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In this study, an experiment to establish a model for human-environment social systems, a
multi-agent simulation model to deal with urban traffic congestion problems involving
automobiles embedded with several strategies of car navigation systems (CNS), is presented.
A shortest time route with route information sharing strategy (ST-RIS) is believed to be one
of the solutions for a novel CNS based on bilateral information shared among automobile
agents. We assume several strategies including ST-RIS for agents, which are defined
differently in terms of their information-handling process. The question of which strategy is
most appropriate for solving urban traffic congestion can be seen as a social dilemma, because
social holistic utility may conflict with an agent’s individual utility. The presented model
shows that this social dilemma can be observed as a typical chicken-type dilemma, or as a
typical minority game, where an agent who has adopted a minority strategy can earn more
utility compared to when other strategies are used. Consequently, the model has illustrated
that shortest time route with partial route information sharing strategy (ST-pRIS), which is
an advanced strategic form of ST-RIS in which only partial information is shared among
agents, has moderate potential to be diffused in a society from the viewpoint of the
evolutionary game theory.
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1. INTRODUCTION. In modern society, an efficient road-traffic system is
one of the most fundamental means of supporting both industrial and urban life.
Therefore, the establishment of a smooth traffic flow should be seen as an important
policy requirement. An ill-organized automobile network primarily contributes
to increased traffic congestion, which not only devastates vehicular movement
efficiency, but also increases exhaust gas emissions and heat generation. This situation
causes various urban environmental problems. Therefore, keeping the increased traffic

THE JOURNAL OF NAVIGATION (2011), 64, 711–725. © The Royal Institute of Navigation
doi:10.1017/S037346331100021X

https://doi.org/10.1017/S037346331100021X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331100021X


congestion in check is regarded as an important topic. In this social context, a new
traffic system called intelligent transport systems (ITS) has been proposed, which aims
to solve these urban traffic problems by adopting the latest information and
telecommunication technologies. One of the actual provisions, vehicle information
and communication system (VICS), has been proposed to ease heavy congestion.
A crucial limitation of VICS is that only the maximization of individual utility is
considered, with no particular allowance made for social holistic utility. Currently, a
diffused car navigation system (CNS) encourages users to take the shortest route,
which is derived from traffic information known at the “present moment,” monitored
through the VICS. Most car agents adopt the same traffic routes as the respective
CNSs refer to the same traffic information, while social utility is not taken into
consideration (in other words, an individual sees only local maximum instead of the
holistic maximum). This inevitably causes heavy congestion. Even if there is no
congestion at a certain moment, it might trigger congestion in the future, because
many agents may choose the same route [1]–[3]. This physical process is brought about
by a particular situation, where many agents act simultaneously by basing their
decisions on uniform information. We can also see the same situation, for example, in
the congestion problems of an amusement park [4]. This type of phenomenon is widely
observed in a situation where agents sharing the same information are urged to
compete for a limited resource (traffic capacity, service capacity, etc.). In the sphere of
applied mathematics, this is called the common resource distribution problem
(CRSP), known derivations of which include the minority game [5] and the El Farol
bar problem [6]. From the evolutionary game theory point of view, CRSP can be
classified as a chicken-type dilemma game [7], where alternating reciprocity ST [8] is
preferable. That is, a focal player should select a strategy opposite to the one chosen by
his opponent player to obtain better payoffs for both players, when an archetypal 2×2
(two-player, two-strategy) game is assumed. The most important key to solving this
kind of problem is knowing how to maintain the probabilistic deviation of an agent’s
action.
Returning to the traffic congestion problem, we can simulate several measures to

maintain the deviation of an agent’s action. Yamashita et al. [1] insist that we can
avoid a decrease in social utility by sharing information among users by introducing a
novel “group-user support” concept. However, their idea has a substantial problem.
Although the social holistic utility can be increased by this method, the individual
utility of the agents who adopted an information-sharing strategy is less than that
of other strategies, such as the simple “shortest-route strategy.” This is the exact
implication of the “social dilemma” mentioned above. Concerning this particular
limitation, Savit [9] discussed whether restricting the size of the information circle
made sense. In addition, Akashi [10] suggested that there might be a more robust
strategy when an intentional error is exogenously imposed on the system. Therefore,
in this paper, we investigate whether we could overcome the substantial drawback
of information sharing introduced by Yamashita, and if so how. A key concept is not
global sharing but partial sharing as explained later.
The present paper deals with the question of how we can sustain a high social utility,

avoiding any decrease in individual utility of the respective automobile agents, which
leads to a significant contribution for constructing a “post-generation CNS” based on
information-sharing technology. We also discuss the features of this social dilemma in
relation to typical dilemmas in evolutionary game theory.
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In the research area of physics, there have been many studies that have dealt with
traffic flow [11]–[16] and evolutionary game theory [7]–[8]. As mentioned above, traffic
flow can be deeply relevant to a dilemma game. In fact, Yamauchi et al. [17] found
that several social dilemma structures are represented by n-person prisoner’s dilemma
(n-PD) games in certain traffic-flow phases at a bottleneck caused by a section of
closed lanes. To clarify the social dilemma structure in traffic flow, which is a pure-
physical process, they built a cellular automata (CA) model based on the stochastic
optimal velocity (SOV) model with an open boundary condition, and applied it to the
bottleneck problem caused by the reduction from double to single lanes. They found
that the four traffic-flow phases had different game structures. The present paper
contributes in relation to this context, although our scope emphasizes the application
side more than the principle side. As explained later in this paper, our model can be
categorized as a more engineering-oriented practical model, commonly used in the
sphere of urban planning, the scope of which is wider than microscopic models such as
CA and optimum velocity models. However, we think that our contribution might
concern some issues in physics, because not only traffic flow and dilemma games, but
information also, is dealt with at the same time.
Also, we know, in the field of civil engineering, there has been a rich sphere

providing lots of outstanding works concerning the so-called route-choice problem,
drivers’ behavior, information to drivers (e.g., [17]–[24].). One point which makes our
study different from those earlier studies is that we see the problem through the
perspective of the evolutionary game theory, which focuses on how a newly presented
strategy for route choice impacts in terms of competition with other conventional
strategies. And as another important point, what we present here is a proposal for a
brand new strategy for the use of traffic information which is analyzed by computer
simulations.

2. MODEL. The traffic-flow simulation in this study requires a model that deals
with two different scales: One that considers traffic congestion using macro-scale
phenomena, and the other that considers the route choice based on micro-scale
behaviour. Concerning micro-scale traffic models, there have been numerous studies
in the domain of physics [11]–[16], where the kinetic gas theory, fluid dynamical
model, car-following model, and cellular automaton (CA) model were developed [25].
These pure-physics-oriented models are not appropriate for our purpose, because they
cannot deal with macro phenomena.
Thus, we propose a fusion model for these two scales that consists of two parts: the

road network and multi-vehicle agents. This viewpoint is called a meso-scale model,
which has been applied to practical engineering problems [26].
In our model, each vehicle agent decides on an origin point for the trip and

destination randomly at the beginning of a simulation run. During the trip, the agent
chooses an optimum route to the destination at a certain time interval (this means that
the agent is always trying to improve the optimum route from the previous selection),
based on a certain rule called “strategy.” This strategy will be defined in Section 2.3.
On arrival at the destination, the agent decides on another random destination.
A single journey, from an origin point to final destination, is called a “trip.”

2.1. Road Network. The road network is modelled as two parts: “node” refers to
an intersection and “link” indicates a street. Because vehicle agents on a link can move
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in only one direction, a standard road with two lanes having opposing directions
should be defined by two links and two extreme nodes. The link is divided into several
blocks, as shown in Figure 1. Every block has a fixed length L. It is important to note
that L must be assigned a value smaller than the value defined by the length that a
vehicle can move in unit simulation time steps at free-flow speed Videal (in other words,
maximum possible velocity). This is required to prevent vehicles from skipping out of
a certain block to the adjacent block. In addition, there is a signal at each node, where
each vehicle stops for time ts with probability ps. All the simulation parameters are
summarized in Table 1.

2.2. Vehicle Agent. In the model, each vehicle agent moves in the i-th block of a
link at a certain speed Vi. The vehicle speed Vi is expressed as a function of the block
density Di. Block density is denoted by:

Di = Ni
L (1)

where Ni is the number of vehicle agents in the i-th block in the present time
step.
With respect to the vehicle speed function, Yamashita et al. [1] assumed a linear

function derived from the Greenshields model as shown in:

Vi = max Videal · 1− Ni

Njam

( )
,Vmin

[ ]
(2)

where Vmin is the minimum speed, and Njam is the maximum number of vehicle agents
in a block (block capacity). Equation (2) gives the relationship between traffic
flow density and its flux (fundamental diagram) as shown in Figure 2, which does not
reproduce a realistic situation, such as the one illustrated in Figure 3 (Figure 3 was
obtained using a series of real-observed data). Therefore, we adopted a revised
function based on the optimal velocity (OV) function as follows:

Vi = max V Di( ),Vmin[ ]
Vi Di( ) = Videal

2
tanh m

1
Di

− d
( )

− tanh m lc − d( )( )
[ ]

(3)

where lc is the distance of the vehicle, d is the inflection point of the OV Function, and
m is the slope of the inflection point. We assume that lc=5 [m], d=25, m=0·2,
Njam=6, and L=60 [m] are empirical values [27]. The curve of Equation (3) is also
shown in Figure 2. We can see that Equation (3) is more appropriate than Equation (2)

Block length

Flow direction

Node

Link

Block

Figure 1. Model of a road network.
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to reproduce real situations. In one sense, our approach, which is classified by the
macro-scale model, does not reproduce the plot deviations observed in Figure 3, but it
reproduces an averaged relation between density and flow; on the other hand, the
microscopic approach, used in CA models [17], can deal with the more granular
deviations.
How the model deals with the process of an agent’s transboundary movement from

block i to block i+1 is described as follows. At every step, a vehicle agent’s speed

Table 1. Stop probability and stop time.

Number of Streets at Junction Direction Stop Probability ps Stop Time [min] ts

4
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0·6

1·2
Right Turn 1·6
Left Turn 1·4
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Left Turn 1·4
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Figure 2. Density-flow diagram of (2), (3).
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Figure 3. Relationship between density and flow based on real traffic [27].
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defined for each block is revised according to Equation (3). We then presume that
vehicle agents can accelerate and slow down immediately, regardless of their speed in
the previous time step. At the beginning of a time step, an initial available time
(consistent with the discrete time step) to move a single time step is assigned to each
vehicle. For the case where a vehicle agent moves to the next block in his available
time, the agent actually moves to the head of the next block only when the next block
density is not saturated (less than Njam), and his available time is reduced to another
value by subtracting the time taken for the actual moving event. Otherwise, the vehicle
agent moves to the end of the present block, and his available time is set to 0.
The abovementioned process continues until the available time becomes 0. If his
available time becomes 0 in the middle of a block, the distance moved from the head
to the middle of the block is carried over to the next time step.

2.3. Navigation Strategy. Considering realistic situations in urban traffic
contexts, the following five strategies are assumed in this study:

2.3.1. Shortest Distance (SD) Strategy. A vehicle agent adopting this strategy
chooses the shortest distance route without using congestion information. Concretely
speaking, an SD vehicle agent selects an optimum route assuming weight lij as the
i–j geometric distance between nodes while applying Dijkstra’s algorithm. If any
routes are calculated as having an equal distance, the agent can make a random
choice.

2.3.2. Shortest Distance and Congestion-Memorizing (SD-CM) Strategy. This is
basically the same as the SD strategy, but a vehicle agent adopting this strategy avoids
some of the congested routes experienced in previous trips. This particular strategy
is achieved as follows. The agent has a memory of length m. The vehicle agent
always refreshes his memory to memorize the most-congested links of the previous
m-memorized links, plus the passed links during this trip. In the next trip, he chooses
the shortest distance route, excluding the memorized m links. Vehicle agent i forgets
his memory gradually as follows: Di,j,k=δ∙Di,j,k−1, where Di,j,k is the average density
of link j, δ is the oblivion rate, and subscript k indicates the k-th time step. We assign
δ=0·8.
SD strategy assumes that the CNS does not have the VICS. However, in reality, an

actual driver does not simply choose the shortest route, because he can predict that
some of the possible congested locations can be avoided. Therefore, it seems that this
strategy is similar to an actual driver’s strategy without the VICS. Thus, in a series
of simulations we will see later, we assume SD-CM as the most primitive strategy,
not SD.

2.3.3. Shortest Time (ST) Strategy. A vehicle agent opting for this strategy
chooses the route that minimizes the time required to complete the trip by referring to
the current congestion information provided by a traffic information centre through
the VICS. The traffic-information centre collects data on the current traffic densities of
all blocks and calculates the expected travel time (ETT) of each link measured (in the
latest monitoring session), as the actual time required (meaning the average time of all
the agents passing there) to travel along each link at the present moment. The ETT for
link ℓ is denoted by:

ETTℓ =
∑
i[Bℓ

L
Vi

(4)
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where Bℓ is a set of blocks belonging to link ℓ, and Vi is the velocity of car agent i who
is in link ℓ.
Concretely speaking, an ST vehicle agent selects an optimum route by assuming

weight lij as the ETTij between nodes while applying the Dijkstra’s algorithm.
It is necessary to update an optimum route at a certain interval, tupdate, for
this strategy, mainly because traffic congestion information is constantly changing.
The most important issue here is the fact that an ST agent cannot arrive at his
destination within the ETT (=ΣETTij|along the optimum route), since the ETT is just a
present value, that is, ETT is always changing in accordance with the present traffic
situation.
In the real world, the movements of a large number of actual drivers having vehicles

equipped with a CNS and VICS can be emulated using this strategy.
2.3.4. Shortest Time and Route-Information-Sharing (ST-RIS) Strategy. As

discussed in the previous section, a crucial drawback of the ST strategy is that the
agents refer only to current information. To overcome this, the ST-RIS strategy uses
not only the current traffic information but any available future traffic information
also. A vehicle agent adopting this strategy chooses a route based on both the current
congestion information and any scheduled route information of other agents adopting
the same strategy. The selection procedure for choosing a route is assumed as follows.
First, an agent who opts for the ST-RIS strategy provisionally decides to take the
shortest time route to the destination using the ST strategy. His selected route
information is sent to a route-information server. Second, the route-information
server calculates passage assurance (PA) for each link as follows. Initially, PA0=1 is
assigned to the link of the starting point of the ST-RIS agent’s scheduled route. In the
next node of his scheduled route, PAi=PAi−1×1/ri (ri is the number of connected
links) is assigned. As shown schematically in Figure 4, TPAl is calculated by summing
up all the PA values of each agent adopting the ST-RIS strategy who pass link l. TPAl

potentially means expectation of the total number of agents who would pass link l on
the way to their respective destinations based on the shortest time routes in the future.

Link l Link l 

PA0
#1=1

PA0
#2=1 

PA1
#1=1/3 

Scheduled Route 

Vehicle #1 Vehicle #1 Vehicle #2 
Vehicle #2 

Vehicle #3 

PA0
#1=1 PA0

#2=1

PA1
#1=1/2 

PA2
#1=1/4 

TPAl=PA3
#1+PA0

#3=1/8+1=9/8 

)B( )A(

TPAl=PA2
#1+PA1

#2=1/9+1/3=4/9 

Figure 4. Example for calculating TPA. Vehicle 1 and 2 are accounted for in (A), while only
Vehicle 1 and 3 are accounted for in (B).
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ETTl’ is denoted by Equations (5)–(7), which is used by an ST-RIS strategy agent
instead of ETTl (Equation (4)).

N ′
i =

TPAℓ

bℓ
(5)

N∗
i = min rs ·Ni + (1− rs) ·N ′

l ,Njam
( ) (6)

ETT ′
ℓ =

∑
i[Bℓ

L
max Vi N∗

i /L
( )

,Vmin
[ ] (7)

where bℓ is the number of blocks belonging to link ℓ. Here, rs (0< rs<1) refers to the
ratio of the current influence to the influence of future congestion revealed by ST-RIS
strategy. Because rs for a real situation is not always known, we temporally assume a
tentative value (rs=0·5) in the following simulations.

2.3.5. Shortest Time with Partial Route Information Sharing (ST-pRIS)
Strategy. The ST-RIS strategy may not ease congestion perfectly, because it faces
the same problem as ST agents. Therefore, most of the agents are inclined to adopt the
same traffic routes as they have been provided with the same information. We call this
situation “information uniformalization.” To rectify this problem, it is necessary to
provide different information to each agent. Therefore, we define a new strategy called
shortest time with partial-route-information-sharing (ST-pRIS). In the present study,
we substitute ST-pRIS for ST-RIS. In ST-pRIS, only the restricted agents, instead of
all agents adopting the strategy, are allowed to share mutual information. It can be
elaborated as follows. Unlike ST-RIS, each vehicle collects information from only
certain vehicles. We define “certain vehicles” as being the n nearest agents on the
future route of the focal agent. Information relating to the agents who are behind the
focal agent is less important, because we do not consider vehicles overtaking one
another. Here, we assume n=50. Each vehicle calculates TPA*

l based on the restricted
information, in the same manner as an ST-RIS agent calculates TPA. Concerning rs,
we assume it to be 0·8, as in ST-RIS.
The model parameter settings assumed for rs in the cases of ST-RIS and ST-pRIS

were different. We assumed those values based on preliminary simulations to achieve
the highest efficiency in the respective strategies.

2.4. Evaluation Method of Each Strategy’s Effectiveness. Because the trip
distances of the respective vehicles are different, we define travel-time efficiency
(TTE) to evaluate travel efficiency, which is expressed as follows.

TTE = TT · Videal

Sd
− 1 (8)

where, TT is the time of the trip, and Sd is the shortest distance between the origin and
destination of the trip. TTE is calculated for every trip, once the vehicle has arrived at
its destination. ATTEk is defined as the average TTE of all the vehicle agents having
the same strategy k. ATTEk is calculated after every simulation episode to evaluate
each strategy. When ATTEk is close to 0, it means that the vehicles using strategy k can
travel with ideal efficiency.

2.5. Simulation Settings. A series of computer simulations are reported as
follows. First, N vehicle agents are generated on a road network. Their initial
allocated starting points and first destinations are determined randomly. When each
vehicle arrives at its destination, a new destination is assigned, as explained in the
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previous section. Each agent continues this process until the end of a simulation
episode. Congestion information used by ST, ST-RIS, and ST-pRIS is updated for
every tupdate time step.
Next, we introduce replicator dynamics to reproduce the dominant strategy

by considering the dynamics of the number of vehicles of each strategy between
generations. The replicator dynamics equation (originally proposed in the field of
biology) expresses a simple idea—the increasing rate of a certain strategy is
proportional to the difference between the expected payoff of the focal strategy and
the whole average expected payoff based on the current strategy distribution. In the
present model, the replicator dynamics equation is expressed as follows.

Stk new| = Stk + ATTE − ATTEk

ATTE
∗ Stk (9)

where Stk is the assumed fraction for strategy k at a simulation episode, and Stk|new is
the revised fraction for strategy k resulting from the specified simulation episode.
A set of parameters for each simulation is presented in Table 2. Although they are

empirical parameters, we assumed them based on preliminary simulations and real-
world situations. In this paper, we assume a skewed square lattice (Figure 5) for a road

Table 2. Settings of each parameter.

Quantity Symbol Value

Number of vehicles N 5000 [vehicles]
Ideal speed Videal 60 [km/h]
Min speed Vmin 5 [km/h]
Block length L 60 [m]
Max vehicles per block Njam 6 [vehicles/block]
Updated frequency of information tupdate 500, 100 [step]
Time per step 0·001 [h/step]
Number of steps generation 10,000 [step]

5km

5km

Figure 5. Road network.
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network. To assume a skewed lattice instead of a fair square lattice, SD agents select
the respective “real” shortest routes instead of choosing them at random.
We assume three cases as follows.
Using Case 1 as the control case, the three CNS strategies SD-CM, ST, and ST-RIS

are assumed. We also assume tupdate=500[step].
In Case 2, the same three strategies are used as in Case 1, but tupdate=100[step]

is assumed, which indicates a top-shelf VICS information system with high-time
resolution.
In Case 3, ST-pRIS is introduced instead of ST-RIS, and tupdate=500[step]

is assumed. By comparing Case 1 and Case 3, we can evaluate the effectiveness of
ST-pRIS.
At the beginning of each simulation episode for these three cases, we vary the initial

strategy distribution to obtain the vector-counter figures (Figures 8–10), indicating
how the three CNSs share the social pie at equilibrium situation (in other words, the
infinite time elapsed).

3. RESULTS.
3.1. Case 1. First, Figure 6 indicates how a society, which was allowed only

SD-CM and ST strategies (the proportion of ST-RIS is set to zero), behaved. The
horizontal axis denotes the number of SD-CM vehicles among N vehicles and the
vertical axis denotes the ATTE of the SD-CM strategy vehicles.
When the number of SD-CM strategy vehicles is small, they obtain a higher payoff

(ATTE is small) than those under the ST strategy, the reverse situation of which is
also true for a case where there is a small proportion of ST strategy vehicles. This
can be explained as follows. If one strategy increases significantly more than the
others, there will be many agents choosing the same optimum route, which inevitably
causes congestion. This particular phenomenon appears to be the same as a phase of
the minority game [5]. In addition, this can be thought to represent a chicken-type
dilemma game [7] if we regard ST as a cooperative strategy (“cooperative” seems
appropriate, because ST avoids the shortest distance route). This phenomenon is also
observed in other strategy pairs. We should note that the equilibrium point (point 1 in

0
0.5
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2.5
3

3.5

4
4.5

5

0 1000 2000 3000 4000 5000
Number of SD-CM Vehicles

A
T

T
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Point 1

Figure 6. ATTE of SD-CM and ST vehicles in Case 1.
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Figure 6) is different from the maximum payoff point (this is actually one of the
reasons why this should be called a social dilemma game).
In Figure 7, the contour line indicates the average ATTE of all strategies, and the

superimposed vector diagram indicates the amount of strategy rate changes derived
from Equation (9). Namely, a stream line indicated by vectors means a specific social
dynamics when an arbitrary initial strategy distribution is given. The horizontal and
vertical axes denote the number of SD-CM and ST vehicles, respectively. Because the
number of all vehicles (N ) is defined, the axis of the third strategy, ST-RIS, can be
shown by the 45-degree line to the cross-point of both axes. The contour colour shows
that the more the white colour, lower the ATTE, and higher the payoff of the society
as a whole. The cross-sectional view of the longer side of the triangle of Figure 7 is
equivalent to Figure 6.
One important observation in Figure 7 is the equilibrium strategy distribution

(in other words, the strategy fraction when the time infinitely elapses, or the social
equilibrium situation). For example, in a society where ST-RIS does not exist (before
an information-sharing CNS was introduced), SD-CM is attracted to the internal
equilibrium position shown in point 1 (consistent with point 1 in Figure 6), and a
stable coexistence situation of SD-CM and ST is achieved. However, if ST-RIS were
introduced, SD-CM would eventually disappear and the society would have the
coexistence equilibrium of ST-RIS and ST (point 3 in Figure 7).
The minimum point of ATTE (point 2 in Figure 7) nearly corresponds with the

internal equilibrium point (point 3 in Figure 7), but they are different, indicating that
phenomena such as those of the minority game have occurred to a small extent.
Numerical values of the strategy distribution at each point are summarized in Table 3.

3.2. Case 2. The result shown in Figure 8 is similar to that in Figure 7. When
congestion information is updated more frequently, the equilibrium seems to be
almost an oligopoly of ST (the ST-RIS vehicles are almost extinct; see point 4 in
Figure 8). This shows that when the accuracy of information is improved by frequent
updating, the ability of ST-RIS to predict future congestion gradually decreases,
which implies that the strategy using the present congestion information (ST) becomes
relatively stronger. Moreover, the discrepancy between the social utility maximum

2.0 4.2

ATTE

SD - CMST - RIS

ST

Point 2

Point 3

Point 1

Figure 7. Contour showing the average ATTE for all strategies in Case 1. Vector map shows
change of the number of vehicles obtained from (9).
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point (point 5 in Figure 8) and the equilibrium point (point 4 in Figure 8) becomes
larger, as compared with Case 1 (the discrepancy between point 2 and point 3 in
Figure 7).

3.3. Case 3. The result of this case shown in Figure 9, is similar to that of Case 1,
but ST-pRIS is used as the third strategy instead of ST-RIS. When ST-pRIS is
introduced, SD-CM disappears at the equilibrium point, similar to the two cases
described before. In addition, the internal equilibrium point (point 6 in Figure 9),
consisting of ST and ST-pRIS, implies almost the same strategy fraction as in Case 1
(point 3 in Figure 7). Meanwhile, the social utility ATTE is different when the third
strategy becomes a social majority (by means of a public subsidy, for example).
Namely, ATTE, enclosed by a dotted line in Figure 9, is much lower than the same
area in Figure 7. At the equilibrium point (point 6 in Figure 9), the social utility
improved more than that in Case 1, although the social share of ST-pRIS is almost the
same as that of ST-RIS in Figure 7 (see point 3 in Figure 7). It is believed that social
utility has improved, because the vehicles using the ST-pRIS strategy can choose a
different route from each other (because of information uniformity), and therefore,
never encourage congestion.

4. DISCUSSION. According to the results of Case 1, the normal CNS
(ST strategy) can be increased up to a certain proportion, which is considered as

Table 3. Strategy distribution at each point in Figures 7–9.

SD-CM ST ST-RIS/ ST-pRIS

Point 1 0·21 0·79 0
Point 2 0 0·67 0·31
Point 3 0 0·74 0·26
Point 4 0 1 0
Point 5 0 0·77 0·23
Point 6 0 0·68 0·32
Point 7 0 &0·15 &0·85

2.0 4.2

ATTE

SD-CMST-RIS

ST
 

Point 5 

Point 4 

Figure 8. Contour showing the average ATTE for all strategies in Case 2. Vector map shows
change of the number of vehicles obtained from (9).
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follows. When the number of normal CNS vehicles (ST strategy) increases, many
CNSs choose the same route based on the same traffic information, generating traffic
congestion. When a single ST-RIS strategy is introduced into the ST and SD-CM
society, SD-CM eventually disappears. Hence, it can be as assumed that the efficiency
of the whole CNS (ST and ST-RIS) can be increased by introducing the information-
sharing CNS (ST-RIS). However, there are few differences in the social utilities of the
equilibrium point of SD-CM and ST (point 1 of Figure 7) and that of the final state
(point 2 of Figure 7). This suggests that the introduction of the information-sharing
CNS does not remarkably influence the social utility.
According to the results of Case 2, when traffic-congestion information is updated

more frequently, the normal CNS (ST strategy) becomes more superior to the
information-sharing CNS (ST-RIS) strategy, which can be explained as follows.
Frequent updating improves the accuracy of congestion information, which the
normal CNS (ST) can access. However, the information-sharing CNS (ST-RIS)
strategy causes deterioration in information accuracy through the incorporation of
shared information.
In the future, when technology progresses and traffic-congestion information can be

received in real time, the information-sharing CNS will become meaningless, because
the normal CNS will be able to solve congestion problems.
Finally, after considering the results of Case 3, it can be said that the partial-

information-sharing CNS (ST-pRIS) becomes a major strategy, and the social utility
is improved when compared with Case 1. The reasons are thought to be as follows.
They can choose different routes from each other by collecting different information.
In addition, collecting information from only forward vehicles may increase the
accuracy of information.
Moreover, the partial-information-sharing CNS is more worthy of consideration

than the information-sharing CNS, both in terms of practical application as well as its
effectiveness, as discussed above. The information-sharing CNS needs huge computer
resources to accumulate the traffic-congestion information from several ST-RIS
vehicles. However, a vehicle with a partial-information-sharing CNS collects and
calculates congestion information, which means “independent, distributed, and local

2.0 4.2

ATTE

SD-CMST-pRIS

ST

Point 6

Point 7

Figure 9. Contour showing the average ATTE for all strategies in Case 3. Vector map shows
change of the number of vehicles obtained from (9).
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control.” Therefore, huge computer resources such as the route-information server are
not required.
However, there are some problems that need to be addressed before practical usage.

For example, the CNS system needs to send private information (origin, destination,
etc.) to the other vehicles. Therefore, it is necessary to retain privacy in terms of
information processing.

5. CONCLUSION. In this paper, we considered the mechanism of traffic
congestion caused by CNS vehicles. We then constructed a traffic model to deal with
two different scales: the traffic congestion as a macroscale phenomenon, and the route
choice as microscale behavior. After that, we examined a well-known problem that
the normal CNS is likely to generate, congestion by choosing the same routes. To
overcome this, we proposed the partial-information-sharing CNS (ST-pRIS) strategy,
and illustrated that it can improve not only the individual utility, but also the utility of
the whole society.
Our result can be interpreted from the game theoretical point of view. Although

information shearing sounds novel in terms of ITS context, a simple concept to
globally share navigating information of respective car agents cannot help bringing a
social dilemma situation emulated by Minority Games. To avoid this social dilemma
imposing relatively lower payoff to an agent who takes a simple information sharing
strategy, the concept of partial sharing might be one of the solutions. By “partially”
shared navigation information only with closer agents, information uniformity can be
broken down effectively, which encourages less congestion than globally shared cases.
As part of our future tasks, we need to improve the reality of the model. The road

network used in this model needs to be based on a real city roadmap or highways
between cities.
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