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Results from direct numerical simulation (DNS) for three-dimensional Rayleigh–
Bénard convection in a cylindrical cell of aspect ratio 1/2 and Prandtl number
Pr = 0.7 are presented. They span five decades of Rayleigh number Ra from 2 × 106

to 2 × 1011. The results are in good agreement with the experimental data of Niemela
et al. (Nature, vol. 404, 2000, p. 837). Previous DNS results from Amati et al. (Phys. Flu-
ids, vol. 17, 2005, paper no. 121701) showed a heat transfer that was up to 30 % higher
than the experimental values. The simulations presented in this paper are performed
with a much higher resolution to properly resolve the plume dynamics. We find that
in under-resolved simulations the hot (cold) plumes travel further from the bottom
(top) plate than in the better-resolved ones, because of insufficient thermal dissipation
mainly close to the sidewall (where the grid cells are largest), and therefore the Nusselt
number in under-resolved simulations is overestimated. Furthermore, we compare
the best resolved thermal boundary layer profile with the Prandtl–Blasius profile.
We find that the boundary layer profile is closer to the Prandtl–Blasius profile at the
cylinder axis than close to the sidewall, because of rising plumes close to the sidewall.

Key words: direct numerical simulation, plume dynamics, Rayleigh-Bénard
convection, thermal and viscous boundary layers, turbulent convection

1. Introduction
Turbulent Rayleigh–Bénard convection (RBC), continues to be a topic of intense

research (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010). The system is relevant
to numerous astrophysical and geophysical phenomena, including convection in the
Arctic ocean, the Earth’s outer core, the interior of gaseous giant planets and the
outer layer of the Sun. Therefore RBC is of interest in a wide range of sciences,
including geology, oceanography, climatology and astrophysics.

For given aspect ratio Γ ≡ D/L (D is the cell diameter and L its height) and given
geometry, the nature of RBC is determined by the Rayleigh number Ra = βg�L3/(κν)
and the Prandtl number Pr = ν/κ . Here, β is the thermal expansion coefficient, g

the gravitational acceleration, and �= Tb − Tt the difference between the imposed
temperatures Tb and Tt at the bottom and the top of the sample, respectively,
and ν and κ are the kinematic viscosity and the thermal diffusivity, respectively.

† Email address for correspondence: r.j.a.m.stevens@tnw.utwente.nl
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Figure 1. (a) Compensated Nusselt number versus the Rayleigh number for Pr = 0.7. Purple
stars are the experimental data from Niemela et al. (2000), and the green squares are the
experimental data from Chavanne et al. (2001). The DNS results from Verzicco & Camussi
(2003) and Amati et al. (2005) are indicated in red, and the present DNS results with the
highest resolution are indicated by the black dots. When the vertical error bar is not visible
the error is smaller than the dot size. The results of the under-resolved simulations of this
study are indicated by the blue dots. (b) Sketch of the grid geometry. The cells close to the
sidewall are largest, and therefore this region is least resolved.

Experimental results are controversial (Heslot, Castaing & Libchaber 1987; Chavanne
et al. 1997; Niemela et al. 2000, 2001; Roche et al. 2002; Niemela & Sreenivasan 2003;
Funfschilling et al. 2005; Nikolaenko et al. 2005; Funfschilling, Bodenschatz & Ahlers
2009), so that the asymptotic behavior of Nu(Ra) is yet unclear, and no generally
accepted theory exists in that asymptotic regime (Kraichnan 1962; Spiegel 1971;
Castaing et al. 1989; Shraiman & Siggia 1990; Grossmann & Lohse 2000, 2001, 2002;
Lohse & Toschi 2003; Ahlers et al. 2009).

For more moderate Ra up to 2 × 1014 previous direct numerical simulation (DNS)
by Amati et al. (2005) in a three-dimensional cylindrical cell of aspect ratio 1/2
with Pr = 0.7 showed a higher Nusselt number Nu than measured in experiments
(see figure 1). In order to explain this discrepancy it was suggested by Verzicco &
Sreenivasan (2008) that the experimental conditions are closer to fixed-heat-flux
conditions than fixed-temperature boundary conditions of the horizontal plates.
However, recent two-dimensional simulations by Johnston & Doering (2009) showed
that Nu obtained in simulations with constant-temperature and constant-heat-flux
boundary conditions are identical when Ra � 5 × 106. In this paper we show that
the Nusselt number obtained in the three-dimensional simulations with constant-
temperature boundary conditions is in good agreement with the experimental data
(see figure 1) when the resolution is sufficiently high.

2. Numerical method and results on the Nusselt number
We numerically solved the three-dimensional Navier–Stokes equations within the

Boussinesq approximation,

Du
Dt

= −∇P +

(
Pr

Ra

)1/2

∇2u + θ ẑ, (2.1)
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Dθ

Dt
=

1

(PrRa)1/2
∇2θ, (2.2)

with ∇ · u = 0. Here ẑ is the unit vector pointing in the direction opposite to that
of gravity; D/Dt = ∂t + u · ∇ is the material derivative; u is the velocity vector with
no-slip boundary conditions at all walls; and θ is the non-dimensional temperature,
0 � θ � 1. The equations have been made non-dimensional by using the length L,
the temperature �, and the free-fall velocity U =

√
βg�L. The numerical scheme is

described in detail in Verzicco & Orlandi (1996) and Verzicco & Camussi (1999, 2003).
The most important requirement for conducting DNS is to resolve all the relevant

scales of the flow, i.e. the Kolmogorov length η and the Batchelor length ηT . According
to Grötzbach (1983), the maximum wavenumber to be recorded by the grid is
kmax = π/h, where h = (�x�y�z)1/3 is the mean grid width. This wavenumber must
be greater than 1/η, where η =(ν3/εu)

1/4, and greater than 1/ηT , where ηT =(κ3/εu)
1/4.

According to Grötzbach (1983) this leads to the following restrictions on the mean
grid widths:

h � πη = π(ν3/εu)
1/4 for Pr � 1, (2.3)

h � πηT = π(κ3/εu)
1/4 for Pr � 1, (2.4)

However the simulations presented in this paper show that it is necessary to properly
resolve the flow in all directions of the flow. This means that the definition for h

should read h = max(�x, �y, �z). Note that this adapted criterion requires a higher
resolution in the horizontal plane, especially in the boundary layers (BLs) close to
the horizontal plates. This high resolution in the horizontal direction is necessary to
properly resolve the plume dynamics in the BL, as the (thermal) gradients in this
region are large in all directions of the flow and not only in the vertical direction.
The simulations presented in this paper will show that it is crucial to properly resolve
the plume dynamics to obtain accurate results for the Nusselt number.

When the vertical dissipation profile is assumed to be constant and is approximated
by equating it to the production term due to buoyancy forces in the kinetic energy
equation one obtains the following relations (Grötzbach 1983):

h � πη = πL

(
Pr2

RaNu

)1/4

for Pr � 1, (2.5)

h � πηT = πL

(
1

RaPrNu

)1/4

for Pr � 1, (2.6)

which are widely used in the literature. However one has to realize that RBC is
anisotropic and that the dissipation rates strongly fluctuate in time and space. It is
widely know that the dissipation rates peak close to the walls, and therefore there
the relevant length scales are smallest. For DNS in a cylindrical geometry this means
that one has to take care that the azimuthal resolution is sufficient, because the grid
spacing �φ is largest close to the sidewall, while the length scale that has to be
resolved in that region is smallest. Furthermore, one has to realize that the dissipation
rates strongly fluctuate in time and thus also the relevant length scales that have
to be resolved (Schumacher, Sreenivasan & Yeung 2005). This means that when
the relevant length scales in the simulation are determined from the azimuthally and
time-averaged dissipation rate, the necessary resolution for a fully resolved simulation
may locally or temporarily be even larger. How strong this effect is depends on the
strength of the intermittency and therefore on the system parameters (Ra, Pr , Γ ).
Although relations (2.5) and (2.6) can be used to get an estimate of the required
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Ra Nθ × Nr × Nz Nu Nuh Max-diff NBL
�max,g

η

�max,p

η

〈εu〉
ν3RaPr−2/L4 +1

Nu

〈εθ 〉
κ�2/L2

Nu

2 × 106 97 × 49 × 129 10.85 10.92 0.32 % 18 0.42 – – –
2 × 106 97 × 49 × 129 10.68 10.32 0.35% 18 0.42 0.51 0.973 0.978
2 × 106 129 × 65 × 193 10.56 10.86 0.15% 27 0.31 0.39 0.972 0.986
2 × 106 193 × 97 × 257 11.02 11.03 0.44% 35 0.21 0.26 0.974 0.991
2 × 107 129 × 49 × 193 20.52 20.56 0.36 % 17 0.66 – – –
2 × 107 193 × 97 × 257 20.54 20.69 0.70% 31 0.46 0.64 0.989 0.987
2 × 107 289 × 129 × 353 20.64 20.53 0.36% 42 0.34 0.43 0.984 0.991
2 × 108 97 × 49 × 193 40.57 40.71 0.02% 10 1.84 2.82 1.007 0.926
2 × 108 193 × 65 × 257 39.42 39.52 0.02% 13 0.92 1.41 0.992 0.950
2 × 108 257 × 97 × 385 39.41 39.10 0.79% 19 0.70 1.11 0.995 0.973
2 × 109 129 × 65 × 257 89.07 88.25 0.02% 6 3.01 4.57 1.001 0.858
2 × 10 9 193 × 65 × 257 84.49 84.46 0.45 % 7 1.99 3.10 1.002 0.879
2 × 109 193 × 65 × 257 84.10 83.66 0.51% 7 1.98 3.06 1.000 0.877
2 × 109 385 × 97 × 385 79.75 78.70 0.70% 10 1.15 1.47 0.999 0.935
2 × 10 9 513 × 129 × 513 79.60 78.89 0.45 % 17 0.93 1.22 1.006 0.962
2 × 1010 129 × 97 × 385 201.08 201.21 1.01% 12 6.56 10.88 1.006 0.878
2 × 1010 513 × 129 × 513 171.79 169.58 2.09% 19 1.59 2.83 0.994 0.927
2 × 1010 385 × 257 × 1025 173.13 173.30 0.98% 29 2.12 – – –
2 × 1011 769 × 193 × 769 387.07 387.53 2.18% 16 2.31 – – –
2 × 1011 769 × 257 × 1025 373.64 368.88 2.03% 18 2.28 6.34 0.9883 0.9058
2 × 1011 1081 × 351 × 1301 352.67 364.75 4.15% 26 1.60 3.96 1.0244 0.9318

Table 1. The columns from left to right indicate the following: Ra, the number of grid points
in the azimuthal, radial and axial directions (Nθ × Nr × Nz); the Nusselt number (Nu) obtained
after averaging the results of the three methods (see the text) using the whole simulation length;
the Nusselt number (Nuh) after averaging the results of the three methods using the last half
of the simulation; the maximum difference between the three methods (Max-diff); the number
(NBL) of points in the thermal BL; the maximum grid scale compared with the Kolmogorov
scale estimated by the global criterion (�max,g/η); and the maximum grid scale compared with
the Kolmogorov scale estimated by the azimuthally and time-averaged dissipation rate. The
last two columns give the Nusselt number derived from the volume-averaged kinetic 〈εu〉 and
thermal 〈εθ 〉 dissipation rates compared with Nu indicated in the third column. The italic lines
indicate a simulation started with a different initial flow field.

resolution, one has to realize that the result underestimates the resolution that is
required to have a fully resolved simulation, because the fluctuations in time and
space are not incorporated in these relations

All simulations in this paper are for Pr = 0.7, and therefore η is the smallest
length scale in the flow. We simulated each Ra number on three different grids
to test the influence of the grid scales. In table 1 the largest grid scale �max =
max(�r, Γ L/2�φ, �z) is compared with the Kolmogorov scale η for each simulation.
We do this in two different ways; namely by looking at the global criterion (2.5),
assuming a uniform distribution of the dissipation rates; see column (�max,g/η) in
table 1, and by estimating this ratio by looking at the time-averaged dissipation rates
as a function of the position (�max,p/η). Note that the relation between �max,p and
�max,g shows that the global criterion indeed underestimates the required resolution
for a fully developed DNS. The grid density near the plates has been enhanced to
keep a sufficient number of nodes in the thermal BL, where the vertical temperature
gradients are very high (see the column ‘NBL’ in table 1). According to Grötzbach
(1983) three points in the thermal BL should be sufficient. In the papers by Verzicco &
Camussi (2003) and Amati et al. (2005) it has already been noted that more than
three grid points in the thermal BL are required. Indeed, the results clearly show that
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more grid points in the thermal BL are required to have a fully developed simulation.
As the number of points needed in the thermal BL increases with Ra because of
the increasing strength of the turbulent fluctuations and the relation between η and
λθ , we cannot give a strict universal criterion for the number of points that should
be within the thermal BL. The strength of the plumes decreases slowly when the
plumes travel further away from the plates, and therefore the grid spacing from the
plates to the bulk has to be increased gradually to prevent the plumes from becoming
under-resolved just above the thermal BL.

For all simulations up to Ra = 2 × 1010 on the 129 × 97 × 385 grid we simulated
the flow for at least 200 dimensionless time units (2 dimensional time units equal 1
turnover time) to make sure that the statistically stationary state has been reached
and all transient effects are washed out; before we started to collect data for an
additional 400 dimensionless time units (and some cases even for 3000 dimensionless
time units) so that the statistical convergence could be verified. For simulations where
the flow field obtained at a lower Ra (or a new random flow field) is used as an initial
condition, we observe a small overshoot in Nu, before it settles to its statistically
stationary value. The long initialization runs we used prevent this from influencing
our results. This is double-checked by the convergence of the different methods we
use to calculate Nu. Since most simulations are started from an interpolated field
obtained at a lower Ra, we recomputed Nu for Ra = 2 × 109 on the 193 × 65 × 257
grid with a new flow field to rule out the effect of hysteresis on the obtained Nusselt
number results. The result is shown in italics in table 1 and is in excellent agreement
with the original result.

For the six most demanding simulations, i.e. the bottom five cases in table 1 and
the simulation for Ra = 2 × 109 on the 513 × 129 × 513 grid, the criteria for time
averaging had to be relaxed because of the limited CPU time available. Therefore
we averaged these cases for 100 dimensionless time units (300 time units for the
simulation at Ra = 2 × 1010 on the 385 × 257 × 1025 grid, 200 dimensionless time units
for Ra =2 × 109 on the 513 × 129 × 513 grid and 40 dimensionless time units for
Ra = 2 × 1011 on the 1081 × 351 × 1301 grid). The simulations at Ra =2 × 1010 have
completely different initial conditions; i.e. different flow fields obtained at lower Ra

are used as the initial condition. Nonetheless, we observe good agreement.
We calculate Nu as volume average and also by using the temperature gradients

at the bottom and top plates. The volume average is calculated from the definition
of the Nusselt number Nu =(〈uzθ〉A − κ∂3〈θ〉A)/ κ�L−1 (Verzicco & Camussi 1999).
In addition, we average over the entire volume and time. The value of Nu in table 1
gives the average value of the three methods, i.e. the volume average and the averages
based on the temperature gradients at the bottom and top plates, for the simulation
length of the actual simulation, which is normally 400 dimensionless time units. We
also determined Nu over the last half of our simulations, normally the last 200
dimensionless time units (see the column ‘Nuh’ in table 1). These values are within
1 % of the value determined over the whole simulation, showing that our results are
well converged. The maximum difference in Nu obtained from the three methods,
i.e. volume average and using the temperature gradients at the plates, is given in the
column ‘Max-diff’ in table 1.

Figure 1 shows that the DNS data converge to the experimental data when the
resolution is increased. The results indeed show that a very high resolution is required
to obtain converging results for the Nusselt number. The error bars in figure 1 indicate
the maximum of the following three quantities: (i) the maximum difference between
the three methods to determine Nu; (ii) the difference between Nu determined over
the whole simulation length and Nu determined over the last half of the simulation;
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Figure 2. Dimensionless kinetic (upper plots) and thermal (lower plots) dissipation rates at
Ra = 2 × 109. The upper row gives ε̃u = εuL

3/U 2 and the lower row ε̃θ = εθU/(�2L). The
left column indicates the dimensionless kinetic ε̃u and thermal ε̃θ dissipation rates for the
high-resolution case (385 × 97 × 385). The middle column gives ε̃H

u − ε̃L
u (upper plot) and

ε̃H
θ − ε̃L

θ (lower plot), where the superscripts H and L, respectively, mean the data obtained
from the high- (385 × 97 × 385) and low-resolution simulations (129 × 65 × 257). The rightmost
column gives (ε̃H

u − ε̃L
u )/ε̃H

u (upper plot) and (ε̃H
θ − ε̃L

θ )/ε̃H
θ (lower plot). The difference for

the thermal dissipation rates between the fully resolved and the under-resolved simulations is
largest (in absolute values) close to the sidewall.

(iii) when the error bar based on criteria 1 and 2 is smaller than 1 % after averaging
over 400 dimensionless time units the error is assumed to be 1 %. When the data
are averaged over 100 dimensionless time units we take a minimal error of 3 %. For
2 × 106 and 2 × 107 we also determined the variation in Nu at various distances from
the horizontal plates (Shishkina & Wagner 2007) and found that the differences are
smaller than 0.2 %. We note that Nu fluctuates more in time than in space (after
sufficient spatial averaging). This check also shows that the Nusselt number results
in our simulation are well converged. The difference in Nu we get from independent
simulations is normally well within these error margins when exactly the same grid is
used, except for some cases at Ra =2 × 106.

3. Dissipation rates and temperature distribution functions
Another way to calculate Nu is to look at the two exact global relations for

the volume-averaged kinetic and thermal energy dissipation rates 〈εu〉 = ν3(Nu −
1)RaPr−2/L4 and 〈εθ〉 = κ�2Nu/L2, respectively (Shraiman & Siggia 1990). We have
calculated the azimuthally and time-averaged energy dissipation rate εu(

−→x ) = ν|∇u|2
and the thermal dissipation rate εθ (

−→x ) = κ |∇θ |2. Figure 2 compares the difference
between the dissipation rates obtained in the fully resolved and the under-resolved
simulations and reveals a higher thermal dissipation rate for the fully resolved
simulations, as it is calculated from the (temperature) gradients. In the under-
resolved simulations the gradients are smeared out, and therefore εu and εθ are
underestimated. To check the resolution, we calculated εu and εθ from the respective
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gradients and compared them with the values obtained from the above-given global
exact relations. Table 1 shows that for εu the relation is basically satisfied for all
simulations, whereas for εθ the difference can be considerable. For higher Ra numbers
the temperature field is under-resolved because of the line structure of the plumes very
close to the horizontal plates and close to the sidewalls. Since the thermal dissipation
rate in these regions is much higher than the kinetic dissipation rate this effect is
much more pronounced in the convergence of the thermal dissipation rate than in
the convergence of the kinetic dissipation rate. We note that the value for the Nusselt
number seems to be converged earlier than the convergence of the dissipation rates.
Testing above exact relations seems to be the best way to verify the grid resolution.
For 2 × 106 and 2 × 107 the kinetic dissipation rate is not converged because we
cannot properly resolve the kinetic dissipation rate close to the cylinder axis due
to the metric factors 1/r , 1/r2, . . . that amplify the numerical errors in the squared
gradients in this region. At higher Ra the fraction of the kinetic dissipation that is in
this region is smaller, and therefore the convergence is better.

The vertical heat flux concentrates in the plume-dominated sidewall region in which
the vertical velocity reaches its maximum (Shang, Tong & Xia 2008). Therefore it is
very important to properly resolve the region close to the sidewall. However, figure 2
reveals that in the under-resolved simulations the region close to the sidewall is least
resolved (red areas in the plot where the thermal dissipation rates are compared, right
plot), as there the finite volumes are largest, because of the cylindrical geometry of the
grid (see figure 1b). When the resolution is insufficient close to the sidewall, the plumes
in this region, which are important for the heat transfer, are not properly resolved
and not sufficiently dissipated. Therefore too much heat is transported across the cell,
leading to an overestimation of Nu in the under-resolved simulations. Furthermore,
figure 2 shows that the thermal dissipation rate in the under-resolved simulations is
overestimated in the central region. This is due to the flow organization at higher
Ra; see figure 8 of Verzicco & Camussi (2003), where it is shown that there is a
double convection roll for Ra = 2 × 109. Because the plumes close to the sidewall are
insufficiently dissipated in the under-resolved simulations the plumes that will reach
the central region of the cell will be stronger in the under-resolved simulations than
in the better-resolved ones. This leads to a higher dissipation in the central region in
under-resolved simulations with respect to better-resolved simulations. Supplementary
movies (available for viewing at journals.cambridge.org/flm) reveal the dynamics of
the system for the different grid resolutions. Movie 1 shows the temperature field in
horizontal cross-sections close to bottom plate and movie 2 that at mid-height. Note
that the coarseness of the under-resolving grids does not capture all the characteristics
of the flow observed in the high-resolution simulation.

To further investigate the influence of the grid resolution, we calculated the
azimuthally averaged probability density functions (p.d.f.s; see also Emran &
Schumacher 2008; Kunnen et al. 2008; Shishkina & Wagner 2007, 2008;
Kaczorowski & Wagner 2009) of the temperature averaged over 3000 dimensionless
time units for Ra =2 × 108, comparing the under-resolved case (97 × 49 × 193) with
the fully resolved one (193 × 65 × 257). Figure 3 shows that the temperature p.d.f.s at
mid-height and at a distance λsl

θ (thermal BL based on the slope) from the plates have
longer tails in the under-resolved simulation than in the better-resolved one. Again
the reason lies in the rising (falling) plumes from the bottom (top) plate, which are
not properly dissipated in the under-resolved simulations and therefore travel further
from the plates. The comparison with the p.d.f. obtained using half of the time series
reveals that the differences in the p.d.f.s are not due to a lack of averaging but are due
to insufficient grid resolutions. We note that we observe similar differences at other
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Figure 3. (a) A sketch showing the locations (crosses) of the azimuthally averaged
temperature p.d.f.s, shown in panel (b), panel (c) and panel (d ), for Ra =2 × 108 obtained
on different grids. The radial position is 0.2342L for the under-resolved (97 × 49 × 193) and
0.2314L for the better-resolved (193 × 65 × 257) simulations. The temperature p.d.f. for the
better-resolved simulations averaged over 3000 dimensionless time units is indicated in black.
The green line indicates the result using half of the time series. The temperature p.d.f. averaged
over 3000 dimensionless time units for the under-resolved simulations is indicated in blue, and
the red indicates the result using half of the time series. (b) Temperature p.d.f. at mid-height.
(c) Temperature p.d.f. at the distance λsl

θ from the bottom plate. (d ) Temperature p.d.f. at the
distance λsl

θ from the top plate.

radial positions; only the averaging around the cylinder axis (r =0) leads to results
that are not fully converged because of the cylindrical geometry. In figure 4 we show
the effect of the grid resolution on the flatness F = 〈(θ − 〈θ〉)4〉/〈(θ − 〈θ〉)2〉2 obtained
at mid-height for the better-resolved and under-resolved simulations. Comparison
between the solid and dashed lines shows that the data are converged close to the
sidewall, where the statistics is best because of geometric reason. Comparison between
the black (well resolved) and red (under-resolved) lines reveals that the insufficiently
dissipated plumes mainly close to the sidewall leads to too-large flatnesses in the
under-resolved simulations.

4. Boundary layers
Although the bulk is turbulent, scaling-wise the BLs still behave in a laminar way

because of the small BL Reynolds number (Ahlers et al. 2009). In figure 5 we compare
the thermal BL profile obtained from the simulations with the Prandtl–Blasius (PB)
profile, as done by Sugiyama et al. (2009) for two-dimensional Rayleigh–Bénard
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Figure 4. Flatness of the temperature p.d.f. at mid-height for Ra = 2 × 108 for the
under-resolved (red, 97 × 49 × 193) and the better-resolved (black, 193 × 65 × 257) simulations.
The solid lines indicate the result after averaging over 3000 dimensionless time units and the
dashed lines the result after averaging over 1600 dimensionless time units. Both simulations
are started from the same initial field obtained at a lower Ra, and the data collection is started
when each simulation has reached the statistically stationary state.
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Figure 5. The azimuthally averaged temperature profiles obtained from the simulations at
different grids. (a) Ra = 2 × 108, for the grids 97 × 49 × 193 (red), 193 × 65 × 257 (blue) and
257 × 97 × 385 (black) and (b) Ra = 2 × 109 for the grids 129 × 65 × 257 (red), 193 × 65 × 257
(blue) and 385 × 97 × 385 (black). The solid lines show the temperature profile at the cylinder
axis (r = 0), the diamonds indicate the data points obtained from the simulation, and the dashed
lines show the temperature profile at the radial position 0.225L. The green line indicates the PB
profile matched to the temperature gradient at the cylinder axis (r =0) of the high-resolution
simulation. The insets show the temperature profile from the highest resolution data over a
larger axial range. Here the solid line indicates the profile at the axis and the dashed line the
temperature profile at the radial position 0.225L.

simulations. The temperature gradient of the PB profile is matched to the temperature
gradient obtained in the high-resolution simulation. The temperature profile obtained
in the simulations best matches the PB profile around the cylinder axis (r = 0). Close
to the sidewall the agreement is worse because of the rising (falling) plumes in this
region. We therefore compare the difference between the PB profile and the result
obtained from the simulation for different values of Ra. We determine, at the cylinder
axis, (θsim − θPB)/(� − θPB) for the bottom BL and (θPB − θsim)/(θPB) for the top
BL. Here θsim is the mean temperature at a distance λsl

θ from the plate and θPB the
temperature according to PB at this height, after having matched the gradient at the
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Figure 6. The azimuthally averaged BL thicknesses as a function of the radial position for
Ra = 2 × 109: (a) and (b) show the data from the high-resolution simulation (385 × 97 × 385).
(a) The solid line indicates λsl

θ , and the dashed lines indicate λrms
θ , where red and blue indicate

the bottom and top plates, respectively. (b) The solid line indicates λεu
u and the dashed line

λrms
u , based on the azimuthal velocity (colours as in panel a). (c) Now the colours indicate the

different grid resolutions: red, 129 × 65 × 257; blue, 193 × 65 × 257; and black, 385 × 97 × 385.
The solid lines indicate λsl

θ and the dashed lines λrms
θ . The data for the bottom and top BLs

are averaged for clarity. Note that the BL is thicker (especially close to the sidewall) in the
higher-resolution simulations, which is in agreement with the observed Nu trend. (d ) The solid
lines indicate λεu

u and the dashed lines λrms
u , based on the azimuthal velocity for the different

grid resolutions (colours as in figure 6c).

plate to the simulation data. If the simulation exactly matched PB (e.g. for very small
Ra), this expression would be zero. In contrast 0.103 (0.130, 0.149) is obtained for
Ra = 2 × 108 (2 × 109, 2 × 1010). As expected, the expression is smaller for the lower
Ra numbers. We perform the same procedure for our previous results of Zhong et al.
(2009) at Ra =1 × 108 with Γ = 1 and now different Pr . For Pr = 0.7, Pr = 6.4 and
Pr = 20 we now obtain 0.099, 0.040, and 0.033, respectively. Now the expression is
closest to zero at the highest Pr , where the Re number of the flow is lowest, and
thus the flow better fulfils the assumptions of the PB approximation. The agreement
with the PB profile becomes less when the distance from the plate is larger because
of the rising (falling) plumes in this region. This phenomenon is discussed in detail
by Sugiyama et al. (2009).

Figure 6 shows the radial dependence of λsl
θ , λrms

θ – thermal BL thickness based
on maximum root mean square (r.m.s.) value. First we determined the kinetic BL
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thickness by looking at λrms
u (kinetic BL thickness based on maximum azimuthal r.m.s.

velocity). Although this definition is widely used in the literature it is clear that it
overestimates the kinetic BL thickness because for Pr = 0.7 the kinetic BL thickness
is smaller than the thermal BL thickness. One can see this in figure 2, where the
BL region, indicated in red, is smaller for the kinetic BL than for the thermal BL.
Therefore we also determine the kinetic BL thickness by looking at the axial profile of
the kinetic energy dissipation. We define λεu

u (kinetic BL thickness defined as the axial
position of the maximum kinetic energy dissipation rate, multiplied by 2) because this
definition selects the region in which the kinetic dissipation is highest, and it is this
region in which a particularly good resolution is required. Such defined kinetic BL
thickness now well agrees with that of the thermal BL, λεu

u ≈ λsl
θ , as expected from the

PB theory for Pr ≈ 1. Figure 6 shows that for both definitions the kinetic BL becomes
thicker closer to the sidewall. This is due to the plumes travelling along the sidewall
and lower velocities very close to the sidewall. We note that very close to the sidewall
the definition of λεu

u therefore misrepresents the BL thickness. Thus the enhanced
grid resolution in the vertical direction near the plates is most important around
the cylinder axis (r = 0). In contrast, the azimuthal (and radial) resolution is most
important to properly resolve the flow close to the sidewall. Note that the difference
in the BL thicknesses between the fully resolved and under-resolved simulations is
largest close to the sidewall, demonstrating that this is indeed a delicate region from
a resolution point of view.

5. Conclusions
In summary, results from DNS with sufficient resolution using constant-temperature

boundary conditions for the horizontal plates are in good agreement with the
experimental data (see figure 1). Previous DNS results showed a Nusselt number
that was up to 30 % higher than the experimental results. The new simulations
have been performed with much higher resolution than the previous simulations to
properly resolve the plume dynamics. Because in under-resolved simulations the hot
(cold) plumes travel further from the bottom (top) plate than in the better-resolved
ones, due to insufficient thermal dissipation close to the sidewall (where the grid cells
are largest), the Nusselt number is overestimated in under-resolved simulations. It
thus is crucial to properly resolve the plume dynamics to accurately determine the
Nusselt number, and based on the simulations we have defined the resolution criteria
that have to be fulfilled to have a fully resolved DNS. When the simulation is not
fully resolved the exact relation εθ = κ�2Nu/L2 for the thermal dissipation rate does
not hold. This is because the temperature gradients are smeared out in under-resolved
simulations, leading to an underestimation of the thermal dissipation rate. We also
showed that there is a strong radial dependence of the BL structures. At the cylinder
axis (r = 0) the temperature profile obtained in the simulations agrees well with
the PB case, whereas close to the sidewall the agreement is worse because of rising
(falling) plumes in this region.

The effect of changing the constant-temperature condition at the bottom plate to a
constant-heat-flux condition will be discussed in detail in a forthcoming publication.

We thank S. Grossmann and G. Ahlers for discussions and G. W. Bruggert
for drawing figure 1(b). The work in Twente was supported by FOM and the
National Computing Facilities (NCF), both sponsored by NWO. The simulations
up to Ra =2 × 1010 on the 513 × 129 × 513 grid were performed on the Huygens
cluster (SARA). The simulation at Ra =2 × 1010 on the 385 × 257 × 1025 grid and
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the Ra = 2 × 1011 simulations were performed at the computing centre CASPUR in
Roma. Support from Drs F. Massaioli and G. Amati is gratefully acknowledged.
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