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Abstract In 2013, Weintraub gave a generalization of the classical Eisenstein irreducibility criterion in
an attempt to correct a false claim made by Eisenstein. Using a different approach, we prove Weintraub’s
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Schönemann irreducibility criterion for polynomials with coefficients in arbitrary valued fields.
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1. Introduction

The classical Schönemann irreducibility criterion [13] proved by Schönemann in 1846
states that if g(x) is a monic polynomial with coefficients from the ring Z of integers that
is irreducible modulo a prime number p, and if F (x) belonging to Z[x] is a polynomial
of the form F (x) = g(x)n + pM(x), where M(x) belonging to Z[x] has degree less than
that of F (x) and is relatively prime to g(x) modulo p, then F (x) is irreducible over the
field Q of rational numbers. It can be easily verified that a polynomial F (x) belonging
to Z[x] satisfies the hypothesis of the Schönemann irreducibility criterion if and only if
the g(x)-expansion of F (x) obtained on dividing it by successive powers of g(x) given by

F (x) =
n∑

i=0

Fi(x)g(x)i, deg Fi(x) < deg g(x), Fn(x) �= 0,

satisfies the following three conditions:
∗ Corresponding author.
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(i) Fn(x) = 1,

(ii) p divides the content of each polynomial Fi(x) for 0 � i � n − 1,

(iii) p2 does not divide the content of F0(x).

This reformulation of the hypothesis shows that the well-known Eisenstein irreducibility
criterion [7] is a particular case of the Schönemann irreducibility criterion by taking
g(x) = x besides leading to its generalization (see [11, Theorem 1.1], [4]). One of the
early generalizations of the Eisenstein irreducibility criterion was by Dumas [6], which
states that if F (x) = anxn + · · · + a0 is a polynomial with coefficients in Z, and if there
exists a prime p whose exact power vp(ai) dividing ai (where vp(ai) = ∞ if ai = 0)
satisfies vp(an) = 0, vp(ai)/(n − i) � vp(a0)/n for 0 � i � n − 1, and vp(a0), n are
coprime, then F (x) is irreducible over Q. Over the years, these criteria have witnessed
many variations and generalizations using prime ideals, valuations and Newton polygons
(see [12], [11, Corollary 1.2], [2, Proposition 3.1], [3–5, 9]). In 2013, Weintraub [14]
gave the following simple but interesting generalization of the Eisenstein irreducibility
criterion in an attempt to correct a false claim made by Eisenstein himself.

Theorem 1.1 (Weintraub [14]). Let F (x) = anxn + · · ·+a0 ∈ Z[x] be a polynomial
and suppose that there is a prime p such that p does not divide an, p divides ai for
i = 0, 1, . . . , n − 1, and, for some k with 0 � k � n − 1, p2 does not divide ak. Let
k0 be the smallest such value of k. If F (x) = G(x)H(x) is a factorization in Z[x], then
min(deg G(x), deg H(x)) � k0. In particular, if k0 = 0 or if k0 = 1 and F (x) does not
have a root in Q, then F (x) is irreducible over Q.

The above result is significant only when k0 < n/2. Observe that the integer k0 < n/2
in the above theorem is characterized by the property that k0 is the smallest non-negative
integer for which

min
0�i�n−1

{
vp(ai)
n − i

}
=

1
n − k0

,

because if 0 � i < k0, then

vp(ai)
n − i

� 2
n − i

>
1

n − k0
.

In this paper we first prove Theorem 1.1 assuming a weaker hypothesis, namely, if k0

is the smallest non-negative integer for which

min
0�i�n−1

{
vp(ai)
n − i

}
=

vp(ak0)
n − k0

,

then the assumption that vp(ak0) = 1 is replaced by the assumption that vp(ak0) is
coprime to n − k0. Our result also extends the Eisenstein–Dumas irreducibility criterion
because in the hypothesis of the latter criterion,

min
0�i�n−1

{
vp(ai)
n − i

}
=

vp(a0)
n
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with vp(a0) coprime to n. In fact, our results are proved for polynomials with coefficients
in arbitrary valued fields. Using the theory of prolongations of valuations, the analogous
extension of the Schönemann irreducibility criterion is proved in Theorem 1.5. As an
immediate consequence, we obtain Corollary 1.6, which is the generalized Schönemann
irreducibility criterion originally given by Brown [4].

Theorem 1.2. Let v be a Krull valuation of arbitrary rank of a field K with value
group Gv. Let F (x) = anxn + · · · + a0 be a polynomial having coefficients in K with
v(an) = 0. If k � 0 is the smallest non-negative integer for which

min
0�i�n−1

{
v(ai)
n − i

∣∣∣∣ 0 � i � n − 1
}

is v(ak)/(n − k) and v(ak) �∈ dGv for any number d > 1 dividing n − k, then for any
factorization F (x) = G(x)H(x) of F (x) over K, one has min{deg G(x), deg H(x)} � k.

Note that when Gv = Z, the condition v(ak) �∈ dZ for any number d > 1 dividing
n− k is equivalent to saying that v(ak) and n− k are coprime. So the following corollary
extends Theorem 1.1 as well as the Eisenstein–Dumas irreducibility criterion.

Corollary 1.3. Let v be a valuation of a field K with value group Z. Let F (x) =
anxn + · · · + a0 be a polynomial having coefficients in K with v(an) = 0. If k � 0 is the
smallest non-negative integer for which

min
0�i�n−1

{
v(ai)
n − i

∣∣∣∣ 0 � i � n − 1
}

=
v(ak)
n − k

and v(ak), n − k are coprime, then for any factorization F (x) = G(x)H(x) of F (x) over
K, one has min{deg G(x), deg H(x)} � k.

The following example with k = 1 is a quick application of Corollary 1.3.

Example 1.4. Let F (x) = anxn + · · ·+a1x+a0 be a polynomial of even degree n � 4
with coefficients from the ring Z of integers. Suppose that there exists a prime number p

such that p � an, p2|ai for 1 � i � n − 1, p3 �a1 and p3|a0. Then either F (x) has a linear
factor over Q or it is irreducible over Q.

In what follows, for a valuation v of a field K we shall denote by vx its Gaussian
prolongation to a simple transcendental extension K(x) of K defined on K[x] by

vx

( ∑
i

aix
i

)
= min

i
{v(ai)}, ai ∈ K. (1.1)

Theorem 1.5. Let v be a Krull valuation of arbitrary rank of a field K with value
group Gv and valuation ring Rv having maximal ideal Mv. Let g(x) ∈ Rv[x] be a monic
polynomial of degree m that is irreducible modulo Mv. Let F (x) belonging to Rv[x] be
a polynomial having g(x)-expansion

n∑
i=0

Fi(x)g(x)i with Fn(x) = 1, Fi(x) �= 0
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for some i < n. Let k be the smallest non-negative integer for which

min
0�i�n−1

{
vx(Fi(x))

n − i

∣∣∣∣ 0 � i � n − 1
}

=
vx(Fk(x))

n − k
> 0.

Suppose that vx(Fk(x)) �∈ dGv for any number d > 1 dividing n − k. Then for any
factorization G(x)H(x) of F (x) over K, min{deg G(x), deg H(x)} � km.

Corollary 1.6 (generalized Schönemann irreducibility criterion). Let v be a
Krull valuation of a field K with value group Gv and valuation ring Rv having maxi-
mal ideal Mv. Let g(x) ∈ Rv[x] be a monic polynomial of degree m that is irreducible
modulo Mv. Assume that F (x) belonging to Rv[x] is a polynomial whose g(x)-expansion∑n

i=0 Fi(x)g(x)i satisfies

(i) Fn(x) = 1, F0(x) �= 0;

(ii)
vx(Fi(x))

n − i
� vx(F0(x))

n
> 0 for 0 � i � n − 1; and

(iii) vx(F0(x)) �∈ dGv for any number d > 1 dividing n.

Then F (x) is irreducible over K.

In Example 3.4 we give examples to show that the hypothesis vx(Fk(x))/(n − k) > 0,
as well as Fn(x) = 1, cannot be dispensed with.

It may be pointed out that Theorem 1.2 is not a particular case of Theorem 1.5
because the former is true for polynomials with coefficients that are not necessarily from
the valuation ring of (K, v); furthermore, for the hypothesis of Theorem 1.5, we assume
that vx(Fk(x))/(n − k) > 0, whereas in Theorem 1.2 v(ak)/(n − k) may be positive,
negative or zero.

2. Proof of Theorem 1.2

Set λ = v(ak)/(n−k); then (n−k)λ ∈ Gv. Our claim is that the hypothesis v(ak) �∈ dGv

for any number d > 1 dividing n − k implies that

rλ �∈ Gv for any positive integer r < n − k. (2.1)

Otherwise, for some number r < n − k, rλ ∈ Gv and (n − k)λ ∈ Gv, so drλ ∈ Gv, where
dr is the greatest common divisor of r and n − k. Set d = (n − k)/dr and observe that
d > 1. Then v(ak) = (n − k)λ = ((n − k)/dr)drλ = d(drλ) belongs to dGv, contradicting
the hypothesis.

Let w denote the mapping on K[x] defined by

w

( ∑
i

cix
i

)
= min

i
{v(ci) + iλ}, ci ∈ K.

As in [8, Theorem 2.2.1], it can be easily shown that w is a valuation on K[x]. Since

λ = min
0�i�n−1

{
v(ai)
n − i

}
,
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it follows that w(F (x)) = v(ak) + kλ = nλ. If 0 � i < k, then

v(ai)
n − i

>
v(ak)
n − k

by choice of k; consequently, v(ai)+ iλ > v(ak)+ kλ. So k is the smallest index at which
w(F (x)) is attained.

Suppose to the contrary that F (x) = G1(x)G2(x) is a factorization of F (x) into a
product of polynomials over K with min{deg G1(x), deg G2(x)} > k. Write

G1(x) =
d1∑

i=0

bix
i, G2(x) =

d2∑
j=0

cjx
j .

Since v(an) = 0, we may assume that v(bd1) = v(cd2) = 0. Let ki be the smallest index
at which w(Gi(x)) is attained for i = 1, 2. Our claim is that

k1 + k2 = k. (2.2)

By the choice of k1 and k2, we have

v(bi) + iλ � w(G1(x)), v(cj) + jλ � w(G2(x)) (2.3)

for 0 � i � d1, 0 � j � d2 with strict inequality if i < k1 or j < k2. Keeping in mind
(2.3), it can be easily checked that k1 + k2 is the smallest index at which w(F (x)) =
w(G1(x)) + w(G2(x)) is attained, and hence (2.2) follows. By virtue of (2.2) and the
assumption min{d1, d2} > k, we see that ki � k < di; consequently,

di − ki > 0 for i = 1, 2 and n − k = d1 − k1 + d2 − k2. (2.4)

Keeping in mind (2.4) and (2.1), we will arrive at a contradiction and the theorem will be
proved once it is shown that (d1 − k1)λ ∈ Gv. Note that w(G1(x)) = d1λ, for otherwise

nλ = w(F (x)) = w(G1(x)) + w(G2(x)) < d1λ + d2λ = nλ.

Thus, d1λ = w(G1(x)) = v(bk1) + k1λ, which implies that (d1 − k1)λ ∈ Gv, as desired.

3. Proof of Theorem 1.5

We first introduce some notation and definitions.
Let v be a Krull valuation of a field K. We fix a prolongation ṽ of v to an algebraic

closure K̃ of K. The image of an element ξ belonging to the valuation ring Rṽ of ṽ under
the canonical homomorphism from Rṽ onto its residue field Rṽ/Mṽ will be denoted by
ξ̄ and will be referred to as the ṽ-residue of ξ. For a polynomial f(x) ∈ Rv[x], f̄(x) will
stand for the polynomial over Rv/Mv obtained by replacing each coefficient of f(x) by
its v-residue.
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Definition 3.1. Let (K, v) be a Henselian-valued field of arbitrary rank and let ṽ be
the unique prolongation of v to an algebraic closure K̃ of K with value group Gṽ. A pair
(α, δ) belonging to K̃ ×Gṽ will be called a minimal pair (more precisely a (K, v)-minimal
pair) if whenever β belongs to K̃ with [K(β) : K] < [K(α) : K], then ṽ(α − β) < δ.

Example. If g(x) belonging to Rv[x] is a monic polynomial of degree m � 1 with
g(x) irreducible over the residue field of v and α ∈ K̃ is a root of g(x), then (α, δ)
is a (K, v)-minimal pair for each positive δ in Gṽ, because whenever β belongs to K̃

with [K(β) : K] < m, then ṽ(α − β) � 0, for otherwise ᾱ = β̄, which, in view of the
fundamental inequality [8, Theorem 3.3.4], would imply that [K(β) : K] � [K̄(β̄) : K̄] =
[K̄(ᾱ) : K̄] = m, leading to a contradiction.

Definition 3.2. Let (K, v), (K̃, ṽ) be as in the above definition and let (α, δ) be a
(K, v)-minimal pair. The valuation w̃α,δ of a simple transcendental extension K̃(x) of K̃

defined by

w̃α,δ

( ∑
i

ci(x − α)i

)
= min

i
{ṽ(ci) + iδ}, ci ∈ K̃, (3.1)

will be referred to as the valuation with respect to the minimal pair (α, δ). The restriction
of w̃α,δ to K(x) will be denoted by wα,δ.

Remark. With (α, δ) as above, if g(x) is the minimal polynomial of α over K, then
it is well known (see [1, Theorem 2.1]) that for any polynomial F (x) belonging to K[x]
with g(x)-expansion

∑
i Fi(x)g(x)i, deg Fi(x) < deg g(x), one has

wα,δ(F (x)) = min
i

{ṽ(Fi(α)) + iwα,δ(g(x))}. (3.2)

Notation 3.3. Let (α, δ), wα,δ and g(x) be as in the above remark. For a poly-
nomial F (x) belonging to K[x] with g(x)-expansion

∑n
i=0 Fi(x)g(x)i, we shall respec-

tively denote by Iα,δ(F ) and Sα,δ(F ) the minimum and the maximum integers belonging
to the set

{0 � i � n | wα,δ(F (x)) = ṽ(Fi(α)) + iwα,δ(g(x))}.

Proof of Theorem 1.5. Since the value group and the residue field remain the same
on replacing (K, v) by its Henselization, we may assume that (K, v) is Henselian. Let ṽ

denote the unique prolongation of v to the algebraic closure K̃ of K. Set

λ =
vx(Fk(x))

n − k
.

Then vx(Fk(x)) + kλ = nλ. Let α be a root of g(x) in K̃. Write g(x) = cm(x − α)m +
· · · + c1(x − α), cm = 1. Define a positive element δ of the divisible closure Gṽ of Gv by

δ = max
1�i�m

{
λ − ṽ(ci)

i

}
.

Let w̃α,δ denote the valuation of K̃(x) defined by (3.1). Then, by the choice of λ, we have

w̃α,δ(g(x)) = min
i

{ṽ(ci) + iδ} = λ. (3.3)

https://doi.org/10.1017/S0013091516000638 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000638


The Eisenstein–Dumas–Schönemann irreducibility criterion 943

We first show that, for any polynomial A(x) =
∑m−1

i=0 aix
i belonging to K[x] having

degree less than m, one has
ṽ(A(α)) = vx(A(x)). (3.4)

Clearly, (3.4) needs to be verified when m > 1. Keeping in view that g(x) is irreducible
over Rv/Mv of degree m > 1, it follows that ṽ(α) = 0. If (3.4) were false, then the triangle
inequality would imply that ṽ(A(α)) > mini{ṽ(aiα

i)} = v(aj) (say), which yields

m−1∑
i=0

(
ai

aj

)
(ᾱ)i = 0,

contradicting the fact that the minimal polynomial of ᾱ over Rv/Mv is of degree m.
Hence, (3.4) is proved. For any polynomial T (x) ∈ K[x] with the g(x)-expansion∑

i Ti(x)g(x)i, it follows from (3.2)–(3.4) that

wα,δ(T (x)) = min
i

{ṽ(Ti(α)) + iλ} = min
i

{vx(Ti(x)) + iλ}. (3.5)

Let Iα,δ(F ) and Sα,δ(F ) be as in Notation 3.3. We now show that

Iα,δ(F ) = k, Sα,δ(F ) = n. (3.6)

Recall that Fn(x) = 1, so vx(Fn(x)) = 0. Furthermore, keeping in view the hypothesis

λ =
vx(Fk(x))

n − k
= min

0�i�n−1

{
vx(Fi(x))

n − i

}

and using formula (3.5), it can be easily checked that

wα,δ(F (x)) = min
0�i�n

{vx(Fi(x)) + iλ} = vx(Fk(x)) + kλ = vx(Fn(x)) + nλ = nλ.

If 0 � i < k, then
vx(Fi(x))

n − i
>

vx(Fk(x))
n − k

by choice of k, and hence vx(Fi(x)) + iλ > vx(Fk(x)) + kλ = wα,δ(F (x)). Thus, (3.6) is
proved.

Suppose to the contrary that F (x) = G1(x)G2(x) is a factorization of F (x) into a
product of polynomials over K with

min{deg G1(x), deg G2(x)} > km. (3.7)

Since F (x) is monic, we may assume that G1(x) and G2(x) are monic. Let

G1(x) =
d1∑

i=0

Bi(x)g(x)i, G2(x) =
d2∑

j=0

Cj(x)g(x)j
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with Bd1(x)Cd2(x) �= 0 be the g(x)-expansions of G1(x), G2(x). Denote Iα,δ(Gi) by ki

for i = 1, 2. Then, by [10, Lemma 2.1], Iα,δ(F ) = Iα,δ(G1)+ Iα,δ(G2). Therefore, in view
of (3.6), we have

k = k1 + k2. (3.8)

Again using [10, Lemma 2.1] and (3.6), we see that

n = Sα,δ(F ) = Sα,δ(G1) + Sα,δ(G2) � d1 + d2 � n,

and hence
n = d1 + d2. (3.9)

Recall that by hypothesis, deg F (x) = mn. Therefore, in view of (3.9), we conclude that
deg G1(x) = d1m, deg G2(x) = d2m. It now follows from (3.7)–(3.9) that

ki � k < di, n − k = d1 − k1 + d2 − k2 (3.10)

for i = 1, 2. Keeping in mind (3.10), we will arrive at a contradiction and the theorem
will be proved once we show that (d1 − k1)λ ∈ Gv, because rλ �∈ Gv for any positive
integer r < n−k in view of the hypothesis and (2.1). Using (3.5) and the fact that G1(x)
is monic, we see that wα,δ(G1(x)) = vx(Bk1(x)) + k1λ � d1λ; the last inequality will be
equality, for otherwise

nλ = wα,δ(F (x)) = wα,δ(G1(x)) + wα,δ(G2(x)) < d1λ + d2λ � nλ.

Thus, d1λ = wα,δ(G1(x)) = vx(Bk1(x)) + k1λ, which proves that (d1 − k1)λ ∈ Gv and
hence the theorem. �

The following example shows that each of conditions vx(Fk(x))/(n − k) > 0 and
Fn(x) = 1 are necessary for the above theorem.

Example 3.4. Take K = Q as the field of rational numbers with the 3-adic valuation
v3 defined by v3(3) = 1 and g(x) = x2 + 1. Consider F (x) = x2 − 1 = g(x) + F0(x) and
F ∗(x) = x(x2+1)+3x = xg(x)+F ∗

0 (x). Here, F0(x) = 2, vx
3 (F0(x)) = 0 and F ∗

0 (x) = 3x,
vx
3 (F ∗

0 (x)) = 1. With notation as in Theorem 1.5, k = 0 for both F (x) and F ∗(x), but
Theorem 1.5 holds neither for F (x) nor for F ∗(x) as both are reducible over Q.
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