
TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [PAULA-ANDRA BUSONIU,
JOHANNES OETSCH, JÖRG PÜHRER, PETER SKOČOVSKÝ and HANS TOMPITS]

URL: http://dx.doi.org/10.1017/S1471068413000410

657

SeaLion: An eclipse-based IDE for answer-set
programming with advanced debugging support

PAULA-ANDRA BUSONIU1, JOHANNES OETSCH1,

J ÖRG PÜHRER1, PETER SKOČOVSKÝ2 and HANS TOMPITS1�
1Technische Universität Wien, Institut für Informationssysteme 184/3, Favoritenstrasse 9-11, A-1040

Vienna, Austria
2Universidade Nova de Lisboa, CENTRIA and Departamento de Informatica,

2829-516 Caparica, Portugal

(e-mail: {andra.busoniu,aifargonos}@gmail.com)
(e-mail: {oetsch,puehrer,tompits}@kr.tuwien.ac.at)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

In this paper, we present SeaLion, an integrated development environment (IDE) for

answer-set programming (ASP). SeaLion provides source-code editors for the languages

of Gringo and DLV and offers popular amenities like syntax highlighting, syntax checking,

code completion, visual program outline, and refactoring functionality. The tool has been

realised in the context of a research project whose goal is the development of techniques

to support the practical coding process of answer-set programs. In this respect, SeaLion is

the first IDE for ASP that provides debugging features that work for real-world answer-set

programs and supports the rich languages of modern answer-set solvers. Indeed, SeaLion

implements a stepping-based debugging approach that allows the developer to quickly track

down programming errors by simply following his or her intuitions on the intended semantics.

Besides that, SeaLion supports ASP development using model-driven engineering techniques

including domain modelling with extended UML class diagrams and visualisation of answer

sets in corresponding instance diagrams. Moreover, customised visualisation as well as visual

editing of answer sets is realised by the Kara plugin of SeaLion. Further implemented features

are a documentation generator based on the Lana annotation language, support for external

solvers, and interoperability with external tools. SeaLion comes as a plugin of the popular

Eclipse platform and provides interfaces for future extensions of the IDE.

1 Introduction

Answer-set programming (ASP) is a well-established paradigm for declarative

problem solving (Gelfond and Leone 2002) that has its roots in nonmonotonic

reasoning, knowledge representation, and logic programming. The main idea of

ASP is to represent solutions to computational problems in terms of logic programs

such that the stable models (Gelfond and Lifschitz 1988) of the latter, referred to as

� This work was partially supported by the Austrian Science Fund (FWF) under project P21698.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


658 P. Busoniu et al.

their answer sets, provide the solutions of a problem instance. In recent years, the

expressibility of languages supported by answer-set solvers increased significantly

(Gebser et al. 2009). Also, ASP solvers have become much more efficient; e.g., the

solver Clasp proved to be competitive with state-of-the-art SAT solvers (Le Berre

et al. 2009; Järvisalo et al. 2012). Despite these improvements in solver technology, a

lack of suitable engineering tools for ASP led to the launch of a project on methods

and methodologies for developing answer-set programs (Oetsch et al. 2010), whose

goal is not only research into new support techniques for programmers but also their

realisation in an integrated development environment (IDE) which we present in this

paper. The system is called SeaLion, where “Sea” stands for Support Environment

for ASP, and the Lion symbolises the strength and good-naturedness that we aimed

to integrate into the environment. It is designed as a plugin of the Eclipse platform

(Eclipse Project 2013) and offers functionality like source editors, syntax highlighting,

syntax checking, visual program outline, and refactoring for the languages of the

state-of-the-art solvers Clasp (in conjunction with Gringo) (Gebser et al. 2007, 2009)

and DLV (Leone et al. 2006).

A preliminary report on SeaLion (Oetsch et al. 2011) discussed initial functionality

and an outline on planned features of the system. Most of these plans have been

realised in the meanwhile. Above all, SeaLion is now equipped with a debugging

framework that can cope with real-world answer-set programs—a feature that

has been requested from the ASP community for a long time. Indeed, SeaLion

implements a stepping-based debugging approach (Oetsch et al. 2011, 2013) that

allows the developer to quickly track down errors by following his or her intuitions

on the intended semantics. The technique is intuitive and similar in spirit as stepwise

debugging in imperative languages but also respects the declarative nature of the

answer-set semantics. Another debugging approach (Oetsch et al. 2010; Polleres et al.

2013) has recently been realised as a SeaLion plugin (Frühstück et al. 2013) called

Ouroboros. It tackles the question why a given interpretation is not an answer set.

While it provides additional debugging functionality for SeaLion, Ouroboros also

profits from the stepping plugin which can help in building up the interpretation in

question. Another simple yet handy feature of SeaLion is the search for a rule that

derived a particular atom in a computed answer set.

The source editors of SeaLion allow for augmenting answer-set programs with

annotations written in Lana (Language for ANnotating Answer-set programs), an

annotation language for structuring, documenting, and testing answer-set programs

(De Vos et al. 2012). These annotations allow for adding valuable information to a

program that can be exploited by various tools, including many features of SeaLion.

For instance, SeaLion integrates the features of the documentation generator ASPDoc

that can generate HTML documentation of answer-set programs.

Lana is also used by SeaLion’s modelling framework that adopts techniques from

model-driven engineering (MDE) (Schmidt 2006) for supporting the development

of answer-set programs. In object-oriented programming, it is common to model

the data structures needed by means of graphical models like UML class diagrams

(Fowler 2004). These domain models serve as primary development artefacts from

which parts of the code can be generated. We implemented a graphical editing

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 659

framework for modelling the domain of an answer-set program in an extended

UML class diagram. The model can then be translated into an ASP predicate

scheme, stored in ASP source files using Lana annotations. The translation includes

documentation and assertions that allow, e.g., to check violation of modelled

constraints. Once a domain model is created, answer sets can be visualised in

UML object diagrams that display the instances of the classes defined in the model

that are encoded in the answer set and their relations.

Visualisation of answer sets is provided by the Kara plugin of SeaLion (Kloimüllner

et al. 2011) that can create user-defined graphical representations of interpretations.

Morevover, Kara offers generic visualisations and allows for graphically manipulat-

ing interpretations.

Related to this work, also other IDEs for ASP were developed in recent years.,

viz. ASPIDE (Febbraro et al. 2011), APE (Sureshkumar et al. 2007), and iGROM

(Koziarkiewicz 2011).

The remainder of the paper is organised as follows. In the next section, we discuss

design choices and implementation principles we followed as well as how to obtain

SeaLion. Section 3 gives an overview of the main features of SeaLion. In Section 4,

we discuss other systems related to SeaLion. Section 5 concludes the paper with an

outline of future work.

2 Implementation and availability

The target audience for SeaLion are software developers new to ASP yet familiar

with support tools as used in procedural and object-oriented programming. As a

consequence, it was our aim to create an environment that is similiar to well-

established development tools. In particular, this was one reason why SeaLion is

implemented as plugin of the Eclipse platform which is popular among software

engineers and can be considered the standard environment for Java development.

Arguably, people who are familiar with Eclipse and basic ASP skills will easily

adapt to SeaLion. The decision to build on Eclipse rather than writing a stand-alone

application from scratch has further benefits. For one, we profit from software reuse

as we can make use of the general GUI of Eclipse and just have to adapt existing

functionality to our needs. Examples include the text editor framework, source-code

highlighting, problem reporting, project management, the undo-redo mechanism, the

console view, the refactoring and the navigation frameworks (Outline), and launch

configurations. Moreover, much functionality of Eclipse can be used without any

adaptions, e.g., workspace management, the possibility to define working sets, i.e.,

grouping arbitrary files and resources together, software versioning and revision

control (e.g., based on SVN or CVS), as well as task management.

A key aspect in the design of SeaLion is extensibility. That is, the API framework

is tailored to support, on the one hand, further ASP languages with low effort

and, on the other hand, allows for embedding future features easily. The SeaLion

implementation follows itself a modular principle, where different features are Eclipse

plugins themselves.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


660 P. Busoniu et al.

Regarding the user interface, our aim was to make the usage of SeaLion as

smooth as possible. We paid attention that the methods of our features can be

performed with as few mouse clicks or other user interaction as necessary and

followed Eclipse conventions for shortcuts. Moreover, we wanted to give the ASP

developer much freedom in how to use the system. For example, SeaLion avoids

functionality that patronises the ASP developer like imposing a certain coding style,

i.e., every valid ASP source file should be usable in our IDE. Furthermore, we

aimed at interoperability, e.g., through the use of standards or the framework for

external tool configurations that allows for using arbitrary external tools, e.g., for

postprocessing computed answer sets.

SeaLion is free software published under the GNU General Public License

version 3. There are two major options to install SeaLion. Users of Eclipse can

obtain it using Eclipse’s update mechanism with the benefit of automatic updates.

Alternatively, we provide standalone packages of SeaLion for different operating

systems and architectures that only require a Java Runtime. For both installation

variants, we provide SeaLion packages with pre-configured ASP solvers. For more

information on SeaLion, installation instructions, and links to the source code, we

refer to the project web site

http://www.sealion.at.

3 Main features

In this section, we give an overview of the main features of SeaLion and thereby

focus on recent key features that were not yet covered in an earlier preliminary

report on SeaLion (Oetsch et al. 2011). In particular, after describing the basic

IDE functionality in Section 3.1, we will concentrate on the stepping feature in

Section 3.2. Finally, we describe our model-driven engineering environment and the

Kara plugin for visualisation and visual editing of interpretations in Sections 3.3

and 3.4, respectively.

3.1 Basic functionality

The central element in SeaLion is the source-code editor for logic programs. Altough

there are current endeavours to harmonise solver languages (cf. also Section 5), up

to now the languages of Gringo and DLV differ in their presentation of aggregates

and many other small details. That is why the SeaLion editor comes in two variants,

one for DLV and one for Gringo. A screenshot of a Gringo source file in SeaLion’s

editor is given in Figure 1.

The editors provide typical conveniences of IDEs, like context-sensitive syntax

highlighting, syntax checking, and problem reporting. Terms and predicates appearing

in the program are proposed for autocompletion. SeaLion also offers functionality

for refactoring answer-set programs. In particular, we implemented functionality for

uniform and safe renaming of predicates, constants, function symbols, and variables

throughout a user-defined set of files containing answer-set programs. Once a new

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 661

Fig. 1. (Colour online) A screenshot of SeaLion’s editor, the program outline, and the

interpretation view.

name is chosen, the user has the possibility to directly apply the changes implied

by renaming or revise them on a preview page. Here, one can inspect the effects

file by file where the original as well as the new source code are displayed next to

each other and all hypothetical changes are highlighted as depicted in Figure B1 in

the online appendix of this paper. An overview of the edited answer-set program is

given in Eclipse’s Outline View in a tree-shaped graphical representation that can be

seen in the bottom-right corner of Figure 1. Clicking on a node of the tree selects

the source code corresponding to the represented program element in the editor such

that the programmer can proceed editing there. Another convenient editor feature

is the temporary highlighting of code the programmer might be interested in. For

instance, if the cursor is positioned over a literal, the positions of all literals of the

same predicate in the overall document are indicated.

The editors are capable of processing Lana annotations (De Vos et al. 2012)

that allow for documenting code, structuring ASP programs by grouping rules into

coherent blocks, and specifying, e.g., language signatures, assertions, as well as unit

tests for such blocks. Annotations are invisible to an ASP solver since they have

the form of program comments, but they can be interpreted by specialised support

tools. Also, SeaLion exploits Lana annotations. For instance, Lana descriptions of

terms and predicates appear next to autocompletion proposals. Moreover, SeaLion

allows for automatically generating source code documentation for answer-set

programs, similar as tools like JavaDoc or Doxygen do for other programming

languages based on Lana annotations. For this purpose, the IDE incorporates the

ASPDoc documentation generator that takes Lana-annotated ASP code as input and

produces HTML files as output (De Vos et al. 2012). The documentation contains

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


662 P. Busoniu et al.

descriptions of all blocks of the answer-set program, where sub-blocks are indented

with respect to their parent blocks. Also, a summary of the block structure of the

entire answer-set program is presented at the beginning of the documentation to

provide an overview. For each block, descriptions of the used atoms and types of

involved terms, as well as for assertions, are given. The documentation also includes

HTML versions of the program’s source code, which can be particularly useful for

sharing ASP code online. There are links from the documentation to the source code

and vice versa. Likewise, rules for defining pre- and postconditions can be inspected

by using respective links. ASP documentation generation can be accessed through

Eclipse’s export menu.

In order to interact with solvers, grounders, and other ASP-related tools, SeaLion

has a mechanism for handling external tools. One can define external tool con-

figurations that specify the path to an executable as well as default command-

line parameters. Arbitrary command-line tools are supported; however, there are

special configuration types for some programs such as Gringo, Clasp, and DLV.

On our website, we offer SeaLion packages that include or automatically install

a variety of popular grounders and solvers for which external tool configurations

are pre-defined. In addition to external command-line tools, one can also define

tool configurations that represent pipes between external tools. This is needed when

grounding and solving are provided by separate executables. For example, one can

define two separate tool configurations for Gringo and Clasp and define a piped tool

configuration for using the two tools in a pipe. Pipes of arbitrary length are supported

such that arbitrary pre- and post-processing can be done when needed. As arbitrary

tools can be piped, this mechanism allows for post-processing or handling solver

output as needed, e.g., opening external visualisation tools like IDPDraw (Wittocx

2009) and ASPVIZ (Cliffe et al. 2008). Default solvers for different solver languages

can be set in the preference menu of SeaLion depending on file content types in the

“Content Type Preferences” section.

For executing answer-set solvers and other tools, we make use of Eclipse’s launch

configuration framework, i.e., the user can create re-usable launch configurations

that define which programs should be executed using particular external-tool

configurations, the command-line arguments to use, and other settings. Figure B3

shows the page of the launch configuration editor on which input files for a solver

invocation can be selected. Moreover, a launch configuration contains information

how the output of the solver should be treated. One option is to print the solver

output as it is in Eclipse’s console view. The other option is to parse the resulting

answer sets for further use in SeaLion. In this case, the answer sets obtained from

the solvers are stored in SeaLion’s interpretation view as well as in the interpretation

comparison view. In both, interpretations are visualised as expandable trees, where

the literals of each interpretation are grouped by their predicates. Compared to

a standard textual representation, this way of visualising answer sets provides a

well-arranged overview of the individual interpretations. While the interpretation

view lists interpretations in rows, the interpretation comparison view places them in

columns. By horizontally arranging trees for different interpretations next to each

other, it is easy to compare two or more interpretations.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 663

Besides defining launch configurations, SeaLion also offers the possibility to

invoke a solver right away on a selection of files in the workspace using the default

settings of an external tool configuration. This is realised using the so-called Launch

Shortcuts mechanism of Eclipse. The user selects the files that should be evaluated in

the project explorer and selects the SeaLion entry of their “Run As” context menu.

The entry is available as soon as an external tool configuration is set as default

solver for the selected file content type.

3.2 Stepping

Next, we discuss the stepping feature of SeaLion, being its primary debugging

mechanism. Stepping for ASP was introduced as a strategy to identify mismatches

between the intended semantics of an answer-set program under development and

its actual semantics (Oetsch et al. 2011). The general idea is to monotonically build

up an interpretation by adding, in each step, literals derived by a rule that is active

with respect to the interpretation obtained in the previous step (a rule is active

under an interpretation if that interpretation satisfies the rule’s body). The process

is interactive in the sense that at each such step the user chooses the active rule to

proceed with and decides which literals of the rule should be considered true or false

in the target interpretation. The computation model used in stepping ensures that, if

the interpretation specified in this way is indeed an answer set, the process of stepping

will eventually terminate with the interpretation as its result. Otherwise, it will get

stuck at some step and the user gets insight why the interpretation is not an answer

set, e.g., when a constraint becomes irrevocably active. A computation that will

inevitably get stuck is called failed. Due to the declarativity of ASP, once one detects

unintended semantics, it can be a tough problem to manually detect the reason.

Stepping is a method for breaking this problem into smaller parts and structuring

the search for an error. At the same time, relying on the user’s intuition on which

rules to proceed with, stepping can be guided such that the search quickly results in

new insights. The approach is inspired by stepping-based debugging for procedural

languages, where the behaviour of a program is analysed by executing statement by

statement, following the program’s control flow, and inspecting variable assignments.

It turns out that declarativity in ASP is not in discrepancy with adapting a method

from the imperative paradigm, but fruitful instead. That is, on the one hand, with

stepping the user always has guidance for starting the search for bugs, and, on the

other hand, the interactive choice for the next rule makes stepping in ASP in a

sense more flexible than traditional stepping, where the control flow dictates which

statements are to be considered next. To still allow for fast debugging, procedural

language debuggers allow to set breakpoints, i.e., to mark statements until which

execution is done automatically. We also have a similar feature in stepping for ASP,

called jumping, that allows to consider multiple rules which are assumed to be correct

at once. Hence, we can speed up stepping by only inspecting suspicious parts of the

program step by step.

The original ASP stepping framework was introduced for normal logic programs

(Oetsch et al. 2011). Therefore, it has merely been of theoretical interest as typically

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


664 P. Busoniu et al.

Fig. 2. Nurikabe examples: a) problem instance, b) correct solution,

c) wrong solution violating (iii), d) wrong solution violating (v).

answer-set programs involve aggregates, conditions, and other language features

provided by modern solvers. Moreover, the use of function symbols in answer-set

programs leads to infinite programs obtained by the näıve grounding that was

assumed in the previous approach. To overcome these major limitations, we lifted

the stepping framework to DL-programs (Oetsch et al. 2012), and finally to the

languages of Gringo and DLV (Oetsch et al. 2013). Hence, we could implement

stepping in SeaLion fully covering these two ASP languages. Note that a formal

introduction of the stepping framework is beyond the scope of this system paper

and will be reported in a companion paper (Oetsch et al. 2013).

We now explain the realisation of stepping in SeaLion using the following example.

Example 1

Suppose user Leo writes a program in SeaLion that solves a Nurikabe puzzle which

is a grid of cells, some of which contain natural numbers.1 The goal is to colour

the cells such that (i) each cell is either black or white, (ii) cells with numbers are

white, (iii) there are no 2x2 blocks of black cells, (iv) all black cells are transitively

connected, and (v) each maximal group of white cells that are transitively connected

must contain exactly one cell with a number (this number must be the number of

cells in the group), where two cells are considered connected if they are of the same

colour and share a border. An example of a puzzle instance, its solution, and two

wrong solutions, can be seen in Figure 2.

The input expected by Leo’s program consists of facts using predicates row/1 and

col/1 that enumerate row and column numbers and atoms of form

number(c(Y,X),N), indicating that the cell c(Y,X) contains number N. The program,

whose full source code is given in the online appendix, consists of three parts: a

generate part that guesses the colour for each cell, a define part specifying when

two cells are orthogonal adjacent, and a check part that has auxiliary definitions of

reachability and cell groups, implementing conditions (ii)–(v) as constraints.

Generally, a bug is detected when, for a particular input of a program, actual

output differs from the intended output. For ASP, there may be two cases: (1) an

intended answer set is missing from the actual output, or (2) the actual output

contains an unintended answer set.

Example 2

When Leo runs the program from our running example for input

row(1..4). col(1..4). number(c(3,2),3). number(c(4,4),1).

1 Similar puzzles can be found at http://www.puzzle-nurikabe.com/.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 665

Fig. 3. (Colour online) SeaLion stepping perspective.

(visualised in Fig. 2a) he finds out that it has no answer set. This is not intended as

for this input there is a solution (shown in Fig. 2b). This is a subcase of (1), where

all intended answer sets are missing.

In the case of missing intended answer sets, a reasonable debugging strategy is

trying to reach one of these intended answer sets with stepping. It will not be

possible to reach the answer set and the reason, i.e., the bug we are looking for, will

become apparent as we will see.

In order to start stepping, SeaLion needs to know how the program is launched

(what files contain the program, what command-line options are specified). Hence, a

launch configuration for the program is launched in debug mode instead of the run

mode for computing answer sets. Then, the GUI of Eclipse switches to the SeaLion

stepping perspective as shown in Figure 3. The stepping perspective displays the

source code of the program in a source editor (Fig. 3a) and the current state S of the

stepping process in the state view (Fig. 3d). State S consists of the set PS of ground

rules that have been chosen in previous steps, the interpretation IS of atoms that

have already been considered true, and the set I−
S of atoms that have been considered

false. Moreover, the state keeps track of unfounded sets (Faber 2005) needed for

stepping through answer-set programs with complexity beyond NP, which we do not

consider in this paper. Rules with instances that are active under IS are highlighted

in the editor. Upon clicking on such a rule, its active instances are displayed in

the active instances view (Fig. 3b). After choosing one of the instances, it has to be

decided in the truth assignment view (Fig. 3c) whether the literals in it are considered

positive or negative and subsequently added either to IS or I−
S . Naturally, these

two sets must stay disjoint throughout the whole course of stepping. As stepping

requires that a rule added in some step remains active and satisfied under IS ′ of the

next state S ′, this assignment is usually fixed for simple rules. In such cases, SeaLion

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


666 P. Busoniu et al.

automatically assigns the literals and enables the “STEP” button. Upon clicking

the latter, the next state is computed and displayed in the state view. Finally, the

computation view (Fig. 3e) shows all actions taken during stepping in the form of a

tree and allows for navigating between the states resulting from these actions, i.e.,

one may return to a previous state and start a new branch in the tree from there,

while all the old branches remain intact.

Example 3

In our running example, Leo starts stepping through his program by choosing the

launch configuration he created for computing the program’s answer sets, but he

uses the menu under the debug button instead of the launch button (Fig. B4). Leo

chooses to step through the first input fact row(1..4). Facts are always active, and

for this one the ground instances row(1)., row(2)., row(3)., and row(4). are

displayed in the active instances view. Leo chooses the second one. After clicking

the “STEP” button in the truth assignment view, the rule is added to PS and its

literal is added to IS which are displayed in the first two columns of the state view.

Adding row(2) to IS activates the rule maxrow(Y) :- row(Y), not row(Y+1).

with its only active instance where Y = 2. After adding this instance, the state will

contain

PS = {row(2)., maxrow(2) :- row(2), not row(3).},
IS = {row(2), maxrow(2)}, and

I−
S = {row(3)}.

As IS and I−
S must stay disjoint, it is impossible to add fact row(3). to PS , which

will always be an active instance of row(1..4). That means continuing stepping

from this state cannot reach any answer set of the program. Detecting when the

computation becomes failed will point to the bug later on, but this time Leo added

the rule by mistake. He retracts to the last state by double-clicking the previous

node in the computation view. Even though Leo did not detect the bug yet, this

little detour gave him insight into why maxrow(X) is derived only for X = 4.

Stepping through a lot of simple rules, like the ones in a define part, would be

cumbersome and time-consuming. SeaLion offers the jumping feature for such cases.

It allows to “jump” through a number of rules into a state that would be reached

after stepping through all these rules individually. Note that decisions for this part

are not under user control (technically, they depend on the first answer set that is

generated in a SeaLion internal answer-set computation). For instance, if guessing

rules are chosen for jumping, the outcome of the guess is not predictable for the

user. If the user wants to determine some of the guessed values, he or she can step

through the corresponding instances of the guessing rules before jumping.

Example 4

Leo would be bored by clicking the “STEP” button for each instance of the rules

in the define part. They have the same active instances in any answer set of the

program anyway. So he selects all the facts of the input and all the rules in the

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 667

define part

cell(c(Y,X)) :- row(Y), col(X).

maxcol(X) :- col(X), not col(X+1).

. . .

adjacent(c(Y,X), c(Y-1,X)) :- cell(c(Y,X)), not minrow(Y).

. . .

and clicks the “Add Rules for Jump” button in the jump view (see Fig. B5). This

adds the rules to the set of rules selected for jump displayed in the jump view. Upon

clicking the “Jump” button in the jump view, he gets to the state where all active

instances of these rules are in PS , the atoms they infer are in IS , and the negated

atoms in these instances are added to I−
S .

Now Leo wants to add the literals of white/1 and black/1 that form the only

correct solution (Fig. 2b). So he starts with the choice rule in the generate part,

{white(C):cell(C)}.. Note that this rule can only be selected as the predicate

cell/1 is already fully evaluated, otherwise SeaLion would issue a warning. The

rule has a single active instance with a choice atom containing 16 atoms of predicate

white/1. Leo has to decide which of these atoms are considered true in the truth

assignment view. As the choice atom has no bounds, any selection satisfies the

rule. He chooses the atoms white(c(2,2)), white(c(2,3)), white(c(3,2)), and

white(c(4,4)) to be true and the remaining atoms false. Using drag and drop

(Fig. B6) or the arrow keys, this selection is made within seconds and Leo presses

the “STEP” button to continue.

After jumping through the remainder of the generate part, IS contains exactly

those atoms of predicates white/1 and black/1 that encode the intended solution.

Leo notices that constraint :- black(C1), black(C2), not black_reach(C1,C2).

that implements condition (iv) is highlighted in the editor, indicating that it has

active instances. In order to deactivate it, Leo jumps through the defining rules of

the predicate black_reach/2, viz.

black_reach(C1,C2) :- black(C1), black(C2), adjacent(C1, C2).

black_reach(C1,C3) :- black_reach(C1,C2), black(C3),

adjacent(C2,C3).

However, the constraint remains active. Leo examines the first active instance of the

constraint in the active instances view and sees that black_reach(c(1,1),c(2,1))

was not derived even though c(2,1) should be reachable from c(1,1). In the search

for the reason, Leo backtracks the last jump to examine the active instances of the

first rule defining black_reach/2 that should infer the missing atom because the

cells are adjacent. It has many active instances but Leo is interested only in the ones

that derive the incriminated atom. So, he filters the instances by setting the variable

C1 by typing C1=c(1,1). in the “filters” field (Fig. B7). But there is no active

instance deriving the atom! Leo notices that the atom adjacent(c(1,1),c(2,1))

is missing. So, he backtracks before the jump through the rules defining adjacent/2

and has a close look at the one that should derive that c(1,1) is adjacent to c(2,1),

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


668 P. Busoniu et al.

Fig. 4. Modelling in the SeaLion domain diagram editor.

viz.

adjacent(c(Y,X), c(Y+1,X)) :- cell(c(Y,X)), not minrow(Y).

Leo inspects its active instances and notices that Y is never substituted by 1.

Consequently, he realises that the boundary atom not minrow(Y) is wrong and

should be replaced by not maxrow(Y).

3.3 Model-driven engineering framework

SeaLion’s MDE plugin allows for guiding the ASP development process by graphical

models, starting from modelling the problem domain and ending at the visualisation

of problem solutions. That is, we have a graphical editor (cf. Fig. 4) in which

the user can start the development by creating a UML class diagram that models

the problem domain. In a second step, the model can be translated into an ASP

source file that contains Lana annotations documenting the domain. These include

descriptions of the predicates and assertions representing constraints expressed in

the model such as cardinalities of associations or disjointedness and completeness

of generalisations (e.g., that a person is a man or a woman but not both). Moreover,

assertions detecting key violations are generated: we allow for defining key attributes

in our UML diagrams that are not part of the UML standard as in object-oriented

languages class instances are typically uniquely identified by an implicit key that

represents an address in memory. The translation from the domain model to an

ASP predicate schema is similar in spirit to well-known translations from entity-

relationship models to database schemas. That is, adding foreign keys to predicates

for relationships, mapping every class to a set of predicates, and mapping all

attributes to terms. To give flexibility to the user, the mapping is configurable, e.g.,

the user may choose by how many and by which predicates a class is represented.

After generating the code file, the developer may proceed with completing his or

her answer-set program. In the further course of development, the created domain

model can be reused for visualising answer sets that use the generated predicate

schemas by means of UML object diagrams. That is, based on the UML class

diagram and the configuration of the translation, instances of the classes defined in

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 669

the model that are encoded in the answer set are detected and displayed (compare

Fig. B8). Likewise, their relationships are visualised. Furthermore, the answer set

is automatically checked against Lana assertions that were created, and violations

of constraints are highlighted in the UML object diagram (Fig. B9). To open the

diagram, the user opens a corresponding dialog from the context menu of the answer

set that should be visualised directly in the interpretation view. As answer sets can

become very large, it is also possible to pre-select an interesting subset of the answer

set. In this case, only instances are shown in the diagram whose keys appear in the

selected atoms.

3.4 Visualisation and visual editing

Besides the representation in a UML object diagram as presented in the previous

section, answer sets can also be visualised without the need of creating a domain

model by using the Kara plugin (Kloimüllner et al. 2011). In the context menu

of an interpretation in the interpretation view, one can initiate either a customised

visualisation or a generic visualisation. The latter represents the interpretation as a

labelled hypergraph whose nodes are the individuals appearing in the interpretation,

and whose edges represent literals in the interpretation, connecting the individuals

appearing in a respective literal. An example of a generic visualisation is shown in

Figure B10.

The customised visualisation is specified by the user by means of a visualisation

answer-set program that uses a powerful pre-defined visualisation vocabulary. The

resulting visual representation of an interpretation is shown in a graphical editor

that also allows for manipulating the visualisation. That is, properties such as

colours can be manipulated and graphical elements can be re-positioned, deleted,

or even created. Such manipulations are useful for two different purposes. First,

for fine-tuning the visualisation before saving it as a scalable vector graphic (SVG).

Second, modifying the visualisation can be used to obtain a modified version of

the visualised interpretation by abductive reasoning. In fact, we implemented a

feature that allows for abducing an interpretation that would result in the modified

visualisation (Kloimüllner et al. 2011). Customised visualisations created with Kara

are given in Figures 2 and B11.

4 Related work

Concerning related approaches, the tool APE (Sureshkumar et al. 2007), developed

at the University of Bath, is also based on Eclipse. It supports the language of

the grounder Lparse (Syrjänen 2000) and provides syntax highlighting, syntax

checking, program outline, and launch configurations. Additionally, APE can display

the predicate dependency graph of a program.

ASPIDE, a recent IDE for DLV programs (Febbraro et al. 2011), is a standalone

tool that builds on previous tools (Calimeri et al. 2009; Gebser et al. 2009; Febbraro

et al. 2010). One nice feature of ASPIDE is the support of customised code templates.

It also supports syntax highlighting, code completion, unit tests (Febbraro et al.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


670 P. Busoniu et al.

2011), and quick fixes. A further feature of ASPIDE is a visual program editor. We

do not aim for comprehensive visual source-code editing in SeaLion but consider to

use customisable program templates for expressing common programming patterns

in future releases of SeaLion. Unfortunately, the profiling component of the IDE

(Calimeri et al. 2009), that is closely linked with DLV, is not publicly available.

Neither APE nor ASPIDE currently support graphical visualisation or visual editing

of answer sets as available in SeaLion.

Concerning supported ASP languages, SeaLion is the first IDE to support the

language of Gringo rather than its Lparse subset. Moreover, other proposed IDEs

for ASP only consider the language of either DLV or Lparse, with the exception of

iGROM (Koziarkiewicz 2011). Note that iGROM has been developed at our department

independently from SeaLion as a student project. A speciality of iGROM is the support

for the front-end languages for planning and diagnosis of DLV.

SeaLion is the only IDE offering debugging for programs with variables. However,

ASPIDE incorporates the tool Spock (Gebser et al. 2009) that is a prototypical

debugger for ASP which is limited to ground programs only.

Our model-based engineering plugin is a refined follow-up project of the VIDEAS

system (Oetsch et al. 2011) that used ER diagrams to model domains of answer-set

programs.

Customised visualisation in Kara follows the ideas of the tools ASPVIZ (Cliffe

et al. 2008) and IDPDraw (Wittocx 2009) that also use ASP for specifying vi-

sualisations. Compared to these tools, Kara allows not only for visualisation of

an interpretation but also for visually editing the graphical representation such

that changes in the visualisation are reflected in the visualised interpretation.

Moreover, Kara offers support for generic visualisations, special support for grids,

and automatic layout of graph structures. The latter is also the goal of Lonsdaleite,

a lightweight script for visualising graph structures encoded in answer sets (Smith

2011).

5 Conclusion and future work

In this paper, we presented SeaLion, an IDE for ASP languages. We discussed

general principles that we follow in our implementation and gave an overview of its

most important features. SeaLion is an Eclipse plugin and the first comprehensive

IDE that supports the languages of both Gringo and DLV, which can currently

be considered as the two most prominent implemented ASP languages. Currently,

a new standard for solver languages is under development (Calimeri et al. 2012)

that we want to support in the near future. Other plans for further extensions of

SeaLion include a graphical version of the ASPUnit system (De Vos et al. 2012)

for executing Lana unit tests and further improvements of the stepping plugin

like automatic stepping through the stratified part of a program and rules that

do not require further user interaction. We see a challenge in studying program

transformations that allow to change the representation of a problem in ASP.

Such transformations can be used for new refactoring features that support typical

changes during program optimisation. A simple example would be the splitting of

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 671

predicates. For more advanced methods, also model transformation techniques from

model-driven engineering might prove valuable. Our MDE framework could provide

a basis for first steps in this direction.

References

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,

N., Ricca, F. and Schaub, T. 2012. ASP-Core-2, input language format. https://www.

mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf.

Calimeri, F., Leone, N., Ricca, F. and Veltri, P. 2009. A visual tracer for DLV. In Proceedings

of the 2nd International Workshop on Software Engineering for Answer-Set Programming

(SEA 2009).

Cliffe, O., De Vos, M., Brain, M. and Padget, J. A. 2008. ASPVIZ: Declarative visualisation

and animation using answer set programming. In Proceedings of the 24th International

Conference on Logic Programming (ICLP 2008), 724–728.

De Vos, M., Kisa, D. G., Oetsch, J., Pührer, J. and Tompits, H. 2012. Annotating answer-set

programs in Lana. Theory and Practice of Logic Programming 12, 4-5, 619–637.

Eclipse Project. 2013. http://www.eclipse.org/eclipse.

Faber, W. 2005. Unfounded sets for disjunctive logic programs with arbitrary aggregates. In

Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR 2005), Lecture Notes in Computer Science, vol. 3662. Springer,

40–52.

Febbraro, O., Leone, N., Reale, K. and Ricca, F. 2011. Unit testing in ASPIDE. In

Proceedings of the 19th International Conference on Applications of Declarative Programming

and Knowledge Management and the 25th Workshop on Logic Programming (INAP

2011/WLP 2011), 165–176.

Febbraro, O., Reale, K. and Ricca, F. 2010. A visual interface for drawing ASP programs.

In Proceedings of the 25th Italian Conference on Computational Logic (CILC 2010). CEUR

Workshop Proceedings, vol. 598.

Febbraro, O., Reale, K. and Ricca, F. 2011. ASPIDE: Integrated development environment

for answer set programming. In Proceedings of the 11th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 2011), Lecture Notes in Computer

Science, vol. 6645. Springer, 317–330.

Fowler, M. 2004. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Professional.

Frühstück, M., Pührer, J. and Friedrich, G. 2013. Debugging answer-set programs

with Ouroboros – extending the SeaLion plugin. In Proceedings of the 12th International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013), Springer.

To appear.

Gebser, M., Kaufmann, B. and Schaub, T. 2009. The conflict-driven answer set solver clasp:

Progress report. In Proceedings of the 10th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2009), Lecture Notes in Computer Science,

vol. 5753. Springer, 509–514.

Gebser, M., Pührer, J., Schaub, T., Tompits, H. and Woltran, S. 2009. Spock: A debugging

support tool for logic programs under the answer-set semantics. In Proceedings of the

17th International Conference on Applications of Declarative Programming and Knowledge

Management and the 21st Workshop on Logic Programming (INAP 2007/WLP 2007),

Revised Selected Papers, Lecture Notes in Computer Science, vol. 5437. Springer, 247–

252.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


672 P. Busoniu et al.

Gebser, M., Schaub, T. and Thiele, S. 2007. Gringo: A new grounder for answer set

programming. In Proceedings of the 9th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR 2007), Lecture Notes in Computer Science, vol.

4483. Springer, 266–271.

Gelfond, M. and Leone, N. 2002. Logic programming and knowledge representation - The

A-Prolog perspective. Artificial Intelligence 138, 1-2, 3–38.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

Proceedings of the 5th Logic Programming Symposium, MIT Press, 1070–1080.

Järvisalo, M., Berre, D. L., Roussel, O. and Simon, L. 2012. The international SAT solver

competitions. AI Magazine 33, 1, 89–92.

Kloimüllner, C., Oetsch, J., Pührer, J. and Tompits, H. 2011. Kara - A system for visualising

and visual editing of interpretations for answer-set programs. In Proceedings of the 25th

Workshop on Logic Programming (WLP 2011), 152–164.

Koziarkiewicz, M. 2011. iGROM. http://igrom.sourceforge.net/.

Le Berre, D., Roussel, O. and Simon, L. 2009. SAT 2009 competition. http://www.

satcompetition.org/2009/.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The DLV system for knowledge representation and reasoning. ACM Transactions on

Computational Logic 7, 3, 499–562.

Oetsch, J., Pührer, J., Seidl, M., Tompits, H. and Zwickl, P. 2011. VIDEAS: A development

tool for answer-set programs based on model-driven engineering technology. In Proceedings

of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR 2011), Lecture Notes in Computer Science, vol. 6645. Springer, 382–387.

Oetsch, J., Pührer, J., Skočovský, P. and Tompits, H. 2013. Stepping in answer-set

programming: Handling disjunctions and aggregates, In preparation.

Oetsch, J., Pührer, J. and Tompits, H. 2010. Catching the ouroboros: On debugging non-

ground answer-set programs. Theory and Practice of Logic Programming 10, 4-6, 513–529.

Oetsch, J., Pührer, J. and Tompits, H. 2010. Methods and methodologies for

developing answer-set programs—Project description. In Technical Communications of the

26th International Conference on Logic Programming (ICLP 2010), Leibniz International

Proceedings in Informatics (LIPIcs), vol. 7. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany.

Oetsch, J., Pührer, J. and Tompits, H. 2011. Stepping through an answer-set program. In

Proceedings of the 11th International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR 2011), Lecture Notes in Computer Science, vol. 6645. Springer, 134–

147.

Oetsch, J., Pührer, J. and Tompits, H. 2011. The SeaLion has landed: An IDE for

answer-set programming—Preliminary report. In Proceedings of the 19th International

Conference on Applications of Declarative Programming and Knowledge Management and

the 25th Workshop on Logic Programming (INAP 2011/WLP 2011), 141–151.

Oetsch, J., Pührer, J. and Tompits, H. 2012. Stepwise debugging of description-logic

programs. In Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz,

Lecture Notes in Computer Science, vol. 7265. Springer, 492–508.

Polleres, A., Frühstück, M. and Schenner, G. 2013. Debugging non-ground ASP programs

with choice rules, cardinality constraints and weight constraints. In Proceedings of the

12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR

2013), Springer. To appear.

Schmidt, D. C. 2006. Model-Driven Engineering. IEEE Computer 39, 2 (february), 41–47.

Smith, A. 2011. Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410


SeaLion: An eclipse-based IDE for ASP with advanced debugging support 673

Sureshkumar, A., Vos, M. D., Brain, M. and Fitch, J. 2007. APE: An AnsProlog*

environment. In Proceedings of the 1st International Workshop on Software Engineering

for Answer-Set Programming (SEA 2007), 71–85.

Syrjänen, T. 2000. Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/

lparse.ps.gz.

Wittocx, J. 2009. IDPDraw, a tool used for visualizing answer sets. https://dtai.cs.

kuleuven.be/krr/software/visualisation.

https://doi.org/10.1017/S1471068413000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000410

