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ON LARGE-DEVIATION PROBABILITIES FOR THE EMPIRICAL
DISTRIBUTION OF BRANCHING RANDOM WALKS WITH HEAVY TAILS

SHUXIONG ZHANG,∗Beijing Normal University

Abstract

Given a branching random walk (Zn)n≥0 on R, let Zn(A) be the number of particles
located in interval A at generation n. It is well known that under some mild con-
ditions, Zn(

√
nA)/Zn(R) converges almost surely to ν(A) as n → ∞, where ν is the

standard Gaussian measure. We investigate its large-deviation probabilities under the
condition that the step size or offspring law has a heavy tail, i.e. a decay rate of
P(Zn(

√
nA)/Zn(R) > p) as n → ∞, where p ∈ (ν(A), 1). Our results complete those in

Chen and He (2019) and Louidor and Perkins (2015).
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1. Introduction and main results

1.1. Introduction

We consider a branching random walk (BRW) model, which is governed by a probability
distribution {pk}k≥0 on the natural numbers (called the offspring distribution) and a real-valued
random variable X (called the step size or displacement). This model is defined as follows.
At time 0, there is one particle located at the origin. The particle dies and produces offspring
according to the offspring distribution {pk}k≥0. Afterwards, the offspring particles move inde-
pendently according to the law of X. This forms a process Z1. For any point process Zn, n ≥ 2,
we define it by the iteration Zn =∑x∈Zn−1

Z̃x
1, where Z̃x

1 has the same distribution as Z1( · −Sx),

and {Z̃x
1 : x ∈ Zn−1} (conditioned on Zn−1) are independent. Here and later, for a point process

(also for a point measure) ξ , x ∈ ξ means x is an atom of ξ , and Sx is the position of x (i.e.
ξ =∑x∈ξ δSx ).

We are interested here in the large-deviation probabilities of the corresponding empirical
distribution, which is defined as

Z̄n(A) := Zn(A)

Zn(R)
for a measurable set A ⊂R.

According to [7, Theorem 6]: if E[X] = 0, E
[
X2
]= 1, E[Z1(R) log Z1(R)] < ∞, and

E[Z1(R)] > 1, then, for any Borel-measurable set A ⊂R, Z̄n(
√

nA) → ν(A) P-a.s. (almost
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surely) on non-extinction, where ν is the standard Gaussian measure. So, it is natural to study
the decay rate of P(Z̄n(

√
nA) ≥ p) as n → ∞, where p ∈ (ν(A), 1).

In fact, this question was considered in [32] under the assumption that p0 = p1 = 0 and
P(X = 1) = P(X = −1). Later, [13] further investigated the problem for unbounded displace-
ments; see also [33]. However, they always assumed that the offspring law and step size have
an exponential moment (or that the step size has a stretched exponential moment). So, we shall
deal here with the case that the offspring law or step size has a heavy tail (i.e. E[eθZ1(R)] = +∞
or E[eθX] = +∞ for any θ > 0). We will see that the strategy for studying this problem and
the answers obtained will be very different from theirs.

We also mention here that the BRW model has been extensively studied in recent decades
due to its connection to many fields, such as Gaussian multiplicative chaos, random walks in
random environments, random polymers, random algorithms, discrete Gaussian free field, etc;
see [1, 9, 27, 30, 31] and references therein, and refer to [38] for a more detailed overview.
The large-deviation probabilities (LDP) for BRW and branching Brownian motion (BBM) on
the real line have attracted the attention of many researchers. For example, [14, 22, 26] con-
sidered the LDP and the moderate deviation of BRW’s maximum (for BBM’s maximum, see
[11, 17–19]); [36] studied the lower deviation of BBM’s local mass. See also [1] for the upper
deviation of BBM’s level sets. Some other related works include [6, 10, 37].

The a.s. behaviour of Z̄n(
√

nA) has been considered by many researchers, e.g. [2, 7, 25, 28].
Moreover, that the a.s. convergence rate of Z̄n(

√
nA) − ν(A) tends to zero has also been

well studied recently: [12] considered the branching Wiener process; [23] generalized Chen’s
results to the BRW, but a kind of Cramér’s condition is needed for the step size; [24] studied
the case when the step size of the BRW is lattice. These results show that

√
n(Z̄n(

√
nA) − ν(A))

converges almost surely to a non-degenerate limit.

1.2. Main results

Before giving our results, we first introduce some notation. Let A be the algebra
generated by {( − ∞, x], x ∈R}. For a non-empty set A ∈A and p ∈ (ν(A), 1), define
IA(p) = inf {|x| : ν (A − x) ≥ p}, JA(p) = inf

{
r : supx∈R ν

(
(A − x) /

√
1 − r

)≥ p, r ∈ [0, 1)
}
.

Let |Zn| := Zn(R), m :=E[|Z1|], and b := min{k ≥ 0 : pk > 0} ≤ B := sup{k ≥ 0:pk > 0} ≤
+∞. Recall that {pk}k≥0 is the offspring law, and X is the step size. In the remainder of this
work we always need the following assumptions.

Assumption 1.

(i) p0 = 0, p1 < 1.

(ii) X is symmetric and E
[
X2
]= 1.

(iii) A is a no-empty set in A.

Remark 1. In Assumption 1(i), p0 = 0 is made for convenience. If not, we can condition on
non-extinction to obtain analogous results. Assumption 1(ii) is not essential either, but simpli-
fies the proof. Assumption 1(iii) is crucial to our main results, and if A /∈A, then the situation
would be very different (see [32, Proposition 1.3]).

Now we are ready to state our main results. The first theorem concerns the case that the
offspring law has a Pareto tail. Let �(a) := supt∈R{at − log E[etX]} be the rate function in
Cramér’s theorem; see [15, Section 2.2].
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Theorem 1. Take p ∈ (ν(A), 1) such that IA(·) is continuous at p and IA(p) < ∞. Suppose
P(|Z1| > x) = �(1)x−β as x → +∞ for some constant β > 1. Assume E

[
eθX
]
< ∞ for some

θ > 0.

(i) If 0 < β − 1 < − log p1
log m , then

− inf
h>0

	1(h) ≤ lim inf
n→∞

1√
n

log P
(
Z̄n(

√
nA) ≥ p

)
≤ lim sup

n→∞
1√
n

log P
(
Z̄n(

√
nA) ≥ p

)≤ − sup
h>0

	′
1(h),

where 	1(h) := h(β − 1) log m + �
( IA(p)

h

)
h, 	′

1(h) := (h(β − 1) log m) ∧ (�( IA(p)
h

)
h
)
,

and we make the convention that − log p1 = +∞ if p1 = 0.

(ii) If β − 1 ≥ − log p1
log m , then

− inf
h>0

	2(h) ≤ lim inf
n→∞

1√
n

log P(Z̄n(
√

nA) ≥ p)

≤ lim sup
n→∞

1√
n

log P(Z̄n(
√

nA) ≥ p) ≤ − sup
h>0

	′
2(h),

where 	2(h) := − h log p1 + �
( IA(p)

h

)
h, 	′

2(h) := ( − h log p1) ∧ (�( IA(p)
h

)
h
)
.

Remark 2. If p1 > 0, − log p1/ log m is the so-called Schröder constant, which determines
the asymptotic behaviour of the harmonic moments of |Zn| (see Lemma 2). Furthermore, we
will see that the asymptotic behaviour of P(Z̄n(

√
nA) ≥ p) mainly depends on the harmonic

moments.

Remark 3. If β ∈ (0, 1), [3] showed that Z̄n(
√

n( − ∞, y]) converges in distribution to a
Bernoulli random variable.

The next theorem considers the case that the offspring law has a Weibull tail. As we can see
in the following, the decay scales are the same as when that offspring law has an exponential
moment. However, the Böttcher constant appears in the rate function.

Theorem 2. Take p ∈ (ν(A), 1) such that IA(·) is continuous at p and IA(p) < ∞. Suppose
P(|Z1| > x) ∼ l1e−lxβ

as x → ∞ for some constants β ∈ (0, 1) and l1, l ∈ (0, +∞). Assume
p1 = 0.

(i) If ess sup X = L ∈ (0, +∞), then

lim
n→∞

1√
n

log
[− log P(Z̄n(

√
nA) ≥ p)

]= IA(p)

L

ρβ

β + ρ − βρ
log m, (1)

where ρ is the so-called Böttcher constant such that b = mρ .

(ii) If P(X > x) = �(1)e−λxα
as x → ∞ for some constants α ∈ (0, ∞) and λ > 0, then

lim
n→∞

( log n)(α−1)∨0

nα/2
log P(Z̄n(

√
nA) ≥ p) = −λIA(p)α

(
2βρ log m

α(β + ρ − βρ)

)(α−1)∨0

. (2)
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Remark 4. For the Schröder case (i.e. p1 > 0), we can check that, combining the proof of [13,
Theorem 1.1] and Lemma 5, we can generalize [13, Theorem 1.1] to the case that |Z1| has a
Weibull tail.

As we can see in the above, when the step size has an exponential moment, the decay rate
is very sensitive to the tail of the offspring law. However, in the next theorem we will see that
when the step size has a Pareto tail, the offspring law seems to have little effect on the decay
rate.

Theorem 3. Take p ∈ (ν(A), 1) such that IA(·) is continuous at p and IA(p) < ∞. Suppose
E
[|Z1|β

]
< ∞ for some β > 1 and b < B. Assume P(X > x) ∼ κx−α as x → ∞ for some

constants κ > 0 and α > 2. Then

lim
n→∞

1

log n
log P(Z̄n(

√
nA) ≥ p) = −α

2
.

Remark 5. If b = B, the above result is still true provided A is unbounded and p ∈(
ν(A), ν(A) + b−1(1 − ν(A))

)
.

The above theorems all assume that IA(p) < ∞, and we have seen that in this case the law
of step size plays an important role in the decay rate. However, in the following we will see
that if IA(p) = ∞, the decay rate mainly depends on the offspring law.

Theorem 4. Suppose IA(p) = ∞ and JA(·) is continuous at p for p ∈ (ν(A), 1).

(i) If P(|Z1| > x) = �(1)x−β as x → +∞ for some constant β > 1, then

lim
n→∞

1

n
log P(Z̄n(

√
nA) ≥ p) =

⎧⎨
⎩

−JA(p)(β − 1) log m, 0 < β − 1 < − log p1
log m ;

JA(p) log p1, β − 1 ≥ − log p1
log m .

(ii) Assume P(|Z1| > x) ∼ l1e−lxβ
as x → ∞ for some constants β ∈ (0, 1) and l1, l ∈

(0, +∞).

(a) If p1 > 0, then lim
n→∞

1
n log P(Z̄n(

√
nA) ≥ p) = JA(p) log p1.

(b) If p1 = 0, then

lim
n→∞

1

n
log
[− log P(Z̄n(

√
nA) ≥ p)

]= JA(p)
ρβ

β + ρ − βρ
log m.

Remark 6. In fact, Theorems 3 and 4 can also be generalized to the case that the step size
X is in the domain of attraction of an α-stable law with α ∈ (0, 2]. The results and proofs
are similar; the main changes are to replace ν with the α-stable law and replace

√
n with

inf{x : P(|X| > x) < n−1} (which is a regular variation sequence with index 1/α).

Although, the proofs of the above four theorems differ from case to case, the basic strategy
behind each of them is the same. If IA(p) < ∞, we let x be the number realizing the infimum
in the definition of IA(p), otherwise we let x realize the supremum in the definition of JA(p).
The lower bound aims at achieving the event {Z̄n(

√
nA) ≥ p)} in the most effortless way. For

Theorems 1, 2, and 4, our strategy is to let one particle reach around x
√

n at some intermediate
generation tn, and then force its children to dominate the population size at time tn + 1 (since
in these theorems the offspring law has a heavy tail, this can be done with relatively high
probability). Finally, optimizing for tn yields the desired lower bound. For Theorem 3 the step
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size has a heavy tail, so particles can reach a high position in a short time. Therefore, in order
to achieve {Z̄n(

√
nA) ≥ p)}, we can let one particle reach around x

√
n in the first generation

and other particles stay around the origin.
For the upper bound all the theorems use a similar idea, which is borrowed from [32]. Our

main tasks are to generalize their [32, Lemma 2.4] in the heavy-tail case and to study the
asymptotic behaviours of the harmonic moments and stretched exponential moments of |Zn|.

The rest of this paper is organised as follows. In Section 2 we present some preliminary
results that are frequently used in our proofs. We consider the offspring law with a Pareto tail
in Section 3, and a Weibull tail in Section 4. Section 5 is devoted to studying the case that the
step size has a Pareto tail. The last section considers the case that IA(p) = +∞. We always use
C, C′, C0, C1, . . . and c1, c2, . . . to denote positive constants. As usual, we denote by C(ε, M)
(or Cε,M) a positive constant depending only on ε and M. And, by convention, f (x) = �(1)g(x)
as x → +∞ means there exist constants C ≥ C′ > 0 such that C′ ≤ |f (x)/g(x)| ≤ C for all x > 1,
and f (x) ∼ g(x) means lim

x→∞ f (x)/g(x) = 1.

2. Preliminaries

In the following, we mainly concentrate on the offspring law |Z1| (or step size X) having one
of the two typical heavy tails: Weibull or Pareto. For convenience, we write |Z1| ∼ Pareto(β) if
P(|Z1| > x) = �(1)x−β as x → +∞ for some constant β > 1, and |Z1| ∼ Weibull(β) if P(|Z1| >
x) ∼ l1e−lxβ

as x → ∞ for some constants β ∈ (0, 1) and l1, l ∈ (0, +∞). We denote by νn the
distribution of Sn := ∑n

i=1 Xi, where {Xi}i≥1 are independent and identically distributed (i.i.d.)
copies of the step size X. We write Wn := |Zn|/mn. From [16, Theorems 1 and 3] and [29,
Theorem 1], we have the following uniform bounds for Wn.

Lemma 1.

(i) If |Z1| ∼ Pareto(β) for some β > 1 then there exist constants 0 < c1 < c2 < ∞ such
that c1x−β ≤ P(Wn > x) ≤ c2x−β for all x > 1 and n ≥ 1. Hence, for α ∈ [1, β),
supn≥1 E[Wα

n ] < ∞.

(ii) If |Z1| ∼ Weibull(β) for some β ∈ (0, 1) then, for every ε ∈ (0, 1), there exist constants
cε > c′

ε > 0 depending only on ε such that c′
εe−l((m+ε)x)β ≤ P(Wn > x) ≤ cεe−l((m−ε)x)β

for all x > 0 and n ≥ 1. Hence, for α ∈ (0, β) and θ > 0, supn≥1 E
[
eθWα

n
]
< ∞.

(ii) If E[|Z1|β ] < ∞ for some β > 1 then

E

[
sup
n≥1

Wβ
n

]
< ∞. (3)

The following lemma gives the asymptotic behaviour of harmonic moments; see [35,
Theorem 1].

Lemma 2. If E[|Z1|] < ∞ and r > 0 then limn→∞ E
[|Zn|−r

]
An(r) = C0, where C0 ∈ (0, +∞)

is a constant depending only on {pk}k≥0 and r, and

An(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p−n
1 , r > − log p1

log m
;

np−n
1 ,r = − log p1

log m
;

mnr, r < − log p1

log m
.
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The next lemma considers the asymptotic behaviour of stretched exponential moments, and
we will see that it is related to the LDP of Z̄n(

√
nA) when |Z1| has a Weibull tail. Recall that ρ

is the Böttcher constant such that b = mρ .

Lemma 3. Assume that E[|Z1| log |Z1|] < ∞. For any β ∈ (0, 1), l ∈ (0, ∞),

lim
n→∞

1

n
log E

[
e−l|Zn|β

]
= p1, if p1 > 0;

lim
n→∞

1

n
log
[
− log E

[
e−l|Zn|β

]]
= βρ

β + ρ − βρ
log m, if p1 = 0.

Proof. We first consider the case p1 = 0. Let d be the greatest common divisor of
{j − k : j �= k, pjpk > 0}. According the proof of [20, Theorem 6], for any fixed ε ∈ (0, 1) there
exist constants c3 ≥ c4 > 0 such that, for any bn ≤ k ≤ �m(1−ε)n�, k = bn (mod d), and n ≥ 1,

exp

[
−c3

(
k

mn

)− ρ
1−ρ

]
≤ mn

P(|Zn| = k) ≤ exp

[
−c4

(
k

mn

)− ρ
1−ρ

]
. (4)

Hence, for the upper bound, we have

E

[
e−l|Zn|β

]
≤E

[
e−l|Zn|β 1{|Zn|≤m(1−ε)n}

]
+ e−lmβ(1−ε)n

≤ m−n
∑

bn ≤ k ≤ �m(1−ε)n�
k = bn(mod d)

exp ( − lkβ ) exp

[
−c4

(
k

mn

)− ρ
1−ρ

]
+ e−lmβ(1−ε)n

. (5)

Note that there exists a positive constant T depending only on l, c4, ρ, and β such that, for n
large enough,

min
bn≤x≤�m(1−ε)n�

{
lxβ + c4

( x

mn

)− ρ
1−ρ

}
≥ Tm

βρn
β+ρ−βρ .

As a consequence, if 1 − ε >
ρ

β+ρ−βρ
then

E

[
e−l|Zn|β

]
≤ mεn exp

(
−Tm

βρn
β+ρ−βρ

)
+ e−lmβ(1−ε)n

≤ 2mεn exp

(
−(T ∧ l)m

βρn
β+ρ−βρ

)
,

which yields

lim inf
n→∞

1

n
log
[
− log E

[
e−l|Zn|β

]]
≥ βρ

β + ρ − βρ
log m.

For the lower bound, similarly, using the left-hand side of (4) we have, for n large enough,

E

[
e−l|Zn|β

]
≥ m−n

∑
bn ≤ k ≤ �m(1−ε)n�

k = bn(mod d)

exp ( − lkβ ) exp

[
−c3

(
k

mn

)− ρ
1−ρ

]

≥ m−n exp

(
−T ′m

βρn
β+ρ−βρ

)
,
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where T ′ > 0 depends on l, c3, ρ, β, and d. Taking limits yields

lim sup
n→∞

1

n
log
[
− log E

[
e−l|Zn|β

]]
≤ βρ

β + ρ − βρ
log m.

For p1 > 0, by [21, Lemma 13] there exists a universal constant c > 0 such
that, for any k, n ≥ 1, P(|Zn| = k) ≤ cpn

1k−( log p1/ log m)−1. Thus, pn
1e−l ≤E

[
e−l|Zn|β ]≤

cpn
1

∑
k≥1 k−( log p1/ log m)−1e−lkβ

, which implies the desired result. �

The following two lemmas are analogous results to [32, Lemma 2.4]. In the following, we
denote by M the collection of all local finite point measures on R. Recall that for ξ ∈M,
x ∈ ξ means x is an atom of ξ , and Sx is the position of x (i.e. ξ =∑x∈ξ δSx ). |ξ | represents

the total number of its atoms. Let Zξ
n be the branching random walk started from Zξ

0 = ξ ; for

simplicity, we write Zx
n := Z

δSx
n . Denote by Z̄ξ

n (·) the corresponding empirical distribution of
Zξ

n . Let Wx
n := |Zx

n|/mn.

Lemma 4. Assume E[|Z1|β ] < ∞ or |Z1| ∼ Pareto(β) for some β > 1. Then, for every ε ∈(
0, 1

3

)
, there exists a constant C1 > 0 depending on ε and β such that, for any ξ ∈M, n ≥ 1,

and A ⊂R,

P

(
Z̄ξ

n (A) ≥ 1

|ξ |
∑
x∈ξ

νn (A − Sx) + ε

)
≤ C1|ξ |1−β . (6)

The same holds if > and +ε are replaced by <, −ε.

Proof. We first consider the case E
[|Z1|β

]
< ∞ for some β > 1. By the branching property,

for any n ≥ 1 and ε ∈ (0, 1
3 ), we have

P

(
Z̄ξ

n (A) ≥ 1

|ξ |
∑
x∈ξ

νn (A − Sx) + ε

)

= P

( 1
|ξ |
∑

x∈ξ Zx
n(A)/mn

1
|ξ |
∑

x∈ξ Zx
n/mn

≥ 1

|ξ |
∑
x∈ξ

νn(A − Sx) + ε

)

≤ P

(∑
x∈ξ

Wx
n < |ξ |(1 − ε/2)

)
+ P

(∑
x∈ξ

(
Wx

n(A) − νn (A − Sx)
)
> |ξ |ε/3

)

≤ P

(∑
x∈ξ

(1 − Wx
n) >

ε

3
|ξ |
)

+ P

(∑
x∈ξ

(
Wx

n(A) − νn (A − Sx)
)
> |ξ |ε/3

)

=: I1 + I2, (7)

where ε ∈ (0, 1
3

)
is used in the first inequality.

We first consider I2. By [34, Corollary 1.6], we know that if Yx, x ∈ ξ , are independent
random variables with zero mean, and A+

t =∑x∈ξ E
[
Yt

x1{Yx≥0}
]
< ∞ for some 1 ≤ t ≤ 2, then,

for yt ≥ 4A+
t and z > y,

P

(∑
x∈ξ

Yx ≥ z

)
≤
∑
x∈ξ

P(Yx > y) +
(

e2A+
t /zyt−1

)z/2y
. (8)
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So, if we choose t = 1 + β−1
2β

, y = 1
4β

z, and z = |ξ |ε/3, then t ∈ (1, 2 ∧ β]. Let Yx = Wx
n(A) −

νn(A − Sx). Note that by (3), there exists a constant Cβ > 0 such that

sup
n

E
[
Wt

n

]
< Cβ < ∞. (9)

Therefore, A+
t < ∞. Furthermore, by (9), there exists a constant Cε,β > 0 such that, for all

|ξ | > Cε,β and n ≥ 1,

yt =
(

ε|ξ |
12β

)t

≥ 4|ξ |Cβ ≥ 4|ξ |E[Wt
n] ≥ 4

∑
x∈ξ

E[Yt
x1{Yx≥0}].

So, by (8), it follows that, for all |ξ | > Cε,β , n ≥ 1, and A ⊂R,

I2 ≤ |ξ |P
(

Wx
n(A) − νn(A − Sx) >

ε|ξ |
12β

)
+
(

e2Cβ3t

(4β)1−tεt

)2β

|ξ |(1−t)2β

≤ |ξ |P
(

Wn >
ε|ξ |
12β

)
+
(

e2Cβ3t

(4β)1−tεt

)2β

|ξ |1−β . (10)

By (3) and the Markov inequality, there exists a constant C′
ε,β > 0 such that, for all n ≥ 1,

P

(
Wn >

ε|ξ |
12β

)
≤
(

12β

ε|ξ |
)β

E

[
sup

n
Wβ

n

]
≤ C′

ε,β |ξ |−β . (11)

Plugging (11) into (10) yields, for all |ξ | > Cε,β , n ≥ 1, and A ⊂R,

I2 ≤ C′
ε,β |ξ |1−β +

(
e2Cβ3t

(4β)1−tεt

)2β

|ξ |1−β .

For I1, using (8) again and letting Yx = 1 − Wx
n , we have, for all |ξ | > 12β

ε
and n ≥ 1,

I1 ≤ |ξ |P
(

1 − Wx
n >

ε|ξ |
12β

)
+
(

e23t

(4β)1−tεt

)2β

|ξ |(1−t)2β =
(

e23t

(4β)1−tεt

)2β

|ξ |1−β .

Plugging the above two inequalities into (7) means that there exists a constant T(ε, β) > 0 such
that, for |ξ | > Cε,β ∨ 12β

ε
,

P

(
Z̄ξ

n (A) ≥ 1

|ξ |
∑
x∈ξ

νn (A − Sx) + ε

)
≤ T(ε, β)|ξ |1−β .

Hence, to obtain (6), we can take C1 := (Cε,β ∨ 12β
ε

)β−1 ∨ T(ε, β). For the case P(|Z1| > x) ∼
�(1)x−β , as a consequence of Lemma 1 we only need to replace (11) by

P

(
Wn >

ε|ξ |
12β

)
≤ c2

(
ε

12β

)−β

|ξ |−β .

Replacing A with Ac, we obtain (6) with > and +ε replaced by <, −ε. �

Remark 7. We can check that if ξ is a point process with a fixed number of atoms the result is
similar, with E[νn(A − Sx)] replacing νn(A − Sx).
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Lemma 5. If |Z1| ∼ Weibull(β) for some β ∈ (0, 1) then, for every ε > 0 small enough, there
exist positive constants C2 and C3 depending on ε and β such that, for any ξ ∈M, n ≥ 1, and
any A ⊂R,

P

(
Z̄ξ

n (A) ≥ 1

|ξ |
∑
x∈ξ

νn(A − Sx) + ε

)
≤ C2e−C3|ξ |β . (12)

The same holds if > and +ε are replaced by <, −ε.

Proof. From (7), for every ε ∈
(

0, 1
3

)
we have

P

(
Z̄ξ

n (A) ≥ 1

|ξ |
∑
x∈ξ

νn(A − Sx) + ε

)

≤ P

(∑
x∈ξ

(1 − Wx
n) >

ε

3
|ξ |
)

+ P

(∑
x∈ξ

Wx
n(A) >

∑
x∈ξ

νn(A − Sx) + |ξ |ε/3

)

=: I1 + I2. (13)

For I1, note that sup
x,n

E
[
e1−Wx

n
]
< ∞. Furthermore, by Lemma 1, E

[
((1 − Wx

n)−)2
]≤ 3 +

supn E
[
W2

n

]
< ∞. Hence, by [32, Lemma 2.3], there exists a constant c5 > 0 such that, for

all n, ξ , and ε small enough,

I1 = P

(∑
x∈ξ

(1 − Wx
n) >

ε

3
|ξ |
)

≤ e−c5ε
2|ξ |. (14)

For I2, by Lemma 1 there exists a constant c6 > 0 such that, for all y > 0 and n ≥ 1,
P(Wx

n(A) > y) ≤ P(Wn > y) ≤ c6 exp [ − l(m − 1)βyβ ]. Let Xi, i ≥ 1, be i.i.d. copies of Wx
n(A),

and

ai(|ξ |) =

⎧⎪⎨
⎪⎩
(
|ξ |ε/3 +∑x∈ξ νn(A − Sx)

)−1
, 1 ≤ i ≤ |ξ |;

0, i > |ξ |.
Then, by slight modifications of the proof of the upper bound [5, Theorem 2.1], there exist
positive constants T , T ′ depending on ε and β such that, for any |ξ | > T , n ≥ 1, and any A ⊂R,

I2 = P

(∑
x∈ξ

Wx
n(A) >

∑
x∈ξ

νn(A − Sx) + |ξ |ε/3

)
≤ e−T′|ξ |β . (15)

Plugging (14) and (15) into (13) concludes the proof of this lemma with C2 := eT′Tβ
and

C3 := T ′ ∧ (c5ε
2). �

The following lemma concerns LDP of sums of i.i.d. Weibull-tail random variables.

Lemma 6. Suppose {Xi}i≥1 is a sequence of i.i.d. random variables having the same distri-
bution as X. Assume that P(X > x) = �(1)e−λxα

as x → ∞ with some α ∈ (1, ∞) and λ > 0,
tn = o(n1/3), and tn → ∞. For any 0 < a < b ≤ +∞, we have

lim
n→∞

tnα−1

nα/2
log P

( tn∑
i=1

Xi ∈ (a
√

n, b
√

n)

)
= −λaα .
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Proof. The upper bound can be found in [13, Lemma B.1]. For the lower bound, since
Ce−λxα ≤ P(X > x) ≤ C′e−λxα

for some constants C′ > C > 0, we have, for n large enough,

P

( tn∑
i=1

Xi ∈ (a
√

n, b
√

n)

)
≥ P

(
Xi ∈

(
a
√

n

tn
,

b
√

n

tn

)
, for all 1 ≤ i ≤ tn

)

≥
(

C exp

[
−λ

(
a
√

n

tn

)α]
− C′ exp

[
−λ

(
b
√

n

tn

)α])tn

≥ Ctn exp

[
−λaα nα/2

tα−1
n

]
.

Then, the desired lower bound follows, provided tn = o(
√

n). �

3. Proof of Theorem 1

In this section we assume that |Z1| ∼ Pareto(β) for some β ∈ (1, +∞), and E[eθX] < ∞ for
some θ > 0. We also assume that IA(p) < ∞ and IA(·) is continuous at p.

Proof. We start with the lower bound. Fix ε > 0. By the continuity of IA(·) at p, there
exist some δ > 0 and |x| < IA(p) + ε such that, for any small η > 0, infy∈[x−η,x+η] ν(A − y) ≥
p + δ. Consequently, we can choose M > 1 large enough that 1

1+M−1 infy∈[x−η,x+η] ν(A −
y) ≥ p + δ

2 . Let tn := �h
√

n� with some h > 0, and |v| be the generation of particle v. Set
Zv

k := ∑
u∈Z|v|+k,u is a descent of v δSu−Sv ; H(u) := {w ∈ Ztn+1:w /∈ Zu

1} for u ∈ Ztn ; E := {(ξ, k, r) ∈
M×N

+ ×N
+ : ξ has exactly one atom z such that Sz ∈ [(x − η)

√
n, (x + η)

√
n]; k > 2Mr};

E := {Ztn has exactly one particle u such that Su ∈ [(x − η)
√

n, (x + η)
√

n] and |Zu
1 | >

2M
∑

v �=u,v∈Ztn
|Zv

1|
}
. Namely, Zv

k is the kth generation of the sub-BRW emanating from parti-
cle v, and H(u) represents a collection of particles at time tn + 1 who are not the children of u.
The proof of the lower bound is divided into two main steps.

For the first step, we will show that there exists a constant CM > 0 such that, for n
large enough, P(Z̄n(

√
nA) ≥ p) ≥ CMP(E). Let {Zi

n}n≥0, i ≥ 1, be i.i.d. copies of {Zn}n≥0 and
Wv

n−tn−1 := |Zv
n−tn−1|m−(n−tn−1), and let xv be the displacement of particle v. By the Markov

property, we have

P
(
Z̄n(

√
nA) ≥ p

)

≥ P

⎛
⎜⎝there exists u ∈ Ztn such that

∑
v∈Zu

1

Zv
n−tn−1(

√
nA − xv − Su) + ∑

w∈H(u)
Zw

n−tn−1(
√

nA − Sw)

∑
v∈Zu

1

|Zv
n−tn−1| +

∑
w∈H(u)

|Zw
n−tn−1|

≥ p and

∑
v∈Zu

1

|Zv
n−tn−1|∑

w∈H(u)
|Zw

n−tn−1|
> M

⎞
⎟⎠
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≥
∫
E
P

⎛
⎜⎜⎜⎜⎝

k∑
i=1

Zi
n−tn−1(

√
nA − xv − Sz)

k∑
i=1

|Zi
n−tn−1| +

r∑
j=1

|Zj
n−tn−1|

≥ p and

k∑
i=1

|Zi
n−tn−1|

r∑
j=1

|Zj
n−tn−1|

> M

⎞
⎟⎟⎟⎠ P(Ztn ∈ dξ, |Zz

1| ∈ dk, |H(z)| ∈ dr)

≥
∫
E
P

⎛
⎜⎜⎜⎝

k∑
i=1

Zi
n−tn−1(

√
nA − xv − Sz)

(1 + M−1)
k∑

i=1
|Zi

n−tn−1|
≥ p and

k∑
i=1

Wi
n−tn−1

r∑
j=1

Wj
n−tn−1

> M

⎞
⎟⎟⎟⎠ P

(
Ztn ∈ dξ, |Zz

1| ∈ dk, |H(z)| ∈ dr
)

=:
∫
E

Pn(ξ, k, r)P(Ztn ∈ dξ, |Zz
1| ∈ dk, |H(z)| ∈ dr), (16)

where P(Ztn ∈ dξ ) represents the distribution of the point process Ztn (for a serious definition
of a point process’s distribution, see [8, Section 2.1]). To finish the first step, it suffices to show
that

lim
n→∞ inf

(ξ,k,r)∈E
Pn(ξ, k, r) > 0. (17)

Since A ∈A (see Assumption 1), we can write A =∑l
i=1 (ai, bi] for some natural

number l, where −∞ ≤ ai < bi ≤ +∞. Let A(x, η) := ∑l
i=1 (ai − x + η, bi − x − η). Since

Sz ∈ [(x − η)
√

n, (x + η)
√

n], we can choose η small enough such that

1

1 + M−1
ν(A(x, η)) > p + δ

4
and

√
nA(x, η) ⊂ √

nA − Sz. (18)

Thus, by the central limit theorem, there exists a constant C(M, h, x, η, δ) > 0 such that, for
n > C(M, h, x, η, δ),

1

1 + M−1
νn−tn (

√
nA(x, η)) > p + δ

8
. (19)

Recall that Zi
n−tn−1, Wi

n−tn−1, and Xi, 1 ≤ i ≤ k, are respectively i.i.d. copies of Zn−tn−1,
Wn−tn−1, and X. Since

√
nA(x, η) ⊂ √

nA − Sz, by (16), we have

Pn(ξ, k, m) ≥ P

⎛
⎜⎜⎜⎜⎜⎝

k∑
i=1

Zi
n−tn−1(

√
nA(x, η) − Xi)

(1 + M−1)
k∑

i=1
|Zi

n−tn−1|
≥ p and

k∑
i=1

Wi
n−tn−1

� k
2M �∑
j=1

Wj
n−tn−1

> M

⎞
⎟⎟⎟⎟⎟⎠

=: E
[
1{An,k≥p}1{Bn,k≥M}

]
.
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Fix k > 2M (since (ξ, k, r) ∈ E) and ε′ ∈ (0, η). A random variable N(ε′, k) > 0 exists such that,
for n > N(ε′, k) and 1 ≤ i ≤ k,

√
nA(x, η + ε′) ⊂ √

nA(x, η) − Xi ⊂ √
nA(x, η − ε′). Thus,

k∑
i=1

m−(n−tn−1)Zi
n−tn−1(

√
nA(x, η + ε′))

(1 + M−1)
k∑

i=1
m−(n−tn−1)|Zi

n−tn−1|
≤ An,k

≤

k∑
i=1

m−(n−tn−1)Zi
n−tn−1(

√
nA(x, η − ε′))

(1 + M−1)
k∑

i=1
m−(n−tn−1)|Zi

n−tn−1|
.

Since Z̄n(
√

nA) → ν(A) and Wn → W, the above implies that limn→∞ An,k = 1
1+M−1 ν(A(x, η)),

P-a.s. On the other hand, it is easy to see that

lim
n→∞ Bn,k =

k∑
i=1

Wi
/� k

2M �∑
j=1

Wj =: Bk P-a.s.,

where Wi and Wj are i.i.d. copies of W := limn→∞ |Zn|/mn. Hence, by the dominated
convergence theorem and (18), for any fixed k > 2M we have

lim
n→∞ E

[
1{An,k≥p}1{Bn,k≥M}

]= P (Bk ≥ M) . (20)

So, to achieve (17), it suffices to show that

lim
n→∞ sup

k>2M

∣∣E [1{An,k≥p}1{Bn,k≥M}
]− P (Bk ≥ M)

∣∣= 0 (21)

and
inf

k>2M
P (Bk > M) > 0. (22)

By the strong law of large numbers, we can easily obtain infk>2M P (Bk > M) > 0. For (20),
observe that ∣∣E [1{An,k≥p}1{Bn,k≥M}

]− P (Bk ≥ M)
∣∣

≤ P(An,k < p) + P(Bn,k ≥ M, Bk < M) + P(Bn,k < M, Bk ≥ M). (23)

For the first term on the right-hand side of (23), let ξ =∑k
i=1 δXi be a point process (recall

that the Xi, i ≥ 1, are i.i.d. copies of X). By Remark 7 and (19), there exists a constant C1 > 0
depending on δ and β such that, for n > C(M, h, x, η, δ),

P(An,k < p) = P

⎛
⎜⎜⎜⎝

k∑
i=1

Zi
n−tn−1(

√
nA(x, η) − Xi)

(1 + M−1)
k∑

i=1
|Zi

n−tn−1|
< p

⎞
⎟⎟⎟⎠

= P

(
Z̄ξ

n−tn−1(
√

nA(x, η)) < p
(
1 + M−1))

≤ P

(
Z̄ξ

n−tn−1(
√

nA(x, η)) < νn−tn (
√

nA(x, η)) − δ

8

)
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= P

⎛
⎝Z̄ξ

n−tn−1(
√

nA(x, η)) <E

⎡
⎣ 1

|ξ |
∑
z∈ξ

νn−tn−1(
√

nA(x, η) − Sz)

⎤
⎦− δ

8

⎞
⎠

≤ C1k1−β, (24)

where the third equality holds since

νn−tn

(√
nA(x, η)

)= P
(
X1 + X2 + · · · + Xn−tn ∈ √

nA(x, η)
)

=E[νn−tn−1(
√

nA(x, η) − Sz)].

For the second term on the right-hand side of (23), by the strong law of large numbers we have

P(Bn,k ≥ M, Bk < M) ≤ P(Bk < M) → 0 as k → ∞. (25)

For the third term on the right-hand side of (23), there exists a constant C(M, β) > 0 such that,
for any k > 2M and n ≥ 1,

P(Bn,k < M, Bk ≥ M)

≤ P(Bn,k < M)

= P

⎛
⎜⎜⎜⎜⎜⎝

k∑
i=1

Wi
n−tn−1

� k
2M �∑
j=1

Wj
n−tn−1

< M

⎞
⎟⎟⎟⎟⎟⎠

≤ P

⎛
⎜⎝ k∑

i=1

Wi
n−tn−1 < M

� k
2M �∑
j=1

Wj
n−tn−1,

� k
2M �∑
j=1

Wj
n−tn−1 <

k

2M

3

2

⎞
⎟⎠

+ P

⎛
⎜⎝

� k
2M �∑
j=1

Wj
n−tn−1 ≥ k

2M

3

2

⎞
⎟⎠

≤ P

(
k∑

i=1

Wi
n−tn−1 <

3k

4

)
+ P

⎛
⎜⎝

� k
2M �∑
j=1

Wj
n−tn−1 ≥ k

2M

3

2

⎞
⎟⎠

≤ P

(
k∑

i=1

(
1 − Wi

n−tn−1

)
>

k

4

)
+ P

⎛
⎜⎝

� k
2M �∑
j=1

(
Wj

n−tn−1 − 1
)

≥ k

2M

1

2

⎞
⎟⎠

≤ C(M, β)k1−β, (26)

where, for the last inequality, we used exactly the same arguments as for bounding
I1 and I2 in Lemma 4. Plugging (25), (26), and (27) into (23), we obtain that for
every ε > 0 there exists a constant C(ε, M, β, δ) such that, for k > C(ε, M, β, δ) and n >

C(M, h, x, η, δ),
∣∣E [1{An,k≥p}1{Bn,k≥M}

]− P (Bk ≥ M)
∣∣< ε. Combining this with (20), there

exists some large constant C(ε, M, β, h, x, η, δ, p) such that, for n > C(ε, M, β, h, x, η, δ, p)
and k > 2M,

∣∣E [1{An,k≥p}1{Bn,k≥M}
]− P (Bk ≥ M)

∣∣< ε. Thus, (21) holds. This, combined with
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(22) and (16), implies that there exist positive constants CM and C(M, β, h, x, η, δ, p) such
that, for n > C(M, β, h, x, η, δ, p), P

(
Z̄n(

√
nA) ≥ p

)≥ CMP(E), which completes the first step.
For the second step, we will give a lower bound of P(E). Define Ftn := σ (Zi, 1 ≤ i ≤ tn). By

the first step, for n > C(M, β, h, x, η, δ, p),

P
(
Z̄n(

√
nA) ≥ p

)
≥ CMP

⎛
⎝there exists u ∈ Ztn such that Su ∈ [(x − η)

√
n, (x + η)

√
n], |Zu

1 | > 2M
∑

v �= u v ∈ Ztn

|Zv
1|
⎞
⎠

= CME

[ ∑
u∈Ztn

1{Su∈[(x−η)
√

n,(x+η)
√

n]}1{|Zu
1 |>2M

∑
v �=u,v∈Ztn

|Zv
1|}

]

= CME

[ ∑
u∈Ztn

1{Su∈[(x−η)
√

n,(x+η)
√

n]}E
[

1{|Zu
1 |>2M

∑
v �=u,v∈Ztn

|Zv
1|}
∣∣∣ Ftn

] ]
, (27)

where the first equality follows from the fact that the random variable inside the expectation can
only be 0 or 1 (since there exists at most one individual satisfying |Zu

1 | > 2M
∑

v �=u,v∈Ztn
|Zv

1|
for u ∈ Ztn ). Let ki, i ≥ 0, be i.i.d. copies of |Z1|, and independent of Ztn . Since |Z1| ∼ Pareto(β),
there exists a constant C4 > 0 such that P(|Z1| > x) > C4x−β for all x > 1. Recall the well-
known fact that if U and V are independent random variables then, for any bounded measurable
function F(x,y), we have E[F(U, V) | σ (V)] =E[F(U, v)]

∣∣
v=V . Using this fact, we have

E

⎡
⎢⎢⎣1{|Zu

1 |>2M
∑

v �= u
v ∈ Ztn

|Zv
1|}
∣∣ Ftn

⎤
⎥⎥⎦=E

[
1{k0>2M

∑|Ztn |−1
i=1 ki}

∣∣∣ Ftn

]

=E

[
1{k0>2M

∑j
i=1 ki}

] ∣∣∣
j=|Ztn |−1

=E

[
E

[
1{k0>2M

∑j
i=1 ki}

∣∣∣σ (k1, . . . , kj)
]] ∣∣∣

j=|Ztn |−1

≥ C4E

⎡
⎢⎣
⎛
⎝2M

j∑
i=1

ki

⎞
⎠

−β
⎤
⎥⎦
∣∣∣∣∣
j=|Ztn |−1

= C4E

⎡
⎢⎣
⎛
⎝2M

|Ztn |−1∑
i=1

ki

⎞
⎠

−β ∣∣∣ σ (|Ztn |)
⎤
⎥⎦

≥ C4(2M)−β
E
[|Ztn+1|−β

∣∣ Ftn

]
. (28)

Plugging (28) into (27) yields, for n > C(M, β, h, x, η, δ, p),

P
(
Z̄n(

√
nA) ≥ p

)
≥ CMC4(2M)−β

E

⎡
⎣E
⎡
⎣∑

u∈Ztn

1{Su∈[(x−η)
√

n,(x+η)
√

n]}|Ztn+1|−β
∣∣∣ Ftn

⎤
⎦
⎤
⎦

= CMC4(2M)−β
E

[ |Ztn |
|Ztn+1|β

]
νtn

(
[(x − η)

√
n, (x + η)

√
n]
)
, (29)
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where the last equality follows from the fact that the branching and motion are independent.
By Fatou’s lemma, for n large enough,

E

[ |Ztn |
|Ztn+1|β

]
= m−βm−(β−1)tnE

[
Wtn

(Wtn+1 )β

]
≥ 0.9 E

[
W1−β

]
m−βm−(β−1)tn . (30)

Plugging (30) into (29) yields the existence of a constant C′(ε, M, β, h, x, η, δ, p) such that,
for n > C′(ε, M, β, h, x, η, δ, p),

P(Z̄n(
√

nA) ≥ p)

≥ CMC4(2M)−β0.9m−β
E

[
W1−β

]
m−(β−1)tnνtn

(
[(x − η)

√
n, (x + η)

√
n]
)

≥ CMC4(2M)−β0.9m−β
E

[
W1−β

]
m−(β−1)h

√
n exp

[
−
(

�

(
x − η

h

)
+ ε

)
h
√

n

]
,

where the last inequality follows by Cramér’s theorem. Hence, for every ε, η small enough and
h > 0, the above yields

lim inf
n→∞

1√
n

log P(Z̄n(
√

nA) ≥ p) ≥ −
{

h(β − 1) log m +
(

�

(
x − η

h

)
+ ε

)
h

}
.

First, let ε → 0, and then maximize the lower bound with h, to finally obtain

lim inf
n→∞

1√
n

log P(Z̄n(
√

nA) ≥ p) ≥ − inf
h>0

{
h(β − 1) log m + �

(
IA(p)

h

)
h

}
,

which concludes the desired lower bound for the case of β − 1 <
− log p1

log m . For β − 1 ≥ − log p1
log m ,

[13, Lemma 3.1] gives

lim inf
n→∞

1√
n

log P(Z̄n(
√

nA) ≥ p) ≥ − inf
h>0

{
h log

1

p1
+ �

(
IA(p)

h

)
h

}
.

We next consider the upper bound in Theorem 1. By the definition of IA(p), for every η ∈
(0, IA(p)) there exists δ > 0 such that

sup
|y|≤IA(p)−η

ν(A − y) ≤ p − δ. (31)

Set Bn := [( − IA(p) + η)
√

n, (IA(p) − η)
√

n], M1 := {ξ ∈M: ξ (Bc
n)

|ξ | ≤ δ
2

}
, and tn := �h

√
n� for

some h > 0. For every ξ ∈M1 and n large enough, we have

1

|ξ |
∑
z∈ξ

νn−tn (
√

nA − Sz) + δ

4

≤ 1

|ξ |
∑
z ∈ ξ

z ∈ Bc
n

νn−tn (
√

nA − Sz) + 1

|ξ |
∑
z ∈ ξ

z ∈ Bn

νn−tn (
√

nA − Sz) + δ

4

≤ ξ (Bc
n)

|ξ | + sup
|z|≤IA(p)−η

νn−tn (
√

n(A − z)) + δ

4

≤ δ

2
+ p − 3δ

4
+ δ

4
= p,
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where the third inequality follows by the generalized central limit theorem (see [32, Lemma
2.2]) and (31). Hence, by Lemma 4 and the Markov inequality, for n large enough,

P
(
Z̄n(

√
nA) ≥ p

)
≤ P

(
Z̄tn (Bc

n) ≥ δ

2

)
+ P

(
Z̄tn (Bc

n) ≤ δ

2
, Z̄n(

√
nA) ≥ p

)

≤E

[
2

δ

Ztn (Bc
n)

|Ztn |
]

+
∫
M1

P

(
Z̄ξ

n−tn (
√

nA) ≥ 1

|ξ |
∑
z∈ξ

νn−tn (
√

nA − Sz) + δ

4

)
P(Ztn ∈ dξ )

≤E

[
2

δ

Ztn (Bc
n)

|Ztn |
]

+ C1E
[|Ztn |−(β−1)]. (32)

For the first term on the right-hand side of (32), define Gtn := σ (|Zi|, 1 ≤ i ≤ tn). Since the
branching and motion are independent we have, for n large enough,

E

[
2

δ

Ztn (Bc
n)

|Ztn |
]

=E

[
E

[
2

δ

Ztn (Bc
n)

|Ztn |
∣∣ Gtn

]]

= 4

δ
νtn

(
(IA(p) − η)

√
n
)

≤ 4

δ
exp

[
−
(

�

(
IA(p) − η

h

)
− ε

)
h
√

n

]
, (33)

where the second equality comes from the symmetry of the step size, and the last inequality
follows by Cramér’s theorem. For the second term on the right-hand side of (32), by Lemma 2,
for n large enough,

E

[
|Ztn |−(β−1)

]
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2C0m−(β−1)h
√

n, β − 1 ≥ − log p1

log m
;

2C0ph
√

n
1 , 0 < β − 1 <

− log p1

log m
.

(34)

Plugging (33) and (34) into (32) yields that if β − 1 ≥ − log p1
log m then

P
(
Z̄n(

√
nA) ≥ p

)≤ 4

δ
exp

[
−
(

�

(
IA(p) − η

h

)
− ε

)
h
√

n

]
+ 2C0C1(p, δ, h)m−(β−1)h

√
n,

and if 0 < β − 1 <
log 1

p1
log m then

P
(
Z̄n(

√
nA) ≥ p

)≤ 4

δ
exp

[
−
(

�

(
IA(p) − η

h

)
− ε

)
h
√

n

]
+ 2C0C1(p, δ, h)ph

√
n

1 .

So, the upper bound follows by optimizing h on (0, +∞). �

4. Proof of Theorem 2

In this section we consider the case that the offspring law has a Weibull tail, i.e. P(|Z1| >
x) ∼ l1e−lxβ

as x → ∞ for some constants β ∈ (0, 1) and l1, l ∈ (0, +∞). We assume that
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IA(p) < ∞ and IA(·) is continuous at p. Comparing with the case where the offspring law has
exponential moment, the results and proofs do not change in the Schröder case. However, in
the Böttcher case things become different: the Böttcher constant will appear in the rate func-
tion. So, in this section we further assume p1 = 0. Moreover, unlike the Pareto case, the tail of
the step size matters for the decay scale of LDP. To show this, we will investigate two types of
step size: bounded step size and Weibull-tail step size.

4.1. Proof of (1)

In this subsection we assume that p1 = 0 and 0 < ess sup X = L < ∞. We are going to show
that

lim
n→∞

1√
n

log
[− log P(Z̄n(

√
nA) ≥ p)

]= IA(p)

L

ρβ

β + ρ − βρ
log m.

Proof. We start with the lower bound. By the continuity of IA(·) at p, for every ε > 0 there
exists δ > 0 such that |IA(p + 2δ) − IA(p)| < ε. Furthermore, it is easy to see that there exists
x ∈R such that ν(A − x) = p + 2δ. So, by the continuity of ν(A − ·), there exists some η > 0

such that inf
z∈
(

x,x+ 2ηx
L

) ν(A − z) ≥ p + δ, where (b, a) := (a, b), if a < b. Let tn :=
⌈ |x|√n

(L−η)

⌉
and

E :=
{

there exists u ∈ Ztn such that Su ∈
(

x
√

n, x
√

n + 2ηx
√

n

L

)
, |Zu

1 | > 2M
∑
v �= u

v ∈ Ztn

|Zv
1|
}

.

Since |Z1| ∼ Weibull(β), there exist constants c7 > 0 and l > 0 such that P(|Z1| > y) > c7e−lyβ

for all y > 0. By similar arguments for the lower bound in Theorem 1, there exist constants
CM > 0 and T(η, x) > 0 such that, for n large enough,

P(Z̄n(
√

nA) ≥ p) ≥ CMP(E)

= CMP

(
Stn ∈

(
x
√

n, x
√

n + 2ηx
√

n

L

))
c7E

[
|Ztn |e−l(2M)β |Ztn+1|β

]

≥ CMe−T(η,x)tnE

[
e−l(2M)β |Ztn+1|β

]
, (35)

where the last inequality follows by Cramér’s theorem and the fact that |x√n| ≤
⌈ |x|√n

(L−η)

⌉
L.

Hence, by Lemma 3, we have

lim sup
n→∞

1√
n

log
[− log P(Z̄n(

√
nA) ≥ p)

]≤ |x|
L − η

ρβ

β + ρ − βρ
log m.

Finally, by letting η → 0 and ε → 0, we obtain the desired lower bound.
Then, for the upper bound, for any ε ∈ (0, IA(p)) set tn := �(IA(p) − ε)

√
n/L�. By Lemma 5

and arguments from [32, (2.30)–(2.33)], there exists δ > 0 such that, for n large enough,

P(Z̄n(
√

nA) ≥ p) ≤
∫
M

P

(
Z̄ξ

n−tn (
√

nA) ≥ 1

|ξ |
∑
z∈ξ

νn−tn (
√

nA − Sz) + δ

3

)
P(Ztn ∈ dξ )

≤ C2E
[
e−C3|Ztn |β ].

Thus, by Lemma 3, we have

lim inf
n→∞

1√
n

log
[− log P(Z̄n(

√
nA) ≥ p)

]≥ IA(p) − ε

L

ρβ

β + ρ − βρ
log m.

Finally, the desired upper bound follows by letting ε → 0. �
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4.2. Proof of (2)

In this subsection we consider the case where the step size X satisfies P(X > x) = �(1)e−λxα

as x → ∞ for some α ∈ (0, ∞), λ > 0. We are going to show that if α > 1, then

lim
n→∞

( log n)α−1

nα/2
log P(Z̄n(

√
nA) ≥ p) = −λIA(p)α

(
2βρ log m

α(β + ρ − βρ)

)α−1

.

For α ∈ (0, 1], using the same arguments as [13, Section 4.1.1] and Lemma 5, we can easily
obtain limn→∞ 1

nα/2 log P(Z̄n(
√

nA) ≥ p) = −λIA(p)α , so we feel free to omit its proof here.

Proof. For the lower bound, we start by fixing ε > 0. There exist some η, δ > 0 and |x| <
IA(p) + ε such that infy∈(x−η,x+η) ν(A − y) ≥ p + δ. Let E := {there exists u ∈ Ztn such that Su ∈(
(x − η)

√
n, (x + η)

√
n
)
, |Zu

1 | > 2M
∑

v �=u,v∈Ztn
|Zv

1|
}
, where tn := �t log n� for some 0 < t <

α(β+ρ−βρ)
2 log (m+ε)βρ

. Similar to (35), we have, for n large enough,

P(Z̄n(
√

nA) ≥ p) ≥ CMP(E)

= CMP
(
Stn ∈ ((x − η)

√
n, (x + η)

√
n
))

c7E

[
|Ztn |e−l(2M)β |Ztn+1|β

]

≥ c7CM exp

{
−(λ + ε)|x − η|α nα/2

(t log n)α−1

}
E

[
e−l(2M)β |Ztn+1|β

]

≥ c7CM exp

{
−(λ + ε)|x − η|α nα/2

(t log n)α−1

}
exp

(
−n

βρt log (m+ε)
β+ρ−βρ

)

≥ c7CM exp

{
−(λ + 2ε)|x − η|α nα/2

(t log n)α−1

}
,

where the second inequality follows from Lemma 3, the third inequality comes from Lemma 3,
and the last inequality follows from the fact that t <

α(β+ρ−βρ)
2 log (m+ε)βρ

. Hence, for any ε > 0, some

η > 0, |x| < IA(p) + ε, and any 0 < t <
α(β+ρ−βρ)

2 log (m+ε)βρ
, we have

lim inf
n→∞

( log n)α−1

nα/2
log P

(
Z̄n(

√
nA) ≥ p

)≥ −(λ + ε)
|x − η|α

tα−1
.

Finally, by letting ε → 0, t → α(β+ρ−βρ)
2 log mβρ

gives the desired lower bound.

For the upper bound, set tn := �t log n� for t >
α(β+ρ−βρ)

2βρ log (m−ε) , and Bn := [( − IA(p) +
η)

√
n, (IA(p) − η)

√
n]. Using the arguments from (31) to (32), there exists some δ > 0 such

that, for n large enough,

P
(
Z̄n(

√
nA) ≥ p

)
≤E

[
2

δ

Ztn (Bc
n)

|Ztn |
]

+
∫
M1

P

(
Z̄ξ

n−tn (
√

nA) ≥ 1

|ξ |
∑
z∈ξ

νn−tn (
√

nA − Sz) + δ

4

)
P(Ztn ∈ dξ )

≤ 2

δ
P(Stn ∈ Bc

n) + C2E

[
e−C3|Ztn |β ] ,
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where the last inequality follows from Lemma 5. As a consequence, by Lemmas 6 and 3, for n
large enough,

P
(
Z̄n(

√
nA) ≥ p

)≤ exp

{
−λ(IA(p) − η − ε)α

nα/2

(t log n)α−1

}
+ C2 exp

(
−n

βρt log (m−ε)
β+ρ−βρ

)

≤ exp

{
−(λ − 2ε)(IA(p) − η)α

nα/2

(t log n)α−1

}
,

where the last inequality follows from t >
α(β+ρ−βρ)

2βρ log (m−ε) . So, for any ε, η > 0 small enough and

t >
α(β+ρ−βρ)

2βρ log (m−ε) , we have

lim sup
n→∞

( log n)α−1

nα/2
log P

(
Z̄n(

√
nA) ≥ p

)≥ −(λ − 2ε)
(IA(p) − η)α

tα−1
,

which implies the upper bound by letting ε, η → 0 and t → α(β+ρ−βρ)
2βρ log m . �

5. Proof of Theorem 3

In this section we assume E[|Z1|β ] < ∞ for some β > 1, and IA(·) is continuous at p for
some p ∈ (ν(A), 1 − ν(A)). Here, we consider the step size to have a Pareto tail, i.e. P(X > x) ∼
κx−α as x → ∞ for some constants κ > 0 and α > 2. We are going to show that if b < B then
limn→∞ 1

log n log P(Z̄n(
√

nA) ≥ p) = −α
2 . Furthermore, if b = B and A is an unbounded set, the

above still holds provided that 0 < p − ν(A) < (1 − ν(A))/b.

Proof. We start with the lower bound. By the continuity of IA(·) at p, for every ε > 0 there
exist η, δ > 0 such that, for some |x| ≤ IA(p) + ε, infy∈[x−η,x+η] ν(A − y) ≥ p + δ. Without loss
of generality, we write A =∑h

j=1 (aj, bj]. Set A(x, η) := ∑h
j=1

(
aj − (x − η), bj − (x + η)

)
,

A(ε) := ∑h
j=1

(
aj + ε, bj − ε

)
. Obviously, we can choose ε, η small enough such that

ν(A(x, η)) > p + δ
2 , ν(A(ε)) > ν(A) − δ

2 . Set E := {ξ ∈M : ξ =∑b
i=1 δxi

√
n, where x1 ∈

(x − η, x + η), xi ∈ ( − ε, ε), i = 2, . . . , b
}
. By the Markov property, P(Z̄n(

√
nA) ≥ p) ≥∫

E P
(
Z̄ξ

n−1(
√

nA) ≥ p
)
P(Z1 ∈ dξ ). For every ξ ∈ E , it is easy to see that A − x1 ⊃ A(x, η),

A − xi ⊃ A(ε), i = 2, . . . , b. Hence,

P(Z̄n(
√

nA) ≥ p) ≥
∫
E
P

(
Z̄ξ

n−1(
√

nA) ≥ p
)
P(Z1 ∈ dξ )

≥
∫
E
P

(
Z1

n−1(
√

nA(x, η)) +∑b
i=2 Zi

n−1(
√

nA(ε))∑b
i=1 |Zi

n−1|
≥ p

)
P(Z1 ∈ dξ )

= P

(
Z1

n−1(
√

nA(x, η)) +∑b
i=2 Zi

n−1(
√

nA(ε))∑b
i=1 |Zi

n−1|
≥ p

)
P(Z1 ∈ E), (36)

where Zi
n−1(·), 1 ≤ i ≤ b, are i.i.d. copies of Zn−1(·). Since Z̄n(

√
nA) → ν(A) and |Zn|m−n → W

almost surely, we have, as n → ∞,

Z1
n−1(

√
nA(x, η)) +∑b

i=2 Zi
n−1(

√
nA(ε))∑b

i=1 |Zi
n−1|

−→
∑b

i=2 ν(A(ε))Wi + ν(A(x, η))W1∑b
i=1 Wi

P-a.s., (37)
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where Wi, 1 ≤ i ≤ b, are i.i.d. copies of W. If b < B, then Wi has a continuous density on
(0, +∞) (see [4, Chapter II, Lemma 2]). In this case, by the dominated convergence theorem
and (37),

lim
n→∞ P

(
Z1

n−1(
√

nA(x, η)) +∑b
i=2 Zi

n−1(
√

nA(ε))∑b
i=1 |Zi

n−1|
≥ p

)
=: C(ε, η, x) > 0. (38)

Since P(X > x) ∼ κx−α , there exists a constant C(κ, x, ε, η) =: C7 > 0 such that, for n large
enough,

P(Z1 ∈ E) ≥ C7pbn−α/2. (39)

Plugging (38) and (39) into (36) yields, for n large enough, P(Z̄n(
√

nA) ≥ p) ≥
0.9C(ε, η, x)C7pbn−α/2, which implies the desired lower bound if b < B.

If b = B and A is unbounded, without loss of generality we assume A = (a, +∞). Set
E ′ := {ξ ∈M : ξ =∑b

i=1 δxi
√

n, where x1 ∈ [t
√

n, +∞), xi ∈ ( − ε, ε), i = 2, . . . , b
}
, where t

is some positive constant. Using similar arguments to above, we obtain

P(Z̄n(
√

nA) ≥ p) ≥ P

(
Z1

n−1(
√

n(a − t, +∞)) +∑b
i=2 Zi

n−1(
√

nA(ε))∑b
i=1 Zi

n−1

≥ p

)
P(Z1 ∈ E ′).

For any p ∈ (ν(A), ν(A) + 1−ν(A)
b

)
, there exists δ′ > 0 such that

p <
(b − 1)(ν(A) − δ′) + 1 − δ′

b
. (40)

If we choose ε small enough and t large enough, then ν(A(ε)) ≥ ν(A) − δ′, ν((a − t, +∞)) >

1 − δ′. This, together with (37) and (40), shows that, almost surely,

Z1
n−1(

√
n(a − t, +∞)) +∑b

i=2 Zi
n−1(

√
nA(ε))∑b

i=1 |Zi
n−1|

→ (b − 1)ν(A(ε)) + ν((a − t, +∞))

b
> p,

which implies the desired lower bound.
For the upper bound, set tn := �c log n� for some c > 0. By copying the argu-

ments from (31) to (32), there exist constants δ, η > 0 such that, for n large enough,
P
(
Z̄n(

√
nA) ≥ p

)≤ 4
δ
P
(
Stn ≥ (IA(p) − η)

√
n
)+ C1E

[|Ztn |−(β−1)
]
, where the last inequality

follows from Lemma 4. For the first term of the right-hand side of the latter inequal-
ity, by (8), there exists a constant C8 > 0 depending on c, κ , α, and η such that,
for n large enough, 4

δ
P
(
Stn ≥ (IA(p) − η)

√
n
)≤ C8n− α

2 log n. For the second term, by
Lemma 2, for n large enough, E

[|Ztn |−(β−1)
]≤ 2C0

(
m−tn(β−1) + ptn

1

)
. Hence, for n large

enough, P
(
Z̄n(

√
nA) ≥ p

)≤ C8n− α
2 log n + 2C0

(
m−tn(β−1) + ptn

1

)
. Since tn = �c log n�, if we

choose c > α
2(β−1) log m ∨ α

−2 log p1
then, for large n, P

(
Z̄n(

√
nA) ≥ p

)≤ 2C8n− α
2 log n. Thus,

we have

lim sup
n→∞

1

log n
log P(Z̄n(

√
nA) ≥ p) ≤ −α

2
. �
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6. Proof of Theorem 4

In this subsection we assume that IA(p) = ∞, JA(p) is continuous at p, and E
[
X2
]
< ∞. We

are going to prove that if |Z1| ∼ Pareto(β) with some β > 1, then

lim
n→∞

1

n
log P(Z̄n(

√
nA) ≥ p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−JA(p)(β − 1) log m, 0 < β − 1 <
− log p1

log m
;

JA(p) log p1, β − 1 ≥ − log p1

log m
,

and if |Z1| ∼ Weibull(β) with some β ∈ (0, 1), then limn→∞ 1
n log P(Z̄n(

√
nA) ≥ p) =

JA(p) log p1 for p1 > 0, and

lim
n→∞

1

n
log
[− log P(Z̄n(

√
nA) ≥ p)

]= JA(p)
ρβ

β + ρ − βρ
log m for p1 = 0.

Proof. Considering the lower bound, we first examine |Z1| with a Pareto tail. If β − 1 ≥
− log p1

log m then from [13, Lemma 3.4] we have lim infn→∞ 1
n log P(Z̄n(

√
nA) ≥ p) ≥ JA(p) log p1.

Now we shall consider the case of 0 < β − 1 <
− log p1

log m . Since JA(p) is continuous at p, for
any ε > 0, there exists δ > 0 such that, for r := JA(p + 2δ) ∈ (0, 1), we have |r − JA(p)| < ε.
Moreover, by the definition of JA(p), there exists x ∈R such that

ν

(
A − x√
1 − r

)
≥ p + 3

2
δ.

So, for any small η > 0,

ν

⎛
⎝ ⋂

y∈[x−η,x+η]

A − y√
1 − r

⎞
⎠≥ p + δ. (41)

Set tn := �rn�, and for large M set E := {there exists u ∈ Ztn such that Su ∈ [(x − η)
√

n, (x +
η)

√
n], |Zu

1 | > 2M
∑

v �=u,v∈Ztn
|Zv

1|
}
. Similar to (18), from (41) and Su ∈ [(x − η)

√
n, (x +

η)
√

n], we can choose η small enough such that

1

1 + M−1
ν

(
A(x, η)√

1 − r

)
> p + δ

4
,

√
nA(x, η) ⊂ √

nA − Su, (42)

where A(x, η) := ∑l
i=1 (ai − x + η, bi − x − η) . By [32, Lemma 2.2], it follows that

lim
n→∞ νn−tn (

√
nA(x, η)) = ν

(
A(x, η)√

1 − r

)
.

This, combined with (42), shows that there exists a constant C(M, r, x, η, δ) > 0 such that,
for n > C(M, r, x, η, δ) > 0, 1

1+M−1 νn−tn (
√

nA(x, η)) > p + δ
8 , which plays the same role in

this proof as (19) in Theorem 1. Using similar arguments to the proof of the lower bound in
Theorem 1, there exists a constant CM > 0 such that, for n large enough,

P(Z̄n(
√

nA) ≥ p) ≥ CMP (E)

≥ CM0.9C0m−tn(β−1)νtn

(
[(x − η)

√
n, (x + η)

√
n]
)

≥ 0.92CMC0C9m−tn(β−1), (43)
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where the last inequality holds since limn→∞ νtn

(
[(x − η)

√
n, (x + η)

√
n]
)=C(r, x, η) =: C9>0.

Taking limits in (43) yields lim infn→∞ 1
n log P(Z̄n(

√
nA) ≥ p) ≥ −(JA(p) + ε)(β − 1) log m.

Then, the desired lower bound follows by letting ε → 0.
We now consider the upper bound. For ε ∈ (0, JA(p)), set tn := �(JA(p) − ε)n�. By the

definition of JA(p) there exists δ > 0 such that, for ε′ ∈ [ε, 2ε],

sup
y∈R

ν

(
A − y√

1 − JA(p) + ε′

)
≤ p − δ. (44)

Thus, for any ξ ∈M,

1

|ξ |
∑
y∈ξ

νn−tn (
√

nA − Sy) + δ

2
≤ 1

|ξ |
∑
y∈ξ

ν

( √
n√

n − tn
A − Sy√

n − tn

)
+ 3δ

4

≤ p − 3δ

4
+ 3δ

4
= p,

where the first inequality follows from the generalized central limit theorem, and the second
inequality follows from (44) and the fact that g(u, v) = ν(uA + v) is a continuous function on
R

2. Thus, for n large enough,

P(Z̄n(
√

nA) ≥ p) ≤
∫
M

P

(
Z̄ξ

n−tn (
√

nA) ≥ 1

|ξ |
∑
y∈ξ

νn−tn (
√

nA − Sy) + δ

2

)
P(Ztn ∈ dξ ).

Hence, by Lemma 4, there exists C1 > 0 such that, for large n, P(Z̄n(
√

nA) ≥ p) ≤
C1E

[|Ztn |−(β−1)
]
. As a consequence, the upper bound follows by Lemma 2.

If |Z1| has a Weibull tail, similar arguments to those above, together with Lemmas 3 and 5,
get the desired results. �
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