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Path formulation can be used to classify and structure efficiently multiparameter
bifurcation problems around fundamental singularities: the cores. The non-degenerate
umbilic singularities are the generic cores for four situations in corank 2: the general
or gradient problems and the Z2-equivariant (general or gradient) problems. Those
categories determine an interesting ‘Russian doll’ type of structure in the universal
unfoldings of the umbilic singularities.

One advantage of our approach is that we can handle one, two or more
parameters using the same framework (even considering some special parameter
structure, for instance, some internal hierarchy). We classify the generic bifurcations
that occur in those cases with one or two parameters.

1. Introduction

The theory of parametrized contact-equivalence of Golubitsky and Schaeffer [10]
has been very successful for the understanding and classification of the qualitative
local behaviour of bifurcation diagrams and their perturbations. By bifurcation
diagrams we mean the zero-set of parametrized equations of the type f(x, λ) = 0,
where x represents the state space and λ the bifurcation parameter(s). Both are
finite dimensional or we assume that a reduction of Lyapunov–Schmidt-type is
applicable. For the local behaviour, we mean that we consider germs near the origin.
Two bifurcation germs f , g are Kλ-equivalent if there exist (orientation-preserving)
changes of coordinates (T, X, L) around the origin such that

g(x, λ) = T (x, λ)f(X(x, λ), L(λ)). (1.1)

Clearly, (T, X, L) induces a local diffeomorphism between the zero-sets of f and
g and preserves the special role of the bifurcation parameters (cf. [10, 11]). In [2,
6, 7, 13], an alternative point of view has been developed: the path formulation.
In this paper we show how path formulation can be used to efficiently classify and
structure multi-parameter bifurcation problems. It organizes Kλ-equivalence by dis-
tinguishing the singular behaviour due to the core of the bifurcation germ from the
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effects of the parameters. The core of a bifurcation problem f(x, λ) = 0 is the germ
f0(x) = f(x, 0) obtained by setting the parameters equal to zero. It represents the
singular behaviour independently of the way the parameter(s) enter. In corank 1,
many results appear in our references (see [6] for a comprehensive account). Here,
we are interested in corank-2 problems. In particular, the non-degenerate umbilic
singularities are the generic cores in four situations: the general or gradient problems
and the Z2-equivariant (general or gradient) problems where Z2 acts on the second
component of R

2 via κ(x, y) = (x,−y). The non-degenerate umbilic singularities
f0 : (R2, 0) → R

2 are defined by f0(x, y) = (x2 + εy2, 2εxy), where ε2 = 1. When
ε = 1, we have the elliptic umbilic; when ε = −1, the hyperbolic umbilic. In this
paper, we discuss aspects of the path formulation for bifurcation problems based
on f0. More precisely, to a bifurcation problem f : (R2×R

k, 0) → R
2 with k bifurca-

tion parameters and core f0, we associate a path ᾱ : (Rk, 0) → R
a in the parameter

space R
a of the universal unfolding Fa of f0 in the relevant category (K, gradient

or KZ2) such that f and the pull-back ᾱ∗Fa are Kλ-equivalent (see § 1.1 for details).
Then the description of such bifurcation problems and their deformations can be
broadly understood as deformations of paths via changes of coordinates respecting
the discriminant of the projection of F−1

a (0) onto the parameter space R
a. The

exact details will be explained later.
The K-universal unfolding of f0 in the general corank-2 category is

F0 : (R2 × R
4, 0) → R

2

(of codimension 4), defined as

F0(x, y, α1, α2, β, γ) =
(

x2 + εy2 + α1x + α2 + γy

2εxy − α1εy + β − γx

)
. (1.2)

The universal unfoldings of f0 in the other categories are imbedded into F0. When
γ = 0, equation (1.2) is the universal unfolding in the gradient case (cf. § 1.2) and
when γ = β = 0, it is so in the Z2-equivariant cases (both KZ2 and gradient).
Note that when ε = −1 and α2 = β = γ = 0, equation (1.2) is also the universal
unfolding for the generic D3-equivariant core (D3 acts as the group of isometry of the
equilateral triangle). The universal unfolding of the umbilic singularities therefore
have an interesting ‘Russian doll’ type of structure of universal unfoldings in all
those categories.

In this paper we classify the generic bifurcations with one or two parameters
that occur in those cases using the path formulation for bifurcation problems. Some
results are known with one bifurcation parameter. The generic corank-2 case has
been studied in [10] and some of the gradient cases in [16]. Later, in [2], a com-
prehensive theory was developed, but the examples concentrated on the equivari-
ant gradient case. There is an extensive classification of Z2-equivariant bifurcation
germs in [5]. One advantage of our approach is that we can handle one, two or more
parameter situations using the same framework. We can even consider some spe-
cial parameter structure (for instance, some internal hierarchy (see [6,7])). In § 3 we
illustrate this by classifying the generic one-parameter bifurcation germs of corank 2
in our four categories (recovering and extending previously known results) and get
as new results the generic two-parameter bifurcation germs of corank 2. We finish
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this introduction with more details on the principles of path equivalence and their
applications to the classification of gradient bifurcation problems.

1.1. Principles of path equivalence

Given a bifurcation germ f , we construct the path ᾱ representing it by considering
f as an unfolding with parameters λ of the core f0 in the relevant category. Let Fa

be the universal unfolding of f0 in such a category. The theory of unfolding then
means that f(x, λ) = T (x, λ)Fa(X(x, λ), ᾱ(λ)) for some ᾱ. This means that f and
the pull back ᾱ∗Fa are Kλ-equivalent with equivalence (T, X, I). The qualitative
study of the zero set of bifurcation problems with the same core is obtained through
the study of their associated paths, in particular, their position with respect to the
discriminant variety ∆Fa associated with Fa. More precisely, let

πFa : (F−1
a (0), 0) → R

a

be the restriction of the natural projection π : (Rn+a, 0) → R
a. Then

∆Fa = πFa(ΣFa),

where ΣFa
is the local bifurcation set of Fa. Clearly, ∆Fa monitors when, and ‘how’,

a path ᾱ induces a crossing of ΣFa
, that is, when there is a local change in behaviour

of the zero-set. In § 2 we define those varieties in more detail. We prefer to choose
∆Fa as the real slice of the discriminant of the complexification of Fa. This means
that we can complexify the situation and use the power of singularity theory in the
complex realm. For finite-codimension problems, we do not loose anything.

The idea of the path formulation goes back at least to Arnold [1] and was the orig-
inal starting point of the work [9], where the very fruitful Kλ-equivalence approach
had finally been developed because the technicalities of the path formulation could
not easily be overcome at the time. The ideas behind the path formulation were
resurrected in [12, 13] for the usual contact-equivalence and in [2] for (symmetric)
gradient problems. It followed recent progresses in singularity theory allowing the
handling of variety-preserving contact-equivalence. Since then, an algebraic formu-
lation has been derived in [8], which shows that the main features of the path
formulation occur naturally in the algebra of Kλ-theory via the concept of liftable
vector fields (cf. [4]). Fix a universal unfolding of Fa of f0 in the appropriate cate-
gory. We say that the two paths ᾱ, β̄ : (Rk, 0) → (Ra, 0) are path equivalent if

ᾱ(λ) = H(λ, β̄(L(λ))), (1.3)

where

L : (Rk, 0) → (Rk, 0)

is an orientation-preserving diffeomorphism and

H : (Rk+a, 0) → (Ra, 0)

is a λ-parametrized family of local diffeomorphism on a R
a path connected to the

identity that preserves the discriminant ∆Fa of Fa in the sense that H(λ, ∆Fa) ⊂
∆Fa for λ ∈ (Rk, 0). More precisely, we choose ∆Fa as the real slice of the dis-
criminant of the complexification of Fa (cf. [7]). For a fixed Fa, the set of path

https://doi.org/10.1017/S0308210500003656 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003656


1118 J. E. Furter and A. M. Sitta

equivalences KFa

∆ form a geometric subgroup of K in the sense of Damon, hence the
usual theory and calculations of singularity apply. Note that we cannot, in general,
simplify H in (1.3) as a λ-parametrized matrix as with the usual K-equivalence,
and an explicit description of the diffeomorphisms H is, in general, impossible. Nev-
ertheless, the tangent spaces of paths can be determined explicitly at lower order
or with the help of computer algebra packages. In particular, the extended tangent
space of a path ᾱ is given by the Eλ-module

〈ᾱλ〉Eλ
+ ᾱ∗(Derlog(∆Fa))Eλ

, (1.4)

where Derlog(∆Fa) is the Eα-module of vector fields tangent to the discriminant
∆Fa (cf. § 2). We denote by Ez the ring of smooth germs f : (Rn, 0) → R with
variable z and by Ez the Ez-module of smooth germs f : (Rn, 0) → R

m when m is
clear from the context. We denote by Oz (Oz) the same rings (modules) of analytic
germs. Let R be a local ring. We denote by 〈m1 · · ·mk〉R the R-module generated by
the mi. Note that (1.3) is the definition of contact equivalence of sections over ∆Fa .
In general, we need to use the subgroup of diffeomorphisms liftable over F−1

a (0)
(cf. [7, 8]). In our contexts, both groups indeed coincide.

1.2. Variational bifurcation

In [2], we derived a theory for (equivariant) gradient bifurcation problems. Let
g : (Rn × R

k, 0) → R be a germ. We say that ∇xg(x, λ) = 0 is a gradient bifur-
cation problem when ∇xg(0, 0) = 0 and ∇2

xg(0, 0) = 0. Its potential is g. Gradient
bifurcation problems form an Eλ-submodule of E(x,λ), denoted by

E∇ = {∇xg(x, λ) | g ∈ E(x,λ)}.

Contact equivalence is also an equivalence relation on E∇. But, for an arbitrary
contact equivalence, (T, X, L) ·∇xf is not necessarily in E∇. Therefore, some mod-
ification of the usual techniques is necessary in order to describe the contact classes
and their perturbations inside E∇.

A natural framework for such problems is right equivalence for potentials with
some special consideration for the parameter λ: f, g ∈ E(x,λ) are equivalent if there
exists a change of coordinates (X, L) such that

f(x, λ) = g(X(x, λ), L(λ)). (1.5)

Although this theory has an elegant simplicity, it turns out to be inadequate.
Clearly, if f , g satisfy (1.5), then ∇xf is contact equivalent to ∇xg, but the con-
verse is not true in general. There are two distinct difficulties involving different
levels of complexity. The first obstruction is linked with the difference between con-
tact equivalence (K) of gradients and right equivalence (R) of potentials and does
not involve the distinguished parameter. In particular, R-equivalence can introduce
moduli (parameters that cannot be scaled away by a smooth change of coordinates)
that are irrelevant in the context of K-equivalence. Examples are the Tp,q,r singu-
larities, xp + yq + zr + mxyz with integer exponent such that 1/p + 1/q + 1/r < 1.
The parameter m is an R-moduli, but can be scaled away in a K-equivalence of the
gradients. A second difficulty is more fundamental: the change of coordinates (X, L)
in (1.5) is too restrictive with the distinguished parameter λ. Singularities of infinite
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codimension arise immediately. For example, the potential f1(x, λ) = 1
4x4 + 1

2λx2

of the pitchfork is of infinite Rλ-codimension, but ∇xf1 is of Kλ-codimension 2. A
similar, more immediate, fact is that x4+x3+λx is Kλ-contact equivalent to x3+λx,
but, at the potential level, 1

5x5 + 1
4x4 + 1

2λx2 is not Rλ-equivalent to 1
4x4 + 1

2λx2.
The first obstruction is more a nuisance than a difficulty: it introduces unnecessary
distinctions in the classification. The second is fundamental as it precludes finite
codimension. In some cases, we can use left–right equivalence (Aλ) with parame-
ters, but this is again not satisfactory. The Aλ-codimension increases much more
rapidly than the Kλ-codimension and, in most cases, the Aλ-codimension is still
infinite.

Another approach suggested in [9] is to use the concept of paths in the parameter
space. It has been extended and applied to some one-parameter bifurcation prob-
lems in R

2 by Zuppa [16]. In those two works, the path formulation is used with the
R-universal unfolding of the core f0. But this still does not solve the problem of the
appearance of unwanted moduli in the classification of the cores. For these reasons,
we took a hybrid approach in [2]. We developed a theory based on the ‘gradient’
part of the tangent spaces used in the classical approach. Although there is not an
a priori group of change of coordinates, the principal results go through. In the
present context, the two theories coincide and the path formulation goes through
applied to the R-unfolding of the umbilics when γ = 0.

2. Cores and Derlogs

We denote by ∇xG0 the restriction of F0 to the gradient situation, γ = 0, of
potential

G0(x, y, α1, α2, β) = 1
3x3 + εxy2 + 1

2α1(x2 − εy2) + α2x + βy.

It represents the R-universal unfolding of f0 of codimension 3. Because G0 is quasi-
homogeneous, ∇xG0 is also the gradient universal unfolding of ∇xf0 (cf. [2]). With
the Z2-symmetry, F Z2

0 is the restriction of F0 when β = γ = 0,

F Z2
0 (x, y, α1, α2) =

(
x2 + εy2 + α1x + α2

2εxy − εα1y

)
. (2.1)

Note that F Z2
0 is also the gradient of the Z2-invariant potential

1
3x3 + εxy2 + 1

2α1(x2 − εy2) + α2x.

Therefore, in both Z2-equivariant cases, the problem is of codimension 2. This
equality means that the gradient and dissipative theories for the non-degenerate
umbilics are equal with a Z2-symmetry. We recall what is needed is the next section.

2.1. Z2-equivariant problems

The ring of Z2-invariant germs is generated by x and v = y2 and the module of
equivariant germs is freely generated over the ring of invariant germs by (1, 0) and
(0, y). A Z2-equivariant map F on R

2, with parameter a, has components P (x, v, a)
and yQ(x, v, a). It is a gradient if and only if 2Pv ≡ Qx and if G is a Z2-invariant
potential, then F (z, a) = ∇zG(z, a) = (Gx, 2yGv), so P = Gx and Q = 2Gv. The
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solution set F (z, a) = 0 consists of two pieces, distinguished by the symmetry of
the solution.

(1) Fix(Z2) of equation P (x, 0, a) = 0. The eigenvalues of Fz(x, 0, a) are Px(x, 0, a)
and Q(x, 0, a). The local bifurcation varieties are

Bx = {(x, 0, a) | P (x, 0, a) = Px(x, 0, a) = 0}

and

Pκ = {(x, 0, a) | P (x, 0, a) = Q(x, 0, a) = 0}.

(2) Fix(1) of equation P (x, v, a) = Q(x, v, a) = 0. The eigenvalues of Fz(z, a)
satisfy trFz(z, a) = Px + 2vQv and detFz(z, a) = 2v(PxQv − QxPv). The
local bifurcation variety Bκ satisfies

P (x, v, a) = Q(x, v, a) = Px(x, v, a)Qv(x, v, a) − Qx(x, v, a)Pv(x, v, a) = 0.

There are possible Hopf bifurcation points near the roots of

P (x, v, a) = Q(x, v, a) = Px(x, v, a) + 2vQv(x, v, a) = 0

satisfying PxQv −QxPv > 0, but those points are not invariant of the contact equiv-
alence. When f is not a gradient, we can ascertain their existence using continuity
arguments along branches of solutions where the determinant does not change sign
but the trace does (cf. [11, p. 429]).

Proposition 2.1. The non-degenerate umbilics are the generic cores in the Z2-
equivariant general and gradient cases with the same universal unfolding.

Proof. For all cases, the calculation is classic. We use the usual techniques for
(equivariant) contact-equivalence. The generators for the KZ2-tangent space are
(p, 0), (vq, 0), (0, p), (0, q), (vpv, vqv) and (px, qx). The first and last are generated
over M(x,v) to eliminate the higher-order terms.

2.2. Discriminants

The local bifurcation set of F0 is

ΣF0 = {(x, y, α, β, γ) | F0(x, y, α, β, γ) = 0 and d(x,y)F0(x, y, α, β, γ) is singular}.

It is a conical set of dimension 3 with singularity at the origin constituted generically
of fold points. The discriminant of F0 is the variety of reduced equation h = 0, where
h(α, β, γ) is equal to

(α2
1 − 4α2)(3α2

1 + 4α2)3 + 32εβ2(9α4
1 − 48α2

1α2 + 16α2
2)

− 256β4 − 1024(β2 + 3εα2
2)α1βγ

− 4(144α2
1β

2 + 384α2β
2 + 27εα6

1 − 144εα2
1α

2
2 + 128εα3

2)γ
2

+ 18(9α4
1 − 16α2

2 + 16εβ2)γ4 − 108εα2
1γ

6 + 27γ8.
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The local bifurcation set ΣG0 of G0 is the set of critical points of G0. It is a conical
set of dimension 2, also with singularity at the origin and constituted generically
of fold points. The discriminant of G0 is the variety of equation

h∇(α, β) = (α2
1 − 4α2)(3α2

1 + 4α2)3 + 32εβ2(9α4
1 − 48α2

1α2 + 16α2
2) − 256β4

= 0.

The discriminant of F Z2
0 is formed of the projections of the local bifurcation

varieties Pκ and Bx, generically formed of pitchforks or folds, respectively. The
equation of the (reducible but principal) discriminant is

hZ2(α) = (3α2
1 + 4α2)(α2

1 − 4α2)
= 0.

2.3. Derlogs and liftable vector fields

For the equivalence of the singularity theories for finite-codimension bifurcation
germs and their associated paths, we actually need the notion of vector fields liftable
via the projections πFa . Without loss of generality, we can consider analytic germs
when dealing with finite-codimension problems. A vector field germ ξ : (Ca, 0) → C

a

is liftable over πFa if there exists a vector field germ η : (C2+a, 0) → C
2 and a matrix

map germ T : (C2+a, 0) → M(2, C) in the right category such that

(Fa)z(z, α)η(z, α) + (Fa)α(z, α)ξ(α) = T (z, α)Fa(z, α). (2.2)

This definition is geometric in the sense that ξ lifts to vector fields (η, ξ) tangent to
F−1

a (0) at its smooth points. In our problems, the liftable vector fields are exactly
the vector fields tangent to the discriminant. Let I(∆Fa) denote the ideal of germs
vanishing on ∆Fa . Define

Derlog(∆Fa) = {ξ ∈ Oa | ξ(I(∆Fa)) ⊂ I(∆Fa)}.

It extends to the coherent sheaf of vector fields tangent to ∆Fa because it can also be
defined as the kernel of an epimorphism of coherent modules (cf. [7] and references
therein). The discriminant ∆Fa is a free (or Saito) divisor if Derlog(∆Fa) is a locally
free Oa-module (of rank a). In order to calculate the generators of Derlog(∆Fa),
we use the following result.

Theorem 2.2 (cf. [15]).

(a) If the vector fields {ξi}a
i=1 are in Derlog(∆Fa) and the determinant |ξ1 · · · ξa|

is a reduced defining equation for ∆Fa , then those vector fields generate freely
Derlog(∆Fa).

(b) If the vector fields {ξi}a
i=1 form a Lie algebra and |ξ1 · · · ξa| = 0 is a reduced

defining equation for a hypersurface ∆ of C
a, then they generate freely

Derlog(∆).

We therefore obtain the following result.
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Theorem 2.3.

(a) The Derlog of h = 0 is freely generated over O(α,β,γ) by the nilpotent basis

ξ1 = (α1, 2α2, 2β, γ),
ξ2 = (3εγ,−2εβ,−2α2, 3α1),

ξ3 = (8α2,−8α1α2 + 3α3
1 − 3εα1γ

2 − 8εβγ,

8α2γ + 8α1β + 3εγ3 − 3α2
1γ,−8β),

ξ4 = (−8εβ, 3γ3 − 3εα2
1γ − 8εα1β − 8εα2γ,

8α1α2 + 8εβγ + 3α3
1 − 3εα1γ

2, 8α2).

A nilpotent basis consists of an Euler field (like ξ1) and a basis of the annihi-
lator of h. All the elements in Derlog(h = 0) lift. Note that another basis of
Derlog(h = 0) is to be found in [13].

(b) The Derlog of h∇ = 0 is generated by the following:

φ1 = (α1, 2α2, 2β),

φ2 = (8α2
2 − 8εβ2,−8α1α

2
2 + 3α3

1α2 − 8εα1β
2, 16α1α2β + 3α3

1β),

φ3 = (24α1α2,−16εβ2 − 24α2
1α2 + 9α4

1,−16α2β + 24α2
1β),

φ4 = (24εα1β,−16εα2β + 24εα2
1β,−(4α2 + 3α2

1)
2).

Note that Derlog(h∇ = 0) is not freely generated over O(α,β), but it is a Lie
sub-algebra of Derlog(h = 0). Moreover, φ1 is an Euler field and φ2, φ3, φ4
are in the annihilator of h and all the elements in Derlog(h∇ = 0) lift.

(c) The Derlog of hZ2 = 0 is freely generated over Oα by the nilpotent basis

ζ1 = (α1, 2α2), ζ2 = (8α2 + 2α2
1, 3α3

1 − 4α1α2),

and all the elements in Derlog(hZ2 = 0) lift.

Proof. (a), (c) These are classical calculations, as they follow equivalently from
either Saito’s criteria or because the Lie Algebra structure, with respect to the
usual bracket of vector fields in R

4, of Derlog(h = 0) is [ξ1, ξ2] = 0, [ξ1, ξ3] = ξ3,
[ξ1, ξ4] = ξ4, [ξ2, ξ3] = −ξ4, [ξ2, ξ4] = −εξ3 and [ξ3, ξ4] = 16(α2

1 − εγ2)ξ2. Note that
the first vector field is the Euler field, ξ1(h) = 8h, and the others satisfy ξi(h) = 0,
i = 2, 3, 4. Similarly, ζ1(hZ2) = 4hZ2 and ζ2(hZ2) = 0.

We can explicitly calculate the lifts using (2.2). We find that ξ1 lifts to (x, y, ξ1),
ξ2 to (y, εx,−ξ2), ξ3 to

(8x2 + 2α1x + 2γy + 4α2 − 3α2
1 + 3εγ2, 8xy − 2εγx − 2α1y + 4εβ, ξ3)

and ξ4 to

(8xy − 2εγx + 2α1y + 4εβ, 8y2 + 6εα1x + 2εγy + 4εα2 + 3εα2
1 − 3γ2, ξ4).

Setting β = γ = 0, we have ζ1 = ξ1 and ζ2 = ξ3 + 2α1ξ1 implying that they also
lift.
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(b) First, note that, setting γ = 0, φ2 = α2ξ3 + βξ4, φ3 = 8βξ2 + 3α1ξ3 and
φ4 = 8α2ξ2 −3α1ξ4. These relations imply that the φi also lift. To calculate the Lie
algebra structure of the φi, note that

[pµ, qν] = pq[µ, ν] + pµ(q)ν − qν(p)µ.

So

[φ1, φ2] = 3φ2,

[φ1, φ3] = 2φ3,

[φ1, φ4] = 2φ4,

[φ2, φ3] = (16α1α2 − 3α3
1)φ3 + 24(α2 − α2

1)φ2,

[φ2, φ4] = 24εβφ2 − 8εα1βφ3 − (3α3
1 + 8α1α2)φ4

and

[φ3, φ4] = −16εβφ3 + 16α2φ4.

Note that
|φ1φ2φ3| = 64βh∇,

which means that they are a free basis for Derlog(βh∇ = 0) because they form a Lie
sub-algebra (cf. [3]). Finally, we would like to show that any ζ ∈ Derlog(h∇ = 0)
can be decomposed into a linear combination of the φ. The claim will hold if we
can decompose it into a sum ζ = ζ1 + pφ4 for some function p, where ζ1 is in
Derlog(βh∇ = 0). Note that the third component of φ4 when restricted to β = 0
is (4α2 + 3α2

1)
2. Moreover, h∇

α1
, h∇

α2
and h∇ are with factor (3α2

1 + 4α2)2 modulo
β2. And so, the third component of ζ has the same factor which can be eliminated
using pφ4.

3. Generic bifurcation problems

3.1. One bifurcation parameter

Without the gradient conditions, corank-2 problems with one bifurcation param-
eter are of high codimension; the simplest one is codimension 3 (the so-called ‘hill-
top’ bifurcation, [10]), then we jump to topological codimension 5 and higher (cf.
[9,10]). Some results for gradient bifurcation problems are available from Zuppa [16].
The coefficients δ, δ1 are ±1. In (3.3) m is modal and satisfies m2 �= ε. The param-
eters β̂i are the unfolding parameters.

Theorem 3.1.

(a) The generic bifurcation problems of corank 2 with one bifurcation parameter
are of codimension 3 with universal unfolding

F1(x, y, λ, β̂) =

(
x2 + εy2 + δλ + β̂1x + β̂3y

2εxy − εβ̂1y − β̂3x + β̂2

)
(3.1)

or

F2(x, y, λ, β̂) =

(
x2 + y2 + β̂1x + β̂3y + β̂2

2εxy + δλ − εβ̂1y − β̂3x

)
. (3.2)
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When ε = −1, only F1 is necessary.

(b) The generic gradient bifurcation problem of corank 2 with one bifurcation
parameter is of topological codimension 2 with universal unfolding

F (x, y, λ, β̂) =

(
x2 + εy2 + δ1λx + δλ + β̂1

2εxy − εδ1λy + mλ + β̂2

)
. (3.3)

(c) The generic (gradient) Z2-equivariant bifurcation problem of corank 2 with
one bifurcation parameter is of codimension 1 with universal unfolding

F (x, y, λ, β̂) =

(
x2 + εy2 + β̂x + δλ

2εxy − εβ̂y

)
. (3.4)

Proof. (a) We are going to prove that the generic path in the general corank-2
case is (0, δλ, 0, 0) of universal unfolding (β1, δλ, β2, β3). First note that the path
ᾱ(λ) = (aλ, bλ, cλ, dλ) is of codimension 3 and the quadratic terms in λ are in its
unipotent tangent space if εc2 − b2 �= 0. We can use Nakayama’s lemma on the
terms of lower order of the generators of Derlog(∆Fa):

ᾱλ = (a, b, c, d),
ξ1 = (aλ, 2bλ, 2cλ, dλ),
ξ2 = (3εdλ, −2εcλ, −2bλ, 3aλ),
ξ3 = (bλ, 0, 0,−cλ),
ξ4 = (−εcλ, 0, 0, bλ)

modulo M2
λ. The condition is always satisfied for either b or c non zero if ε = −1 and

for b �= ±c if ε = 1. This corresponds to the conditions (H1) and (H3) of [10, p. 403].
In those cases we can change coordinates to set-up b = δ = ±1 and c = 0.

(b) We proceed like in (a). Let ᾱ(λ) = (aλ, bλ, cλ). The tangent space is generated
by

(a, b, c), (0, bλ, cλ), (3εacλ2,−2εbcλ2,−2b2λ2),

(3abλ2,−2εc2λ2,−2bcλ2), ((b2 − εc2)λ2, 0, 0).

With the same conditions as in (a), the quadratic terms in λ2 are contained in the
unipotent tangent space. Via rescaling we find the final result as c cannot be now
eliminated and so becomes a modal parameter.

(c) We proceed in a similar way with ᾱ(λ) = (aλ, bλ) and the generators (a, b),
(0, bλ) and (bλ, 0) modulo M2

λ. When b �= 0 the quadratic terms can be removed
from the unipotent tangent space as well as a.

3.2. Two-bifurcation parameter

In [14] one can find a classification of corank 1 two-parameter bifurcation germs.
No results in corank 2 are previously available. We denote the bifurcation parame-
ters by Λ = (λ, µ). As previously, the coefficients δi are ±1. In (b) m is modal and
must be non-zero. The parameters β̂i are the unfolding parameters.
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Theorem 3.2.

(a) The generic bifurcation problems of corank 2 with two bifurcation parameters
are of codimension 2 with universal unfolding

F (x, y, Λ, β̂) =

(
x2 + εy2 + (δ3λ + β̂1) x + β̂2 y + δ1λ

2εxy − ε(δ3λ + β̂1) y − β̂2 x + δ2µ

)
. (3.5)

(b) The generic gradient bifurcation problem of corank 2 with two bifurcation
parameters is of topological codimension 1 with universal unfolding,

F (x, y, Λ, β̂) =
(

x2 + εy2 + δ1λx + δ2µ

2εxy − εδ1λy + δ3λ + mµ + β̂

)
. (3.6)

(c) The generic (gradient) Z2-equivariant bifurcation problem of corank 2 with
two bifurcation parameters is of codimension 0 with universal unfolding

f(x, y, Λ) =
(

x2 + εy2 + δ2µx + δ1λ

2εxy − εδ2µy

)
. (3.7)

Proof. The proofs follow the pattern of theorem 3.1. In this case the tangent spaces
are submodules of O(λ,µ) over O(λ,µ) and we consider the generators ᾱλ and ᾱµ.
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