and orientation errors are limited to a few centimetres and
degrees, respectively.

7. CONCLUDING REMARKS. This paper has proposed a new environmental line fea-
ture named as LSIF and its corresponding detection, description, matching and validation
algorithms to overcome the continuity and correctness challenges in weakly textured areas
of indoor environments. The proposed LSIF outperforms other keypoints in terms of the
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number of matched keypoints and matching correctness. Under the framework of navi-
gation using reality-based 3D maps, high accuracy, continuity and availability have been
achieved, showing its feasibility and potential as a new feature for vision-based navigation.

LSIF originates from the detection of line segments so that the detection of LSIF
mainly depends on the line segment detection algorithm, whose invariance to scaling and
illumination is still not fully explored. Further investigation is underway to improve its
repeatability.
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