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Lubricant-infused surfaces in an outer liquid flow generally reduce viscous drag. However,
owing to the meniscus deformation, the infused state could collapse. Here, we discuss the
transition between infused and collapsed states of transverse shallow grooves, considering
the capillary number, liquid/lubricant viscosity ratio and the aspect ratio of the groove
as parameters for inducing this transition. It is found that, depending on the depth of
the grooves, two different scenarios occur. A collapse of lubricant-infused surfaces could
happen due to a depinning of the meniscus from the front groove edge. However, for very
shallow textures, the meniscus contacts the bottom wall before such a depinning could
occur. Our interpretation could help avoid this generally detrimental effect in various
applications.
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1. Introduction

Slippery lubricant-infused surfaces have received much attention in recent years since
they provide a drag reduction and flow manipulation in microfluidic devices (Wong et al.
2011; Nizkaya, Asmolov & Vinogradova 2014; Solomon, Khalil & Varanasi 2014; Keiser
et al. 2017). The lubricant could be a gas trapped by superhydrophobic (SH) textures or
another liquid, such as oil. Superhydrophobic surfaces show very large effective slip length
(Ybert et al. 2007; Vinogradova & Belyaev 2011), which makes them attractive for use
in microfluidic applications (Vinogradova & Dubov 2012). Liquid-infused (LI) surfaces
are less slippery (Asmolov, Nizkaya & Vinogradova 2018), but are commonly considered
to be potentially more stable and robust against pressure-induced failure compared to
SH surfaces, which makes them useful in various applications, including anti-biofouling
(Epstein et al. 2012) and ice phobicity (Kim et al. 2012). Implementation of LI surfaces
often requires a thorough understanding of the dynamics of a lubricant within a patterned
substrate that is exposed to external hydrodynamic flow. This fundamental problem also
applies to a variety of similar situations, including the stability of small bubbles or
droplets, trapped by slightly rough or heterogeneous surfaces (Vinogradova et al. 1995;
Borkent et al. 2007).

† Email address for correspondence: oivinograd@yahoo.com
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The influence of a curved meniscus on the slipping properties of SH texture has
been extensively studied analytically (Sbragaglia & Prosperetti 2007), numerically (Teo
& Khoo 2010) and in experiments (Karatay et al. 2013; Xue et al. 2015). In all these
studies, protrusion or inflection of the meniscus has been achieved by changing the
hydrostatic pressure in a gas, but the flow-induced dynamic deformation of the meniscus
has been neglected. Deformation of a liquid/gas interface by the flow has been studied
only for strongly protruding bubbles (Hyväluoma & Harting 2008; Gao & Feng 2009).
In particular, simulation studies (Hyväluoma & Harting 2008) have shown that, at large
capillary numbers, pinned surface bubbles are deformed by an external viscous flow, which
dramatically alters the slip length of the SH texture, but no attempt has been made to
address the issue of their stability. We are also unaware of any study of the dynamic
deformation of an initially flat meniscus.

Existing theories describing the stability of a lubricant-infused state mostly include the
configurations of static wetting drops at the SH surface. Several static criteria have been
suggested (Bico, Thiele & Quere 2002; Cottin-Bizonne et al. 2004), and later extended
to a more complex, metastable situations (Reyssat, Yeomans & Quere 2007; Dubov et al.
2015). The body of theoretical and experimental work investigating the stability of SH and
LI surfaces in external flows is rather scarce, although there exists some recent literature
in the area. Wexler, Jacobi & Stone (2015) and Liu et al. (2016) have considered an outer
shear flow aligned with the direction of extended closed grooves, where a reverse pressure
gradient in a lubricant is generated. As a result, the curvature of the static meniscus is
largest near the channel inlet, and the failure of deep LI grooves occurs when the dynamic
contact angle becomes large, while the failure of shallow grooves takes place when the
meniscus contacts the groove bottom. The collapse of partially filled deep SH and LI
grooves induced by an external transverse shear has been studied numerically by Ge
et al. (2018). These authors concluded that the meniscus deformation induced by such
a flow decreases with the lubricant/outer liquid viscosity ratio and that the collapse of
lubricant-infused grooves is possible only when this ratio is smaller than unity.

In this paper we present some results of a study of the possible collapse of shallow
lubricant-infused grooves driven by an external transverse shear flow. Our model, which
is different from configurations explored before, assumes that the meniscus is initially
flat and pinned at the groove edges, and that grooves are unbounded in the longitudinal
direction. To solve a two-phase problem we couple a general solution of the Stokes
problem for the outer flow and a lubrication approach for the flow in a groove. Note
that a similar strategy has previously been successfully employed for investigating flows
over flat SH textures (Maynes et al. 2007; Nizkaya, Asmolov & Vinogradova 2013) and
evaporating thin films (Doumenc & Guerrier 2013). We shall see that the flow induced
in a lubricant layer strongly depends on its local thickness, which is in turn controlled
by a local pressure gradient, and that the stationary shape of a deformed meniscus
becomes roughly antisymmetric (concave–convex). The meniscus depinning from the
front groove edge occurs when the advancing contact angle for the outer liquid is reached at
some critical capillary number. However, very shallow lubricant-infused textures collapse
when the deformed meniscus contacts the groove bottom. One of important differences
between our results and prior works, which employed different models, is that the
lubricant-infused surface becomes more stable when the lubricant/liquid viscosity ratio
is smaller. Therefore, contrary to common belief, for some geometries SH surfaces could
be more robust than LI ones.

The paper is arranged as follows. In § 2 we describe the model of a lubricant-infused
shallow groove and derive asymptotic equations for a two-phase flow problem. Section 3
contains the results of our numerical calculations. We conclude in § 4. The calculation
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FIGURE 1. Sketches of (a) an outer shear flow past a shallow lubricant-infused groove of width
δ and depth e, and of (b) a liquid/lubricant interface εη( y) in dimensionless coordinates. The
concave liquid/lubricant interface meets the front groove edge with an angle θ defined relative to
the vertical.

details of the meniscus shape and of the effective slip length are given in appendix A, and
we justify the use of the lubrication approximation for an inner flow in appendix B.

2. Asymptotic theory
2.1. Model

We consider a linear shear flow of an outer liquid of viscosity μ∗ over a shallow rectangular
groove of width δ and depth e � δ (see figure 1a), filled with a lubricant of viscosity μl∗

(hereafter the asterisk denotes dimensional variables). The y∗-axis is aligned with the
shear direction, while the z∗-axis is defined normal to the wall, and the dimensionless
coordinates are introduced as y = y∗/δ and z = z∗/δ. We assume that the groove aspect
ratio is small, ε = e/δ � 1, and that, at rest, the static liquid/lubricant interface is flat and
located at z = 0, i.e. there is no pressure difference across the meniscus that is pinned at
the edges of the groove. When the meniscus is perturbed by an external flow, its slightly
deformed shape sketched in figure 1(b) can be described by a function εη( y), where
η = O(1). It is convenient to introduce the stationary angle θ ≥ π/2 defined (relative to
the vertical direction) at the point where the concave or flat meniscus meets the groove
edge (here, the front one). Thanks to the lubricant volume conservation, the meniscus
deformation should be rather close to antisymmetric, so that the stationary angle at the
opposite grove edge (here the rear one) is approximately π − θ . The observed angle
θ cannot exceed a limiting value, known as the advancing angle, beyond which the
contact line depins from the groove edge and moves. Likewise, when π − θ decreases
down to a limiting value of the receding angle, the contact line should suddenly shift
laterally.

If we consider a chemically homogeneous (ideal) surface, the bounds of attainable
values of θ are determined unambiguously by a liquid (Young) contact angle Θ (above π/2
to provide a lubricant-infused state) on a planar horizontal surface (see figure 2). Its value
can, of course, always be adjusted by a suitable modification of the solid surface (Jung &
Bhushan 2009; Grate et al. 2012; Dubov et al. 2015), but note that, on most solids, Θ never
exceeds 2π/3 or 120◦ (Yakubov, Vinogradova & Butt 2000; Jung & Bhushan 2009; Wexler
et al. 2015). Following Quere (2008), Herminghaus, Brinkmann & Seemann (2008) and
Dubov et al. (2018) one can argue that the contact angle of the liquid at the groove
edges can be anywhere between Θ (receding) and Θ + π/2 (advancing), as illustrated
in figure 2 by the coloured regions that are symmetric relative to a midplane of the groove.
The attainable contact angles redefined relative to z-direction are then confined between
Θ − π/2 (receding) and Θ (advancing). We remark and stress, however, that the bounds of
attainable angles are asymmetric relative to z = 0, except the case of Θ = 3π/4 (or 135◦).
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Θ
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z

Θ
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FIGURE 2. Pinning of a contact line on a rectangular groove edge. The liquid meets the solid
with a contact angle Θ . Hence, the contact angle at the groove edges can take any value (if the
horizontal direction is considered as the reference one) between Θ and Θ + π/2, as illustrated
by coloured region confined between the dashed lines. The attainable contact angles at the edge,
redefined relative to the z-direction, are then confined between Θ − π/2 and Θ .

Of the two possible unstable angles, one is normally attained faster and overshadows the
other. Since for our surfaces Θ is smaller than 3π/4, one can argue that the depinning will
occur on that edge of the groove, where the meniscus is concave, and where θ will reach
the value of Θ . For the meniscus shape sketched in figures 1 and 2 this would be the front
(left) edge, but of course such a shape is by no means obvious, and will be justified below
by solving a hydrodynamic problem. As a side note we mention that the depinning would
occur simultaneously at the front and rear (right) edges if Θ = 3π/4, and for larger Θ –
on a rear edge, when θ � Θ − π/2. Clearly, these estimates hold only for ideal surfaces
and relatively low speed. They would become approximate when the surface is chemically
heterogeneous. However, they provide us with some guidance.

The dimensionless velocity and pressure are defined as u = u∗/(Gδ) and p = p∗/(Gμ∗),
where G is an undisturbed shear rate. We stress, that near the groove the outer flow
is modified due to a slippage at the liquid/lubricant interface, and that the lubricant
flow, induced by a reverse pressure gradient, has zero flow rate in any cross-section (see
figure 3a). The flows in a lubricant and an outer liquid are stationary and satisfy Stokes
equations

∇ · u = 0, Δu − ∇p = 0, (2.1)

∇ · ul = 0, μΔul − ∇pl = 0, (2.2)

where u = (0, v, w) and ul = (0, vl, wl) are velocity fields in liquid and in lubricant, p, pl

are corresponding pressure distributions and μ = μl∗/μ∗ is the lubricant/liquid viscosity
ratio. Far from the lubricant-induced surface the liquid flow represents a linear shear flow,
u|z→∞ = zey , where ey is a unit vector along the y-axis. We apply a no-slip condition at
solid boundaries, and at the liquid/lubricant interface, z = εη( y), we use the conditions
of impermeability

u · n = ul · n = 0, (2.3)

and of continuity of tangential velocity and tangential stress,

u · τ = ul · τ , (2.4)

τ · σ · n = τ · σ l · n, (2.5)

where τ and n are the unit tangent and outward normal (to the meniscus) vectors, and the
stress tensors are σ = ∇u + (∇u)T−pI and σ l = μ(∇ul + (∇ul)T)−plI , where I is the
unit tensor.
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FIGURE 3. (a) Recirculation flow in a shallow groove. (b) Shear flow and a local slip length in
outer fluid.

The condition for normal stresses at the interface can be derived using the Laplace
equation,

n · (σ l − σ ) · n = κ

Ca
, (2.6)

where Ca = μ∗Gδ/γ is the capillary number defined using an outer liquid viscosity and
surface tension of the interface γ , and κ � εη′′ is the interface curvature (negative for the
meniscus protruding into the outer liquid).

These equations should be supplemented by the condition of volume conservation in
the lubricant phase and by the pinning conditions at the edges of the groove,

1∫
0

η( y) dy = 0, η(0) = η(1) = 0. (2.7a,b)

Equations (2.1)–(2.7a,b) represent a closed system governing liquid and lubricant flows.
They involve three dimensionless parameters, i.e. the shallow groove aspect ratio ε, the
lubricant/liquid viscosity ratio μ and the capillary number Ca. The two latter parameters
could be any positive value, but ε is small, so that we could use it to construct asymptotic
solutions for the meniscus shape, velocity fields and pressure.

Since ε is small, τ � (0, 1, ε∂yη) and n � (0, −ε∂yη, 1) and the boundary conditions
(2.3)–(2.5) at a curved interface can be simplified to

w = wl = 0, v = vl = vη( y),
∂v

∂z
= μ

∂vl

∂z
, (2.8a–c)

which defines the coupling between the liquid and the lubricant. Here, vη( y) is the
tangential velocity of both the liquid and the lubricant at the interface. From (2.6) we
then obtain

σ l
zz = σzz + εη′′

Ca
, (2.9)

which determines the meniscus shape, with normal stresses given by

σzz = 2∂zw − p, σ l
zz = 2μ∂zwl − pl. (2.10a,b)

Note that the normal stresses include not only the pressure but also the gradients of the
normal velocities since, unlike the no-slip case, the latter do not vanish at slippery surfaces.
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2.2. Inner flow
The lubricant flow in the groove is generated by the interface velocity vη( y). For this inner
problem the boundary condition, (2.8a–c), should be imposed at the curved meniscus
z = η( y), since its local deviation from the flat one, z = 0, is comparable to the depth of
the groove, ε. Since the local slopes of the meniscus are small, we apply the lubrication
theory and consider a locally parabolic velocity profile of zero flow rate

vl � vη(y)ζ (3ζ − 2) , wl � 0, (2.11a,b)

where ζ = (z + ε)/[ε(1 + η)] varies from 0 at the bottom wall to 1 at the interface.
Equations (2.11a,b), which are equivalent to those derived by Nizkaya et al. (2013) for a flat
meniscus, but varying local thickness of the thin lubricant film, allow one to immediately
calculate both the lubricant shear rate at the interface

∂zv
l = 4vη

ε(1 + η)
, (2.12)

and the transverse local slip length

b( y) = vη

μ∂zvl
� ε

4μ
(1 + η), (2.13)

where ε/μ = O(1). Equation (2.13) implies that b( y) is proportional to a local thickness
of the lubricant layer and inversely proportional to μ, similarly to infinite systems (Miksis
& Davis 1994; Vinogradova 1995). We should also note that ε/4μ may be interpreted as a
local transverse slip length, b0, on a flat (undisturbed) liquid/lubricant interface (Nizkaya
et al. 2013, 2014).

For SH grooves, pressure induced by flow changes in the inner gas is usually neglected
since μ � 1. However, μ takes on finite values for lubricant-infused surfaces, and the
gradient of pressure in closed shallow grooves could become very large, even when the
lubricant viscosity is small, μ ∼ ε. Using simple scaling arguments one can show that
∂ypl � μ(∂2vl/∂y2) ∼ με−2 � 1. Indeed, the corresponding to (2.11a,b) pressure profile
satisfies

∂ypl � 6μvη(y)

ε2 (1 + η)2 , ∂zpl � 0. (2.14a,b)

Finally, using (2.14a,b) and (2.2) one can estimate that 2μ∂zwl � −2μ∂yv
l ∼ μ � |pl|.

From (2.10a,b) it then follows that σ l
zz � −pl, which may be determined by integrating

(2.14a,b).

2.3. Outer flow
We now turn to the outer liquid flow (of length scale δ), that practically cannot be affected
by small variations in εη, and, therefore, (2.8a–c) can be mapped to the flat interface,
u|z=εη = u|z=0 + O(ε). Impermeability condition (2.3) is then reduced to w( y, 0) = 0,

and (2.5) takes the form of a conventional partial slip condition applied at z = 0,

v = b( y)
∂v

∂z
, (2.15)

with the local slip length described by (2.13).
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An outer solution for a flow field with prescribed velocity vη(y) and zero normal velocity
can be found using u( y, z) for a longitudinal configuration (Asmolov & Vinogradova
2012)

v = u + z
∂u
∂z

, w = −z
∂u
∂y

, (2.16a,b)

p = −2
∂u
∂y

. (2.17)

Here, u satisfies the Laplace equation, Δu = 0, with the boundary condition u(0, y) =
vη(y). Equations (2.16a,b), (2.17) immediately suggest that σzz(0, y) = 2∂zw − p = 0. In
other words, the contributions of the pressure and the gradient of normal velocity to the
normal stress cancel out. This implies that the outer flow does not affect the meniscus
deformation. Consequently, the meniscus shape depends on the sign of the pressure
gradient in the lubricant. When it is positive, the shape will be as shown in figures 1
and 2, i.e. concave at the front groove edge and convex at the rear one.

The equation describing the meniscus shape can be obtained by differentiating (2.9)
with respect to y. Keeping then only the leading term in ε and using (2.11a,b) we find that
this shape obeys

η′′′ = −6μCa
ε3

vη( y)

(1 + η)2
. (2.18)

To solve this differential equation, conditions (2.7a,b) should be imposed.
To summarize, the outer asymptotic problem is reduced to (2.1) coupled with the

equation for the meniscus shape (2.18) expressed via the local slip length b( y), (2.13),
and interface velocity, vη.

2.4. Limiting cases
In the general case, the inner and outer flows are strongly coupled, and the two-phase
problem should be solved numerically. However, in some limits the system can be
simplified, thanks to a decoupling of these flows.

In the limit of ε/μ � 1, typical for a very viscous lubricant and/or an extremely thin
lubricant layer, (2.15) reduces to a no-slip boundary condition, v( y, 0) � 0. Consequently,
an outer flow remains undisturbed by the inner one, and the shear stress in the liquid is
∂zv( y, 0) � 1. It follows then from (2.8a–c) that the lubricant shear rate is ∂zv

l( y, 0) �
μ−1, and the interface velocity, found from (2.15), is vη = b( y)∂zv( y, 0) � ε(1 + η)/4μ,
i.e. it decreases with μ. From (2.14a,b) it follows then that ∂ypl is finite and does not
depend on μ, and (2.18) reduces to

η′′′ = − 3Ca
2ε2 (1 + η)

. (2.19)

In the opposite limiting case of low lubricant viscosity, ε/μ � 1, the local slip length
b( y) is large provided 1 + η( y) remains finite. Thus, we might argue that, at any
deformation, a sensible approximation for a local slip would be b( y) → ∞ that leads
to the interface velocity vP

η (y) = [1 − (2y − 1)2]1/2/4 (Philip 1972). Substituting this to
(2.18) we get

η′′′ = −6μCa
ε3

vp
η( y)

(1 + η)2
. (2.20)
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FIGURE 4. (a) Meniscus shape computed at ε = 0.1 and Ca = 0.3. Solid, dashed and
dash-dotted curves show results obtained using μ = 0.02, 0.2 and 1. Bold curve shows
calculations from the asymptotic equation (2.19). (b) Predictions of (2.19) for ε = 0.1 and
Ca = 0.1, 0.2, 0.3 (dash-dotted, dashed and solid curves).

3. Results of calculations and discussion

In this section we present some numerical results for the model system formulated
above. The details of our calculations are presented in appendix A. In appendix B we
present some numerical results justifying the use of the lubrication approximation.

We have first investigated the dynamic meniscus stationary shape, η( y), at fixed
ε = 0.1. Figure 4(a) shows the numerical results obtained using Ca = 0.3, and several
typical viscosity contrasts, μ = 0.02 (water/air interface), μ = 0.2 (oil/water) and μ = 1,
where the liquid and lubricant are of the same viscosity. Our calculations confirm that
the function η( y) is nearly antisymmetric and has two extrema. It takes its minimum
value close to the front edge of the groove (region of concave curvature), and a maximum
occurs in the vicinity of the rear edge, where η( y) inverts its curvature to convex. As
predicted and discussed above, this implies that the depinning occurs at the front edge. The
absolute values of the extrema decrease with ε/μ, which implies that, with our parameters,
the meniscus deformation grows with μ. Also included are predictions of the asymptotic
equation (2.19), which determines an upper bound on meniscus deformation, attainable for
very small ε/μ. For smaller values of Ca, the maximum possible meniscus deformation
decreases, as illustrated in figure 4(b). We also note that a larger deflection of the meniscus
shape from the flat one is always accompanied by an increase in θ = π/2 − arctan(εη′(0)).

As described in § 2, the local curvature of the meniscus is associated with pressure in
the lubricant film, which in turn can be related to the lubricant flow. Figure 5 plots the
lubricant pressure, local slip length b( y) and the interface velocity vη( y) computed with
the same parameters as in figure 4(a). We see that pl increases with y, and its (positive)
gradient is smaller for larger ε/μ, which implies that, at fixed ε, the pressure gradient
grows with μ. By contrast, both b( y) and vη( y) increase with ε/μ. The numerical data
also show that at large ε/μ the interface velocity remains close to vP

η ( y), but for smaller
slip lengths it is significantly affected by the deformation of a lubricant film.

To examine the scenario of collapse more closely, the critical Ca has been calculated as a
function of ε for several values of μ (taken the same as in figures 4 and 5). Specimen results
obtained using Θ = 120◦ and 110◦ that are close to those observed experimentally (Jung
& Bhushan 2009; Grate et al. 2012; Dubov et al. 2015; Wexler et al. 2015) are included
in figures 6(a) and 6(b), where we denote by filled symbols in the (Ca, ε) plane the
values of Ca, which correspond to θ = Θ . It is well seen that for smaller Θ the depinning
should occur at smaller Ca. Note that these results agree well with calculations made using
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FIGURE 5. (a) Lubricant pressure, (b) local slip length and (c) interface velocity calculated
using ε = 0.1 and Ca = 0.3. Solid, dashed and dash-dotted curves show results for μ = 0.02,
0.2 and 1. Dotted lines show results for a flat meniscus.
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FIGURE 6. (a) Critical values of Ca, beyond which the lubricant-infused surfaces collapse,
versus ε calculated using Θ = 120◦ and μ = 0.02 (squares), 0.2 (circles), 1 (diamonds). Filled
and open symbols are obtained from (2.18) and (B 2), and correspond to the depinning. Dashed
curves correspond to a contact of the liquid/lubricant interface with the bottom wall. (b) The
same, but for Θ = 110◦. (c) Critical Ca at which the depinning occurs as a function of μ
calculated for ε = 0.1. Solid curves from top to bottom show results obtained using Θ = 120◦
and 110◦. Dashed lines plot the corresponding asymptotic values calculated from (2.19).

the exact equation for the meniscus curvature (shown by open symbols), confirming the
validity of our approximations. As μ increases the value of Ca required for a depinning
reduces, and for sufficiently large μ should approach the value calculated from (2.19).
The curve for the critical Ca of depinning as a function of μ, calculated using ε = 0.1, is
included in figure 6(c). It can be seen that it reduces rapidly at small viscosity contrast and
saturates to a constant value given by (2.19) already at μ ≥ 1. We emphasize that at smaller
ε our nonlinear system has no positive stationary solution when Ca becomes larger than
some critical value. As Ca approaches this value, the local thickness of a lubricant film
tends to zero, accompanied by an infinite growth of the pressure gradient in the film neck
(see appendix A), but note that θ still remains smaller than Θ . Therefore, one might argue
that for sufficiently small ε the curve of failure of lubricant-infused surfaces included in
figures 6(a) and 6(b) reflects the contact of a deformed meniscus with the bottom wall that
occurs before the value of Θ is reached. It is interesting that the curves corresponding to
these two scenarios of collapse of lubricant-infused surfaces meet smoothly at ε � 0.07
(Θ = 120◦) and ε � 0.05 (Θ = 110◦) in figures 6(a) and 6(b).

Finally, we recall that b0 is proportional to ε/μ, so that, based on (2.18), one can suggest
that the critical Ca/ε2 is a universal scaled capillary number that allows one to evaluate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.537


901 A34-10 E. S. Asmolov, T. V. Nizkaya and O. I. Vinogradova

0
20

40

60

80

100

20

50

100

0 50.5 1.51.0 10
ε/μ ε/μ

(b)(a)

C
a/

ε
2

μ
C

a/
ε

3

FIGURE 7. (a) Critical Ca/ε2 (solid curve), corresponding to a contact of the meniscus with the
bottom wall, as a function of ε/μ. The solution of (2.19) is shown by a filled circle. (b) Critical
μCa/ε3 (solid curve) and predictions of (2.20) that determines the asymptotic slope of critical
Ca/ε2 at large ε/μ (dashed line).

when the meniscus contacts the bottom and this scenario of failure of lubricant-infused
surfaces occurs. To illustrate this we plot in figure 7(a) the curve separating liquid-infused
and collapsed states of the lubricant-infused surfaces in the (Ca/ε2, ε/μ) plane. The
stable configuration corresponds to the area under the curve, while in the upper region
the lubricant-infused surface is never stable. At ε/μ → 0 we recover a solution of (2.19).
The critical Ca/ε2 increases with ε/μ, and at sufficiently large ε/μ it grows practically
linearly with the slope O(10). This is better seen in figure 7(b), where we reproduce our
data in the (μCa/ε3, ε/μ) plane. When ε/μ → ∞, the solution of (2.20) becomes exact,
but we might argue that it becomes a sensible approximation when ε/μ becomes large,
i.e. for SH surfaces.

4. Conclusion

We have studied the meniscus deformation in an outer shear flow oriented transverse to
lubricant-infused shallow grooves. It has been shown that the deviations of meniscus shape
from the initial one are mostly controlled by the inner, pressure-driven, lubricant flow.
While such a deformation practically does not affect the value of the slip length, it could
induce the collapse of the lubricant-infused surface. Whether or not such a collapse occurs
depends on the capillary number Ca, lubricant/liquid viscosity ratio μ and the aspect ratio
of the groove ε. Our work has shown that, unlike the previously considered case of deep
grooves, for shallow grooves the meniscus deformation increases with μ. The mechanism
of the failure of lubricant-infused shallow grooves depends, in turn, on the value of ε. We
have identified two separate mechanisms of failure of lubricant-infused state of surfaces.
This could happen due to a depinning of the meniscus from the front groove edge, when
the value of the advancing contact angle is reached. However, in the case of very small ε,
the meniscus contacts the bottom wall before such a depinning occurs.

We have already mentioned the prior numerical work of Ge et al. (2018) who studied
deep transverse grooves, filled by a lubricant only partly (implying the mobility of the
contact line), and found that the meniscus deformation decreases with μ. One important
difference of our results for shallow transverse grooves with pinned contact lines is that the
deformation decreases upon reducing μ, likewise in the case of deep longitudinal grooves
(Wexler et al. 2015; Liu et al. 2016). We are unaware of any reported measurements
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of failure of transverse LI grooved surfaces. It would be very timely to test theoretical
predictions for transverse LI grooves by experiments.

Finally, we recall that, here, an ideal, chemically homogeneous surface has been
assumed. For such a surface, the advancing liquid contact angle (relative to the vertical) is
exactly equal to (Young) angle Θ . For a chemically heterogeneous material the advancing
angle will, of course, exceed the value of Θ , making the LI surface more stable against
depinning. Conversely, a hypothetical surface of very large Θ , where depinning would be
expected at the rear groove edge, becomes more stable when chemically heterogeneous
since the receding angle (relative to the horizontal) is smaller than Θ .
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Appendix A. Numerical method

The asymptotic equations (2.19) and (2.20) are solved using Runge–Kutta procedure
and the Newton method to satisfy boundary conditions (2.7a,b). In the general case
ε/μ = O(1), (2.1), (2.15) and (2.18) are coupled and we use an iteration scheme, starting
from some initial guess. Once the meniscus shape on the kth iteration is known, we solve
the Stokes equations in liquid (2.1) with the local slip length bk( y) = b0[1 + ηk( y)]. We
calculate the outer flow for periodic grooves (Nizkaya et al. 2013) and expand the solution
into Fourier series on a computational domain with a period L = 5δ (where the solution
is no longer dependent on L). The local slip boundary conditions are satisfied using a
collocation method. The computed interface velocity vk

η( y) is then substituted into the
right-hand side of (2.18) to obtain the next iteration

∂3ηk+1

∂y3
= 6μCa

ε3

vk
η( y)

(1 + ηk)2
. (A 1)

The meniscus shape is also sought in terms of Fourier series,

η( y) = A + B(1 − y)y +
Nf∑

n=1

[
an cos(kn y) + bn sin(kn y)

]
, (A 2)

where kn = 2πn and A, B, an, bn are a set of 2Nf + 2 unknown coefficients. To obtain
the coefficients an, bn we substitute (A 2) into (2.18) and solve the resulting system of
linear equations using the collocation method. Constants A and B are then found from the
conditions (2.7a,b): A = −∑

an , B = −6(A + 1).
If ε is very small, the solution becomes singular when Ca approaches some critical

value, which is also quite small. Namely, the smallest local thickness of a lubricant film
tends to zero, and simultaneously the pressure gradient diverges. This is illustrated in
figure 8. We see that the smallest thickness of the lubricant film slightly decreases with
a small increase in Ca/ε2, but the third derivative of η( y), which reflects the growth of
pressure gradient in the lubricant neck, changes significantly. Beyond some critical Ca,
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and Ca/ε2 = 41.3, 42.3, 43.3 (dotted, dashed and solid lines).
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FIGURE 9. Lubricant velocity field computed using ε = 0.1 and μ = 0.2.

the solution of positive film thickness does not exist, and our numerical scheme fails to
converge.

Appendix B. Validation of the model based on a lubrication approximation

In our asymptotic model we describe the flow inside the groove using the lubrication
theory. It is of considerable interest to determine its accuracy and the range of validity for
our configuration.

To validate this approach, here, we first present some exact results for a two-phase
system with a flat meniscus. Our numerical calculations are based on the method
developed by Ng, Chu & Wang (2010) and Nizkaya et al. (2014). Figure 9 shows the vector
field (vl( y, z), wl( y, z)) computed using ε = 0.1 and μ = 0.2. We see that the lubricant
velocity field far from the side texture wall is unidirectional, with a parabolic profile of
zero mean flux, confirming all the features described by (2.11a,b). However, in the vicinity
of the sidewall there is a discernible vertical velocity component, indicating that a simple
lubrication model can only be considered as a first approximation.

To examine a significance of these deviations from the lubrication model more closely,
in figure 10(a) we compare the exact numerical results for the velocity at the flat
liquid/lubricant interface with predictions of our asymptotic model, i.e. with the solution
of (2.18) obtained using η = 0. The agreement is quite good, but at y → 1 there is some
discrepancy, and the lubrication theory slightly overestimates the interface velocity. We
have also calculated streamwise velocity profiles in a lubricant. Results for cross-sections
y = 0.75 and y = 0.95 are plotted in figure 10(b). The exact velocity profiles fully coincide
with the lubrication model when y = 0.75, but close to the side texture wall, y = 0.95,
we again observe some deviations of the lubrication theory data from the exact results.
Nevertheless, the calculations demonstrate that this discrepancy is small.
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FIGURE 10. (a) Velocity at the interface of a flat meniscus and (b) inner velocity profiles at
cross-sections y = 0.75 and 0.95 calculated for ε = 0.1 and μ = 0.2. Solid curves show the
exact solutions, dashed curves plot results of the lubrication theory.

Another possible source of inaccuracy of the lubrication model is the use of the
small-curvature approximation, κ � εη′′, in (2.9), instead of an exact equation for the
curvature,

κ = εη′′(
1 + ε2η′2)3/2 . (B 1)

Note that the exact equation for curvature involves higher-order terms in ε, which are
neglected in our model. However, sometimes this equation is successfully employed to
improve the accuracy of lubrication approaches (Gauglitz & Radke 1988; Snoeijer 2006;
Thiele 2018). Moreover, the inclusion of such terms can even lead to drastic changes in the
critical behaviour of the system (von Borries Lopes, Thiele & Hazel 2018), which have
not been observed in our case.

Equation (2.18) governing the meniscus shape can be rewritten using (B 1) as

[
η′′(

1 + ε2η′2)3/2

]′

= −6μCa
ε3

vη( y)

(1 + η)2
. (B 2)

In § 3, we compare the numerical solutions of (2.18) and (B 2) for several μ (see figures 6a
and 6b), and show that critical behaviour persists and the depinning values of Ca are very
close. This implies that εη′ always remains small and can safely be neglected.
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