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Abstract

We consider the continued fraction expansion of real numbers under the action of a nonuniform lattice

in PSL(2,R) and prove metric relations between the convergents and a natural geometric notion of good

approximations.

2020 Mathematics subject classification: primary 11J70; secondary 20H10.

Keywords and phrases: continued fractions, Fuchsian groups.

1. Introduction

Let H := {z ∈ C : Im(z) > 0} be the upper half plane and, for p/q ∈ Q, let Hp/q ⊂ H be

the circle of diameter 1/q2 tangent at p/q. Set H∞ = {z ∈ H : Im(z) > 1} and consider

the family {Hp/q : p/q ∈ Q ∪ {∞}} of Ford circles, which are the orbit of H∞ under the

projective action of the modular group SL(2,Z), that is, the group of 2 × 2 matrices

with coefficients a, b, c, d in Z (the notation refers to (1.3) below). Any two circles are

either disjoint or tangent. Figure 1 shows that for any irrational α there exist infinitely

many p/q ∈ Q with α ∈ Π(Hp/q), that is, |α − p/q| < (1/2)q−2, where Π(x + iy) := x.

This defines the sequence of geometric good approximations of α as the sequence

of pn/qn in Q with α ∈ Π(Hpn/qn ). The same sequence arises from the continued

fraction expansion α = a0 + [a1, a2, . . .] of α. Indeed, the convergents defined by

pn/qn := a0 + [a1, . . . , an] have the property that

|α − p/q| < (1/2)q−2 ⇒ p/q = pn/qn for some n ≥ 1. (1.1)

The first n + 1 partial quotients a1, . . . , an+1 approximate α with error given by

1

2 + an+1

≤ q2
n · |α − pn/qn| ≤

1

an+1

for any n ∈ N. (1.2)

Rosen continued fractions were introduced in [9], in relation to diophantine

approximation for Hecke groups, giving an extension of (1.2) which was later

improved in [7]. Equation (1.1) was extended to Rosen continued fractions in [5]

and the sharp constant replacing 1/2 was obtained in [10]. In this note we consider
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FIGURE 1. Balls G(Hk), k ∈ Z, tangent to Hp/q = G(H∞), where p/q = G · ∞.

diophantine approximation for a general nonuniform lattice Fuchsian group, in relation

to the so-called Bowen–Series expansion of real numbers [3]. Our main theorem

(Theorem 3.1) provides an extension of (1.1) and (1.2) to this setting. This result is

used in [6] to approximate the dimension of sets of badly approximable points by the

dimension of dynamically defined regular Cantor sets. The study of the higher part of

the Markov and Lagrange spectra is also a natural application, in the spirit of [1, 2, 11].

Theorem 3.1 applies to many diophantine approximation problems, since it translates

diophantine properties into ergodic properties of the Bowen–Series expansion.

Let SL(2,C) be the group of matrices

G =

(
a b
c d

)
(1.3)

with a, b, c, d ∈ C and ad − bc = 1. Any such G acts on points z ∈ C ∪ {∞} by

G · z :=
az + b

cz + d
. (1.4)

Denote the coefficients of G in (1.3) by a = a(G), b = b(G), c = c(G) and d = d(G).

The subgroup SL(2,R) of G with coefficients a, b, c, d in R acts by isometries on H

via (1.4) and inherits a topology from the identification with the set of (a, b, c, d) ∈ R4

with ad − bc = 1. A Fuchsian group is a discrete subgroup Γ < SL(2,R). Referring

to [4], we say that Γ is a lattice if it has a Dirichlet region Ω ⊂ H with finite hyperbolic

area. If Ω is not compact, then the lattice Γ is called nonuniform. In this case the

intersection Ω ∩ ∂H is a finite nonempty set, whose elements are called the vertices

at infinity of Ω. A point z ∈ R ∪ {∞} is a parabolic fixed point for Γ if there exists a

parabolic element P ∈ Γ with P(z) = z. Let PΓ be the set of parabolic fixed points of Γ.

The set PΓ is the orbit under Γ of the vertices at infinity of Ω and is dense in R. Two

points z1 and z2 in PΓ are equivalent if z2 = G(z1) for some G ∈ Γ. Any nonuniform

lattice Γ has a finite number p ≥ 1 of equivalence classes [z1], . . . , [zp] of parabolic

fixed points, called the cusps of Γ.
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Let Γ be a nonuniform lattice with p ≥ 1 cusps. Fix a list S = (A1, . . . , Ap) of

elements Ak ∈ SL(2,R) such that the points

zk = Ak · ∞ for k = 1, . . . , p (1.5)

form a complete set {z1, . . . , zp} ⊂ PΓ of inequivalent parabolic fixed points. A natural

choice for z1, . . . , zp is a maximal set of nonequivalent vertices at infinity of a

fundamental domain. Any element of PΓ has the form G · zk for some G ∈ Γ and

k = 1, . . . , p. We have horoballs

Bk := Ak({z ∈ H : Im(z) > 1}) with k = 1, . . . , p,

each Bk being tangent to R ∪ {∞} at zk. We allow Ak = Id, that is, zk = ∞ and Bk = H∞.

Thus, G(Bk) is a ball tangent to the real line at G · zk for any G ∈ Γ with G · zk , ∞.

These balls generalise Ford circles and we measure how their diameter shrinks to zero

as G varies in Γ with the denominator

D(G · zk) :=

{
1/
√

Diam(G(Bk)) if G · zk , ∞,

0 if G · zk = ∞.

For any T > 0 and any G ∈ SL(2,R) with c(G) , 0, using the notation in (1.3),

Diam(G({z ∈ H : Im(z) > T})) = 1

Tc2(G)
. (1.6)

Hence,

D(G · zk) = |c(GAk)| for any G · zk ∈ PΓ. (1.7)

In [8], Patterson proved that there exists a constant M = M(Γ,S) > 0 such that for any

Q > 0 big enough and any α ∈ R there exist G ∈ Γ and k ∈ {1, . . . , p} with

|α − G · zk | ≤
M

D(G · zk)Q
and 0 < D(G · zk) ≤ Q.

For Γ = SL(2,Z), S = {Id} and M = 1, this is the classical Dirichlet theorem. In

general, for any α ∈ R we obtain infinitely many G · zk ∈ PΓ with

|α − G · zk | ≤
M

D2(G · zk)
. (1.8)

The Bowen–Series expansion [3] provides a coding α = [W1, W2, . . .] of a real

number α, where the symbols Wr for r ≥ 1 are cuspidal words which belong to a

countable alphabetW (definitions are in Sections 2 and 3). Cuspidal words W ∈ W,

introduced in [1, 2], label a subset of elements {GW : W ∈ W} of Γ, which generalise

the role played in the theory of classical continued fractions by the matrices
(
1 a2k+1

0 1

)
and

(
1 0

a2k 1

)
with a2k, a2k+1 ∈ N∗ for any k ∈ N.

The coding is a continuous bijection Σ→ R, where Σ ⊂ WN is a subshift with

aperiodic transition matrix (see [6]). For r ≥ 1, the first r symbols in the expansion

of α = [W1, W2, . . .] define ζr = ζr(W1, . . . , Wr) ∈ PΓ (see (3.5)). This extends the
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classical notion of convergents pn/qn of α. The main result of this note is Theorem 3.1

in Section 3. We give the following preliminary statement (see also Remark 3.2).

THEOREM 1.1. Fix α = [W1, W2, . . .] which is not an element of PΓ. The convergents
ζr = ζr(W1, . . . , Wr) approximate α with error given by an analogue of (1.2). Moreover,
there exists a constant ǫ0 > 0 such that any G · zk ∈ PΓ satisfying (1.8) with M = ǫ0
belongs to the sequence (ζr)r≥1.

2. The Bowen–Series expansion

We follow [6, Section 3], which is based on [1, Section 2.4] and [2, Section 2]. The

original construction is the Markov map in [3], which is orbit equivalent to the action

of a given finitely generated Fuchsian group of the first kind. In our setting the Markov

map corresponds to an acceleration of the map in (2.7) below. This section describes

the coding by cuspidal words. The same description appears in [6], where it is followed

by the study of the combinatorial and metric properties of the subshift related to the

coding. Consider the unit disc D := {z ∈ C : |z| < 1} and the map

ϕ : H→ D, ϕ(z) :=
z − i

z + i
. (2.1)

The conjugate of SL(2,R) under ϕ is the group SU(1, 1) of F ∈ GL(2,C), where

F =

(
α β

β α

)
with |α|2 − |β|2 = 1. (2.2)

Denote by α = α(F) and β = β(F) the coefficients of F as in (2.2).

2.1. Isometric circles. Consider F ∈ SU(1, 1) and α = α(F), β = β(F) as in (2.2).

Assume that β , 0 and let ωF := −α/β be the pole of F. The isometric circle IF of F
is the euclidean circle centred at ωF with radius ρ(F) := |β|−1, that is,

IF := {ξ ∈ C : |ξ − ωF | = |β|−1}.

We have F(IF) = IF−1 , where ρ(F) = ρ(F−1) and |ωF−1 | = |ωF | (see [4, Theorem 3.3.2]).

Moreover, IF ∩ D is a geodesic of D for any F ∈ SU(1, 1), by Theorem 3.3.3 in [4].

Denote by UF the disc in C with ∂UF = IF, that is, the interior of IF.

2.2. Labelled ideal polygon. Let Γ ⊂ SU(1, 1) be a nonuniform lattice. From [12],

there exists a free subgroup Γ0 < Γwith finite index [Γ0 : Γ] < +∞ (see also [6, Section

2.2]). In particular, referring to (2.2), β(F) , 0 for any F ∈ Γ0, so that the isometric

circle IF and the disc UF are defined. The origin 0 ∈ D is not a fixed point of any

F ∈ Γ0 and Theorem 3.3.5 in [4] implies that the set

Ω0 := D \
⋃

F∈Γ0

UF (2.3)

is a Dirichlet region for Γ0. From [4],Ω0 is an hyperbolic polygon with an even number

2d of sides, denoted by the letter s, and with 2d vertices, denoted by the letter ξ
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FIGURE 2. Ideal polygon labelled byA = {a, b, c, d, â, b̂, ĉ, d̂}.

(see also [6, Section 2.4]). All vertices ofΩ0 belong to ∂D because Γ0 is free. Any side

s is a complete geodesic in D and for any such s there exists a unique F ∈ Γ such that

F(s) is another side of Ω0 with F(s) , s. The sides s and F(s) are thus paired as shown

in Figure 2. The set of pairings generates Γ0 [4, Theorem 3.5.4]. For a convenient

labelling, consider two finite alphabetsA0 and Â0, both with d elements, and a map

ι : A0 ∪ Â0 → A0 ∪ Â0 with ι2 = Id and ι(A0) = Â0,

that is, an involution of A0 ∪ Â0 which exchanges A0 with Â0. Set A := A0 ∪ Â0

and, for any a ∈ A, denote â := ι(a).

Label the sides of Ω0 by the letters in A, so that for any a ∈ A the sides sa and ŝa

are those which are paired by the action of Γ0. For any pair of sides sa and ŝa as above,

let Fa be the unique element of Γ0 such that

Fa(ŝa) = sa. (2.4)

For any a ∈ A, we have Fâ = F−1
a and the latter form a set of generators for Γ0.

In the following, we denote by ΩD := Ω0 ⊂ D the labelled ideal polygon defined

above and ΩH := ϕ−1(ΩD) ⊂ H its pre-image under the map in (2.1).

2.3. The boundary map. Parametrise arcs J ⊂ ∂D by t 7→ e−it with t ∈ (x, y). Set

inf J := e−ix and sup J := e−iy. We say that J is right open if inf J ∈ J and sup J < J.

Let Γ0 < Γ be a finite-index free subgroup and ΩD be an ideal polygon for Γ0 labelled

byA, as in Section 2.2.

For a ∈ A, let Fa be the map in (2.4). Let IFa be the isometric circle of Fa and UFa

its interior, as in Section 2.1. Recall that ŝa = IFa ∩ D and sa = IFâ
∩ D. Let [a]D be the

right open arc of ∂D cut by the side sa, that is,

[a]D := UFâ
∩ ∂D.
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Set ξLa := inf[a]D and ξRa := sup[a]D. Figure 2 gives examples of this notation. In order

to take account of the cyclic order in ∂D of the arcs [a]D, fix a0 ∈ A and define a map

o : A → Z/2dZ by setting o(a0) := 0 and

o(b) = o(a) + 1 mod 2d for a, b ∈ A with ξRa = ξ
L
b . (2.5)

We have Fa(IFa ) = IFâ
for any a ∈ A and Fa sends the complement of [̂a]D to [a]D,

that is,

Fa(∂D \ [̂a]D) = [a]D. (2.6)

The Bowen–Series map is the map BS : ∂D→ ∂D defined by

BS(ξ) := F−1
a (ξ) if and only if ξ ∈ [a]D. (2.7)

The boundary expansion of a point ξ ∈ ∂D is the sequence (ak)k∈N of letters ak ∈ A
with

BSk(ξ) ∈ [ak]D for any k ∈ N. (2.8)

By (2.6), any such sequence satisfies the so-called no backtracking condition

ak+1 , âk for any k ∈ N. (2.9)

A finite word (a0, . . . , an) satisfying Condition (2.9) corresponds to a factor of the map

BS : ∂D→ ∂D, that is, a finite concatenation F−1
an
◦ · · · ◦ F−1

a0
arising from iterations

of BS. An admissible word, or simply a word, is any finite or infinite word in the

letters ofA satisfying Condition (2.9). We use the notation

Fa0,...,an := Fa0
◦ · · · ◦ Fan ∈ Γ0.

Define the right open arc [a0, . . . , an]D as the set of ξ ∈ ∂D such that BSk(ξ) ∈ [ak]D
for any k = 0, . . . , n, that is,

[a0, . . . , an]D := Fa0,...,an−1
[an]D = Fa0,...,an (∂D \ [ân]D). (2.10)

Two such arcs satisfy [a0, . . . , an]D ⊂ [b0, . . . , bm]D if and only if m ≥ n and ak = bk for

any k = 0, . . . , n. It is easy to see that [a0, . . . , an]D shrinks to a point as n→ ∞ (see

[6, Lemma 3.1] for a proof). A sequence (ak)k∈N satisfying Condition (2.9) corresponds

to a point ξ = [a0, a1, . . .]D in ∂D, where we use the notation

[a0, a1, . . .]D :=
⋂

n∈N
[a0 . . . , an]D.

Conversely, if (ak)k∈N is the boundary expansion of ξ ∈ ∂D, then ξ = [a0, a1, . . .]D. The

Bowen–Series map BS is the shift on the space of admissible infinite words.

2.4. Cuspidal words. Consider the map o : A → Z/2dZ in (2.5). The definitions in

Section 2.3 easily yield the following lemma (see [6, Lemma 3.2] for a proof).

LEMMA 2.1. Let (a0, . . . , an) be a word satisfying Condition (2.9) with n ≥ 1 and
a0 = an. The map Fa0,...,an−1

is a parabolic element of Γ0 fixing ξRa0
if and only if

o(ak+1) = o(âk) − 1 for any k = 0, . . . , n − 1. (2.11)
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The map Fa0,...,an−1
is a parabolic element of Γ0 fixing ξLa0

if and only if

o(ak+1) = o(âk) + 1 for any k = 0, . . . , n − 1. (2.12)

Let W = (a0, . . . , an) be an admissible word. We say that W is a cuspidal word if it

is the initial factor of an admissible word (a0, . . . , am) with m ≥ n such that Fa0,...,am is

a parabolic element of Γ0 fixing a vertex of ΩD.

• If n ≥ 1 and (2.11) is satisfied, we say that W is a right cuspidal word. In this case

we define its type by ε(W) := R and we set ξW := ξRa0
.

• If n ≥ 1 and (2.12) is satisfied, we say that W is a left cuspidal word. In this case we

define its type by ε(W) := L and we set ξW := ξLa0
.

• If n = 0, that is, W = (a0) has just one letter, the type ε(W) is not defined. By

convention, ξW := ξRa0
.

If W = (a0, . . . , an) is cuspidal with n ≥ 1, Lemma 2.1 implies that ξ
ε(W)
ak
= Fak · ξ

ε(W)
ak+1

for any k = 0, . . . , n − 1 and it follows that

ξW = ∂[a0]D ∩ ∂[a0, a1]D ∩ · · · ∩ ∂[a0, . . . , an]D, (2.13)

that is, the n + 1 arcs above share ξW as common end point (see also [2, Section

2.4] and [1, Section 4.3]). A sequence (an)n∈N is called cuspidal if any initial factor

(a0, . . . , an) with n ∈ N is a cuspidal word, and eventually cuspidal if there exists k ∈ N
such that (an+k)n∈N is a cuspidal sequence.

2.5. The cuspidal acceleration. If W = (b0, . . . , bm) and W ′ = (a0, . . . , an) are

words with a0 , b̂m, define the word W ∗W ′ := (b0, . . . , bm, a0, . . . , an). Let (an)n∈N be

a sequence satisfying Condition (2.9) and not eventually cuspidal.

Initial step. Set n(0) := 0. Let n(1) ∈ N be the maximal integer n(1) ≥ 1 such that

(a0, . . . , an(1)−1) is cuspidal; then set W0 := (a0, . . . , an(1)−1).

Recursive step. Fix r ≥ 1 and assume that the instants n(0) < · · · < n(r) and the

cuspidal words W0, . . . , Wr−1 are defined. Define n(r + 1) ≥ n(r) + 1 as the

maximal integer such that [an(r), . . . , an(r+1)−1] is cuspidal; then set

Wr := (an(r), . . . , an(r+1)−1).

The sequence of words (Wr)r∈N is called the cuspidal decomposition of (an)n∈N. Of

course, (a0, a1, a2 . . .) = W0 ∗W1 ∗ · · · . For any ξ = [a0, a1, . . .]D, if (Wr)r∈N is the

cuspidal decomposition of (an)n∈N, we write

ξ = [a0, a1, . . .]D = [W0, W1, . . .]D. (2.14)

REMARK 2.2. If Wr−1 := (an(r−1), . . . , an(r)−1) and Wr := (an(r), . . . , an(r+1)−1) are

two consecutive cuspidal words in the cuspidal decomposition of a sequence

(an)n∈N satisfying Condition (2.9), then the word (an(r)−1, an(r), . . . , an(r+1)−1) can be

cuspidal.
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3. The main theorem

The tools in Section 2 induce a boundary expansion on R. Let Γ0 < Γ be the free

subgroup and ΩD ⊂ D the ideal polygon in Section 2.2. Then PΓ0
= Γ0(ΩD ∩ ∂D) by

Theorem 4.2.5 in [4]. Since Γ0 has finite index in Γ, the two groups have the same set

of parabolic fixed points, that is,

PΓ = Γ0(ΩD ∩ ∂D). (3.1)

3.1. Geometric length of cuspidal words. Fix the list S = (A1, . . . , Ap) as in (1.5).

Let ΩH := ϕ−1(ΩD) ⊂ H be the pre-image of ΩD under the map in (2.1). Any vertex ξ

ofΩD corresponds to a unique vertex ζ = ϕ−1(ξ) ofΩH. For any such vertex ζ, consider

B ∈ Γ and k ∈ {1, . . . , p} with

ζ = BAk · ∞. (3.2)

Any side sa of ΩD corresponds to a unique side ea := ϕ−1(sa) of ΩH, where a ∈ A.

If BAk · ∞ = B′Aj · ∞, then j = k. Moreover, B′ = BP, where P ∈ Γ is parabolic

fixing Ak · ∞ (recall that in any Fuchsian group Γ with cusps, if G ∈ Γ satisfies

G · ζ = ζ for some ζ ∈ PΓ, then G is parabolic). Hence, the map z 7→ A−1
k PAk(z) is

a horizontal translation in H. If s and s′ are geodesics in D having ξ as common end

point, then their pre-images inH under ϕ ◦ B ◦ Ak are parallel vertical half-lines whose

distance does not depend on the choice of B in (3.2). This gives a well-defined positive

real number

∆(s, s′, ξ) := |Re(A−1
k B−1ϕ−1(s)) − Re(A−1

k B−1ϕ−1(s′))|.
Fix a cuspidal word W = (a0, . . . , an) and the vertex ξW of ΩD associated to W in

Section 2.4. For n ≥ 1, (2.13) implies that the geodesics sa0
, Fa0

(sa1
), . . . , Fa0,...,an−1

(san )

all have ξW as common end point (see Figure 3). Define the geometric length |W | ≥ 0

of W as

|W | :=
{
∆(sa0

, Fa0,...,an−1
(san ), ξW) if n ≥ 1,

0 if n = 0.
(3.3)

For a ∈ A, set Ga = ϕ
−1 ◦ Fa ◦ ϕ. Set Ga0,...,an := Ga0

◦ · · · ◦ Gan for any word

(a0, . . . , an) and GW0,...,Wr = Ga0,...,an if (a0, . . . , an) = W0 ∗ · · · ∗Wr. Define the interval

[a0, . . . , an]H := ϕ−1([a0, . . . , an]D) = Ga0,...,an (∂H \ [ân]H).

Set [a0, a1, . . .]H := ϕ−1([a0, a1, . . .]D), that is, encode α ∈ R by the same cutting

sequence as ϕ(α) ∈ D. If (an)n∈N has cuspidal decomposition (Wr)r∈N, (2.14) becomes

α = [W0, W1, . . .]H := [a0, a1, . . .]H. (3.4)

For r ∈ N, let Wr be the rth cuspidal word. Set ζWr := ϕ−1(ξWr ). The convergents of α

are

ζr := GW0,...,Wr−1
· ζWr , r ∈ N. (3.5)

For k = 1, . . . , p, let µk > 0 be such that the primitive parabolic element Pk ∈
AkΓA−1

k fixing∞ acts by Pk(z) = z + µk. Set µ := max{µ1, . . . , µp}.
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ξW
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e3 e2 e1 e0

|W | = |Re(e3) − Re(e0)|

∞
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k
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FIGURE 3. Geometric length |W | of a right cuspidal word W = (a0, a1, a2, a3). The arrows inside ΩD
represent the action of Fa0

, Fa1
, Fa2

. The arcs s0 := sa0
, s1 := Fa0

(sa1
), s2 := Fa0 ,a1

(sa2
), s3 := Fa0 ,a1 ,a2

(sa3
)

share the common vertex ξW , which is sent to ∞ under the map A−1
k B−1ϕ−1. Thus, the arcs s0, s1, s2, s3 in

D are sent to parallel vertical arcs ei := ϕ−1(si) in H.

THEOREM 3.1 (Main theorem). For any r ∈ N with |Wr | > 0,

1

|Wr | + 2µ
≤ D(GW0,...,Wr−1

· ζWr )
2 · |α − GW0,...,Wr−1

· ζWr | ≤
1

|Wr |
. (3.6)

Moreover, there exists ǫ0 > 0, depending only on ΩD and S, such that for any G ∈ Γ
and k = 1, . . . , p with D(G · zk) , 0, the condition

D(G · zk)2 · |α − G · zk | < ǫ0

implies that there exists some r ∈ N such that

G · zk = GW0,...,Wr−1
· ζWr , where |Wr | > 0. (3.7)

REMARK 3.2. Equation (3.6) holds for any choice of S as in (1.5), and this follows

because geometric length and denominators satisfy a form of equivariance under the

choice of S. Equation (3.7) shows that, for any choice of the subgroup Γ0, all good

enough approximations of a given α belong to the sequence of its convergents.

3.2. Reduced form of parabolic fixed points. Fix G · zk ∈ PΓ. Recall (3.1) and

write elements of Γ0 in the generators {Ga : a ∈ A}. There exist a unique admissible

word b0, . . . , bm and a vertex ζ of ΩH which is not an end point of eb̂m
such that

G · zk = Gb0,...,bm · ζ.

The representation above is called the reduced form of the parabolic fixed point G · zk.

In the next lemmas (Lemmas 3.3 and 3.4), let (b0, . . . , bm) be a nontrivial admissible

word and let ζ0 be a vertex of ΩH which is not an end point of eb̂m
, so that Gb0,...,bm · ζ0

is a parabolic fixed point written in its reduced form and different from∞.
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LEMMA 3.3. There exists a constant κ1 > 0, depending only on ΩH, such that

|ζ0 − G−1
b0,...,bm

· ∞| ≥ κ1,

that is, the vertex ζ0 and the pole of Gb0,...,bm stay at distance uniformly bounded from
below.

PROOF. By (2.10), Gb0,...,bm (R \ [b̂m]H) = [b0, . . . , bm]H. Since ∞ does not belong to

the interior of [b0, . . . , bm]H, the pole of Gb0,...,bm belongs to the closure of [b̂m]H. The

lemma follows because ζ0 is a vertex of ΩH different from the end points of eb̂m
. �

LEMMA 3.4. There exists a constant κ2 > 0, depending only on ΩH and S, such that
the following statements hold.

(1) If ζ1 is a vertex of ΩH different from ζ0, then

D(Gb0,...,bm · ζ0) ≥ κ2 · D(Gb0,...,bm · ζ1).

(2) If bm+1 satisfies bm+1 , b̂m and ζ2 is a vertex of ΩH with Gbm+1
· ζ2 , ζ0, then

D(Gb0,...,bm · ζ0) ≥ κ2 · D(Gb0,...,bm,bm+1
· ζ2).

PROOF. Part (1). Set G := Gb0,...,bm , ζ := G · ζ0 and ζ′ := G · ζ1. If ζ′ = ∞, then the

statement is trivially true. If D(G · ζ1) , 0, let ζ0 = B0Ak · ∞ and ζ1 = B1Aj · ∞ as

in (3.2). Referring to (1.3), let c, d be the entries of G. Let a0, c0 and a1, c1 be the

entries of B0Ak and B1Aj, respectively. We prove an upper bound for

D(Gb0,...,bm · ζ1)

D(Gb0,...,bm · ζ0)
=

∣∣∣∣∣
ca1 + dc1

ca0 + dc0

∣∣∣∣∣.

We cannot have c0 = c1 = 0 because ζ0 , ζ1 and in particular ζ0, ζ1 cannot both be

equal to∞. Moreover, G · ζ0, G · ζ1 are both different from∞; thus, the condition c = 0

implies that c0, c1 , 0. Hence, (1) follows for c = 0 because the ratio above equals

|c1/c0|, which varies in a finite set of values and is therefore bounded from above.

If c, c0, c1 , 0, then

∣∣∣∣∣
ca1 + dc1

ca0 + dc0

∣∣∣∣∣ =
∣∣∣∣∣
c1

c0

∣∣∣∣∣ ·
∣∣∣∣∣
(a1/c1) − (−d/c)

(a0/c0) − (−d/c)

∣∣∣∣∣ =
∣∣∣∣∣
c1

c0

∣∣∣∣∣ ·
∣∣∣∣∣
ζ1 − (G−1 · ∞)

ζ0 − (G−1 · ∞)

∣∣∣∣∣.

In this case (1) follows because |c1/c0| is bounded from above, and Lemma 3.3 gives a

lower bound for the denominator of the second factor (the numerator is not bounded,

but as it increases the ratio converges to 1). If c, c0 , 0 and c1 = 0, then Lemma 3.3

gives

∣∣∣∣∣
ca1 + dc1

ca0 + dc0

∣∣∣∣∣ =
∣∣∣∣∣
a1

c0

∣∣∣∣∣ ·
∣∣∣∣∣

1

(a0/c0) − (−d/c)

∣∣∣∣∣ =
∣∣∣∣∣
a1

c0

∣∣∣∣∣ ·
∣∣∣∣∣

1

ζ0 − (G−1 · ∞)

∣∣∣∣∣ ≤
∣∣∣∣∣

a1

c0 · κ1

∣∣∣∣∣
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and (1) follows on observing that a1/c0 varies in a finite set of values. Finally, if we

have c, c1 , 0 and c0 = 0, then
∣∣∣∣∣
ca1 + dc1

ca0 + dc0

∣∣∣∣∣ =
∣∣∣∣∣
a1

a0

− (−d/c)
c1

a0

∣∣∣∣∣ ≤
∣∣∣∣∣
a1

a0

∣∣∣∣∣ + |G
−1 · ∞|

∣∣∣∣∣
c1

a0

∣∣∣∣∣.

In this case ζ0 = ∞, which is not an end point of [b̂m]. Thus, [b̂m] is contained in the

compact interval of R delimited by the two parallel vertical segments of ΩH. Hence,

|G−1 · ∞| is uniformly bounded because the pole G−1 · ∞ belongs to the closure of [b̂m]

(see proof of Lemma 3.3). Part (1) follows in this case too and the proof is complete.

Part (2) follows similarly, replacing ζ1 by ζ∗ := Gbm+1
· ζ2 and observing that, since

Gbm+1
varies in the finite set {Ga : a ∈ A}, then also the entries of X ∈ SL(2,R) with

Gbm+1
· ζ2 = X · ∞ vary in a finite set. Moreover, ζ0 , ζ∗ and so G · ζ0 , G · ζ∗. �

3.3. Proof of Theorem 3.1. By a standard separation property of parabolic fixed

points (see [6, Section A]), there exists a constant S0 > 0, depending only on Γ and S,

such that for any G · zi and F · zj in PΓ with G · zi , F · zj,

|G · zi − F · zj| ≥
S0

D(G · zi)D(F · zj)
. (3.8)

Let α = [a0, a1, . . .]H = [W0, W1, . . .]H be the expansion of α ∈ R as in (3.4).

3.3.1. Proof of (3.6). Fix r ∈ N with |Wr | > 0. Take k ∈ {1, . . . , p} and B ∈ Γ as

in (3.2), that is, ζWr = BAk · ∞. As in Figure 4, let T > 0 be such that the horoball

BT := GW0,...,Wr−1
BAk({z ∈ H : Im(z) > T})

is tangent at GW0,...,Wr−1
· ζWr with radius ρ(BT ) = |α − GW0,...,Wr−1

· ζWr |. Equations (1.6)

and (1.7) give

D(GW0,...,Wr−1
· ζWr )

2 · |α − GW0,...,Wr−1
· ζWr | = c2(GW0,...,Wr−1

BAk) · Diam(BT )

2
=

1

2T
.

The geodesic in H with end points (GW0,...,Wr−1
BAk)−1 · ∞ and (GW0,...,Wr−1

BAk)−1 · α is

tangent to {z ∈ H : Im(z) > T}. Equation (3.6) follows because (3.3) gives

|Wr | ≤ 2T ≤ |Wr | + 2µ.

3.3.2. Proof of (3.7). Referring to Section 3.2, let ζ0 be the vertex of ΩH and

(b0, . . . , bm) be the admissible word such that the reduced form of the parabolic fixed

point G · zk is

G · zk = Gb0,...,bm · ζ0,

where ζ0 is not an end point of eb̂m
whenever (b0, . . . , bm) is not the empty word.

Assume that D(G · zk)2|α − G · zk | < ǫ0, where the constant ǫ0 > 0 will be determined

later.
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G(ΩH)
e′

2

e′
1

e′
0

αGζWr

ΩH

e2

e1

e0

G−1αζWr

|Wr | µ

e′′
2

e′′
1

e′′
0

2T

A−1
k

B−1
ΩH

FIGURE 4. The rth cuspidal word Wr = (a0, a1, a2) of α is the first cuspidal word of G−1 · α, where G =
GW0 ,...,Wr−1

. The vertex ζWr of ΩH is common to the arcs e0 = ea0
, e1 := Ga0

ea1
and e2 := Ga0a1

ea2
. The arcs

e′i = Gei share the vertex GζWr . The point ζWr is sent to ∞ and the arcs e0, e1, e2 are sent to the parallel

vertical arcs e′′
0

, e′′
1

, e′′
2

. We have |Wr | = |Re(e′′
2

) − Re(e′′
0

)|.

Step (0). Assume that (b0, . . . , bm) is the empty word, so that ζ0 = G · zk , ∞. Consider

the extra assumption |W0| > 0 and ζ0 = ζW0
on pairs (α, ζ0), where ζW0

= ϕ−1(ξW0
) and

ξW0
is the vertex of ΩD associated to W0 as in Section 2.4. Define ǫ0 > 0 by

ǫ0 := inf
(α,ζ0)

D(ζ0)2 · |α − ζ0|,

where the infimum is taken over all pairs (α, ζ0) not satisfying the extra assumption.

With such ǫ0, the statement follows whenever (b0, . . . , bm) is the empty word.

Step (1). Now assume that (b0, . . . , bm) is not the empty word. Then G · zk is an interior

point of [b0, . . . , bm]H. Let ζ1, ζ2 be the end points of [b̂m], which are vertices of

ΩH different from ζ0. By (2.10), the end points of [b0, . . . , bm]H are ζ′i := Gb0,...,bm · ζi
for i = 1, 2. Let N ≥ −1 be maximal with an = bn for any n = 0, . . . , N, where the

last condition is empty for N = −1, and where N ≤ m. Observe that the condition
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N ≤m − 1 implies that α < [b0, . . . , bm]H and therefore

|α − G · zk| ≥ min
i=1,2
|ζ′i − G · zk| = min

i=1,2
|Gb0,...,bm · ζi − Gb0,...,bm · ζ0|

≥ S0

D(Gb0,...,bm · ζ0)
·min

i=1,2

1

D(Gb0,...,bm · ζi)
≥ S0κ2

D(Gb0,...,bm · ζ0)2
,

where the third inequality follows from Lemma 3.4(1) and the second from (3.8).

Therefore N = m, provided that ǫ0 < κ2S0.

We have proved that [a0, . . . , am]H = [b0, . . . , bm]H. Moreover, G · zk does not belong

to the interior of [a0, . . . , am, am+1]H, since the latter is a subinterval of [b0, . . . , bm]H
delimited by the image under Gb0,...,bm of two consecutive vertices of ΩH. The same

argument as in the first part of Step (1), which is left to the reader, shows that G · zk is

an end point of [a0, . . . , am, am+1]H.

Step (2). We show that G · zk = Gb0,...,bm · ζ0 is an end point of [a0, . . . , am+2]H.

Otherwise, G · zk does not belong to the closure of [a0, . . . , am+2]H. Since α ∈
[a0, . . . , am+2]H,

|α − G · zk | ≥ |Gb0,...,bm,am+1
· ζ3 − Gb0,...,bm · ζ0|

≥ S0

D(Gb0,...,bm · ζ0)D(Gb0,...,bm,am+1
· ζ3)

≥ S0κ2

D(Gb0,...,bm · ζ0)2
,

where Gb0,...,bm,am+1
· ζ3 is the end point of [a0, . . . , am+2]H which is closest to G · zk and

where ζ3 is a vertex of ΩH which is not an end point of eâm+1
. Here, we use (3.8) and

Lemma 3.4(2). The inequality is absurd because of the condition ǫ0 < κ2S0.

Step (3). Let r be minimal such that (a0, . . . , am) is an initial factor of W0 ∗ · · · ∗Wr−1.

If (a0, . . . , am+2) is also an initial factor of W0 ∗ · · · ∗Wr−1, then GW0,...,Wr−1
· ξWr−1

is a

common end point of the intervals [a0, . . . , am]H, [a0, . . . , am+1]H and [a0, . . . , am+2]H,

according to (2.13). Without loss of generality,

GW0,...,Wr−1
· ξWr−1

= inf[a0, . . . , am]H = inf[a0, . . . , am+1]H = inf[a0, . . . , am+2]H.

The common end point is not G · zk, which belongs to the interior of [a0, . . . , am]H.

Thus, Step (1) implies that G · zk = sup[a0, . . . , am+1]H, which gives a contradiction

because G · zk is an end point of [a0, . . . , am+2]H by Step (2). Hence, W0 ∗ · · · ∗Wr−1

is equal either to (a0, . . . , am) or to (a0, . . . , am+1). Moreover, (am+1, am+2) is a cuspidal

word because [a0, . . . , am+1]H and [a0, . . . , am+2]H share the end point G · zk.

If W0 ∗ · · · ∗Wr−1 = (a0, . . . , am), the word (am+1, am+2) is an initial factor of Wr,

that is, |Wr | > 0 and ζ0 = ζWr .

If W0 ∗ · · · ∗Wr−1 = (a0, . . . , am+1), the word W ′ := (am+1) ∗Wr is also cuspidal

(this is allowed by Remark 2.2). If |Wr | = 0, that is, Wr = (am+2), then G · zk does not

belong to the closure of [a0, . . . , am+3]H and we reach a contradiction by

|α − G · zk | ≥ |Gb0,...,bm · ζ0 − Gb0,...,bm,am+1,am+2
· ζ3| ≥

S0κ2

D(Gb0,...,bm · ζ0)2
,
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where ζ3 is a vertex of ΩH and Gb0,...,bm,am+1,am+2
· ζ3 is the end point of [a0, . . . , am+3]H

which is closest to G · zk. In the last inequality we reason as in Step (2), replacing κ2
by a smaller constant and extending Part (2) of Lemma 3.4 one more step, in order

to compare D(Gb0,...,bm · ζ0) and D(Gb0,...,bm,am+1,am+2
· ζ3). Since W ′ is cuspidal with

|W ′| > 0, we have ζ0 = ζW′ . But we also have ζW′ = Gam+1
· ζWr , which implies that

Gb0,...,bm · ζ0 = Ga0,...,am · Gam+1
· ζWr = GW0,...,Wr−1

· ζWr .

In both cases (3.7) follows. The proof of Theorem 3.1 is complete.
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