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The stirring of a passive scalar by grid-generated turbulence in the presence of a mean
scalar gradient is studied by direct numerical simulations (DNS) for six different grids:
one fractal square grid with three fractal iterations, one fractal square grid with four
fractal iterations, one fractal I grid and three different regular grids. Our results can be
summarised as follows. (i) For all these grids, the turbulence intensity averaged over
time and over a plane parallel to the grid takes its peak value when the streamwise
position of this plane is between 0.75Meff and 1.5Meff where Meff is the effective
mesh size introduced by Hurst & Vassilicos (Phys. Fluids, vol. 19, 2007, 035103).
(ii) Downstream of the location of this peak, the turbulence intensity averaged in
this way is greatly enhanced by the fractal grids relative to the regular grids even
though the fractal grids have comparable or even lower blockage ratios. The novelty
of this result lies in the fact that it concerns turbulence intensities averaged over lateral
planes (as well as time). (iii) The pressure drop is about the same across grids of
the same blockage ratio whether fractal or not, but the pressure recovery is longer
for the fractal grids. (iv) Even so, the fractal grids enhance turbulent scalar fluxes
by up to an order of magnitude in the region downstream of the aforementioned
peak and they also greatly enhance the streamwise growth of the fluctuating scalar
variance in that region. (v) We demonstrate on a simple planar model problem that
the cause of this phenomenon lies in the fractality of the grids. (vi) The turbulence
scalar flux coefficient is constant far enough downstream of all the present grids and
is significantly dependent on the nature and details of the turbulence-generating grid.

Key words: mixing enhancement, turbulence simulation, turbulence theory

1. Introduction

Recently, laboratory and computational works by Hurst & Vassilicos (2007),
Suzuki et al. (2010), Nicolleau, Salim & Nowakowski (2011), Gomes-Fernandes,
Ganapathisubramani & Vassilicos (2012), Laizet & Vassilicos (2012), Nagata
et al. (2013) and Nedić, Vassilicos & Ganapathisubramani (2013) have used
multiscale/fractal objects to generate turbulence in wind and water tunnels (either in
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Stirring and scalar transfer by grid-generated turbulence 53

the laboratory or virtually in the computer) and have shown that complex multiscale
boundary/initial conditions can drastically influence the behaviour of a turbulent flow.
Fractal geometry is a concept in which a given pattern is repeated and split into
parts, each being a reduced copy of the whole. Multiscale (fractal) objects can be
designed to be immersed in any fluid flow where there is a need to passively control
and design the turbulence generated by the object. The experiments and simulations
have shown that, unlike regular objects (where the turbulence is generated by only
one scale), a slight modification of one of the multiscale object parameters can very
significantly modify the turbulent flow. Multiscale objects offer the opportunity to
discover new complex flow effects/interactions that can help in understanding how
to control and/or manage complex fluid flows. Furthermore, such multiscale objects
can be designed as energy-efficient mixers with high turbulent intensities and no
penalty in pressure drop, see Laizet & Vassilicos (2012). Coffey et al. (2007) have
shown experimentally that fractal grids can be designed as stirring elements for inline
static mixers and, as such, that they compare favourably with commercially available
state-of-the-art stirring elements.

In this computational study we calculate and compare the effects of various fractal
and regular grids on scalar fluxes and turbulent stirring in a mean scalar gradient
configuration. This particular configuration has been widely studied in the past,
following the theoretical work of Corrsin (1952). Tavoularis & Corrsin (1981b,a) and
more recently Ferchichi & Tavoularis (2002) carried out wind tunnel experiments in a
turbulent shear flow with a uniform mean temperature gradient. Mydlarski & Warhaft
(1998a,b) generated turbulence in their wind tunnel by means of an active grid and
the passive temperature fluctuations were generated by a mean transverse temperature
gradient, formed at the entrance of the wind tunnel by an array of differentially
heated elements. One important finding of these works was the highly intermittent
nature of small-scale scalar fluctuations in the form of a ramp–cliff morphology, a
feature which is ubiquitous in all flows with mean gradients of a passive scalar and
which was already observed in the heated turbulent jet experiments of Sreenivasan,
Antonia & Britz (1979) and in the direct numerical simulations (DNS) of fully
periodic turbulence by Pumir (1994).

The vast majority of DNS of fluctuating passive scalars sustained by a mean scalar
gradient have been carried out for fully periodic turbulence and concentrated on
two-point and gradient statistics. For example, Pumir (1994) studied the probability
distribution function (PDF) of the scalar gradients parallel and perpendicular to the
direction of the mean gradient; Yeung, Xu & Sreenivasan (2002) investigated the
effects of very high Schmidt numbers on scalar spectra, structure functions, and
various quantities that characterise local isotropy and intermittency; most recently
Yeung & Sreenivasan (2014) investigated the spectral properties of the fluctuating
scalar field at very low Schmidt numbers. To our knowledge, only two DNS studies
to this date (Suzuki et al. 2010; Laizet & Vassilicos 2012) have focused on the
spatial development of a passive scalar with a mean gradient in a grid-generated
non-homogeneous turbulent flow. They have both concentrated on one-point statistics
which are the most basic statistics to study in such a setting, thus paving the way for
future DNS studies of two-point statistics in such spatially developing turbulent flows.
In this paper we follow Suzuki et al. (2010) and Laizet & Vassilicos (2012) and
carry out such DNS for the widest range yet of turbulence-generating grids, mean
scalar gradients and scalar diffusivities. We are therefore able to make meaningful
comparisons between different turbulence-generating grids (see the summary of results
in § 6), a very first issue which needs to be addressed before anything else.
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54 S. Laizet and J. C. Vassilicos

The paper is organised as follows. In the next section, we present the DNS
methodology, the turbulence-generating grids and the numerical parameters of each
simulation. Results on the turbulence and the flow field downstream of the grid are
discussed in the following section. Then, passive scalar results are presented, followed
by the results of a planar model problem which demonstrate the importance of the
fractal nature of the grids, followed by a conclusion.

2. Flow parameters and numerical modelling
2.1. Governing equations

The governing equations are the forced incompressible Navier–Stokes equations

∂u
∂t
=−∇p− 1

2
[∇ (u⊗ u)+ (u · ∇)u]+ ν∇2u+ f , (2.1)

∇ · u= 0, (2.2)

where p(x, t) is the pressure field (for a fluid with a constant density ρ = 1), u the
velocity field and ν the kinematic viscosity of the fluid. In this work, we use an
immersed boundary method (IBM) which is based on a forcing field f (x, t) in order
to take into account the turbulence-generating grid inside the computational domain.
Note that the convective terms are written in skew-symmetric form. This form reduces
aliasing errors while remaining energy conserving for the type of spatial discretisation
considered here.

The equation that describes the advection of a diffusive passive scalar field θ(x, t)
by the velocity field u is

∂θ

∂t
+ u · ∇θ = κ∇2θ, (2.3)

with molecular diffusivity κ = ν/Sc, Sc being the Schmidt number.
The initial condition for the velocity field is u(x, t = 0) = (U∞, 0, 0) and for the

scalar field it is θ(x, t = 0) = Sy where S is a constant scalar gradient and y is a
transverse spatial coordinate. The coordinate system is orthonormal with coordinate
x in the streamwise direction and coordinates (y, z) in the transverse plane such that
y= z=0 on the centreline. In relation to the turbulence-generating grids, the transverse
coordinate y is vertical and the transverse coordinate z is horizontal in figure 1. The
boundary conditions are of inflow/outflow type in the streamwise direction (coordinate
x) and periodic in the transverse direction along the spatial coordinate z. In the y
transverse direction the boundary condition is periodic for the velocity field but anti-
symmetric for the scalar field so as to ensure continuity of the scalar gradient across
computational domain boundaries in the y direction. The inflow conditions are u (x=
xin, y, z, t) = (U∞, 0, 0) and θ (x = xin, y, z, t) = Sy, and the outflow conditions are
∂u/∂t + U∞(∂u/∂x)= 0 and ∂θ/∂t + U∞(∂θ/∂x)= 0 at x= xout (x= xin and x= xout
correspond to the first and last planes of the computational domain). The pressure field
is treated as in Laizet & Lamballais (2009) (see also the next section).

The generation of a passive scalar flux is done through a constant scalar gradient S.
It should be noted that the fact that S is independent of position in space simplifies
comparisons between grids as there is no distribution of length scales inherent to the
initial scalar field to take into account.

2.2. Numerical methods
To solve the incompressible Navier–Stokes equations and the scalar transport
equations, we use the in-house numerical code Incompact3d which is based
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FIGURE 1. Diagrams of the six grids used in this study. From left to right: fractal square
grid with three fractal iterations, I grid with three fractal iterations, fractal square grid with
four fractal iterations (top) and the three regular grids (bottom) with a blockage ratio of
0.54, 0.42 and 0.32 (left to right).

on sixth-order compact schemes for spatial discretisation on a Cartesian mesh
and a third-order Adams–Bashforth scheme for time advancement. To treat the
incompressibility condition, a fractional step method requires the solution of a
Poisson equation. For efficiency reasons, this equation is solved in spectral space
using appropriate three-dimensional fast Fourier transforms (FFT). In order to have
a strict equivalence between finite-difference operators in physical space and spectral
operators, we use the concept of modified wavenumber introduced by Lele (1992)
which allows the accuracy of the spectral operators to be reduced to sixth-order
accuracy. Note that the divergence-free condition is ensured up to machine accuracy.

The modelling of the turbulence-generating grids is performed with an IBM.
Following the procedure proposed by Parnaudeau et al. (2008), the present IBM is
a direct forcing approach that ensures the no-slip boundary condition at the wall of
the grid. The idea is to force the velocity to zero at the wall and inside the grids as
our mesh is Cartesian and therefore conforms with the geometry of the grids because
they consist of right angles and are placed normal to the mean flow. Finally, the
pressure mesh is staggered from the velocity one by half a mesh to avoid spurious
pressure oscillations introduced by the IBM. More details about the present code and
its validation, especially the original treatment of the pressure in spectral space, can
be found in Laizet & Lamballais (2009).

Because of the size of the simulations, the parallel version of Incompact3d has
been used for this numerical work. Based on a highly scalable two-dimensional
decomposition library and a distributed FFT interface, it is possible to use the code
on thousands of computational cores. More details about this efficient parallel strategy
can be found in Laizet & Li (2011).
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Grid DNS1–5 DNS6–8 DNS9 DNS10 DNS11 DNS12

L0 48 48 72
L1 24 24 36
L2 12 12 18
L3 9
t0 8.4 10 8.17
t1 3 3 4.04
t2 1 1 2.04
t3 1
b 2.5 2 2
Meff 13.7 21 8.7 6.5 8.72 12
σ 0.3 0.3 0.41 0.54 0.42 0.32

TABLE 1. Grid lengths and thicknesses and effective mesh size Meff , all normalized by
tmin (the lateral thickness of the smallest bars on the fractal grids), and blockage ratio σ
for the six grids used here. Table 2 shows which grid (fractal square, fractal I or regular)
corresponds to which DNS.

2.3. Description of the grids
As shown in figure 1, six different grids are used in this numerical work to investigate
the streamwise evolution of the transport, stirring and mixing of a passive scalar in
the presence of a mean scalar gradient. We consider two families of fractal grids, each
based on a different fractal-generating pattern. The two patterns can be distinguished
by the number of rectangular bars they require, three for the I grid and four for the
square grids (see Hurst & Vassilicos 2007 for descriptions of fractal I and fractal
square grids). These fractal grids are completely characterised by the choice of the
pattern and: (i) the number of fractal iterations N, here N = 3 for the fractal I grid
and N = 3, 4 for the fractal square grids; (ii) the bar lengths Lj = R j

LL0 and lateral
thicknesses tj = R j

t t0 (in the plane of the grid, normal to the mean flow) at iteration
j, j= 0, . . . ,N − 1 (here, RL = 1/2, L0 = 0.5Ly for all the fractal grids, where Ly and
Lz are the lateral sizes of the computational domain); (iii) the number 4 j of patterns
(square or I) at iteration j; (iv) the thickness ratio tr ≡ tmax/tmin, i.e. the ratio between
the lateral thickness of the bars making the largest pattern and the lateral thickness of
the smallest.

By definition, L0= Lmax, LN−1= Lmin, t0= tmax and tN−1= tmin. Note that tmin is set to
the same value (=1) for all fractal grids and is therefore the spatial unit for all our
simulations; tr= 8.67 for the fractal square grid with three iterations, tr= 10.5 for the
fractal I grid and tr = 8.5 for the fractal square grid with four fractal iterations.

The blockage ratio σ of our turbulence-generating grids is defined as the ratio of
their total area in the transverse plane to the area T2 = Ly × Lz. This total area was
approximately calculated for fractal grids by neglecting the overlap areas between
different sized bars in Laizet & Vassilicos (2012). However, we do not make such
an approximation in the present paper and the blockage ratio σ is therefore more
accurately calculated here than in Laizet & Vassilicos (2012). This blockage ratio is
determined by our choice of the previously mentioned parameters and is given in
table 1 for the different grids.

Unlike regular grids, multiscale/fractal grids do not have a well-defined mesh
size. This is why Hurst & Vassilicos (2007) introduced an effective mesh size for
multiscale grids, Meff = (4T2/LTG)

√
1− σ , where LTG is the total perimeter length
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nx × ny × nz Lx × Ly × Lz (tmin) Grid N κ Stmin

DNS1 2305× 288× 288 768× 96× 96 � 3 10ν 1/16
DNS2 2305× 288× 288 768× 96× 96 � 3 10ν 1/32
DNS3 2305× 288× 288 768× 96× 96 � 3 10ν 1/64
DNS4 2305× 288× 288 768× 96× 96 � 3 5ν 1/32
DNS5 2305× 288× 288 768× 96× 96 � 3 2.5ν 1/32
DNS6 2305× 288× 288 768× 96× 96 I 3 10ν 1/16
DNS7 2305× 288× 288 768× 96× 96 I 3 10ν 1/32
DNS8 2305× 288× 288 768× 96× 96 I 3 10ν 1/64
DNS9 2881× 360× 360 1152× 144× 144 � 4 10ν 1/16
DNS10 2881× 180× 180 1152× 72× 72 Reg. 10ν 1/16
DNS11 2401× 240× 240 1152× 96× 96 Reg. 10ν 1/16
DNS12 2401× 240× 240 1152× 96× 96 Reg. 10ν 1/16

TABLE 2. Numerical parameters of the simulations and characteristics of the grids,
whether fractal square grids (�), fractal I grids (I) or regular grids (Reg.).

in the (y–z) plane of the fractal grid (note that Laizet & Vassilicos 2012 used the
alternative definition Meff = (4T2/LG)

√
1− σ where LG is the total length of the grid

when it has been stripped of its thickness). The present definition of Meff is the one
in Hurst & Vassilicos (2007) and it returns the usual mesh size when applied to
regular grids. The multiscale nature of multiscale/fractal grids influences Meff via the
perimeter length LTG which can be extremely long in spite of being constrained to fit
within the area T2 = Ly × Lz. As with the blockage ratio σ , the effective mesh sizes
of our turbulence-generating grids are fully determined by our choice of parameters
characterising the grids and are given in table 1. Note finally that the streamwise
thickness of the bars is 3.2tmin for all the grids used in this numerical study.

2.4. Numerical parameters
The computational domain and number of mesh nodes for each simulation are given in
table 2. For the fractal grids with three iterations (DNS1 to DNS8), the computational
domain is split into 2304 computational cores. It is split into 8100 computational
cores for the fractal square grid with four fractal iterations (DNS9) and into 7200
computational cores for the regular grids (DNS10 to DNS12). For each turbulence-
generating grid, the simulation is performed with a global Reynolds number Retmin =
300 (based on the streamwise upstream velocity U∞ and the smallest lateral thickness
tmin of the fractal grids, which we use as a length unit for all simulations) and a time
step 1t= 0.01tmin/U∞. In terms of the effective mesh size Meff , the Reynolds number
ReM is equal to 4110 for DNS1 to DNS5, 6300 for DNS6 to DNS8, 2610 for DNS9
and DNS11, 1950 for DNS10 and 3600 for DNS12. In terms of the Kolmogorov
microscale η (the smallest length scale of the turbulence evaluated locally), the spatial
resolution for more than 95 % of the computational domain is at worst 1x = 1y =
1z62η for all the simulations. Where the turbulence is at its most intense, i.e. around
the location where the turbulence intensity takes its greatest values (which represents
less than 5 % of the entire computational domain), 1x = 1y = 1z 6 8η. Such a
resolution justifies the need of a numerical procedure with a small-scale-localised extra
dissipation introduced artificially via the viscous term (Lamballais, Fortune & Laizet
2011). This procedure is of course only active for the unresolved smallest scales of
the flow around the location where the turbulence intensity takes its greatest values.
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The streamwise position of the grid at x= 0 has been carefully chosen in relation to
the inflow position so as to avoid any spurious interactions between the modelling of
the grid and the inflow boundary condition: xin =−100tmin for DNS9 to DNS12 and
xin=−30tmin for DNS1 to DNS8. (Note also that x= 0 coincides with the downstream
side of the grid.)

2.5. Collection time for statistics
The collection time for the statistics presented in this paper is T = 1000tmin/U∞ for
the twelve simulations. During this collection time, 100 three-dimensional snapshots at
full resolution of the velocity, pressure and scalar fields have been randomly collected.
This is may not seem much but it is already extremely demanding in terms of data
storage by today’s standards. In the next paragraph we argue that it may be just about
enough for the present study, which is mostly concerned with first- and second-order
moments.

We define the fluctuating velocity field u′(x, t)= u(x, t)− u(x) and the fluctuating
scalar field θ ′(x, t) = θ(x, t) − θ(x) where the overbar signifies an average over
time (specifically over the 100 snapshots). Using the notation u′ = (u′, v′, w′) in a
coordinate system aligned with (x, y, z), we have calculated (for DNS1) u′2/U2

∞ and
−v′θ ′/κS and their respective 95 % confidence intervals along the centreline y= z= 0
for Ns = 100, assuming that the 100 random snapshots are statistically independent.
These confidence intervals turn out to be significantly larger than the statistics they
correspond to, mainly because they converge to zero as slowly as N−1/2

s , and it is
impossible to collect orders of magnitude more snapshots with currently available
technology.

However, the statistics we mostly concentrate on in this paper are averaged over
both time (number Ns of snapshots) and y, z. Different samples at different y, z
positions cannot be considered independent and therefore it does not make sense
to calculate the usual confidence intervals. Nevertheless, we checked statistical
convergence of the streamwise evolution of 〈u′2〉0.5/U∞ and of −〈v′θ ′〉/κS for
DNS1 where 〈·〉 signifies an average over y, z and the number Ns of snapshots.
Figure 2 shows that these streamwise profiles do not significantly depend on Ns for
Ns= 50, 75, 100. (The non-dimensionalisation by κS is not important here but is used
in § 4 to compare turbulent scalar fluxes resulting from different turbulence-generating
grids at the same κ and the same S.)

The maximum deviation between Ns= 50 and Ns= 100 is 6.5 % for the 〈u′2〉0.5/U∞
statistic and 15 % for −〈v′θ ′〉/κS. For Ns = 75 and Ns = 100 the maximum deviation
is 2.5 % for 〈u′2〉0.5/U∞ and 3.5 % for −〈v′θ ′〉/κS. The difference between 〈u′2〉0.5/U∞
for Ns = 75 and 〈u′2〉0.5/U∞ for Ns = 100 is less than 2 % over 80 % of the
entire streamwise extent of our computational domain and the same holds true
for −〈v′θ ′〉/κS.

We end this section by pointing out that we find 〈u〉 = (U∞, 0, 0) to good
approximation at all streamwise positions x for all our DNS cases, DNS1 to DNS12.

3. Flow fields, turbulence intensities and pressure drops

With the single exception of Hurst & Vassilicos (2007), there have been no
comparisons of the turbulent flows generated by fractal I grids and fractal square
grids to date. In fact, even Hurst & Vassilicos (2007), who did compare centreline
statistics of these two type of flows, did not compare full velocity fields and their
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FIGURE 2. Verification of the level of convergence for the statistics for DNS1. Streamwise
evolution of 〈u′2〉0.5/U∞ (a) and −〈v′θ ′〉/κS (b), where 〈·〉 denotes an average over y, z
and a number Ns of snapshots (see § 2.5).

statistics as we do in this section and did not compare scalar statistics either as we
do in the next section.

For the sake of comparison (see table 2), DNS1 to DNS3 and DNS6 to DNS8 are
DNS of turbulent flows generated by fractal square grids (DNS1 to DNS3) and fractal
I grids (DNS6 to DNS8) all with the same blockage ratio σ = 0.3 and same number
of fractal iterations N = 3. They also all have the same value of κ/ν = 10 and the
same Retmin = 300 but different though comparable values of ReM (ReM = 4110 for
DNS1 to DNS3, ReM= 6300 for DNS6 to DNS8). In this section we compare average
turbulence intensities and normalised pressure drops, which are not expected to depend
too sensitively on global Reynolds number. In the next section we compare scalar
statistics for which DNS1 has been designed to correspond to DNS6 as they both
have the same Stmin= 1/16, DNS2 to DNS7 with the same Stmin= 1/32 and DNS3 to
DNS8 with the same Stmin = 1/64 (see table 2).

Figures 3 and 4 show snapshots of instantaneous streamwise velocity components of
the flows generated by DNS1 and DNS6. One can clearly see the impact on the flow
of the wakes generated by the various bars making the grids. The actual large-scale
shape of the grid remains present in the flow till about x= 8Meff in the case of the I
grid and till about x=10Meff in the case of the square grid. In both cases, the memory
of the grid seems to disappear, at least visually on the plots of figure 4, at x larger
than 20Meff .

Given that the size of the largest bars making the fractal grids is about half the size
of the lateral periodic computational domain, one can expect correlations between one
end of the domain and the other in the periodic directions. However, based on the
fact that the integral scale is one order of magnitude smaller than the domain size
in our simulations (see below), one can expect the contribution of these long-range
correlations to be negligible for one-point statistics, in which case one-point statistics
are mostly unaffected by the periodic boundary conditions and the size of the fractal
grid. A laboratory experiment with the same or similar grid and domain size but
different boundary conditions in the lateral directions would then return the same or
similar statistics, as is indeed the case. DNS of fractal-generated turbulence employing
periodic cross-stream boundary conditions and grids very similar in size to the present
ones have already been published by Laizet & Vassilicos (2011) and have shown
good qualitative agreement with wind tunnel experiments on such flows (various
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–0.4–0.5

(a) (b)

FIGURE 3. Instantaneous streamwise velocity component of the flow in the (xy) plane
for the fractal I grid (a) and the fractal square grid (b) with three fractal iterations. The
visualisations cover 50 % of the computational domain at locations z/tmin = 0, Ly/4 and
3Ly/8 from top to bottom respectively. The grid location is clear in the plots.

(a)

(b)

FIGURE 4. Instantaneous streamwise velocity component of the flow in the (zy) plane
for the fractal I grid (a) and the fractal square grid (b) with three fractal iterations. The
visualisations are at streamwise locations x/tmin = 0, 40, 80, 160, 320 and 640 from left to
right respectively (which correspond to x/Meff = 0, 1.9, 3.81, 7.62, 15.24 and 30.48 for the
I grid and x/Meff = 0, 2.9, 5.84, 11.68, 23.36 and 46.7 for the square grid).

one-point profiles and even turbulence decay exponents). Similar DNS have now
been shown to quantitatively agree with experiments up to fourth-order one-point
statistics (see Laizet, Nedić & Vassilicos 2014). Zhou et al. (2014) carried out very
similar DNS with periodic cross-stream boundary conditions and a single square grid
that is half the cross-stream domain size. As they report in their paper, their results
also compare well with wind tunnel experiments. Furthermore, D’Addio et al. (2014)
performed DNS of turbulence generated by various grids (fractal and regular) similar
in size to ours with various boundary conditions and showed that the influence of
the cross-stream boundary conditions is negligible in most of the flow. Even so,
to ensure that our simulations reproduce the new physics observed in the recent
laboratory experiments of Seoud & Vassilicos (2007), Mazellier & Vassilicos (2010),
Gomes-Fernandes et al. (2012), Valente & Vassilicos (2012), Nagata et al. (2013)
and Hearst & Lavoie (2014) we plot in figure 5(a) the ratio L/λ of the longitudinal
integral length scale L to the Taylor microscale λ and Reλ = 〈u′2〉1/2λ/ν as functions
of streamwise distance from the turbulence-generating grid along the centreline.
The constancy of L/λ whilst Reλ decays is exactly the behaviour observed by the
aforementioned experimental works, which also reported power-law energy spectra
with exponents close to −5/3 accompanying this behaviour. We plot a longitudinal
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FIGURE 5. (a) Streamwise evolution along the centreline of Reλ and L/λ for DNS9.
(b) Streamwise velocity and scalar spectra at x/Meff = 5 on the centreline for DNS1.
The spectra are compensated by f−5/3 and plotted against the non-dimensional frequency
f Meff /U∞.
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FIGURE 6. Streamwise evolution of 〈u′2〉0.5/U∞ where 〈·〉 denotes an average over y and z
and over the collection time T (i.e. over 100 random snapshots taken during this collection
time). Streamwise distance normalised by tmin.

energy spectrum Eu( f ) in figure 5(b) along with a scalar energy spectrum Eθ( f )
for completeness, both compensated by f−5/3 where f stands for frequency, as these
spectra are evaluated in time at a given location in the flow.

Figures 6 and 7 show the streamwise evolution of 〈u′2〉0.5/U∞ for the six different
grids with respect to x/tmin and x/Meff . The regular grids generate a much higher peak
average turbulence intensity than the three fractal grids with values of approximately
55 %, 42 % and 32 % for the regular grids with blockage ratio σ = 54 %, 42 % and
32 % (see figure 7a in particular). (We note in passing that the maximum values of the
peak average turbulence intensities are about equal, in the case of our regular grids,
to the blockage ratios of these grids.)

On the other hand, in the spatial units chosen for the plots in figures 6 and 7,
the average turbulence decay appears much slower for the fractal grids than for
our regular grids. The fractal grids, both I and square, can sustain the turbulence
much further than the regular grids in Meff and tmin units. This is particularly clear
in figure 6(a) where all grids have the same blockage ratio σ ≈ 0.3 and where
DNS1 and DNS6 correspond to fractal square and fractal I grids respectively whereas
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FIGURE 7. Streamwise evolution of 〈u′2〉0.5/U∞ where 〈·〉 denotes an average over y and z
and over the collection time T (i.e. over 100 random snapshots taken during this collection
time). Streamwise distance normalised by Meff .

DNS12 corresponds to a regular grid. As shown in figure 6(b) and figure 7(b), this is
even more so for our fractal square grid with N = 4 and σ = 0.41 (both higher than
for our I grid), whereas the average turbulence intensities generated by all our three
regular grids reach about same low levels by x ≈ 8Meff irrespective of the blockage
ratio of these regular grids which ranges between 0.3 and 0.54. Note finally that
at x/Meff > 10 the average turbulence decay exponents obtained from figure 7(b) in
those cases where a long enough streamwise range permits a reasonable fit (all except
DNS6) lie between 1.2 and 1.4 (by setting the virtual origin to zero).

The spatial location of the peak of average turbulence intensity is approximately
located at a distance from the grids which is commensurate with Meff (see figure 7b).
This observation was also made by Laizet & Vassilicos (2012) but with not as good
a definition of Meff as the one here (see § 2.3) and without including I grids which
we do here. For the fractal square grid with three iterations, the peak of turbulence is
located at a distance of 1.45Meff from the grid, for the I grid it is located at 0.76Meff ,
for the fractal square grid with four iterations and the regular grid with a blockage
ratio of 0.42 it is located at 0.73Meff , for the regular grid with a blockage ratio of
0.32 it is located at 0.8Meff and finally for the regular grid with a blockage ratio of
0.54 it is located at 1.23Meff .

In relation to potential mixing and heat transfer applications, note that the highest
average turbulence intensities are obtained with the N = 4 fractal square grid (see
figure 7) which also has the highest blockage ratio of all our fractal grids. Then come
the σ = 0.3 fractal I and fractal square grids which are comparable in turbulence
intensities. Still, it may be useful in applications to know that at x < 20Meff the
highest turbulence intensities are achieved with the fractal square grid whereas they
are achieved with the fractal I grid at x> 20Meff . Note, in particular, the significant
difference in average turbulence intensity, with a value of 7.7 % for the I grid (DNS6)
and only 4.8 % for the square grid (DNS1) at the end of the computational domain
even though they have the same σ . Note also that near the end of the computational
domain, i.e. at x = 600tmin, DNS9 and DNS6 return the same average turbulence
intensity of 8 % even though the fractal square grid in DNS9 has a higher blockage
ratio than the fractal I grid in DNS6. It makes sense for applications to measure
distances in terms of units such as tmin which are not closely related to the flow but
are related to the dimensions of the technological application in mind.
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FIGURE 8. Streamwise evolution of 〈P〉/0.5ρU2
∞ where 〈·〉 denotes an average over y

and z and over the collection time T (i.e. over 100 random snapshots taken during this
collection time). Streamwise distance normalised by tmin in (a) and Meff in (b).

The blockage ratio σ turns out, in fact, to be a good predictor of the normalised
average pressure drop across the grid. The normalised average pressure drop
〈P〉/0.5ρU2

∞ (where P is the pressure drop divided by the fluid mass density) is
plotted as a function of streamwise distance in figure 8. The results show that the
far-field normalised pressure drop is about the same for different grids if they have
the same blockage ratio. For example, the regular grid with the highest blockage ratio,
σ = 0.54, also has the highest overall pressure drop whereas the grids with the lowest
blockage ratio, σ ≈ 0.3, have the lowest overall pressure drop. The fractal square
grid with σ = 0.41 and the regular grid with σ = 0.42 have very comparable pressure
drops in between the previous two. The fractal I grid seems to have slightly less
overall (long-range) average pressure drop than all other grids and also one of the
highest average turbulence intensity behaviours over an extended streamwise distance.
Finally note, as also observed by Laizet & Vassilicos (2012), that the fractal grids
have a much slower pressure recovery than the regular grids.

It was claimed by Laizet & Vassilicos (2012) that fractal square grids return a much
lower pressure drop than regular grids of same blockage ratio. Our present results
invalidate their conclusion on the pressure drop, which was due to an inaccurate
calculation of σ as they did not take into account the overlap areas between the bars
which, as it turns out, are significant (see also § 2.3).

4. Passive scalar statistics
4.1. Mean scalar field

Our first observation is that θ = Sy + θr(x), where θr is a random scalar field
independent of time but varying in space around 0, see figure 9 where it is also
shown that 〈θr〉 oscillates around 0 for all cases (the definitions of our two averaging
operations are given in § 2.5 and are repeated in the first sentence of § 4.2). This
result has already been claimed by Laizet & Vassilicos (2012) and is here generalised
to a wider range of grids including, in particular, fractal I grids which have never
been considered in this context previously. The result is non-trivial and is reminiscent
of a previous one by Corrsin (1952) for homogeneous isotropic turbulence (see also
Mydlarski & Warhaft 1998a).
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FIGURE 9. (a) Profiles in the y direction of θ at x= 600tmin. The line termed ‘Corrsin’ is
Sy. (b) Streamwise evolution of 〈θr〉. Data extracted for the six different grids (see figure 1)
from DNS1, DNS6, DNS9, DNS10, DNS11 and DNS12.

4.2. Scalar variance and flux

From (2.3) combined with θ = θ + θ ′ and θ = Sy + θr (where the overbar signifies
an average over time, in our case over 100 random snapshots) we can now obtain
an equation for the fluctuating scalar variance 〈θ ′2〉 (where the angle brackets signify
an average over y, z and time). Defining u(x) = 〈u〉 + ũ(x), where 〈ũ(x)〉 = 0 by
construction and 〈u〉 = (U∞, 0, 0) by observation in all our simulations, standard
mathematical manipulations lead to:

U∞
2

d
dx
〈θ ′2〉+ 1

2
[ũ ·∇θ ′2]+S〈v′θ ′〉+ [θ ′u′ ·∇θr]+ 1

2
〈u′ ·∇θ ′2〉=−κ〈|∇θ ′|2〉+ κ

2
〈∇2θ ′2〉

(4.1)
where the square brackets [· · ·] signify an average over y and z but not over time and
where it was taken for granted that (∂/∂t)θ ′2 = 0 (otherwise the term 〈(∂/∂t)θ ′2〉/2
should be added to the left-hand side).

This equation shows how the fluctuating scalar variance evolves in the streamwise
direction 〈θ ′2〉 as a result of various terms, in particular the transverse scalar flux term
S〈v′θ ′〉, which is negative and is therefore the term whereby the mean scalar profile
produces scalar fluctuations. Other notable terms are the spatial transport term 〈u′ ·
∇θ ′2〉/2, which vanishes in homogeneous incompressible turbulence, and the scalar
dissipation term −κ〈|∇θ ′|2〉, which destroys scalar fluctuations by molecular smearing.
Before assessing in § 4.3 the relative importance of each of the terms in (4.1), we first
describe the salient properties of the fluctuating scalar variance and the scalar flux as
obtained from our simulations (figures 9–17).

Firstly, 〈θ ′2〉 is a monotonically increasing function of streamwise distance for all
the present grids (see figure 10a), a result perhaps reminiscent of the decaying grid-
generated turbulence experiments of Sullivan (1976) and Sirivat & Warhaft (1983)
where a linear scalar variance growth with streamwise distance was reported. It should
be noted that the antisymmetric boundary condition for the scalar field along the y-
axis (see § 2.3) means that there is no wall effect on the scalar and therefore the
isotropic turbulence treatment in Corrsin (1952), which implies a monotonic linear
scalar variance growth, may be, to some extent, applicable here, at least where the
turbulence is approximately homogeneous and isotropic.

Secondly, the fluctuating scalar variance 〈θ ′2〉 is much greater and grows much faster
for the fractal than for the regular grids (see figure 10a and the caption) at equal
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FIGURE 10. Streamwise evolution of the variance 〈θ ′2〉/2 (a) and of −〈v′θ ′〉/κS (b). Data
for the four different grids corresponding to simulations DNS1, DNS6, DNS9, DNS10,
DNS11 and DNS12 all of which have the same values of Stmin and κ/ν.

values of Stmin, ST and κ/ν (which is the case for DNS1, DNS6, DNS11 and DNS12).
In fact, 〈θ ′2〉 grows to be between factors and an order of magnitude larger with the
fractal grids than with the regular ones.

Note that we have chosen tmin as our length unit for the streamwise distance in
figure 10 as in all subsequent figures in this paper. We take the engineering point
of view that we may need to tailor a grid for a particular static inline mixer or
a heat transfer/cooling application, in which case lengths and distances need to be
comparable to installation dimensions and therefore measured in terms of an arbitrary
unit: tmin serves here as such a non-flow-specific unit. Flow-specific units were
proposed in previous works, namely the effective mesh size in Hurst & Vassilicos
(2007) and the wake-interaction length scale in Mazellier & Vassilicos (2010) and
Gomes-Fernandes et al. (2012). The wake-interaction length scale was shown to be
appropriate for predicting properties of scalar variance and flux streamwise profiles
by Laizet & Vassilicos (2012) but only for fractal square and regular grids. The
question of how to define an appropriate such flow-specific length scale for fractal I
grids remains open and is not addressed here.

We now turn our attention to the scalar flux, which we normalise in terms of
properties of the scalar, namely the molecular diffusivity κ and the mean scalar
gradient S. This normalisation is not necessarily physically meaningful but it facilitates
comparisons between different set-ups which use the same scalar and the same mean
scalar gradient. Again, such comparisons are of potential relevance to technological
applications.

Streamwise evolution of −〈v′θ ′〉/κS are plotted in figure 10(b). Firstly, at equal
values of Stmin, ST and κ/ν (which is the case for DNS1, DNS6, DNS11 and
DNS12), −〈v′θ ′〉/κS is between factors and an entire order of magnitude greater for
the fractal grids than for the regular ones in most of the flow. For example, the ratio
of −〈θ ′v′〉 for the fractal grid with four fractal iterations (DNS9) to 〈θ ′v′〉 for the
regular grid (DNS10) is oscillating between 19 at x = 200tmin and 32 by the end of
our computational domain.

Secondly, along the downstream streamwise direction measured in tmin spatial units,
−〈v′θ ′〉/κS grows, then peaks then decays for the regular grids, whereas it grows,
peaks much further downstream from the grid and then either remains about constant
or slowly decays for the fractal grids. Specifically, for the fractal square grid with four
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(a) (b) (c)

FIGURE 11. Two-dimensional visualisations in the z= 0 (x, y) plane of the instantaneous
passive scalar field for various values of S but the same κ: (a) DNS1 with Stmin = 1/16,
(b) DNS2 with Stmin= 1/32 and (c) DNS3 with Stmin= 1/64. The visualisations are in the
region 3Ly 6 x6 4Ly, −Ly/26 y6 Ly/2. Values lower than −0.5 are in blue and values
higher than 0.5 are in red.

(a) (b) (c)

FIGURE 12. Two-dimensional visualisations in the z= 0 (x, y) plane of the instantaneous
passive scalar field for various Schmidt numbers but for the same S (Stmin = 1/32):
(a) DNS2 with κ = 10ν, (b) DNS4 with κ = 5ν and (c) DNS5 with κ = 2.5ν. The
visualisations are in the region 3Ly 6 x6 4Ly, −Ly/26 y6 Ly/2. Values lower than −0.5
are in blue and values higher than 0.5 are in red.

fractal iterations (DNS9) and for the fractal I grid (DNS6), the normalised transverse
turbulent scalar flux peaks just before 200tmin and then remains approximately constant
until the end of the computational domain with a value of 16 for DNS9 and around
10 for DNS6. For the fractal square grid with three fractal iterations (DNS1), the
normalised transverse turbulent scalar flux peaks also at approximately 200tmin but then
decays from a value of approximately 15 to a value of approximately 7 by the end
of our computational domain.

As might be expected from the presence of the terms S〈v′θ ′〉 and −κ〈|∇θ ′|2〉
in (4.1), the fluctuating scalar variance 〈θ ′2〉 is an increasing function of the
dimensionless parameter Stmin and a decreasing function of κ/ν (see figures 11–13).
Figures 11 and 12 illustrate these dependences in terms of scalar visualisations
obtained at exactly the same time for different simulations as per the figure captions.
Ceteris paribus plots of the streamwise evolution of 〈θ ′2〉/2 are shown in figure 13
for the fractal square grid with three fractal iterations by varying only Stmin (a)
or only κ/ν (b). The data in figure 13(a) can be collapsed exactly by plotting
(〈θ ′2〉/(Stmin)

2)/2 as a function of x/tmin. If (4.1) is rewritten for θ ′/S and θr/S it
then becomes an equation independent of S, which agrees with the (〈θ ′2〉/(Stmin)

2)/2
collapse in figure 13 and also suggests that −〈v′θ ′〉 should increase linearly with
Stmin. This is indeed the case and is demonstrated for both fractal square and I grids
in of figure 14b), which shows 〈v′θ ′〉/κS versus x/tmin. Note the very good collapse
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FIGURE 13. (a) Streamwise evolution of the variance 〈θ ′2〉/2 for the fractal square grid
with three fractal iterations, the same κ/ν = 10 but different values of Stmin (DNS1,
DNS2 and DNS3). (b) Streamwise evolution of the variance 〈θ ′2〉/2 for the fractal square
grid with three fractal iterations, the same value of Stmin = 1/32 but different molecular
diffusivities κ/ν = 10, 5, 2.5 (DNS2, DNS4 and DNS5).
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FIGURE 14. (a) Streamwise evolution of −〈v′θ ′〉 for the fractal grids with three fractal
iterations, different values of Stmin but the same κ/ν (DNS1, DNS2, DNS3, DNS6, DNS7
and DNS8). (b) Streamwise evolution of −〈v′θ ′〉/κS for the fractal grids with three fractal
iterations, different values of Stmin and κ/ν (DNS1 to DNS8).

of the DNS1, DNS2 and DNS3 data (square grid, same κ/ν but different Stmin) on
the one hand and the DNS6, DNS7 and DNS8 data (I grid, same κ/ν but different
Stmin) on the other, both of which appear as single curves on the plot (the two
lowest ones on the plot). (Figure 14a shows the DNS1 to DNS3 and DNS6 to DNS8
data prior to collapse for reference and more detailed comparisons.) These, perhaps
trivial, observations are confirmed in the collapses of the scalar flux coefficient
〈v′θ ′〉/√〈v′2〉〈θ ′2〉 shown in figure 15.

Having turned our attention again to the scalar flux, we note in figure 16(a) that
〈u′θ ′〉 and 〈w′θ ′〉 can be neglected by comparison to 〈v′θ ′〉 and can be assumed to
effectively vanish (this is shown for DNS1 in figure 16 but is also observed in all our
other simulations). The same conclusion was reached in Laizet & Vassilicos (2012) but
only for the fractal square grid and one regular grid, whereas it covers six different
grids in the present paper including, for the first time, a fractal I grid which is not
symmetric with respect to the y and z directions.
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FIGURE 15. Streamwise evolution of −〈v′θ ′〉/√〈v′2〉〈θ ′2〉 for (a) DNS1, DNS2 and DNS3
(fractal square grid, all parameters same but for Stmin) and (b) DNS6, DNS7 and DNS8
(fractal I grid, all parameters same but for Stmin).
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FIGURE 16. (a) Streamwise evolution of −〈u′θ ′〉, −〈v′θ ′〉 and −〈w′θ ′〉 for DNS1.
(b) Streamwise evolution of −〈v′θ ′〉 for the fractal square grid with three fractal iterations,
the same value of Stmin = 1/32 but different κ/ν = 10, 5, 2.5 (DNS2, DNS4 and DNS5).

Figure 16(b) shows that κ/ν has a very small influence on 〈v′θ ′〉: 〈v′θ ′〉 very slowly
decreases with increasing κ/ν, in fact at a significantly slower rate than the decrease
of 〈θ ′2〉 with increasing κ/ν (figure 13) as confirmed by the clear if weak increasing
dependence of the scalar flux coefficient in figure 17(a). This observation illustrates,
in particular, the well-known fact that the scaling −〈v′θ ′〉/κS is of limited physical
significance for κ even though it may be of use in specific engineering contexts.

We end this section with figure 17(b) which shows how the scalar flux coefficient
depends on inlet conditions (specifically on the type and details of the turbulence-
generating grid) even though, as shown in figure 15, it does not depend on the mean
scalar gradient. The scalar variance coefficient rises within the first approximately
100 tmin length units from each grid towards a constant value between 0.45 and
0.7 around which it fluctuates. Even though the regular grids produce the weakest
turbulence and weakest and less self-sustained fluctuating scalar variance growth and
scalar flux, they achieve the largest values of −〈v′θ ′〉/〈v′2〉0.5〈θ ′2〉0.5, between 0.6
and 0.7. The three-iteration fractal square grid follows with −〈v′θ ′〉/〈v′2〉0.5〈θ ′2〉0.5
between 0.5 and 0.6 and the lowest values of −〈v′θ ′〉/〈v′2〉0.5〈θ ′2〉0.5 are returned
by the three-iteration fractal I grid and the four-iteration fractal square grid. A
complete collapse of −〈v′θ ′〉/〈v′2〉0.5〈θ ′2〉0.5 for different grids will therefore require
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FIGURE 17. (a) Streamwise evolution of −〈v′θ ′〉/〈v′2〉0.5〈θ ′2〉0.5 for the fractal square
grid with three fractal iterations when varying κ/ν while keeping all other parameters
constant (DNS2, κ = 10ν; DNS4, κ = 5ν; DNS5, κ = 2.5ν). (b) Streamwise evolution of
−〈v′θ ′〉/〈v′2〉0.5〈θ ′2〉0.5 for all our six grids in six different simulations where Stmin = 1/16
and κ/ν = 10 (DNS1, DNS6, DNS9, DNS10, DNS11 and DNS12).

appropriately quantified information concerning the turbulence-generating grid, an
interesting and important problem which we must leave for future investigation.

4.3. The scalar variance equation

The dominance of the scalar flux term in the dependence of 〈θ ′2〉 on Stmin suggests
that S〈v′θ ′〉 may also dominate (4.1), at least in the flow configurations and parameter
ranges considered in this paper. We therefore now study the relative contributions of
each term in the integral form of this equation, as the integral form smooths out
fluctuations and allows clear conclusions.

Integrating (4.1) over the streamwise distance from 0 to x yields

U∞
2
〈θ ′2〉 +

∫ x

0
dx

1
2
[ũ · ∇θ ′2] + S

∫ x

0
dx〈v′θ ′〉 +

∫ x

0
dx[θ ′u′ · ∇θr]

+
∫ x

0

1
2
〈u′ · ∇θ ′2〉 =−κ

∫ x

0
dx〈|∇θ ′|2〉 + κ

2

∫ x

0
dx〈∇2θ ′2〉. (4.2)

We refer to the five terms on the left-hand side of (4.2) as terms 1 to 5 in order
from left to right and to the two terms on the right-hand side as terms 6 and 7. Term 3
is the integral of the transverse scalar flux multiplied by S and term 6 is the integral
of the dissipation rate of scalar fluctuations. Both these terms are negative. At low
enough diffusivity values, one expects term 7 to be negligible and definitely much
smaller than term 6. If the correction terms 2 and 4 (which involve the square bracket
averaging operation) and the turbulent transport term 5 are also negligibly small, then
term 1 may be approximated by

U∞
2
〈θ ′2〉 ≈−κ

∫ x

0
dx〈|∇θ ′|2〉 − S

∫ x

0
〈v′θ ′〉, (4.3)

meaning that the mean scalar gradient and the turbulent scalar flux cause the
fluctuating scalar variance to grow with x while the scalar dissipation dampens
that growth.
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FIGURE 18. Streamwise evolution of the different terms of (4.2) for DNS1 (a) and
DNS6 (b).
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FIGURE 19. Streamwise evolution of the different terms of (4.2) for DNS9 (a) and
DNS10 (b).

This is indeed what happens qualitatively, though not quite quantitatively, in all
our simulations (see the examples plotted in figures 18 and 19). In the fractal grid
cases, term 4 is responsible for much, though not all, of the discrepancy between the
right- and left-hand sides of (4.3) and taking into account all terms in (4.2) generally
reduces this discrepancy a little further. In the regular grid cases, the balance (4.3)
holds within approximately 10 % for most of the streamwise extent of the simulation
and no significant improvements are brought to this balance by the other terms in (4.2).
This discrepancy must be accountable to various integration and numerical errors and
to the absence of 〈(∂/∂t)θ ′2〉/2 in (4.1).

5. The importance of the fractal nature of the grids

As we have seen, fractal grids, irrespective of their particular nature (whether I or
square), return much greater scalar fluxes and, as a result, much greater fluctuating
scalar variances than regular grids of the same or even higher blockage ratios. This
suggests a fractal mechanism of scalar flux enhancement which relies mainly on the
fractality of the grid and less on the details of this fractality. Such a mechanism has
been proposed by Laizet & Vassilicos (2012) but its validity has never been verified.
This is the space-scale unfolding (SSU) mechanism, which we now briefly describe.
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Grid RG1

Grid RG2

Grid RG4

Grid FSG

FIGURE 20. The four sets of obstacles. The thickness of all obstacles in the streamwise
direction is D/2. RG1 consists of 20 square obstacles of lateral size D; RG2 of 10 square
obstacles of lateral size 2D; RG4 of 5 square obstacles of lateral size 4D; and the fractal
arrangement FSG consists of 2 square obstacles of lateral size 4D, 4 square obstacles of
lateral size 2D and 8 square obstacles of lateral size D. All four obstacle arrangements
have the same 50 % blockage and they are all placed at a distance 5D from the inlet of
the computational domain.

We then use the Lagrangian approach of the SSU mechanism to verify that it is the
fractality of the grid which is responsible for the enhanced scalar fluxes.

In the presence of a mean scalar gradient, the SSU mechanism is based on the
relation between scalar flux and turbulent diffusivity which follows from θ = Sy +
θr(x) (see § 4.1) when advection dominates over molecular diffusion. The transverse
scalar flux is effectively proportional to the transverse turbulent diffusivity (see Corrsin
1952 and Laizet & Vassilicos 2012) and the turbulent diffusivity can be understood in
Lagrangian terms as follows. Defining y0 to be the initial transverse position of a fluid
element and y(t) the same fluid element transverse coordinate at time t, the turbulent
diffusivity is the time derivative of the average of (y(t)− y0)

2. The faster this average
square transverse displacement grows, the greater the scalar flux. The SSU mechanism
is predicated on the expectation that a fluid element in a turbulent flow generated by a
fractal grid will have opportunities to progressively move from wakes of small bars to
wakes of larger bars and therefore be convected by increasingly larger scale eddies as
it moves away from the grid. As a result the average square transverse displacement
should increase faster with streamwise distance and be larger than if the grid were
just regular and not fractal.

This idea being generic, and in fact independent of the presence of a scalar gradient
which simply acts to mark the imprint of the SSU mechanism on the scalar flux, we
use it to test the fractality’s effect on stirring in a simplified two-dimensional setting
without mean scalar gradient. We run simulations of four different planar turbulent
flows generated by four different sets of obstacles, RG1, RG2, RG4 and FSG (see
figure 20). These four sets of obstacles have the same 50 % blockage ratio in the plane
of the flow and can be viewed as cuts through four different grids. FSG is a fractal
set of obstacles and comprises two obstacles of size 4D, four obstacles of size 2D and
eight obstacles of size D. One might think that the higher scalar fluxes and fluctuating
scalar variances reported for fractal grids in § 4 have their origin in the larger and
more intense eddies resulting from the bigger bars or obstacles in the grid. If so,
RG4 which consists of five obstacles of size 4D should produce similar, if not even
larger, transverse turbulent diffusion compared to FSG. RG4 should also return larger
transverse turbulent diffusion than RG2, which in turn should return larger transverse
turbulent diffusion than RG1. However, if the transverse turbulent diffusion is higher
with FSG than with any RG set of obstacles then it is the fractal nature of the sets
which must be responsible for the enhancement.
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FIGURE 21. 〈(y− y0)
2〉0/D2 versus x/D for all four obstacle arrangements.

We use our code Incompact3d to compute the planar flows generated by the sets
of obstacles shown in figure 20, with a domain size that is Lx = 30D long in the
streamwise and Ly = 40D long in the transverse directions. The number of mesh
nodes is nx × ny = 901× 1200. The uniform and constant inlet velocity U∞ upstream
of the obstacles is in the streamwise direction and is such that the Reynolds number
U∞D/ν= 600. The time step is 0.00025D/U∞. The obstacles are placed at a distance
5D from the inlet, which consists of a uniform flow field free from any perturbation,
and there is an outflow boundary condition at the outlet. In the transverse direction
the boundary conditions are periodic. Fluid element trajectories are integrated using
a second-order Adams–Bashforth scheme and a bi-linear interpolation in space for
the estimation of the velocities at the fluid element positions. The fluid elements
are released at 160 different equally spaced transverse positions y0 at a streamwise
distance D from the obstacles. The 160 different initial coordinates y0 span the
entire extent of the transverse domain Ly = 40D. Such sets of 160 fluid elements
are repeatedly released with a time period equal to 0.6D/U∞. We therefore integrate
25 600 fluid element trajectories over a total duration of 400 000 time steps so that
the vast majority of them have the time to cross the entire domain. We then use these
statistics to calculate the transverse position y of each of our fluid elements when it
reaches a given streamwise position x and calculate 〈(y − y0)

2〉0 as a function of x,
where the averaging operation 〈 〉0 is over all 25 600 fluid elements. The results are
plotted in figure 21.

Figure 21 shows clearly that 〈(y − y0)
2〉0 grows much faster and is much larger

for the FSG flow than for the RG flows. The idea that higher transverse turbulent
diffusion is caused by larger and more intense eddies is definitely consistent with the
RG results as 〈(y− y0)

2〉0 grows faster and is larger for RG4 than for RG2 and also
grows faster and is larger for RG2 than for RG1. However, this classical idea cannot
explain our result that 〈(y− y0)

2〉0 is dramatically larger for the FSG than for all RG
arrangements, a result as dramatic as that for the scalar flux and the fluctuating scalar
variance in § 4. This clearly demonstrates that the effect must have its cause in the
fractality of the obstacle arrangements in this section and of the grids in § 4.

We end this section with some suggestive visualisations in figure 22 which show
that the flow consists of small-scale eddies in the lee of RG1, intermediate-scale
eddies in the lee of RG2 and large-scale eddies in the lee of RG4. The FSG
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(a) (b)

(c) (d )

FIGURE 22. Vorticity visualisations for all four obstacle arrangements. The mean flow is
from left to right. (a) RG1, (b) RG2, (c) RG4, (d) FSG. Plotted are isovalues of vorticity
between −25U∞/D in blue to +25U∞/D in red (green is zero).

visualisation shows that the FSG flow consists of small and intermediate size eddies
and that the eddies are more numerous than in the RG flows. Furthermore, the FSG
flow appears more chaotic than the RG flows. The larger number and the more chaotic
nature of multiscale eddies produced by the FSG arrangement is consistent with our
observation of enhanced transverse turbulent diffusion by this FSG arrangement.

6. Conclusion

Twelve three-dimensional spatially developing turbulent velocity and scalar fields
generated by three different fractal grids (two fractal square grids which differ in
number of fractal iterations and blockage ratio and one fractal I grid) and three
different regular grids have been investigated by means of DNS in a computational
virtual wind tunnel. This is the first time that fractal I grids have been considered in
this context. The twelve simulations cover different sustained mean scalar gradients
and different molecular diffusivities. In our simulations the fluctuating scalar variance
is dominated by the sustained mean scalar gradient, which persistently generates
scalar fluctuations, and by the scalar dissipation, which persistently smooths them out.
However, these two terms are not in balance and the mean scalar gradient forces the
fluctuating scalar variance to consistently grow in the streamwise extent of the flow
region considered here.
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For all these grids, the turbulence intensity averaged over time and over a plane
parallel to the grid takes its maximum (peak) value when the streamwise position
of this plane is between 0.75Meff and 1.5Meff , where Meff is the effective mesh
size introduced by Hurst & Vassilicos (2007). Downstream of the location of this
maximum (peak) value, the turbulence intensity averaged in this way is greatly
enhanced by the fractal grids by comparison to the regular grids even though the
fractal grids have comparable or lower blockage ratios. The pressure drop is about the
same across grids of same blockage ratio irrespective of whether they are fractal or
not (with the proviso that the pressure recovery is longer for the fractal grids). Even
so, the fractal grids enhance turbulent scalar fluxes by up to an order of magnitude
in the region downstream of the aforementioned peak and they also greatly enhance
the streamwise growth of the fluctuating scalar variance in that region. The cause of
this phenomenon lies in the fractality of the grid. When averaged over lateral planes,
the turbulent scalar flux scales with the mean scalar gradient and the turbulent
scalar variance with the square of this mean scalar gradient. The turbulence scalar
flux coefficient is constant far enough downstream of all the present grids and is
independent of the mean scalar gradient but significantly dependent on the nature and
details of the turbulence-generating grid.
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