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Abstract

The shape grammar formalism has been discussed theoretically extensively. Recently there has
been increased activity in implementing shape grammar interpreters, yet there is a lack of
implementations that support parametric rules and emergence. Here the structure of a general
parametric shape grammar interpreter is discussed in detail. The interpreter is based on graph
grammars. It supports emergence, parametric rules, and numerous types of geometric objects.
The shape grammar engine, an agent-based rule selection system and several implementations
based on the engine are discussed.

Introduction

The challenges for designing a general-purpose parametric shape grammar application are
numerous. Several accounts have been given in the literature (see, e.g., Krishnamurti, 1981;
Krishnamurti & Earl, 1992; Chase, 2002; Chau et al., 2004; Duarte & Correia, 2006; Ertelt
& Shea, 2009; Trescak et al., 2009; Jowers & Earl, 2010; Hoisl & Shea, 2011). Some of these
accounts examine technical and/or expressive characteristics of interpreters, including under-
lying computing language, subshape recognition, the dimensionality of shapes, and so forth.
Others concentrate on the tasks for programs that implement shape grammars, for example,
generation, parsing, and inference tasks and their interactions with CAD modelers (Gips,
1999). Then there are those that focus on usage in design, including general interpreters versus
specific domain applications; schematic design versus design development; industrial strength
interpreters versus proof-of-concept applications (Chase, 2002).

Here a general parametric shape grammar interpreter, code-named GRAPE, is discussed.
The first account of this work has been given in Grasl and Economou (2013a). The interpreter
uses graph grammars to carry out computations on part-relation graphs that encode maximal
representations of shapes. In this work, it was further argued that what distinguishes GRAPE is
that emergent shapes and general parametric rules are both supported – while fully acknowl-
edging that parametric subshape recognition is NP-hard (Yue et al., 2009).

The work here builds on this foundational work and reports on advances presented else-
where since then (Grasl & Economou, 2013b, 2014). Extensions to the graph model are pre-
sented, some topics concerning a visual rule editor are discussed, and rule selection agents are
introduced. Finally, some first results from the usage of GRAPE in a design curriculum in aca-
demia are reported.

Grape

GRAPE is a shape grammar system based on graph grammars. The implementation enables
labeled parametric shape grammars (Stiny, 1980) defined in various algebras of shape and sup-
ports emergence (Knight, 2003). It was originally described in Grasl and Economou (2013a).
Here the discussion will focus on the graph model, the intricacies of the visual rule editor, the
automation of the rule selection process through agents, and some details concerning the var-
ious GRAPE applications (Fig. 1).

Graph model

In GRAPE, a rule is applied by taking the current shape C, converting it to its graph represen-
tation G, applying the respective graph grammar rule in order to obtain the new graph G′, and
convert the graph back to a shape C′ (Fig. 1). The graph model and the features of the graph
grammar implementation have a strong influence on the capability of the system. Some of the
details are introduced in the following.
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Part-relation graph and emergence
The model is based on a so-called part-relation graph. In the
implemented version, the maximal representations of shapes
and their intersections are mapped to attribute part-relation
graphs and shape rules are mapped to their equivalent graph
rules. The subgraph-matching algorithm can then handle the
problem of subshape detection and emergence. Geometric con-
straints are easily added to search patterns in form of geometric
functions.

Elements
Different types of nodes and edges can be defined. These classes
support inheritance and each class can hold attributes that are
accessible from within a rule.

Points and labels. Due to the part-relation approach, all geometry
elements are eventually described by points. Point nodes hold
attributes for the X, Y, and Z coordinates (Fig. 2a). This informa-
tion is used for all geometric calculations from determining the
length of line segments to deciding whether two segments are par-
allel or not.

Labeled points are represented by a label node, holding a label
value attribute, connected to a point node by a label edge (Fig. 2b).

Line segments. Line nodes are connected to the lines endpoints
and to present intersection points. The part-relation graph of
the classic example of the two overlapping squares is shown in
Figure 3. In this diagram, white nodes are line nodes and black
nodes are point nodes. Through Figure 4, which shows embed-
dings of a graph representing a square, it becomes evident that
the intersections are necessary to enable emergence.

One common issue while dealing with shape grammar systems
is the handling of isomorphisms. A shape rule, can apply to the
same subshape in a number of ways and more specifically in as
many ways as the order of the symmetry point group of the

left-hand side (LHS; Stiny, 2006). Note that the graph grammar
engine will return all permutations of a match (Grasl &
Economou, 2013a, 2013b), and the geometric interpretations of
these subgraphs correspond to the required isomorphisms.
Finding all these matches is important for shape grammars as
the formalism allows rules to be applied under symmetry
transformations.

The rule shown in Figure 5a has an LHS symmetry of D4

which is of the order of eight. Figure 5b shows eight different
ways in which the rule can be applied to a square.

Circles and circular arcs. It is straightforward to add an arc node
to connect two or more points of an arc. Still, this alone is not
sufficient to unambiguously represent an arc. Two points on a
circle split the circle into two segments the minor arc and the
major arc, so some additional information is required. In CAD
programs, this is often solved by requesting two endpoints and
an intermediate point to create an arc. The three points define
the base circle, and in addition, the intermediate point defines
whether to use the minor or major arc (Fig. 6).

For a shape grammar application that supports emergence, it is
important that the arc is defined using any two of its points and it
is inconvenient to have to calculate an appropriate third point for
each pair of points. Hence instead of an intermediate point, the
model uses a breakpoint from the opposite side of the base circle
as the third point. The same breakpoint can then be used in com-
bination with any two of the arcs points. In Figure 6, for example,
breakpoint B can be used for the arc P1P2 as well as for P2I1. This
model works well for arcs, but it cannot handle circles. For a
circle, all three defining points fall together; hence, neither the
center point nor the circles plane can be derived. So in order to
be able to use the same model for both arcs and circles, both a
center point and the plane normal have been added to the
model. For arcs this means that there is some redundant informa-
tion in the model, which is never ideal, but in general, it solves

Fig. 1. The components of GRAPE.

Fig. 2. A point node (a) and a labeled point (b).
Fig. 3. Part-relation graph of two overlapping squares. The geometry is shown
dashed for convenience.
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more problems than it creates. Figure 7a shows the graph repre-
sentation of an arc and a circle. Here white nodes are arc nodes
and black nodes are point nodes. The part-relation edges are
shown as thin edges. The edge to the center point is drawn as a
thick line, and the one to the breakpoint is dashed. Figure 7b
depicts a search pattern that will find all of the nine arcs and
circles embedded in Figure 7a.

Figure 8 shows a simple sample derivation using circles and
emergent arcs. The first rule copies and moves the initial circle
along the x-axis, another takes the emergent lentil shape and
rotates it at 90°. The example was computed using the Rhino ver-
sion of GRAPE, the only version that currently supports circles
and arcs.

Faces. Here the main question was whether to model faces based
on indices or loops. An index-based approach results in a central
face node connected to each point by an edge holding an index
attribute, such a model offers direct access to the faces points
much like an array. A loop-based model results in each point
being linked to its two neighbors, like a circular linked list.
Additionally connecting face nodes directly to point nodes can
only support planar, straight-edged faces. For non-planar faces,
face nodes would have to connect to line nodes instead.

This is an area in which the model requires some improve-
ments. For the time being a simple version based on indices
and points has been implemented, and it does not support emerg-
ence. Figure 9 shows some results from a Fröbel exercise investi-
gating one spatial relation of two oblongs.

Objects. Realizing that most of the more extensive grammars in
the literature do not require emergence, some objects have been
added to the model that can be manipulated as set grammars.
This is computationally simpler and enables the user to work
with objects she may be used to from other object-orientated

applications. The same basic framework can be used for these
kinds of computation, the main differences being that no intersec-
tions are computed and that in general fewer nodes are required,
which again improve performance during the subgraph matching
process.

The Rhino version has been extended to support some primi-
tives such as spheres, cylinders, and boxes. Each primitive is
represented by a single node, which holds all the required infor-
mation in its attributes, this includes a base-point and two coor-
dinates to define a local coordinate system (Fig. 10a). The
Dirksen grammar presented below makes use of these kinds of
objects.

Since an object like a box is represented by a single node,
search patterns cannot return isomorphisms as would be the
case for a part-relation representation. If isomorphisms are
important for the respective grammar symmetry constructs can
be added to the graph (Fig. 10a). Search patterns can then be
designed to return the transformation under which it is to be
applied.

Some architectural objects are special cases. Here additional
architectural object nodes are connected to geometry nodes to
the represented point, line, and polygon-based objects such as
columns, walls, and slabs (Fig. 10b). The object nodes hold the
information required in addition to the information extracted
from the basic geometry nodes. The symmetry of the underlying
geometry can be used to return some isomorphisms.

Edge hierarchy. Using inheritance the edge classes can be
arranged in a hierarchy. Now a search for an edge of a specific
class will return all instances of any of its subclasses. Using the
hierarchy shown in Figure 11, searching for real-part edges will
return all boundary and all interior edges. This feature can be

Fig. 4. Different embeddings of the search pattern that will find the original squares
(a) as well as the emergent square (b) of the graph in Figure 1.

Fig. 6. A circular arc with two intermediate points I1 and I2 as well as a breakpoint B.

Fig. 5. A rule with LHS symmetry of D4 (a), and the eight possible ways to apply the rule to a square (b).
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used to exert more control over which shapes are matched by an
LHS. For example, a rule using real-part edges will support
emergence, while a rule using only boundary edges will not.

Exterior edges can be used to keep note of intersections
beyond a line segments current boundary. Sub-shapes that are
implied but not fully present within a shape can be used for rules.

Parametric rules
So far, it has not been mentioned that sometimes too many
matches are returned. While the search pattern shown in

Fig. 7. (a) Part-relation graph of an arc and a circle, and (b) search pattern for an arc segment. The geometry is shown dashed for convenience.

Fig. 8. Derivation using circles and emergent arcs.

Fig. 9. A Fröbel exercise using oblongs based on faces.

Fig. 10. A box node along with a symmetry construct (a) and a wall node based on a
line segment (b).
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Figure 4 will find the squares represented by the graph in Figure 3,
in another graph it would also find parallelograms, trapezoids,
and other quadrilaterals. This behavior enables parametric rules.
The unrestricted graph pattern will match any shape with the cor-
responding topology. Since such uncontrolled behavior is mostly
not desirable constraints can be added to make the search pattern
more rigid. Constraints are geometric functions that are based on
the graphs attributes and return a Boolean value. Figure 12 shows
such a constrained graph that will return only isosceles trapezoids.

Variables. Sometimes it can be useful to provide additional vari-
ables to parametric rules or to maintain and manipulate some
non-geometric information. For this, the model has been extended
to support variables. These are organized in a dedicated subgraph.
The general target is to support all types and operations described
by Stouffs (2018) in order to build on a robust theoretical model
and provide some comparability and interoperability. To this
extent, a parser has been written to deal with strings in the pro-
posed format. The model currently supports unordered lists of
floating point and integer value variables. These can be used within
search conditions on LHS of the rule or as parameters on the right-
hand side (RHS) of the rule. An example of using variables in
search patterns is given in Figure 13. Given a state where the
model contains some arbitrary geometry and the list of floating
point numbers A = {1.5, 3.0, 7.5}, the search pattern will return
all triangles where one of the sides is 1.5, 3.0, or 7.5 units long.

The same variables can be used as parameters on the RHS of
the rule. Figure 14 gives a simple example. A square is created
around the origin. Because the list A contains three values, the
rule will return three matches, creating a square with sides either
3.0, 6.0, or 15.0 units in length.

Editor

Creating a visual editor for parametric shape grammar rules is not
as straightforward as one might assume. Some ambiguity is

possible while translating the drawn shapes to their graph
equivalents.

Assigning specific geometric mappings and rule schemas can
support the rule interpreter.

Mappings
The mappings determine the geometric operations that are per-
missible while transforming the LHS to fit a subshape. The trans-
formations under which the rules may apply follow the hierarchy
of transformations outlined in March and Steadman (1974) and
are shown in Table 1. The original intention was to distinguish
between rigid (Euclidean or non-parametric) rules and parametric
rules. Non-parametric rules can, for example, be assigned a simi-
larity mapping so the LHS could be translated, rotated, reflected,
and scaled. This is the most common interpretation of a shape
grammar rule. Parametric rules require the more flexible topology
mapping, which requires only that the neighborliness criterion
is met.

An unconstrained subgraph search over a part-relation graph
will already reflect neighborliness and thus can be used for para-
metric rules. For non-parametric rules, the graph has to be con-
strained using appropriate geometric conditions. This can be
either done manually by specifying the conditions in the editor
of the application or automatically by specifying the mapping
under which the rule applies and have the corresponding con-
straints added to the rule by the application.

Hence, a topology mapping does not require any constraints at
all. A similarity mapping is ascertained by triangulating the
shapes on the LHS and placing constraints on the proportions
of the triangles. For an isometry mapping, it is then sufficient
to place a single length constraint on any two of the vertices of
the shape. An identity mapping could build on an isometry map-
ping, but in practice, it has proven more stable to simply constrain
the positions of all vertices of such a rule. Rules using identity
mappings can be used to draw initial rules because they do not
require an LHS. In all other cases, the RHS has to be expressed
in terms of elements found on the LHS; this mostly requires at
least three non-collinear points.

Fig. 11. Hierarchy of edges.

Fig. 12. A restricted search pattern.

Fig. 13. Variables and search patterns in the LHS.

Fig. 14. Variables and parameters in the RHS.
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Schemas
Schemas have proven to be valuable in structuring rules for both
the human and the machine. For example, distinguishing between
the schemas x→ y and x→ x + y provides a simple way to deter-
mine whether the LHS is deleted. Currently, few schemas are sup-
ported as an initial step to test their usability within the editor.
Significantly, the schemas x→ t(x) and x→ x + t(x) have been
added to resolve ambiguities that can occur with parametric
rules. The rule in Figure 15a depicts a parametric rule that
must be interpreted differently depending on the chosen schema.
Applying the rule to a rectangle under the schema x→ x + y will
result in the shape shown in Figure 15b, while under the schema
a→ x + t(x) the result will be as shown in Figure 15c.

Symmetry reduction
As was demonstrated by the rule in Figure 5 the graph grammar
engine will return all permutations of a pattern, and these can be
interpreted as the isomorphism of the LHS shape. In general, this
is a welcomed feature, but if a rule has not all symmetry on the
LHS, but an overall symmetry too (Fig. 16a), applying the rule
to all matches will result in duplicate results. In order to reduce
the number of possible rule applications, these redundant results
have to be filtered out (Fig. 16b). This could be done in a straight-
forward way by computing all the returned solutions and compar-
ing them to one another but it would be unnecessarily expensive.
Here instead an alternative solution is proposed where the graph
rules are modified so that the corresponding subgraphs are fil-
tered out during the search. The approach utilizes insight into
the symmetric structure of the rules and computationally makes
use of the constraints system that is already in place. The disad-
vantage is that it cannot be applied to rules using the topology
mapping since in these cases the symmetry of the match is not
known at design time and thus the corresponding constraints can-
not be applied to the rule.

If the overall symmetry group H is a subgroup of the LHS sym-
metry group G, then in order to return each solution only once
the search pattern has to be reduced from G to a complement
group of H in G. So first a method of detecting point symmetry
groups is required. Here the algorithm described by Wolter
et al. (1985) is used. For the rule in Figure 16a, the result is

that the LHS has symmetry of D4, while the overall rule has sym-
metry of D2. A complement group of D2 in D4 is C2. In order to
reduce the LHS symmetry to C2, the mirror symmetry and part of
the rotation have to be restricted. This can be problematic because
in order to do so one needs a suitable external reference point.
Mirror symmetry can be restricted by adding a handedness or
chirality constraint to the rule. Three non-collinear points are
selected and their order of rotation (clockwise or counter-clock-
wise) around an appropriate vector is constrained. Restricting
rotation is more complicated. To do so it requires a set of LHS
points that together exhibit the rotational symmetry to be
restricted, then a suitable constraint can be placed on those points
to prevent them from mapping onto each other. This is done by
requiring one or more of the points to have a distinction in rela-
tion to an external reference, such as being among the closest x
points to the origin.

Overall this feature could be dropped because the redundant
solutions are correct and there is something to be learned by
displaying them, but some rules return a lot of matches, and
filtering out redundant solutions can help in making the appli-
cation more user-friendly. While Wolter et al. (1985) describe
the procedure for point symmetry detection in two- (2D) and
three-dimensional (3D), currently only the 2D algorithm has
been implemented.

Visual editor, advanced, macro
Currently, there are three modes of editing rules within the
GRAPE web application. Firstly, the visual editor in which a
rule is drawn using standard CAD functionality. The drawing is
then interpreted and translated into a graph grammar rule auto-
matically. Figure 17 shows a rule to copy and move a square diag-
onally. In the Editor, the LHS and the RHS are drawn on top of
each other, where the LHS is shown dashed.

Secondly, using the advanced editor graph grammar rules can
be written using the GrGEN.NET modeling language. This is the
most capable method of defining a rule, but it also requires a
thorough understanding of the underlying model and hence is
reserved for advanced users. Listing 1 shows the rule from
Figure 17 in the modeling language.

Table 1. Possible mappings and what they constrain

Position Length Angle & ratio Parallelism Cross-ratio Neighborliness

Identity ▪ ▪ ▪ ▪ ▪ ▪

Isometry ▪ ▪ ▪ ▪ ▪

Similarity ▪ ▪ ▪ ▪

Topology ▪

Fig. 15. Ambiguous parametric rule (a) and its application to a rectangle as (b) x→ x
+ y and (c) x→ x + t(x).

Fig. 16. A rule with LHS symmetry of D4 and overall symmetry of D2 (a), and the two
possible ways to apply the rule to a square (b).
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rule copyMoveDiagonally {
// Search for quadrilateral topology

A:PointNode -:RealPartEdge- :LineNode -:RealPartEdge-
B:PointNode -:RealPartEdge- :LineNode -:RealPartEdge-
C:PointNode -:RealPartEdge- :LineNode -:RealPartEdge-
D:PointNode -:RealPartEdge- :LineNode -:RealPartEdge- A;

// Constrain to square
if {ABparallelToCD(A, B, D, C);}
if {ABparallelToCD(A, D, B, C);}
if {ABsameDistanceToCD(A, B, A, D);}
if {ABsameDistanceToCD(A, C, B, D);}

// Restrict isomorphisms
if {rightTurn(A, D, C);}

modify {

// Create new topology
E:PointNode -:BoundaryEdge- :LineNode -:BoundaryEdge-
F:PointNode -:BoundaryEdge- :LineNode -:BoundaryEdge-
G:PointNode -:BoundaryEdge- :LineNode -:BoundaryEdge-
H:PointNode -:BoundaryEdge- :LineNode -:BoundaryEdge- E;

// Set coordinates
eval {

E.x = A.x + 0.5 *(D.x - B.x);
E.y = A.y + 0.5 *(D.y - B.y);
E.z = 0;

F.x = 0.5 *(B.x + D.x);
F.y = 0.5 *(B.y + D.y);
F.z = 0;

G.x = 2 *D.x - E.x;
G.y = 2 *D.y - E.y;
G.z = 0;

H.x = 2 *D.x - F.x;
H.y = 2 *D.y - F.y;
H.z = 0;
}

}
}

Listing 1: The rule showed in Figure 17 in the GrGen.NET modeling language.

Thirdly, macro rules can be defined as a sequence of rule
applications. These can be used to store specific derivations or
other common rule sequences.

Agents

Once a grammar has been defined its expressive possibilities can
be explored. This can be done in a variety of ways ranging from
manually applying rules one by one to using automated decisions
algorithms to choose sequences of any desired length. Strobbe
et al. (2015) demonstrate how the visual exploration of design
spaces can be supported by grammars. A generous overview of
the interface of grammars in design inquiry is given by Chase
(2002). Here an agent-based extension for the systematic and
automated exploration of the solution space is implemented
(Grasl & Economou, 2014). The system follows the common
sensor–actuator agent design described by Russell and Norvig
(2013). Such an agent (Fig. 18) can perceive its environment via

its sensors. These perceptions are processed and may or may
not result in the agent acting on the environment using its actua-
tors. The kind of processing performed by the agent is not pre-
determined. In GRAPE, the agents’ sensing abilities are restricted
to analyzing the current state; this includes both the graph and the
geometric representation. Their actuators are restricted to apply-
ing rules. Effectively they operate the application much like a

Fig. 17. The copy and move square diagonally rule as drawn in the visual editor.
Labels are for reference only.
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user would. This agent system is expandable: agents following dif-
ferent agendas and using various processing techniques can be
added at any time. Some of the agents currently available in
GRAPE are described below and for comparative purposes, all
use the rules of the Palladian grammar (Stiny & Mitchell, 1978).

Probabilistic agents
One fairly easy way of selecting rules is to use a random number
generator. The result of a naïve, purely random approach of
selecting 15 rules for the Palladian grammar is shown in
Figure 19a. The derivation cannot progress because certain obli-
gatory rules are not executed or are called in the wrong order.
The performance of such a rule selection strategy largely depends
on the structure of the grammar. Given enough time and attempts
at selecting rules the agent can improve upon Figure 19a, and will
eventually select the required obligatory rules to continue the

derivation. Nevertheless, this agent can be seen as the worst-case
scenario; obviously, all following agents should outperform it.

Two steps up are to use sequenced and weighted randomness
(Fig. 19b), which means creating a sequence of pools out which to
select rules and to assign a different probability to each rule
(Fig. 20). The sequence will most likely be based on the structure
of the grammar, the weights can be based on intuition or on an
analysis of the body of work a grammar is attempting to model.
The generation is then essentially to pick a variable number of
rules from each pool. This approach can easily be formalized, to
enable the designer to control the generation, either through a
user interface or via a simple scripting language. The City
Engine software uses a similar mechanism (Wonka et al., 2003).

Such an approach, of course, has little intelligence above that
embedded in the rules themselves. The derivation in Figure 19b
is complete, and even better results can be achieved with this
approach, but this is mainly thanks to the well-devised phasing
of the Palladian grammar and its cleverly constructed rules. Still
the derivation suffers from a lack of doors and an unconventional
layout that most likely would not have pleased Andrea Palladio,
things that are hard, if not impossible, to control with shape
rules alone.

Tree traversal agent
Enumeration has been part of the shape grammar discourse since
the beginning (Stiny & Mitchell, 1978; Flemming, 1981; Koning &
Eizenberg, 1981). Here tree traversal agents search through the
solution tree looking for derivations that fulfill certain criteria.
Coming up with a definite number of derivations is however
not always as straightforward as it might appear at first glance,
even if the symmetry of the final derivation is disregarded and
all isomorphisms are counted. There are two issues: firstly, there
are mostly several ways to apply a rule at any given time, and sec-
ondly, results can be identical despite a different order of rule
application. So applying the same rules twice can lead to different
results, and applying different rules, or the same rules in a differ-
ent order, can lead to the same result.

For a specific enumeration problem, it may be possible to
exploit grammar-specific features to simplify the procedure. A
general tool will have to use an extensive search to find solutions.
The traversal agents use depth-first search (Cormen et al., 2001).
Such an approach will most likely lead to numerous duplicates,
which have to be filtered out. It is a brute force approach and
potentially computationally expensive, but perhaps the only viable
one if it is to be applicable to all grammars. To configure the agent
four bits of information must be passed:

(a) A sequence of rules to execute before starting the
enumeration,

(b) A set of rules over which to enumerate,
(c) A condition that designates a solution, and
(d) One or more prune conditions that indicate that the current

branch cannot lead to a valid solution anymore.

The agent then offers a mechanism for cycling through the
solutions, generating the derivations on the fly. Comparing
branches to a database of previously visited branches filters out
duplicates.

As an example, Figure 21 shows the results returned by an
agent configured to search for layouts based on a 5 × 4 grid
with a T-shaped space and five spaces in total. The start
sequence (a) constructed a 5 × 4 grid. The enumeration pool

Fig. 19. Exemplary results for probabilistic agents using (a) naïve randomness and (b)
weighted randomness.

Fig. 20. Pools for the sequenced and weighted random selection.

Fig. 18. Common sensor–actuator agent design.
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(b) contained all rules to merge spaces and create T-shaped
spaces. The target condition (c) checked whether there were a
T-shaped space and the layout consisted of exactly five spaces.
Finally, the pruning conditions (d) abandoned a branch if
there were less than six spaces left and no solution has been
found. The results shown in Figure 21 are necessarily reminis-
cent of “Counting Palladian plans” by Stiny and Mitchell
(1978) but it is interesting to note that arbitrary conditions
can be defined to filter the solutions even further. In general,
the agent has proven to be a useful tool to quickly get an idea
of the possibilities offered by a grammar, or by a subset of the
rules of the grammar. Time complexity can be an issue, but by
restricting the agent to the subset of interest, results can mostly
be achieved within reasonable time frames. It is difficult to give
concrete numbers because the conditions can vary immensely.
On a t2.medium AWS instance, the first result in Figure 21
was found after 2.5 s, all 27 solutions were found in 24.3 min,
and it took another 13.4 min to complete the search.

Rule-based agents
Here we can distinguish between forwarding chaining agents and
backward chaining agents. Both kinds of agents rely on a sequen-
tial list of IF-THEN rules. At every iteration, the agent steps
through the list of rules, as soon as the conditions in the IF-clause
of a rule are met, the THEN-clause is executed and a new iteration
is started. The process is much like the one familiar from shape
grammars, except that the rule selection mechanism is pre-
determined.

Forward chaining agents can generate a derivation that ful-
fills a given set of target criteria. Unlike tree traversal agents
they do not simply try all possible combinations looking for
a solution, instead, their IF–THEN rules will return one
shape rule to apply for each state of the derivation. They follow
a more direct albeit deterministic path. Given an identical set of
starting conditions, a rule-based agent will always return the
same result.

Target criteria can determine things like the size of the grid,
whether a portico should be attached and whether there should
be an I-shaped space or not. These criteria are then used to
guide the agent’s actions. The creation of an I-shaped space
requires several rules to be selected in the right order and to be
applied to the right match. Backward chaining agents are given
a finished shape and may attempt to find a path back to the initial
shape, thereby proving that the given shape is a valid derivation of
the grammar.

Rule-based agents follow the same computational paradigm
as shape grammars. Generally, rule-based systems are used to
determine a reaction to a given state. Here the state is that of
the derivation in combination with the target values. This
enables automated derivations with augmented control over
the outcome.

Figure 22 shows some such derivations. Here a parallel, topo-
logical representation (Duarte, 2005) is maintained throughout
the generation. It can be used to overcome some of the problems
encountered by the weighted random generation. For example,
this rule selection logic can guarantee that: (a) the doors added
to the floor plan connect all the rooms; (b) the grid has an appro-
priate size; (c) the proportions are satisfying; and (d) the provi-
sions formulated by Stiny and Gips (1978) are satisfied.

Rule-based agents can maintain much better control over the
derivation than the previously presented agents. This comes at

Fig. 22. Some results from a rule-based agent.Fig. 21. All solutions for a 5 × 4 grid with a T-shaped space and five spaces in total.
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the cost of requiring grammar-specific knowledge, essentially
requiring a tailor-made solution for each grammar. In addition,
a rule selection mechanism based solely on the maximal line rep-
resentation is possible but did not seem feasible for this project.
Hence, the shape grammar rules were augmented to create a par-
allel representation of the topological structure. Such rules are
currently beyond the capabilities of the visual editor and have
to be written in the modeling language. The requirement of
such an effort does create a barrier. The inclusion of descriptions
(Stiny, 1981; Stouffs, 2018) could generalize the solution and miti-
gate the problem to a certain degree.

Applications

The described model has been implemented as the GRAPE shape
grammar engine. It defines various interfaces, which have to be
implemented to create an actual shape grammar application.
Several plugins for commercial CAD packages and one web-
application have been created using this approach. The GRAPE
engine is designed to be independent of other packages and plat-
forms. On the back-end, an interface is designed for the

communication with a graph grammar engine for subshape detec-
tion, and on the front-end, two types of interfaces are included,
one for editor functionality and one for the application
functionality.

Backend
Currently, the only backend adaptor is for the GrGen.NET graph
grammar engine (Jakumeit et al., 2010). Significantly, this engine
could be exchanged without breaking the existing applications
should this ever become necessary. Although currently only one
backend engine exists, and there are no intentions of expanding
this. The adaptor approach was chosen in order to remain inde-
pendent of other projects. It is unclear how the GrGen.NET
engine will develop, and whether it will be more advantageous
to switch to another library in the future.

Frontend
For the front-end, there are several implementations in varying
degrees of completeness. Grammars can be executed in
AutoCAD, Revit, Rhino, and the custom-made web interface.
Rules can be declared either directly using the GrGen.NET
graph grammar rule modeling language or via the visual editor
implemented in the web interface. While these implementations
all use the same interfaces to the GRAPE engine, most of them
implement different subsets of the functionality and thus have dif-
ferent capabilities.

The geometries and objects supported by each implementation
are shown in Table 2. In all these implementations lines are fully
supported as parametric, labeled shapes and include emergence.
One implementation supports arcs. Surfaces are currently sup-
ported in two implementations as parametric and labeled shapes,
but do not support emergence. Solid primitives and architectural
objects are supported in one implementation each as parametric
and labeled shapes. An extended model should be able to support

Table 2. Geometries and objects supported in various implementations of the
Grape core

Emergence Set grammars

Lines Arcs Surfaces Primitives Objects

Web ▪ ▪

Rhino ▪ ▪ ▪ ▪

Revit ▪ ▪

AutoCAD ▪

Fig. 23. Some designs in the rosette language (Hong
Tzu-Chieh). (a) Designs showcasing threefold, fourfold, five-
fold, and sixfold regular symmetries. (b) Designs featuring
polyrhythmic fourfold symmetry.
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all these shapes and emergence up to U33 but a whole set of
additional support functions would be necessary to handle con-
version of shapes to their maximal representations as well as
the detection and handling of relevant intersections. The majority
of these functions are described in Stouffs and Krishnamurti
(1993) and remain to be implemented in another iteration of
the implementation.

Designs

The technical specification of shape rules and parametric shape
rules has been the subject of this paper so far. The ways that
these types of rules could begin to work in design practice and
research is the subject of this part of our work. A detailed account
of the usage of GRAPE in an academic setting and for design
explorations in the formal composition has been given in
Economou & Grasl (2017). A very brief account is given below
to give a sense of the work and provide an immediate context
for the applicability of the software in practice and design.

The setting for the testing of the GRAPE involved a successive
series of workshops having students trying out rules, known and
new ones, and exploring on their own the expressiveness of

the rules and the software itself. These workshops were informal
in the sense that they did not take account of numbers of partic-
ipants, abilities of participants, duration of the encounter with the
software, and so forth. In fact, the results of the workshops varied
widely as some students decided to pursue the design problems
they were introduced to further for a project in an independent
study to be pursued after the workshop itself.

The workshops were structured along two different trajecto-
ries: one starting from existing grammars and one starting from
scratch, and both in a rising complexity in the specification of
the rules and the ways they affect the design. The key idea in
the first series of studies was the implementation of known
rules in the literature – and there are many to admire – to produce
the designs that have manually been produced in the original
papers, additional ones that are in principle possible by the origi-
nal grammars and new ones by purposefully playing with the
rules, i.e. the transformations under which the rules apply, the
assignment of values in the parametric shapes, the shapes them-
selves in the schema rules, and so on. The key idea in the second
series of studies was the implementation of new rules designed
from scratch, to produce the designs that were selected to provide
the corpus for the grammar, additional ones that are in principle

Fig. 24. Some designs in the checkerboard lattice
language (Stephanie Douthitt).
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possible by the grammars and new ones by purposefully playing
with the rules. A brief description of both experiments is given
below followed by few examples from each case.

From rules to rules

The first series of studies foregrounds a hands-on constructive
understanding of existing grammars in the literature. The students
are encouraged to copy rules in the literature, see on their own
how the rules were supposed to apply in the original design set-
ting and what they can make, and once they get a command
of their expressiveness and generative power, to start editing
them in a variety of ways to make them their own. The range
of techniques used to edit the rules is open-ended; once the
copy and implementation of the rule have been considered
successful, the students are encouraged to alter the rules in
some way to accommodate design ideas and insights that might
have emerged through the computations with the existing rules.
A sample of three studies is given below to showcase some of
the findings of the workshop in GRAPE. The authors of the

grammars are specified in parentheses within the brief account
of each project.

Rosette designs
The nested square and quad designs are perhaps the most popular
designs in the shape grammar discourse because they illustrate
nicely the compositional richness of recursive visual composition,
where the inscription of a square within a square or a quadrilat-
eral within a quadrilateral, and even more, the seamless shifting of
vocabularies in shape recognition from squares, to triangles, pen-
tagons, hexagons, and all sorts of other more exotic shapes (Stiny,
1980; Mitchell, 2002). The series of the rosette designs in
Figure 23 showcase the expressive results that emerge out of the
substitution of the spatial relation of the two squares by a series
of spatial relations of whirling squares or pairs of regular polygons
to explore natural growth exhibiting threefold, fourfold, fivefold,
sixfold point symmetries, and so forth. All the designs shown
are produced by versions of rules that erase the circumscribed
square or the corresponding regular polygon every time they
apply. The elimination of the bounding exterior squares or regular
polygons foregrounds the emergent spatial relations in the center

Fig. 25. Some designs in the Mughal garden language (Nirvik Saha).
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of the shape and the inward spiral growth of the pattern. The deri-
vation of the first four members of the series is given in Figure 23a
for the regular triangle, square, pentagon, and hexagon. The series
in Figure 23b shows a language (set) of fourfold designs that com-
bine polyrhythmic applications of the parametric rules to resem-
ble bird-nests, flowers, and/or other biological formations with
point symmetry. The iterations of the rule applications in
GRAPE are all kept to a similar number of steps to render the
similarities and the differences between the designs as evident
as possible. Clearly, the compositional process outlined here for
the fourfold symmetry can be generalized for all regular polygons
and for other shapes as desired.

Checkerboard lattice designs
The checkerboard lattice designs, a specific subset of the Chinese
lattice designs that fill window frames (Stiny, 1977) provide a
great initial framework to discuss key ideas in a formal composition,
including repetition, recursion, modularity, grid, frame, boundary,
proportion, symmetry, and many more. The additional constraint
of a labeled grid that gets filled by different modules whose combi-
nations make produce predictable or unpredictable results provides

a rewarding visual context for taking on in a constructive way the
idea of formal analysis and the specification of a whole series of
diverse designs that all share a common framework. The two sche-
mas typically used for the casting of the labeled shaped rules are the
schema x→ x + t(x) for the generation of the underlying rectangu-
lar lattice, and the schema x→ y for the generation of the different
substitute motifs upon the square or rectangular module. The series
of designs in Figure 24 showcase nicely the substitution of the last
rule of the original grammar with other shape rules that introduce
new motifs to be inscribed within the cells of the checkerboard lat-
tices to create very diverse designs. Significantly, the shape in the
RHS of these rules was drawn and tested on the fly in GRAPE to
see how the symmetries of the RHS partake of the overall symmetry
of the design, and in different schemas too, to eliminate the frame of
the square module and foreground other relations in the overall
design, including quadrilaterals, pentagons, hexagons, octagons,
and so forth, all in a variety of emergent spatial relations.

Mughal designs
The Mughal gardens grammar is one of the earliest labeled
parametric shape grammars in print (Stiny & Mitchell, 1978)

Fig. 26. Some designs in the ad quadrant language (Abigail Smith). All designs use the ad quadrant subdivision rules in the schema x→ x +∑t(x).
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and one of the most didactic showcasing in an exemplary way
the layering of formal analysis in shape grammar discourse
starting from the significance of an architectural concept and
idea, here the concept of the paradise, to its history of design,
its geometry, and finally the postulation of a formal grammar
that can capture its salient features. The implementation of
the Mughal garden grammar was by no means a simple feat
as it relied extensively on parametric definitions of rules in
GRAPE. Most rules in the grammar are defined in the schema
rule x→ Σ t(x) whereas t(x) is one of the transformations of the
symmetry group of the square, the underlying framework of the
garden. In this sense, a rule that may apply, say, in the upper
left quadrant of the design, it also applies to all corresponding
parts of the design and depending on the exact location of the
part, the rule may apply in seven more locations (for a total of
eight) or three more (for a total of four) if the rule has already
some symmetry built in that aligns with the overall symmetry
of the total design. The series of designs in Figure 25 show
instances of the nine configurationally unique possibilities
that can be produced by the grammar. Clearly, architectural
elements such as the ornamentation of the reservoir of water
at the center of the canals in a square or an octagonal form,
the ornamentation of the endings of the water canals, and
the parameterization of the dimensions of the borders and
the canals can provide a rich palette for an expressive language
with unique characteristics; and even more, the compositional
subdivision based on the fourfold symmetry of the original
grammar can be generalized for all regular polygons and shapes
as desired.

From designs to rules

The second series of studies foregrounds a hands-on constructive
inquiry on new grammars in the literature. The students are
encouraged to come up with a list of existing artifacts or buildings
they want to explore, or alternatively, a brief for the design of
some new artifact or building. In either case, the rules for the gen-
erative description of the existing design works or the new ones
do not exist and the students have to think them through, design
and test them in GRAPE. The goal in this exercise is not the com-
plete formal specification of a set of artifacts or buildings, existing
or new; rather, it is the testing of how existing artifacts or briefs
can be used constructively in the design of new rules. Again,
the range of techniques used to design rules is open-ended;
once a rule has been successfully implemented in GRAPE, the
students make several productions to test its usefulness in the
accommodation of additional requirements and constraints in
the corpus or the brief. A sample of three studies is given below
to showcase some of the findings of the workshop in GRAPE.
The authors of the grammars are specified in parentheses within
the brief account of each project.

Ad quadrant designs
The Speculation 8 (March 1972) and its range of nucleated and lin-
ear distributions of n% coverage within an abstract square config-
uration provide one of the most captivating schemata for the design
of urban grids and blocks. The speculation is captured here in the
definition of the subdivision of squares in terms of 4, 9, 16, 25, and
in general n2 squares. Clearly any subdivision of a square by n × n

Fig. 27. Some designs in the MCE language (Kelsey
Kurzeja).
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squares creates a simple division based on the square number
sequence and any combination of such divisions nicely illustrates
the ideas of recursion and emergence too, the two paramount char-
acteristics of shape grammars, and the ability of GRAPE in captur-
ing both in the application of the division algorithms in nested
smaller copies of the square. The simplicity of the rules hides the
delightful complexity they can generate once they apply recursively
and at different scales within the design production. The straight-
forward application of each rule by itself creates familiar series of

configurations, for example, the successive division to 22 creates
the series 1, 4, 16, 64, 256,…, the successive division to 32 squares
the series 1, 9, 81, 729, 6561,…, and so forth. More interestingly the
combinations of any two subdivision rules A and B in various
sequences, say, ABABAB…, BABABA…, AABBAA…,
BBAABB…, AAABBB…, BBBAAA…, and so forth, and in other
non-regular series too, immediately shows the inexhaustible possi-
bilities that emerge out of the different sequence of rule applica-
tions and the corresponding designs all with their own visual

Fig. 28. A set of six sectional axonometric models of Miesian courthouse designs (James Park). All models feature a total of 24 courtrooms in various arrangements.
Models (a–c) showcase designs that are found in the archives of the design process. Models (d–f ) showcase possible hypothetical designs in the language.
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characteristics. And clearly, the incorporation of specific ratios
between the diminishing squares produces interesting densities
and frit effects in the overall configuration. More importantly,
the definition of the rules in the schema x→ x + Σt(x) rather
than the x→ Σt(x) retain the original square and produce a
whole new range of designs that show interesting and complex pat-
terns of emergent spatial relations between squares at various
scales. A sample of designs in the language of the ad quadrant
grammar is shown in Figure 26. Additional designs utilizing square
numbers for prime numbers using any of the techniques outlined
above are readily available too.

MCE designs
M.C. Escher’s recursive tilings are routinely used for interfaces
between math and spatial design and for visual illustrations of sym-
metry, recursion, topology, and so on. The MCE grammar is not
meant to be exhaustive for the corpus of the Dutch graphic artist
but playfully uses his idea of the substitution of regular shapes
with some spatial idea or motif that typically recalls a biomorphic
association. Here the key shape is the isosceles Root2 (R2) triangle
and the two main compositional ideas are its recursive substitution
with three copies of itself, an identity R2 triangle and two smaller
R2 triangles whose sum measures exactly the original one to pro-
duce a square and/or a nested R2 triangle respectively; and the
recursive substitution of the R2 triangle with a complex shape fea-
turing a weaving outline arranged around the edges of the triangle.
Clearly, other shapes are possible and several were explored inter-
actively in GRAPE before the designer committed to this final sub-
stitution. A catalog of some possible designs in the language is
given in Figure 27. These designs showcase alternative ways of
using the grammar either by applying shape rules manually to spe-
cific parts of the design or by applying a shape rule simultaneously
to all possible matches within the design.

Dirksen variations
The Everett McKinley Dirksen United States Courthouse in
Chicago, designed and built by Mies van der Rohe during 1959–
1964, is one of the most significant buildings of Mies’ output in
the United States (Schulze, 1992). An initial proposal for an ana-
log shape grammar for the design of the courtroom arrangements
is given in Park and Economou (2015). This iteration features the
representation and implementation of the proposed parametric
shape rules in GRAPE all in a truly 3D form. The project is
quite ambitious and attempts to cast light in the design process
of Mies’ office and more specifically, articulate the ways that
Mies’ architectural language has been possibly deployed in this
building type, foreground the sectional principles in the arrange-
ment of the program, and more broadly speculate the aspects
of this project that embodied Mies’ view on architecture and
law. The Dirksen grammar is so far the most ambitious project
in GRAPE taking on the complexities of writing new rules from
scratch to specify given corpus, parameterizing them fully to be
able to capture Mies’ proportional ideas, specify everything in
three-dimensions in a uniform way and implement all directly
in GRAPE. Clearly, these ambitions do not come without chal-
lenges. All rules here are implemented in the Rhino version and
are encoded directly in the scripting environment, an interface
quite distinct from the visual one in the web version of the soft-
ware. Still, the current state of the work is very promising in that it
manages to produce 3D models that can be exported and used in
a variety of other applications for reviewing, rendering, slicing,
printing and so forth. Interestingly the majority of the rules in

the grammar follow the schema rule x + t(x)→ [x + t(x)] + t1 [x
+ t(x)], that is, a similar schema to the one used in the
Palladian grammar capturing Mies’ desire for unilateral symmetry
along the short axis of the courthouse. Furthermore, the grammar
here provides a 3D analog for the Palladian one by modeling the
spaces directly and having the walls emerge as poché walls in a
specific state of the production. A set of six 3D courthouse models
produced by the Dirksen grammar in GRAPE for Rhino are
shown in Figure 28. All models feature a core of 24 courtrooms
in various configurations per floor. The first three models (a–c)
are models that are found in the archives of Mies’ office. The
last three models (d–f) are theoretically possible designs in
Mies’ language. All six models are derived from manual applica-
tions of the rules of the Dirksen grammar within the GRAPE for
Rhino environment and are shown here in sectional axonometric
projections manually prepared in Rhino for illustrative purposes.

Discussion

A key motivation underlying the work described so far has been
the speculation of a new design workflow whereas the designers
seamlessly design and test their rules within their design pro-
cesses. While shape grammars applications have been developed
for over 40 years, still no parametric shape grammar interpreter
has emerged to comprehensively address the range of issues that
have emerged in the discourse over the years. The presented
work describes a graph model intended as the backbone in tack-
ling these issues and makes some progress toward the overall goal,
especially concerning the description and execution of parametric
rules for varying kinds of geometry. In addition, the layout of the
software components is an attempt to keep the engine indepen-
dent and extendible. The ability to attach the engine to various
platforms does reduce the threshold for users. It allows users to
work in environments they are acquainted with, but it does simul-
taneously place an additional burden on the development. If an
important part of the engine is changed, then all implementations
have to be updated.

For ease of distribution and maintenance, as well as due to the
flexibility of the user interface the web version has received the
most attention. This is also the version most users of the work-
shops were introduced to. Getting acquainted with the grammar-
specific features was straightforward for most users; the biggest
hindrance to the development of grammars was the lack of
CAD functionality offered by the web version of GRAPE. The
respective JavaScript libraries are tailor-made and enable only a
limited set of operations. Meanwhile more extensive web CAD
libraries have emerged and this issue could be addressed by
switching to one of these.

Furthermore, the visual editor will probably never be able to
support all available features offered by the GRAPE model in
combination with a graph grammar engine. For advanced gram-
mars it will thus remain necessary to be versed in some kind of
scripting or modeling language, be it the GrGen.NET modeling
language or something else.

The work here outlined the continuation of the work presented
in the paper “From topologies to shapes” (Grasl & Economou,
2013a). The incorporation of additional geometries including cur-
vilinear and 3D ones as well as variables in the graph model was
discussed, some issues pertaining to the visual rule editor were
highlighted, and rule selection agents were introduced.
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