
J. Appl. Prob. 53, 360–368 (2016)
doi:10.1017/jpr.2016.5

© Applied Probability Trust 2016

EXTENSION OF DE BRUIJN’S IDENTITY TO
DEPENDENT NON-GAUSSIAN NOISE CHANNELS

NAYEREH BAGHERI KHOOLENJANI ∗ ∗∗ and

MOHAMMAD HOSSEIN ALAMATSAZ,∗ ∗∗∗ University of Isfahan

Abstract

De Bruijn’s identity relates two important concepts in information theory: Fisher
information and differential entropy. Unlike the common practice in the literature, in this
paper we consider general additive non-Gaussian noise channels where more realistically,
the input signal and additive noise are not independently distributed. It is shown that, for
general dependent signal and noise, the first derivative of the differential entropy is directly
related to the conditional mean estimate of the input. Then, by using Gaussian and Farlie–
Gumbel–Morgenstern copulas, special versions of the result are given in the respective
case of additive normally distributed noise. The previous result on independent Gaussian
noise channels is included as a special case. Illustrative examples are also provided.
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1. Introduction

Differential entropy and Fisher information are two performance measures in information
theory and estimation theory, respectively. They are of fundamental importance and have been
extensively studied. Recall that the differential entropy of a continuous random variable (RV) Y

is defined as

h(Y ) = −
∫ ∞

−∞
fY (y; γ ) log fY (y; γ ) dy, (1)

where γ is a deterministic parameter in the probability density function fY . Fisher information
with respect to location parameter is defined as

J (Y ) = EY

[(
∂

∂Y
log fY (Y ; γ )

)2]
,

which is equivalently expressed as

J (Y ) = −EY

[(
∂2

∂Y 2 log fY (Y ; γ )

)]
.

The importance of Fisher information as a measure of information is well known. It has
many implications in estimation theory, as exemplified by the Cramer–Rao lower bound which
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is a fundamental limit on the variance of an estimator. De Bruijn’s identity, stated in Theorem 1
below, relates these two concepts [5]. It was first considered by Stam [16] and, since then, it
has been widely used by many researchers. Recently, a renewed interest was manifested in the
applications of de Bruijn’s identity in estimation and turbo (iterative) decoding schemes, and in
relating the input-output mutual information with the minimum mean-square error for additive
Gaussian and non-Gaussian noise channels [3], [12].

Consider additive noise channels of the form

Y = X + √
γZ, (2)

where X, the input signal and Z, the additive noise, are arbitrary RVs and the parameter γ is
nonnegative. When the additive noise Z is a Gaussian RV with zero mean and unit variance
independent of the input RV X, an elegant algebraic connection between the differential entropy
of output signal Y and Fisher information, known as de Bruijn’s identity, is as stated below.

Theorem 1. (De Bruijn’s identity [1], [14].) Let X be an arbitrary RV with finite second-order
moment and Z be normally distributed independent of X with zero mean and unit variance.
Then, we have

∂

∂γ
h(X + √

γZ) = 1

2
J (X + √

γZ).

A new version of de Bruijn’s identity for stable RVs was stated by Johnson [6]. He obtained
expressions for the derivative of the differential entropy of output signal Y as an inner product
of score functions. Recently, an extension of de Bruijn’s identity to non-Gaussian Z was
provided by Park et al. [11]. Their results, however, are based on an independence assumption
between input signal and additive noise. In the real world, there are signal-dependent noise
channels in which the noise characteristics depend highly on the transmitted signal; see [2],
[9], and [13]. Applications for such dependency appear also in radar and sonar systems [7].
Therefore, a natural question arises as to how de Bruijn’s identity can be extended to deal with
dependent RVs. In this paper, an extension of de Bruijn’s identity is presented in the case when
input signal X and additive noise Z are two arbitrary dependent RVs. It is found that the first
derivative of the differential entropy of output signal Y can be expressed as a function of the
conditional mean estimate associated with the input signal. Assuming the dependence, between
input signal X and additive noise Z, is modeled by some copula functions, relationships between
the first derivative of the differential entropy of Y and the Fisher information are derived.

The remainder of this paper is organized as follows. By removing the independence
condition, an extension of de Bruijn’s identity is provided in Section 2. In Section 3, using
Gaussian and Farlie–Gumbel–Morgenstern copulas, special versions of the result are given and
some illustrative examples are provided. Finally, conclusions are made in Section 4.

2. De Bruijn’s identity for dependent RVs

Consider the general additive noise channel described by (2) in which the input signal X and
the additive noise Z are dependent RVs with a differentiable joint probability density function
(PDF) fX,Z(x, z). Then, the conditional distribution of the output signal Y given the input
signal X is given by

fY | X(y | x; γ ) = fX,Z(x, (y − x)/
√

γ )√
γ fX(x)

, (3)

and, thus, the marginal unconditional PDF of the output is

fY (y; γ ) = EX[fY | X(y | X; γ )]. (4)
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Between the two PDFs fY | X(y | X; γ ) and fX,Z(x, z), there exists a general relationship that
can be established as follows.

First, by using (3), we obtain

∂

∂y
fY | X(y | x; γ ) = 1√

γ fX(x)

(
∂

∂y
fX,Z

(
x,

y − x√
γ

))
,

and

∂

∂γ
fY | X(y | x; γ )

= ∂

∂γ

(
fX,Z(x, (y − x)/

√
γ )√

γ fX(x)

)

= − 1

2γ

{
fX,Z(x, (y − x)/

√
γ )√

γ fX(x)
+ y − x√

γ fX(x)

(
1√
γ

∂

∂z
fX,Z(x, z)|z=(y−x)/

√
γ

)}

= − 1

2γ

{(
∂

∂y
(y − x)

)
fY | X(y | x; γ ) + (y − x)

∂

∂y
fY | X(y | x; γ )

}

= − 1

2γ

∂

∂y
((y − x)fY | X(y | x; γ )). (5)

Now, using (4) and (5), we have

∂

∂γ
fY (y; γ ) = EX

(
∂

∂γ
fY | X(y | X; γ )

)
= − 1

2γ
EX

[
∂

∂y
((y − X)fY | X(y | X; γ ))

]
. (6)

Our main result concerns the first derivative of the differential entropy of the channel model
(2) which is presented in the following theorem.

Theorem 2. Let X and Z in (2) be two arbitrary dependent RVs with a joint PDF fX,Z(x, z).
Then, under the following conditions:

lim
y→±∞ y

√
fY (y; γ ) = 0,

∣∣∣∣EX[XfY | X(y | X; γ )]√
fY(y;γ )

∣∣∣∣ < ∞, (7)

the first derivative of the differential entropy can be expressed as

∂

∂γ
h(Y ) = 1

2γ
EY {1 + �Y (Y ; γ )EX | Y [X | Y ]}, (8)

where �Y = (∂/∂Y ) log fY is the Fisher score with respect to location parameter.

Proof. From (1), we know that

∂

∂γ
h(Y ) = −

∫ ∞

−∞
log fY (y; γ )

∂

∂γ
fY (y; γ ) dy. (9)

Using (6), (9) can be expressed as

∂

∂γ
h(Y ) = 1

2γ

∫ ∞

−∞
log fY (y; γ )

∂

∂y
EX[(y − X)fY | X(y | X; γ )] dy. (10)
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Integrating by parts with respect to y and using (7), (10) can be written as

∂

∂γ
h(Y ) = − 1

2γ

∫ ∞

−∞

(
∂

∂y
log fY (y; γ )

)
EX[(y − X)fY | X(y | X; γ )] dy

= − 1

2γ

∫ ∞

−∞
∂

∂y
fY (y; γ )y dy + 1

2γ

∫ ∞

−∞
∂

∂y
fY (y; γ )EX

[
X

fY | X(y | X; γ )

fY (y; γ )

]
dy

= 1

2γ
+ 1

2γ

∫ ∞

−∞
fY (y)�Y (y; γ )EX | Y [X | y] dy. (11)

Thus, the proof is completed. �
Remark 1. This result is an extension of Park et al. [11], due to the signal-dependent nature
of the noise. It is also interesting to note that (8) can be expressed as a covariance, in a form
reminiscent of [6, Equation (18)], as follows:

∂

∂γ
h(Y ) = 1

2γ

∫ ∞

−∞
fY (y)

(
�Y (y; γ ) + y − E[Y ]

cov(X, Y )

)
EX | Y [X | y] dy.

The equivalence of these forms arises from
∫ ∞

−∞
fY (y)

(
y − E[Y ]
cov(X, Y )

)
EX | Y [X | y] dy = 1.

Remark 2. Note that using (4), we have

∂

∂y
fY (y; γ ) =

∫ ∞

−∞

(
∂

∂y
fY | X(y | x; γ )

)
fX(x) dx (12)

=
∫ ∞

−∞

(
∂

∂y
log fY | X(y | x; γ )

)
fY | X(y | x; γ )fX(x) dx

= fY (y; γ )EX | Y
[

∂

∂Y
log fY | X(Y | X; γ ) | Y

]
. (13)

Thus, substituting (13) into (11), the statement of Theorem 2 can also be written as

∂

∂γ
h(Y ) = 1

2γ
EY

{
1 + EX | Y [X | Y ]EX | Y

[
∂

∂Y
log fY | X(Y | X; γ ) | Y

]}
. (14)

An alternative perspective on this result, in the independent case, is given by Guo et al. [3].
Instead of using the de Bruijn’s identity (Theorem 1), the authors show that the derivative of a
certain mutual information quantity can be expressed in terms of the minimum mean-squared
error of the corresponding noisy channel.

Remark 3. Most signal processing algorithms are designed and based on prior knowledge of
signal and noise characteristics. It is therefore natural (and useful) to view them as Bayesian
inference strategies. In this case, the result of Theorem 2 may be viewed as a function of
posterior mean.

Remark 4. In the above proof, we have exchanged integration and differentiation in (6), (9),
(10), and (12). Strict justification of these exchanges requires application of the dominated
convergence theorem.
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3. Using copula functions

The study of copula functions gives a fully developed mathematical theory for multivariate
distribution analysis [10]. A copula is a function that links univariate distribution functions
to generate a multivariate distribution function and thus represents the dependency structure
of RVs. In other words, copulas enable us to extract the dependence structure from the joint
distribution function of a set of RVs and, at the same time, to isolate the dependence structure
from the univariate marginal behavior [8]. In recent years, there has been a revival of interest
in copula in applications where the matter of dependency between RVs is of importance [4].

The foundation theorem for copula was introduced by Sklar [15] and states that for a given
joint multivariate PDF and relevant marginal PDFs, there exists a copula function that relates
them. In a bivariate case, Sklar’s theorem is stated as follows.

Theorem 3. Suppose that FX,Y is a joint cumulative distribution function (CDF) with margins
FX and FY , then there exists a function C : [0, 1]2 −→ [0, 1] such that

FX,Y (x, y) = C(FX(x), FY (y)). (15)

If FX and FY are continuous then C is unique; otherwise, C is uniquely determined on the
(range of FX) × (range of FY ). Conversely, if C is a copula and FX and FY are CDFs, then
the function FX,Y defined by (15) is a joint CDF with margins FX and FY .

For any copula function, there is a corresponding copula density function, which is the mixed
partial derivative of function C, given by

c(FX(x), FY (y)) = fX,Y (x, y)

fX(x)fY (y)
, (16)

where fX,Y , fX, and fY are the joint and marginal PDFs of X and Y , respectively. Equation
(16) can be expressed in an equivalent and more suitable form:

fX,Y (x, y) = c(u, v)fX(x)fY (y), (17)

where u, v are related to x, y through the marginal CDFs u = FX(x), v = FY (y).
Two of the most popular parametric families of copulas, which are considered in this paper,

are the Farlie–Gumbel–Morgenstern (FGM) and the Gaussian families. The key advantage of
these copulas is that one can specify different levels of dependency between the margins.

Definition 1. The Gaussian copula is defined as

Cρ(u, v) = �ρ(�−1(u), �−1(v)), (18)

where ρ is the Gaussian copula parameter, �ρ is the bivariate standard Gaussian distribution
function, and �−1 is the inverse of the univariate standard Gaussian distribution function.

The corresponding Gaussian copula density is

cρ(u, v) = 1√
1 − ρ2

exp

[
−[�−1(u)]2 − 2ρ[�−1(u)][�−1(v)] + [�−1(v)]2

2(1 − ρ2)

]

× exp

( [�−1(u)]2

2

)
exp

( [�−1(v)]2

2

)
, (19)

where −1 < ρ < 1, 0 ≤ u, v ≤ 1.
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Definition 2. The FGM copula, which can be considered when the dependent structure between
the variables are not very strong, is defined as Cθ(u, v) = uv[1 + θ(1 − u)(1 − v)], where
θ ∈ [−1, 1] is the FGM copula parameter. The corresponding FGM copula density function is
given by

cθ (u, v) = [1 + θ(1 − 2u)(1 − 2v)]. (20)

As revealed inTheorem 2, for dependent signal and noise, the first derivative of the differential
entropy of output signal Y can be expressed by the function of the conditional mean estimate
EX | Y (X | Y ). In Corollaries 1 and 2 below, special versions of this result are given in the case
when the dependence between input signal X and additive noise Z are modeled by assuming
the Gaussian and FGM copulas, for the case of weaker dependence, for the joint distribution
of signal and noise.

Corollary 1. In (2), let X be an arbitrary RV with a finite second-order moment depending
on the RV Z. Assume that Z is normally distributed with zero mean and unit variance and
the dependent structure of X and Z can be described by the Gaussian copula (19). If the
expectations EX[�−1(FX(X))] and EX[X�−1(FX(X))] exist and the conditions in (7) hold,
then

∂

∂γ
h(Y ) =

(
1 − ρ2

2

)
J (Y ) − ρ

2
√

γ
EY {�Y (Y )EX | Y [�−1(FX(X)) | Y ]}. (21)

Proof. When Z is normally distributed with zero mean and unit variance, the joint PDF of X

and Z can be written as

fX,Z(x, z) = exp

{
− 1

2(1 − ρ2)
[[�−1(FX(x))]2 − 2ρz�−1(FX(x)) + z2]

}

× 1√
2π(1 − ρ2)

fX(x) exp

{ [�−1(FX(x))]2

2

}
. (22)

Differentiating both sides of (22) with respect to y yields

−
(

y − x

γ (1 − ρ2)

)
fX,Z

(
x,

y − x√
γ

)

= ∂

∂y
fX,Z

(
x,

y − x√
γ

)
−

(
ρ�−1(FX(x))√

γ (1 − ρ2)

)
fX,Z

(
x,

y − x√
γ

)
.

Therefore, we have

EX | Y [X | y] = 1√
γ fY (y)

∫
xfX,Z

(
x,

y − x√
γ

)
dx

= 1

fY (y)

∫ {
y√
γ

fX,Z

(
x,

y − x√
γ

)
+ √

γ (1 − ρ2)
∂

∂y
fX,Z

(
x,

y − x√
γ

)

− ρ
√

γ�−1(FX(x))
1√
γ

fX,Z

(
x,

y − x√
γ

)}
dx

= y + γ (1 − ρ2)�Y (y) − ρ
√

γ EX | Y [�−1(FX(X)) | y].
Thus, the right-hand side of (8) becomes

1

2γ
+ 1

2γ

∫ ∞

−∞
fY (y)�Y (y){y + γ (1 − ρ2)�Y (y) − ρ

√
γ EX | Y [�−1(FX(X)) | y]} dy. (23)

Using integration by parts, the first two terms in (23) vanish, completing the proof. �
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Corollary 2. Given (2), let X be an arbitrary RV with a finite second-order moment depending
on a normally distributed RV Z with zero mean and unit variance. Assume the dependence
between X and Z is modeled by the FGM copula (20) and the conditions in (7) hold. Then, we
have

∂

∂γ
h(Y ) = 1

2
J (Y ) + θ

2πγ
EY

{
�Y (Y )

fY (Y ; γ )
EX

[
(1 − 2Fx(X)) exp

(
− (Y − X)2

γ

)]}
. (24)

Proof. By using (17), the joint PDF of X and Z can be written as

fX,Z(x, z) = 1√
2π

fX(x)[1 + θ(1 − 2Fx(X))(1 − 2�(z))] exp

{
−z2

2

}
.

Therefore, we have

−
(

y − x

γ

)
fX,Z

(
x,

y − x√
γ

)

= ∂

∂y
fX,Z

(
x,

y − x√
γ

)
+ θ

√
γ

π
fX(x)(1 − 2FX(x)) exp

(
− (y − x)2

γ

)
.

The remainder of the proof is similar to the proof of Corollary 1 and is omitted for brevity. �
Remark 5. As a corollary, setting ρ = 0 in (21) and θ = 0 in (24), both cases reduce to the
conventional de Bruijn’s identity (Theorem 1) for the case where input signal X and additive
noise Z are independent RVs.

It should be noted that for additive non-Gaussian noise channels, the differential entropy
cannot be expressed in terms of the Fisher information. Instead, in such cases, the differential
entropy is expressed by the posterior mean. If two conditional mean estimates EX | Y [X | Y ]
and EX | Y [(∂/∂Y ) log fY | X(Y | X; γ ) | Y ] are expressed by polynomial functions of Y , then
(8) and (14) can be expressed in simpler forms.

Example 1. Consider the channel model (2), where X and Z are two dependent RVs distributed
according to a bivariate standard normal distribution with PDF

fX,Z(x, z) = 1

2π
√

(1 − ρ2)
exp

{
− 1

2(1 − ρ2)
[x2 − 2ρxz + z2]

}
.

Then, we have

EX | Y [X | Y = y] = 1 + ρ
√

γ

1 + γ + 2ρ
√

γ
y

and

EY {�Y (Y ; γ )EX | Y [X | Y ]} = − 1 + ρ
√

γ

1 + γ + 2ρ
√

γ
.

Therefore, (8) can be expressed as

∂

∂γ
h(Y ) = 1

2γ
EY {1 + �Y (Y ; γ )EX | Y [X | Y ]} = 1

2(1 + γ + 2ρ
√

γ )

(
1 + ρ√

γ

)
.

Note that in this case, the output signal Y is also Gaussian with zero mean and variance
1 + γ + 2ρ

√
γ . Thus, this result can also be alternatively obtained using the derivative of the

entropy of output signal Y directly.
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Example 2. Let X and Z in (2) be two dependent RVs which are distributed uniformly on
(0, 1) and the dependence between them is modeled by the FGM copula (20). Then, the joint
PDF of X and Y becomes

fX,Y (x, y) = 1√
γ

fX,Z

(
x,

y − x√
γ

)
,

where fX,Z(x, z) = [1 + θ(1 − 2x)(1 − 2z)], 0 < x < 1, 0 < z < 1. Thus, the marginal PDF
of Y is

fY (y; γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
γ

[
2θ

3
√

γ
y3 − θy2

(
1 + 1√

γ

)
+ y(1 + θ)

]
, 0 < y < 1,

1√
γ

[
1 − θ

3
√

γ

]
, 1 ≤ y <

√
γ ,

1√
γ

[
− 2θ

3
√

γ
y3 + θy2

(
1 + 1√

γ

)

− y(θ + 1) − θ

(
γ

3
+ 1

3
√

γ

)
+√

γ + 1

]
,

√
γ ≤ y < 1 + √

γ

for γ > 1, and

fY (y; γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
γ

[
2θ

3
√

γ
y3 − θy2

(
1 + 1√

γ

)
+ y(1 + θ)

]
, 0 < y <

√
γ ,

1 − θ
√

γ

3
,

√
γ ≤ y < 1,

1√
γ

[
− 2θ

3
√

γ
y3 + θy2

(
1 + 1√

γ

)

− y(θ + 1) − θ

(
γ

3
+ 1

3
√

γ

)
+ √

γ + 1

]
, 1 ≤ y < 1 + √

γ

for 0< γ ≤ 1 . But, it is important to note that for any γ > 0, we obtain

EX | Y
[

∂

∂Y
log fY | X(Y | X; γ ) | Y

]
= 1

fY (y; γ )

∫ 1

0

∂

∂y
fX,Y (x, y) dx

= 1

fY (y; γ )

∫ 1

0

−2θ

γ
(1 − 2x) dx

= 0.

Therefore, by using (14), the derivative of the differential entropy of output signal Y becomes

∂

∂γ
h(Y ) = 1

2γ
.

Remark 6. It is worth mentioning here that from Example 2, it follows that if X and Z are
two dependent uniform(0, 1) RVs whose dependence structure can be described by an FGM
copula, then the PDF of their sum Y = X + Z is given by

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

[
2θ

3
y3 − 2θy2 + (1 + θ)y

]
, 0 < y < 1,[

−2θ

3
y3 + 2θy2 − (1 + θ)y − 2

3
θ + 2

]
, 1 ≤ y < 2.

https://doi.org/10.1017/jpr.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.5


368 N. B. KHOOLENJANI AND M. H. ALAMATSAZ

4. Conclusion

In this paper we unveiled an information-estimation relationship which holds in general for
dependent noise channels. Considering dependent noise and signal, the first derivative of the
differential entropy of output signal was expressed by the conditional mean estimate associated
with the input signal. Special versions of the result were given in the cases where input signal
and additive noise are jointly distributed according to either Gaussian or FGM copula functions.
De Bruijn’s identity for independent Gaussian channels followed as a special case.
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