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Abstract

Crofton formulas on simply connected Riemannian space forms allow the volumes, or
more generally the Lipschitz–Killing curvature integrals of a submanifold with cor-
ners, to be computed by integrating the Euler characteristic of its intersection with all
geodesic submanifolds. We develop a framework of Crofton formulas with distributions
replacing measures, which has in its core Alesker’s Radon transform on valuations. We
then apply this framework, and our recent Hadwiger-type classification, to compute
explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres,
pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single mea-
sure which depends analytically on the metric, gives rise to all those Crofton formulas
through its distributional boundary values at parts of the boundary corresponding to
the different indefinite signatures. In particular, the Crofton formulas we obtain are
formally independent of signature.

1. Introduction

1.1 Crofton formulas
The classical Crofton formula computes the length of a rectifiable curve γ in R2 as

Length(γ) =
π

2

∫
Gr1(R2)

#(γ ∩ L̄) dL̄, (1)

where Gr1(R2) is the space of lines in R2 with a rigid motion invariant measure (which is
normalized in a suitable way).

A higher-dimensional version states that for M ⊂ Rn a compact submanifold with boundary,
we have

μk(M) = cn,k

∫
Grn−k(Rn)

χ(M ∩ Ē) dĒ,

where Grn−k(Rn) is the Grassmann manifold of affine (n− k)-planes equipped with a rigid
motion invariant measure, χ is the Euler characteristic, and μk(M) is the kth intrinsic volume of
M , which can be defined via Weyl’s tube formula [Wey39]. The same formula also holds with the
submanifold M replaced by a compact convex body K, in which case the kth intrinsic volume
can be defined via Steiner’s tube formula [Ste82]. We refer to [KR97, Sch14] for more information
about intrinsic volumes of convex bodies.
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More generally, we can take an arbitrary translation-invariant measure m on Grn−k(Rn) and
consider the integral

μ(K) :=
∫

Grn−k(Rn)
χ(K ∩ Ē) dm(Ē).

By the additivity of the Euler characteristic, we have

μ(K ∪ L) + μ(K ∩ L) = μ(K) + μ(L)

whenever K,L,K ∪ L are compact convex bodies, hence μ is a valuation. Clearly μ belongs to the
space Val of translation-invariant valuations which are continuous with respect to the Hausdorff
metric. In addition, μ is k-homogeneous and even, that is, invariant under − Id. We thus get a
map

Cr : M(Grn−k(Rn))tr → Val+k ,

where Mtr denotes the space of translation-invariant measures.
Alesker [Ale01] has shown that the image of this map is dense with respect to the natural

Banach space topology on Val+k . Therefore, Crofton formulas are a central tool in the study of
valuations and in integral geometry.

When restricted to smooth measures and valuations (see § 2 for the notion of smoothness of
valuations), the map Cr is, in fact, a surjection

Cr : M∞(Grn−k(Rn))tr � Val∞,+
k ,

the kernel of which coincides with the kernel of the cosine transform [AB04].
Among the many applications in integral geometry of such formulas, we mention the con-

struction of a basis of the space of unitarily invariant valuations on Cn by Alesker [Ale03], the
interpretation of Alesker’s product of smooth and even valuations in terms of Crofton measures
[Ber07], the Holmes–Thompson intrinsic volumes of projective metrics [ÁPF07]. Applications
outside integral geometry include isoperimetric inequalities in Riemannian geometry [Cro84],
symplectic geometry [Oh90], systolic geometry [Tre85], algebraic geometry [AK18], and more.
Crofton formulas are employed also outside of pure mathematics, in domains such as microscopy
and stereology, see [KJ17].

Crofton formulas do not only exist on flat spaces, but also on manifolds. In this case, we
need a family of sufficiently nice subsets, endowed with a measure. Then the Crofton integral is
given by the integral of the Euler characteristic of the intersection with respect to the measure.
Under certain conditions which are given in [Fu16], it yields a smooth valuation on the manifold
in the sense of Alesker [Ale06b].

On spheres and hyperbolic spaces, a natural class of subsets are the totally geodesic subman-
ifolds of a fixed dimension, endowed with the invariant measure. On the two-dimensional unit
sphere, we have a formula similar to (1), with affine lines replaced by equators. This formula is
the main ingredient in the proof of the Fáry–Milnor theorem that the total curvature of a knot
in R3 is bigger than 4π if the knot is non-trivial.

In higher dimensions, the formula becomes slightly more complicated. On the n-dimensional
unit sphere, we have∫

Geodn−k(Sn)
χ(M ∩ E) dE =

∑
j

1
πωk+2j−1

(−k/2
j

)
μk+2j(M). (2)

Here Geodn−k(Sn) denotes the totally geodesic submanifolds of dimension (n− k), μj(M) is
the jth intrinsic volume of M (which can be defined as the restriction of the jth intrinsic
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volume on Rn+1 under the isometric embedding Sn ↪→ Rn+1), and ωn denotes the volume of the
n-dimensional unit ball. A similar formula holds on hyperbolic space. See [FW19, Fu14] for more
on the integral geometry of real space forms.

Moving on to Lorentzian signature, few results are available. The main challenge to over-
come is the non-compactness of the isotropy group, which in general renders the Crofton integral
divergent. Some special Crofton-type formulas in Lorentzian spaces of constant curvature, appli-
cable under certain rather restrictive geometric conditions, appeared in [Bir84, LCB03, ST05,
YMW16].

1.2 Results
We are going to prove Crofton formulas on flat spaces, spheres, and hyperbolic spaces of arbitrary
signatures. Let us recall the definition of these manifolds, referring to [O’Ne83, Wol61] for more
information.

Definition 1.1.

(i) The pseudo-Euclidean space of signature (p, q) is Rp,q = Rp+q with the quadratic form
Q =

∑p
i=1 dx

2
i −
∑p+q

i=p+1 dx
2
i .

(ii) The pseudosphere of signature (p, q) and radius r > 0 is

Sp,q
r = {v ∈ Rp+1,q : Q(v) = r2},

equipped with the induced pseudo-Riemannian metric. Its sectional curvature equals σ =
1/r2. The pseudosphere Sn,1

1 ⊂ Rn+1,1 is called the de Sitter space.
(iii) The pseudohyperbolic space of signature (p, q) and radius r > 0 is

Hp,q
r = {v ∈ Rp,q+1 : Q(v) = −r2}.

Its sectional curvature equals σ = −(1/r2). The pseudohyperbolic space Hn,1
1 is called the

anti-de Sitter space.

We colloquially call these spaces generalized pseudospheres. The isometry groups of general-
ized pseudospheres are given by

Isom(Rp,q) ∼= O(p, q) = O(p, q) � Rp,q,

Isom(Sp,q
r ) ∼= O(p+ 1, q),

Isom(Hp,q
r ) ∼= O(p, q + 1).

In each case the action is transitive, and the isotropy group is conjugate to O(p, q). These spaces
are isotropic in the sense that the isotropy group acts transitively on the level sets of the metric
in the tangent bundle.

Definition 1.2. A complete connected pseudo-Riemannian manifold of constant sectional
curvature is called a space form.

Up to taking connected components and universal coverings, any space form is a generalized
pseudosphere (cf. [O’Ne83, Chapter 8, Corollary 24]).

On a generalized pseudosphere M , we formulate Crofton formulas using the space
Geodn−k(M) of totally geodesic subspaces. However, there is no isometry-invariant Radon mea-
sure on this space. Therefore, we use an isometry-invariant generalized measure (also called
distribution). This causes some technical problems, as the function that we want to integrate is
not smooth. Nevertheless, in many cases the integral can still be evaluated. The result is not a

1937

https://doi.org/10.1112/S0010437X22007722 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007722


A. Bernig, D. Faifman and G. Solanes

valuation anymore, but a generalized valuation in the sense of Alesker [Ale07]. The Crofton map
is then a map

Cr : M−∞(Geodn−k(M)) → V−∞(M).

In the Riemannian case, any isometry invariant valuation admits an invariant Crofton measure.
The corresponding statement in other signatures is also true, but much harder to prove. The
second named author proved in [Fai17] the statement first for certain signatures by an explicit,
but difficult, computation and then used the behavior of Crofton formulas under restrictions and
projections to handle the general case.

Furthermore, with the exception of Riemannian and Lorentzian signatures, the space of
isometry-invariant generalized measures is of greater dimension than the space of isometry-
invariant valuations. Thus, we are forced to choose a distribution, and must take care to avoid
the kernel of the Crofton map.

Using results by Muro [Mur99] on analytic families of homogeneous generalized functions on
the space of symmetric matrices, one can construct such an invariant generalized measure on
Geodn−k(M). We construct a particular generalized measuremk with the distinguishing property
that it behaves well under restrictions of Crofton measures (see § 3.3), and is independent (in a
precise sense) of signature and dimension.

There is some freedom in the normalization of a Crofton measure. We choose the nor-
malization in such a way that the first coefficient in the Crofton formulas will always
be 1.

Our Crofton formula will evaluate

CrM
k := CrM (m̂k),

where σ �= 0 is the curvature of M and m̂k := πωk−1

√
σ−1

k
mk. The flat case σ = 0 appears

through a careful limiting procedure.
The right-hand side of the Crofton formula is expressed in terms of the recently introduced

intrinsic volumes on pseudo-Riemannian manifolds [BFS22], which are complex-valued gener-
alized valuations on M . They satisfy a Hadwiger-type classification [BFS21], which allows us
to use the template method to compute the coefficients in this formula. However, the resulting
computations lead to distributional integrals on the space of symmetric matrices, that can be
evaluated directly essentially only for the Lorentzian signature. To conclude the general case,
we use techniques of meromorphic continuation and distributional boundary values of analytic
functions.

Due to the functorial properties of the constructed Crofton distribution mirroring those of the
intrinsic volumes, namely their adherence to the Weyl principle, the resulting Crofton formulas
are signature independent. Remarkably, they are also holomorphic, i.e. they involve the intrinsic
volumes only and not their complex conjugates.

Main theorem. Let M be a generalized pseudosphere of sectional curvature σ. Then

CrM
k =

∑
j≥0

ωk−1

ωk+2j−1

(−k/2
j

)
σjμk+2j .

The Crofton formulas should be understood formally, namely as the correspondence between
distributions on the Grassmannian and the intrinsic volumes through an abstractly defined
Crofton map. However, they can also be interpreted as explicit Crofton-type formulas applicable
to sufficiently nice subsets of the generalized pseudospheres.
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By a strictly convex subset of a non-flat generalized pseudosphere Mm we mean its intersec-
tion with a strictly convex cone in Rm+1, with M ⊂ Rm+1 embedded as in Definition 1.1. For
the Riemannian round sphere and hyperbolic space, this coincides with the standard definition
of strict convexity.

Corollary 1.3. Let A ⊂M be a smooth and strictly convex domain in M . Then the
generalized measure m̂k can be applied to the function E 
→ χ(A ∩ E), E ∈ Geodn−k(M), and∫

Geodn−k(M)
χ(A ∩ E) dm̂k(E) =

∑
j≥0

ωk−1

ωk+2j−1

(−k/2
j

)
σjμk+2j(A).

Note that the spherical Crofton formula (2) is a special case of our theorem. We also note that
we prove a slightly more general statement in Corollary 5.14 using the notion of LC-regularity
from [BFS22].

1.3 Plan of the paper
After covering the preliminaries, we turn in § 3 to study general Crofton formulas with a distri-
butional Crofton measure, utilizing the Alesker–Radon transform on valuations. In particular,
we study under which conditions such formulas can be applied directly to a given subset.

In § 4 we consider LC-regular domains and hypersurfaces of space forms, and deduce that
they would be in a good position for the evaluation of intrinsic volumes through Crofton integrals,
once the corresponding distributions are constructed. The latter construction is carried out in § 5.
Moreover, these distributions are embedded in a meromorphic family of measures on a complex
domain as a distributional boundary value, and some delicate, though central to our analysis,
convergence questions are investigated and settled. Finally, in § 6, the Hadwiger-type description
of intrinsic volumes combined with the template method are applied to yield the explicit Crofton
formulas in all cases.

2. Preliminaries

2.1 Notation
By

ωn =
πn/2

Γ(n/2 + 1)

we denote the volume of the n-dimensional unit ball. The space of smooth complex valued
k-forms on a manifold is denoted by Ωk(M). The space of smooth complex valued measures on
M is M∞(M). The space of generalized measures, also called distributions, is denoted by

M−∞(M) := (C∞
c (M))∗,

where here and in the following the subscript c denotes compactly supported objects. Similarly,
for m = dimM , we denote the space of k-dimensional currents on M by

Ωm−k
−∞ (M) := (Ωk

c (M))∗.

The elements of this space can also be thought of as generalized (m− k)-forms.
For an oriented k-dimensional submanifold X ⊂M , we let [[X]] be the k-current which is

integration over X.
By PM := P+(T ∗M) we denote the cosphere bundle of M , which consists of all pairs (p, [ξ]),

p ∈M , ξ ∈ T ∗
pM \ 0, where [ξ] = [ξ′] if there is some λ > 0 with ξ = λξ′. When no confusion can
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arise, we use the same notation for subsets of PM and their lifts to T ∗M . The natural involution
on PM is the fiberwise antipodal map s(p, [ξ]) := (p, [−ξ]).

The wave front set of a generalized form ω ∈ Ω−∞(M) is a closed subset of PM , denoted by
WF(ω), and we refer the reader to [Hör03] or [Dui11] for details.

For a generalized pseudo-sphere M , we denote by Geodk(M) the space of totally geodesic
k-dimensional submanifolds of M .

2.2 Smooth valuations
Let M be a smooth manifold of dimension m, which we assume oriented for simplicity.

Let P(M) be the set of compact differentiable polyhedra on M . To A ∈ P(M) we associate
two subsets of PM . The conormal cycle, denoted nc(A), is the union of all conormal cones to A.
It is an oriented closed Lipschitz submanifold of dimension (m− 1), and naturally stratified by
locally closed smooth submanifolds corresponding to the strata of A.

The conormal bundle, denotedN∗A, is the union of the conormal bundles to all smooth strata
of A. It holds that nc(A) ⊂ N∗A. By definition, two stratified spaces intersect transversally if all
pairs of smooth strata are transversal.

A smooth valuation is a functional μ : P(M) → R of the form

μ(A) =
∫

A
φ+

∫
nc(A)

ω, φ ∈ Ωm(M), ω ∈ Ωm−1(PM ).

We write μ = [[φ, ω]] in this case.
The space of smooth valuations is denoted by V∞(M). It admits a natural filtration

V∞(M) = W∞
0 (M) ⊃ W∞

1 (M) ⊃ · · · ⊃ W∞
m (M) = M∞(M).

It is compatible with the Alesker product of valuations.

2.3 Generalized valuations
The space of generalized valuations is

V−∞(M) := (V∞
c (M))∗.

By Alesker–Poincaré duality we have a natural embedding V∞(M) ↪→ V−∞(M).
There is a natural filtration

V−∞(M) = W−∞
0 (M) ⊃ W−∞

1 (M) ⊃ · · · ⊃ W−∞
m (M) = M−∞(M).

In particular, we may consider a generalized measure as a generalized valuation.
A compact differentiable polyhedron A defines a generalized valuation χA by

〈χA, μ〉 = μ(A), μ ∈ V∞
c (M).

A generalized valuation ψ can be represented by two generalized forms ζ ∈ C−∞(M), τ ∈
Ωm−∞(PM ) such that

〈ψ, [[φ, ω]]〉 = 〈ζ, φ〉 + 〈τ, ω〉.

We refer to ζ and τ as the defining currents. For instance, the defining currents of χA, A ∈ P(M),
are ζ = 1A, τ = [[nc(A)]]. The wave front set of ψ is defined as the pair Λ ⊂ PM , Γ ⊂ PPM

of the
wave front sets of ζ and τ . The space of all generalized valuations with wave front sets contained
in Λ,Γ is denoted by V−∞

Λ,Γ (M).
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Consider ψ ∈ V−∞(M). We say that A ∈ P(M) is WF-transversal to ψ, denoted A � ψ, if
the conditions of [AB12, Theorem 8.3] hold for

(Λ1,Γ1) := WF(χA),

(Λ2,Γ2) := WF(ψ).

These conditions imply that Alesker’s product of smooth valuations can be extended to a
jointly sequentially continuous product

V−∞
Λ1,Γ1

(M) × V−∞
Λ2,Γ2

(M) → V−∞(M),

and in particular the pairing ψ(A) := 〈ψ, χA〉 =
∫
M ψ · χA is well-defined.

Let us write a sufficient set of conditions in a particular case.

Proposition 2.1. Assume WF(ψ) ⊂ (N∗D,N∗L) for some submanifolds with corners D ⊂M ,
L ⊂ PM , and take A ∈ P(M). Assume further:

(i) A � D;
(ii) nc(A) � π−1D, where π : PM →M is the natural projection;
(iii) π−1A � L;
(iv) nc(A) � s(L), where s : PM → PM is the antipodal map.

Then A � ψ.

Proof. These conditions imply the conditions in [AB12, Theorem 8.3]. �

2.4 Intrinsic volumes on pseudo-Riemannian manifolds
In [BFS22] we constructed a sequence of complex-valued generalized valuations μM

0 , . . . , μ
M
m

naturally associated to a pseudo-Riemannian manifold M of dimension m and extending the
Lipschitz–Killing curvatures therein. They are invariant under isometries and called the intrinsic
volumes of M . The intrinsic volume μ0 equals the Euler characteristic, whereas μm is the volume
measure of M , multiplied by iq where q is the negative index of the signature. For other values
of k, μk is typically neither real nor purely imaginary.

The wave front set of μk is contained in (∅, N∗(LC∗
M )), where LC∗

M ⊂ PM is the dual light
cone of the metric, i.e. the set of all pairs (p, [ξ]) ∈ PM such that g|p(ξ, ξ) = 0. Here we use the
metric to identify TM and T ∗M .

A subset A ∈ P(M) is LC-transversal if nc(A) � LC∗
M .

Lemma 2.2. Assume D = ∅, L = LC∗
M ⊂ PM , and A ∈ P(M). Then the conditions of

Proposition 2.1 are equivalent to the LC-transversality of A. In particular, the intrinsic volume
μk may be evaluated at LC-transversal A.

Proof. The first two conditions are empty. The third condition is satisfied for arbitraryA, because
the tangent space to π−1A contains all vertical directions, whereas the tangent space of LC∗

M

contains all horizontal directions. The fourth condition is precisely LC-transversality. �
We also need the notion of LC-regularity, which was introduced in [BFS22].

Definition 2.3. Let X be a smooth manifold equipped with a smooth field g of quadratic forms
over TX. We say that (X, g) is LC-regular if 0 is a regular value of g ∈ C∞(TX \ 0).

It was shown in [BFS22, Proposition 4.9] that the extrinsic notion of LC-transversality and
the intrinsic notion of LC-regularity coincide: a submanifold of a pseudo-Riemannian manifold,
equipped with the field of quadratic forms induced from the metric, is LC-regular if and only if
it is LC-transversal.
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The most important property of the intrinsic volumes is that they satisfy a Weyl principle:
for any isometric immersion M � M̃ of pseudo-Riemannian manifolds we have

μM̃
k |M = μM

k ,

in particular, the restriction on the left-hand side is well-defined. Conversely, we have shown in
[BFS21] that any family of valuations associated to pseudo-Riemannian manifolds that satisfies
the Weyl principle must be a linear combination of intrinsic volumes.

3. Distributional Crofton formulas

Let Mm be a manifold. A Crofton formula for a smooth valuation φ ∈ V∞(M) has the form
φ(A) =

∫
S χ(X(s) ∩A) dμ(s), where S is a smooth manifold parametrizing a smooth family of

submanifolds of M , and μ a smooth measure on S. Similarly, a distributional Crofton formula
has φ ∈ V−∞(M), and μ is a distribution.

In this section we study some general properties of such formulas, when M ⊂ V \ {0} is a
submanifold without boundary in a d-dimensional linear space V , and S = Grd−k(V ), k < d,
X(s) = s ∩M , s ∈ S.

We utilize the Radon transform on valuations, introduced in [Ale10]. Loosely speaking, the
Crofton map is but the Radon transform of a measure with respect to the Euler characteristic.
However, there are technical difficulties in applying this formalism directly to distributions, and
a large part of this section is concerned with resolving those difficulties. The main results to
this end are Propositions 3.7 and 3.12. In the last part, we describe the Crofton wave front of
sufficiently nice sets in Proposition 3.17, which controls the applicability of an explicit Crofton
integral to the given set.

3.1 The general setting
For a submanifold with corners X ⊂M , define ZX ⊂ X × Grd−k(V ) by ZX = {(x,E) :
x ∈ X ∩ E}. Then ZX is a manifold with corners, more precisely it is the total space of the
fiber bundle over X with fiber Grd−k−1(V/Rx) at x ∈ X. Write

X ZX

πX
��

τX
�� Grd−k(V )

for the natural projections.
Denote by WX ⊂ Grd−k(V ) the set of subspaces intersecting X transversally in V .
We need a simple fact from linear algebra, which we state in a rather general form that is

useful for us in several places.

Lemma 3.1. Let V be a vector space, L0 ∈ Grl(V ), E0 ∈ Grk(V ) with L0 ⊂ E0. Denote by
i : L0 ↪→ E0 the inclusion, and π : V/L0 → V/E0 the projection.

(i) Let E(t) ∈ Grk(V ) be a smooth path with E(0) = E0 and A : L0 → V/L0 a linear map.
Then there is a smooth path L(t) ∈ Grl(E(t)) with L(0) = L0 and L′(0) = A if and only if
the following diagram commutes.

L0
A

��

i

��

V/L0

π

��

E0

E′(0)
�� V/E0
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(ii) Let L(t) ∈ Grl(V ) be a smooth path with L(0) = L0. Let B : E0 → V/E0 be a linear map.
Then there is a smooth path E(t) ∈ Grk(V ) with L(t) ⊂ E(t), E(0) = E0 and E′(0) = B if
and only if the following diagram commutes.

L0

L′(0)
��

i

��

V/L0

π

��

E0
B

�� V/E0

Remark 3.2. The ‘only if’ statement obviously remains true if instead of L(t) ⊂ E(t), we have
�(L(t), E(t)) = o(t) with respect to any Euclidean structure.

Proof. Consider the partial flag manifold Z = {L ⊂ E} ⊂ Grl(V ) × Grk(V ). The group GL(V )
acts transitively on Z, and any smooth path F (t) = (L(t) ⊂ E(t)) ∈ Z can be lifted to a smooth
curve g(t) ∈ GL(V ) with g(0) = Id and F (t) = g(t)F (0). Thus, E′(0) : E0 → V/E0 and L′(0) :
L0 → V/L0 are both projections of g′(0) : V → V , and the diagram commutes.

In the other direction, write πW : V → V/W for the natural projection. It follows by
the above that the set of velocity vectors L′(0) for all curves L(t) ⊂ E(t) is the affine
space {πL0 ◦ T |L0 ∈ Hom(L0, V/L0) : T ∈ gl(V ), πE0 ◦ T |E0 = E′(0)}, which is of dimension(
k
2

)− ( l
2

)− (k−l
2

)
= l(k − l). This is also the dimension of the affine space of all A such that

the diagram commutes, which finishes the proof of the first part. The second part follows from
the first one by taking orthogonal complements. �

We need the following technical statement appearing in [Ale10, Proposition 5.1.3].

Lemma 3.3. The natural projection π : N∗ZM \ 0 → T ∗M \ 0 is a submersion.

Proof. Let (pt, ξt) be a smooth path in T ∗M \ 0. We lift it to a smooth path (pt, Et, ξt, ηt) ∈
T ∗(M × Grd−k(V )) such that pt ∈ Et, and (ξt, ηt) ∈ N∗

pt,Et
ZM . Now for v ∈ TpM , B ∈ TE

Grd−k(V ) = Hom(E, V/E), we have by Lemma 3.1 (applied with l = 1, L0 = Rp) that (v,B) ∈
Tp,EZM if and only if v + E = B(p).

Hence,

N∗
p,EZM = {(ξ, η) ∈ T ∗

pM × T ∗
E Grd−k(V ) : 〈ξ, v〉 + 〈η,B〉 = 0 whenever v + E = B(p)}.

Fix a Euclidean structure on V , inducing Euclidean structures on the spaces Hom(Et, V/Et).
Let us choose some Et such that pt ∈ Et, and TptM ∩ Et ⊂ Ker(ξt), which evidently can be done.
Consider the linear subspace

Wt = {B ∈ TEt Grd−k(V ) : B(pt) ∈ (TptM + Et)/Et},
and recall the natural isomorphism qt : (TptM + Et)/Et

∼−→ TptM/(TptM ∩ Et). We now may
define ηt ∈W ∗

t by 〈ηt, B〉 = −〈ξt, qt(B(pt))〉 for each B ∈Wt, as TptM ∩ Et ⊂ ker ξt. Extend ηt

by zero to W⊥
t . It follows that (ξt, ηt) ∈ N∗

pt,Et
ZM , completing the proof. �

It follows by [Ale10, Corollary 4.1.7] that the Radon transforms with respect to
the Euler characteristic, RM = (τM )∗π∗M : V−∞

c (M) → V−∞(Grd−k(V )) and RT
M = (πM )∗τ∗M :

V∞(Grd−k(V )) → V∞(M), are well-defined and continuous.

Definition 3.4. For any φ ∈ V−∞
c (M), let φ̂ ∈ C−∞(Grd−k(V )) be the defining current of RMφ

(on the base manifold). Equivalently, using [Ale07, Proposition 7.3.6] we have

φ̂ = [RMφ] ∈ W−∞
0 (Grd−k(V ))/W−∞

1 (Grd−k(V )) = C−∞(Grd−k(V )).
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Remark 3.5. It is false, in general, that φ̂ is a smooth function when φ is a smooth valuation,
see Remark 3.10.

Definition 3.6. The Crofton map CrM : M∞(Grd−k(V )) → W∞
k (M) is the restriction of RT

M

to M∞(Grd−k(V )). More explicitly,

CrM (μ)(X) =
∫

Grd−k(V )
χ̂X(E) dμ(E), X ∈ P(M).

We show in Proposition 3.12 that χ̂X(E) = χ(X ∩ E).

3.2 Distributional Crofton measures
To allow distributional Crofton measures, it seems essential to require that all intersections
E ∩M are transversal, for E ∈ Grd−k(V ). This is easily seen to be equivalent, for any k > 0,
to having Rx⊕ TxM = V for all x ∈M . In particular, dimV = dimM + 1 = m+ 1. We deduce
that M is a hypersurface that is locally diffeomorphic to an open subset of P+(V ) through the
radial projection. In other words, M is locally a strictly star-shaped hypersurface around the
origin.

Proposition 3.7.

(i) For all 0 ≤ k ≤ m and ψ ∈ V∞
c (M), it holds that E 
→ ψ(E ∩M) is a smooth function on

Grm+1−k(V ).
(ii) The image in C−∞(Grm+1−k(V )) of this function equals ψ̂.

Proof. (i) Let us first show E 
→ ψ(E ∩M) is smooth. By choosing an open cover of M by star-
shaped charts, and using the partition of unity property of smooth valuations [Ale07], we may
assume M projects diffeomorphically to an open subset of P+(V ), which we henceforth identify
with M .

By Boman’s theorem [Bom67], it suffices to prove that ψ(Et ∩M) is a smooth function of t ∈
(−ε, ε) for all smooth curves E• : (−ε, ε) → Grm+1−k(V ). It suffices, in fact, to show smoothness
in some open interval around 0 for any such given curve.

Let us lift Et to a smooth curve gt ∈ GL(V ) with g0 = Id and Et = gtE0. Then ψ(Et ∩M) =
g∗tψ(E0 ∩M) for sufficiently small t such that gt(Supp(ψ)) ⊂M , establishing the first part.

(ii) Let us check ψ(• ∩M) = ψ̂ in C−∞(Grm+1−k(V )). Take μ ∈ M∞(Grm+1−k(V )), and write

μ =
∫

Grm+1−k(V )
δE dμ(E) =

∫
Grm+1−k(V )

χ{E} dμ(E) ∈ V∞(Grm+1−k(V )).

Claim. We claim that τ−1
M E � π∗Mψ.

To see this, write Z = ZM and identify W := Z ×M PM with its image in PZ under
dπ∗M . Explicitly, W |(x,E) = P+(Ker(d(x,E)πM )⊥), so W is the union of the conormal bundles
to all fibers of πM . It follows from [Ale10, Proposition 3.3.3] that WF(π∗Mψ) ⊂ (∅, N∗W ). By
Proposition 2.1, it suffices to check that two intersections in PZ are transversal: π−1(τ−1

M E) � W
and N∗(τ−1

M E) � W .
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Denote z = (x,E), let (z, ζ) be an intersection point. The first intersection is easy to ana-
lyze: Tz,ζπ

−1(τ−1
M E) contains all vertical directions of PZ , whereas Tz,ζW contains all horizontal

directions.
To analyze the second intersection, we lift all manifolds from PZ to T ∗Z, and retain all

notation for the corresponding objects. As in the previous case, the image of Tz,ζW under
the natural projection π : Tz,ζT

∗Z → TzZ is all of TzZ, and so it suffices to show Tz,ζ(T ∗
z Z) ⊂

Tz,ζW + Tz,ζN
∗(τ−1

M E).
As N∗

z (π−1
M x) ⊂W , it suffices to show that

Tz,ζ(T ∗
z Z) ⊂ Tz,ζN

∗
z (π−1

M x) + Tz,ζN
∗
z (τ−1

M E),

which is the same as

T ∗
z Z ⊂ N∗

z (π−1
M x) +N∗

z (τ−1
M E) = N∗

z (Tzπ
−1
M x ∩ Tzτ

−1
M E).

The proof of the claim is completed by noting that the intersection Tzπ
−1
M x ∩ Tzτ

−1
M E is trivial.

Consider the set

X :=
{

(E, [ξ]) : E ∈ Grm+1−k(V ), [ξ] ∈ WF(χτ−1
M E)

}
⊂ Grm+1−k(V ) × PPZ

.

We claim that it is compact. If X ⊂ ⋃i∈I Ui is an open cover, then for each E ∈ Grm+1−k(V ) we
find a finite subcover XE ⊂ ⋃i∈IE

Ui of the compact set

XE := X ∩ ({E} × PPZ
) = {E} × WF(χτ−1

M E).

The map g 
→ XgE is GL(V )-equivariant, hence there exists some open neighborhood VE ⊂
Grm+1−k(V ) of E such that XE′ ⊂ ⋃i∈IE

Ui for all E′ ⊂ VE . Now Grm+1−k(V ) is compact,
hence finitely many VEj cover Grm+1−k(V ). Then X ⊂ ⋃j

⋃
i∈Ej

Ui is a finite subcover, proving
the claim. The image of X in PPZ

is then a compact set disjoint from WF(π∗Mψ).
Thus, we can find a closed cone Γ ⊂ T ∗PZ \ 0 such that for all E ∈ Grm+1−k(V ), χτ−1

M E ∈
V−∞

(∅,Γ)(Z), and π∗Mψ acts as a sequentially continuous functional on the latter space. Thus, we
can write

〈ψ̂, μ〉 = 〈π∗Mψ, τ∗M
∫

Grm+1−k(V )
χ{E} dμ(E)〉

=
∫

Grm+1−k(V )
〈π∗Mψ, χτ−1

M (E)〉 dμ(E).

It remains to check that
〈π∗Mψ, χτ−1

M (E)〉 = ψ(E ∩M). (3)

For a compact submanifold with boundary A ⊂M that is transversal to E ∩M , we have by
[AB12, Theorem 5],

〈π∗MχA, χτ−1
M (E)〉 = χ(π−1

M A ∩ τ−1
M (E)) = χ(A ∩ E) = χA(E ∩M).

It follows by linearity that any smooth valuation of the form ψ =
∫
A χA dν(A), where A is a

family of submanifolds A as previously and ν a smooth measure, satisfies (3). This family CrE

of valuations spans a dense subset in V∞(M). Indeed, we may approximate χA in V−∞(M) by
a sequence in CrE for any A transversal to E ∩M . Were CrE not dense, by Alesker–Poincaré
duality one could find a non-zero smooth valuation φ annihilating CrE and, thus, also van-
ishing on all submanifolds with boundary that are transversal to E ∩M . By the genericity of
transversality and continuity, φ would vanish on all submanifolds with boundary. However, this
is impossible by [BB07]. It follows that equality in (3) holds for all ψ. �
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Corollary 3.8. The map Grm+1−k(V ) → V−∞(M), E 
→ χE∩M is smooth, and for μ ∈
M∞(Grm+1−k(V )) it holds that Cr(μ) =

∫
Grm+1−k(V ) χE∩M dμ(E).

Proposition 3.9. The map Cr : M∞(Grm+1−k(V )) → W∞
k (M) extends to a continuous map

Cr : M−∞(Grm+1−k(V )) → W−∞
k (M), by setting, for all ψ ∈ V∞

c (M),

〈Cr(μ), ψ〉 :=
∫

Grm+1−k(V )
ψ(E ∩M) dμ(E).

Proof. The right-hand side is well-defined for a generalized measure μ, because the function
E 
→ ψ(E ∩M) is smooth by Proposition 3.7. Take μ ∈ M∞(Grm+1−k(V )), ψ ∈ V∞

c (M). To
verify this new definition extends the smooth one, we ought to check that

〈(πM )∗τ∗Mμ, ψ〉 =
∫

Grm+1−k(V )
ψ(E ∩M) dμ(E),

which is the content of Corollary 3.8. Continuity is equally evident. �
Remark 3.10. It is tempting to define Cr(μ) as a Radon transform, Cr(μ) = RT

Mμ, as defined
in [Ale10]. Unfortunately the conditions of [Ale10, Corollary 4.1.7], which guarantee that the
transform is well-defined on generalized valuations, do not hold for general k, as can be seen by
a simple dimension count.

3.3 Functorial properties of Crofton measures
The following is a partial summary of the results of [Fai17, Appendix B] (adapted from the affine
to the linear Grassmannian), whereto we refer the reader for further details.

Let j : U r ↪→ V d be an inclusion of a linear subspace. There is then a well-defined operation
of restriction

j∗ : M∞(Grk(V )) → M∞(Grk−(d−r)(U)),

which is the push-forward under the (almost everywhere defined) map JU : E 
→ j−1(E) = E ∩ U .
Let SU ⊂ Grk(V ) be the collection of subspaces intersecting U non-generically, and fix a

closed cone Γ ⊂ T ∗ Grk(V ) \ 0 such that Γ ∩N∗SU = ∅. Given k ≥ d− r, let M−∞
Γ (Grk(V ))

denote the set of generalized measures (distributions) μ whose wave front sets lie in Γ, equipped
with the Hörmander topology.

The map j∗ extends as a sequentially continuous map

j∗ : M−∞
Γ (Grk(V )) → M−∞(Grk−(d−r)(U)).

Similarly, if π : V →W is a quotient map, there is a natural push-forward operation

π∗ : M∞(Grk(V )) → M∞(Grk(W )),

which is the push-forward under the (almost everywhere defined) map ΠW : E 
→ π(E). It
extends to distributions whose wave front sets are disjoint from the conormal cycle of the
collection of subspaces intersecting Kerπ non-generically.

The following proposition captures the intuitively obvious fact that the pullback of distribu-
tions/valuations under embeddings commutes with the Crofton map. We prove a weak version
which suffices for our purposes.

Recall that M is a locally star-shaped hypersurface around the origin.

Proposition 3.11. Take a submanifold M r ⊂ V d, a subspace j : U ↪→ V such that Z := M ∩
j(U) is a submanifold, and a distribution μ ∈ M−∞

Γ (Grd−k(V )). Assume CrM (μ) is transversal
to Z in the sense of [Ale10, Definition 3.5.2]. Then CrM (μ)|Z = CrZ(j∗μ).

1946

https://doi.org/10.1112/S0010437X22007722 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007722


Crofton formulas in pseudo-Riemannian space forms

Proof. Choose an approximate identity ρi ∈ M∞(GL(V )) as i→ ∞, and set μi = μ ∗ ρi ∈
M∞(Grd−k(V )). For all A ∈ P(Z) we have

CrM (μi)(A) =
∫

Grd−k(V )
χ(A ∩ E) dμi(E) =

∫
Grr−k(U)

χ(A ∩ E)d((JU )∗μi)(E),

and, therefore, CrM (μi)|Z = CrZ(j∗μi). The restriction of valuations to a submanifold is con-
tinuous in the Hörmander topology on the space of valuations with wave front set contained in
WF(CrM (μ)), see [Ale10, Claim 3.5.4]. Thus, the left-hand side weakly converges to CrM (μ)|Z .
The right-hand side weakly converges to CrZ(μ). �

3.4 Applying generalized Crofton formulas to subsets
Let Mm ⊂ V = Rm+1 be a strictly star-shaped hypersurface around the origin. Given A ∈ P(M)
and a Crofton distribution μ ∈ M−∞(Grm+1−k(V )), we would like to evaluate Cr(μ) on A using
an explicit Crofton integral, whenever A � Cr(μ).

The following proposition provides some a priori regularity for χ̂A.

Proposition 3.12. For A ∈ P(M), it holds that χ(A ∩ •) ∈ L1(Grm+1−k(V )), is finite and
locally constant on WA := {E : E � A}. Furthermore, χ̂A = χ(A ∩ •).
Proof. Let us first check that χ(A ∩ •) ∈ L1(Grm+1−k(V )). Fix a Euclidean structure on V and
identify M with the unit sphere. By [BFS14, Lemma A.2], for a fixed E0 ∈ Grm+1−k(V ) we have
[g 
→ χ(A ∩ gE0)] ∈ L1(SO(V )). Let dg, dE be the Haar measures on SO(V ) and Grm+1−k(V ),
respectively, and p : SO(V ) → Grm+1−k(V ) given by g 
→ gE0. Then p∗(χ(A ∩ gE0)dg) = χ(A ∩
E) dE, and so χ(A ∩ E) is integrable. It is evidently finite and locally constant on WA

It remains to check that χ̂A = χ(A ∩ •). Take an approximate identity ρj ∈ M∞(SO(V )),
which for convenience we assume invariant under inversion.

Consider the convolution φj := χA ∗ ρj ∈ V−∞(M). As SO(V ) is transitive on M and PM , it
follows that the defining currents of φj are smooth, and therefore φj ∈ V∞(M).

By [BFS14, Theorem A.1], φ̃j :=
∫
SO(V ) χ(gA ∩ •) dρj(g) is a well-defined smooth valuation.

Let us show that φ̃j = φj . Take ψ ∈ V∞
c (M) and compute

〈φ̃j , ψ〉 =
∫

SO(V )
ψ(gA ∩M) dρj(g) =

∫
SO(V )

ψ(gA) dρj(g)

by [BFS14], whereas

〈φj , ψ〉 = 〈χA, ψ ∗ ρj〉 = (ψ ∗ νj)(A) =
∫

SO(V )
ψ(gA) dρj(g).

Equality now follows by Alesker–Poincaré duality. We thus have the following equalities of
functions on Grm+1−k(V ):

φj(• ∩M) = φ̃j(• ∩M) =
∫

SO(V )
χ(gA ∩ •) dρj(g) = χ(A ∩ •) ∗ ρj ,

where the right-hand side is the convolution of χ(A ∩ •) ∈ L1(Grm+1−k(V )) with ρj . It follows
that φj(E ∩M) → χ(A ∩ E) in L1(Grm+1−k(V )).

Fix μ ∈ M∞(Grm+1−k(V )). By Proposition 3.7 and GL(V )-equivariance,

〈χ̂A, μ〉 = lim
j→∞

〈χ̂A ∗ ρj , μ〉 = lim
j→∞

〈χ̂A ∗ ρj , μ〉

= lim
j→∞

∫
Grm+1−k(V )

φj(E ∩M) dμ(E) =
∫

Grm+1−k(V )
χ(A ∩ E) dμ(E),

and so χ̂A = χ(A ∩ •). �
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Definition 3.13. The k-Crofton wave front of A ∈ P(M) is Cr WFk(A) := WF(χ̂A) ⊂
T ∗ Grm+1−k(V ).

As χ̂A is real-valued, Cr WFk(A) must be symmetric under the fiberwise antipodal map.

Proposition 3.14. Assume Cr WFk(A) ∩ WF(μ) = ∅. Then

Cr(μ)(A) =
∫

Grm+1−k(V )
χ(A ∩ E) dμ(E). (4)

Proof. We identify M with P+(V ). Then V−∞(M) → C−∞(Grm+1−k(V )), φ 
→ φ̂ is GL(V )-
equivariant. Consider the sequence of smooth valuations ψj given by ψj =

∫
GL(V ) g

∗χA · dρj(g),
where ρj is a compactly supported approximate identity on GL(V ). Clearly ψj → χA in the
Hörmander topology of V−∞

WF(χA)(M). By GL(V )-equivariance we have that

ψ̂j =
∫

GL(V )
g∗χ̂A · dρj(g) → χ̂A

in C−∞
WF(χ̂A)(Grm+1−k(V )).
It holds by Propositions 3.9 and 3.7 that

〈Cr(μ), ψj〉 =
∫

Grm+1−k(V )
ψj(E ∩M) dμ(E) = 〈μ, ψ̂j〉.

As j → ∞, the left-hand side converges to 〈Cr(μ), χA〉 = Cr(μ)(A), as A � Cr(μ). The right-
hand side converges to 〈μ, χ̂A〉 (because WF(μ) ∩ WF(χ̂A) = ∅), which is the same as∫
Grm+1−k(V ) χ(A ∩ E) dμ(E) by Proposition 3.12. �

Determining Cr WFk(A) precisely appears to be difficult in general. Let us focus on a subset
A ∈ P(M) which is either a compact domain with smooth boundary, or a compact hypersurface
without boundary.

For the following, we write H = H(A) for ∂A if A is of full dimension, and for A when it is
a hypersurface. Write Ê := E ∩M , and note that E intersects H transversally in V if and only
if Ê intersects H transversally in M . We use the notation

B̃H := {(x,E) ∈ ZH : TxÊ ⊂ TxH},
BH := τH(B̃H) ⊂ Grm+1−k(V ).

It is not hard to see that B̃H is an embedded submanifold of ZH of dimension

dim B̃H = dimH + (m− k)(dimH − (m− k))

= k(m+ 1 − k) − 1 = dim Grm+1−k(V ) − 1. (5)

If (x,E) ∈ B̃H , we say that x ∈ H is a tangent point for E. Observe also that WA = Bc
H .

Write τ̃H for the restriction τH |
B̃H

: B̃H → Grm+1−k(V ). We sometimes write Bm+1−k
H , etc.,

to specify the dimension.

Definition 3.15. We say that E ∈ Grm+1−k(V ) is a regular tangent to A if τ̃H is immersive on
τ̃−1
H (E).

Note that if E /∈ BH , then it is automatically regular.
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For a subset A ⊂ V we denote by P(A) its image in the projective space P(V ). The regularity
of the tangent is equivalent to the non-vanishing of the Gauss curvature of the corresponding
section, as follows.

Lemma 3.16. Fix (p,E) ∈ B̃H . Choose any lineN ⊂ TpM \ TpH, and set F = E ⊕N . Then τ̃H :
B̃H → Grm+1−k(V ) is an immersion at (p,E) if and only if P(H ∩ F ) ⊂ P(F ) has non-degenerate
second fundamental form at p.

In particular, all tangents to A are regular if and only if P(H) ⊂ P(V ) is a strictly convex
hypersurface.

Proof. Let us sketch the argument, see [Teu90, Lemma 1(ii)] for details. Clearly dτ̃H is injective
on the subspace of directions where p moves transversally to E. Namely, fixing any subspace
Ē ⊂ TpH such that E ⊕ Ē = TpH ⊕ Rp, dτ̃H is injective on {(v,A) ∈ TpH × TE Grm+1−k(V ) :
v ∈ Ē} ∩ TB̃H . That injectivity is retained as the remaining directions are added, corresponds
to the non-degeneracy of the Gauss map of the section H ∩ F . �

We now describe the Crofton wave front near regular tangents. For an immersed manifold
i : X � Y and y ∈ i(X), we denote

N∗
y i(X) =

⋃
x∈i−1y

(dxi(TxX))⊥ ⊂ T ∗
y Y, N∗i(X) =

⋃
y∈i(X)

N∗
y i(X).

Proposition 3.17. Assume E0 ∈ Bm+1−k
H is a regular tangent. Then Cr WFk

E0
(A) ⊂ N∗

E0
BH .

That Cr WFk
E0

(A) is contained in the sum of the conormal spaces of the embedded parts
of BH follows from the fact that χ̂A is locally constant on the complement of BH . However, to
show that it is actually contained in the union of those conormal spaces, in the following proof
we need a more precise description of χ̂A.

Proof. In the following, by a ball (centered at a point) we mean a compact contractible neigh-
borhood (of the point) with smooth boundary. As B̃H is a submanifold of ZH , by assumption
BH ⊂ Grm+1−k(V ) is an immersed submanifold in a neighborhood around E0, which is a
hypersurface by (5).

The preimage τ̃−1
H (E0) must be finite, or otherwise we could find a sequence of distinct

points (qj , E0) ∈ B̃H , which then has a limit point (q0, E0), and τ̃H would fail to be injective
in a neighborhood of (q0, E0), contradicting the assumed immersivity of τ̃H there. We use the
notation τ̃−1

H (E0) = {(qj , E0), 1 ≤ j ≤ N}.
We can now find a ball W ⊂ Grm+1−k(V ) centered at E0, such that BH ∩W is the finite

union of embedded hypersurfaces Fj , each diffeomorphic to a Euclidean ball, with E0 ∈ Fj and
∂Fj ⊂ ∂W for all j. Note that we have no control on how these hypersurfaces intersect each other.
Denote by C±

j the connected components of W \ Fj . The indices are matched by requiring that
a neighborhood of (qj , E0) ∈ B̃H is mapped to Fj by τ̃H .

Fix small balls Kj ⊂M around qj such that

τ̃H : π−1
H (Kj) ∩ τ̃−1

H (W ) → Fj

is an embedding, ∂Kj � H and ∂Kj � Ê0 in M . As Z0 := {qj : 1 ≤ j ≤ N} is the subset of all
points in H where Ê0 fails to intersect H transversally, it holds that Ê0 � (H \ Z0), and so
Ê0 ∩ (H \ Z0) is a locally closed submanifold in H. We assume the Kj small enough so that they
are pairwise disjoint, and in particular ∂Kj ∩ Z0 = ∅. We may, moreover, assume that H ∩Kj is
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diffeomorphic to a Euclidean ball. By the transversality theorem, we may perturb Kj if necessary
to have (Ê0 ∩H) � (∂Kj ∩H) in H.

Denote by 1
2Kj a smaller ball centered at qj . Taking W sufficiently small, we may assume

that

Ê �
(
H \

⋃
j

1
2
Kj

)
, ∀E ∈W. (6)

This follows by the stability of transversal intersections, because Ê is a smooth perturbation of
Ê0, which intersects H transversally in an open neighborhood of H \⋃j int(1

2Kj). Similarly, we
have

Ê � ∂Kj in M, ∀E ∈W, 1 ≤ j ≤ N (7)

and

(Ê ∩H) � (∂Kj ∩H) in H, ∀E ∈W, 1 ≤ j ≤ N. (8)

For ε ∈ {±}N , denote Cε = ∩N
j=1C

εj

j . Recall that χ̂A is locally constant on WA = Bc
H , and so

is constant on any connected component of a non-empty set Cε. Let us show there are integers
ej = ej(E0) such that for any ε, ε′ ∈ {±}N and any E ∈ Cε, E

′ ∈ Cε′ one has

χ̂A(E′) − χ̂A(E) =
∑

j:εj<ε′j

ej −
∑

j:ε′j<εj

ej . (9)

For E ∈W , denote Σj(E) := Ê ∩ ∂Kj ∩H. As it is the transversal intersection of Ê ∩H and
∂Kj ∩H in H, it is a closed manifold of dimension (m− k − 2), and χ(Σj(E)) is independent
of E ∈W .

Let us distinguish the two cases under consideration. Assume first A = H is a hyper-
surface. As Ki ∩Kj = ∅, we have

1M =
N∑

j=1

(1Kj − 1∂Kj ) + 1Kc ,

with K :=
⋃N

j=1Kj . Hence, for E ∈W \BH we have

χ(E ∩A) =
N∑

j=1

χ(E ∩Kj ∩A) −
N∑

j=1

χ(Σj(E)) + χ(E ∩Kc ∩A).

The last summand is constant onW by properties (6) and (8). Consequently, for E ∈ Cε, E′ ∈ Cε′

we have

χ̂A(E′) − χ̂A(E) =
N∑

j=1

(
χ(E′ ∩A ∩Kj) − χ(E ∩A ∩Kj)

)
.

The function χ(• ∩A ∩Kj) is locally constant on W \ Fj , and it remains to define

ej := χ(• ∩A ∩Kj)|C+
j
− χ(• ∩A ∩Kj)|C−

j
. (10)

The case of full-dimensional A is only slightly more involved. If (m− k) is odd, we have
χ̂A = 1

2 χ̂∂A, reducing to the previous case. Thus, assume (m− k) is even.
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Write, as before, whenever E ∈W \BH ,

χ(E ∩A) =
N∑

j=1

χ(E ∩Kj ∩A) −
N∑

j=1

χ(E ∩ ∂Kj ∩A) + χ(E ∩Kc ∩A).

Note that for E ∈W \BH , all intersections are manifolds with corners. We have

χ(E ∩ ∂Kj ∩A) = 1
2χ(E ∩ ∂Kj ∩ ∂A) = 1

2χ(Σj(E))

thus it is constant in W .
Set

Sj := Ê ∩ ∂Kj , S := Ê ∩ ∂A.
Here Sj is a transversal intersection in M for all E ∈W and, hence, a smooth hyper-
surface, whereas S is given by a transversal intersection in M and, hence, smooth for E ∈
W \BH . Moreover, S is a smooth hypersurface outside of 1

2Kj for all E ∈W .
We claim that the intersection Sj ∩ S = Σj(E) is transversal in Ê for all E ∈W . If the

intersection is not transversal at x, then Tx(Ê ∩ ∂Kj) = Tx(Ê ∩ ∂A). However, by assumption
Ê ∩ ∂A and ∂Kj ∩ ∂A intersect transversally in ∂A, in particular

Tx(Ê ∩ ∂A) + Tx(∂Kj ∩ ∂A) = Tx∂A.

In conjunction with the previous equality, we get Tx∂A ⊂ Tx∂Kj , which is false.
Let X,Y ⊂ P be smooth domains in a manifold P , and assume ∂X � ∂Y and X is compact.

Let Z ⊂ X ∩ Y be the closure of a connected component of X ∩ Y . Then χ(Z) is constant as
X,Y are perturbed while maintaining transversality.

Taking P = Ê, X = E ∩A with ∂X = S (which is a manifold for E ∈W \BH), and Y =
E ∩Kj with ∂Y = Sj we obtain that χ(E ∩A ∩Kj) is locally constant in W \BH . Taking
X = E ∩A with ∂X = S (which is a manifold outside

⋃
j

1
2Kj for all E ∈W ), Y = E ∩Kc with

∂Y =
⋃

j Sj , it follows that χ(E ∩A ∩Kc) is constant in W . Thus, we may define ej as in the
previous case by (10).

It follows from (9) that for E ∈W , χ̂A(E) is a linear combination of the indicator functions
of the connected components of the complements of the hypersurfaces Fj in W . Therefore,
WFE0(χ̂A) ⊂ ⋃j N

∗Fj , concluding the proof. �

4. The Crofton wave front of LC-regular hypersurfaces

Let (W,Q) be a vector space equipped with a quadratic form. We denote by Λν
k(W ) ⊂ Grk(W )

the collection of subspaces E ⊂W where Q|E has nullity ν. We need to describe those sets in
several cases.

Proposition 4.1. Assume (V,Q) has dimension d.

(i) If Q is non-degenerate, then Λν
k(V ) ⊂ Grk(V ) is a submanifold of dimension

dim Λν
k(V ) = k(d− k) −

(
ν + 1

2

)
. (11)

Writing E0 := E ∩ EQ, we have

TEΛν
k(V ) = {A ∈ Hom(E, V/E) : Q(Au, u) = 0,∀u ∈ E0}. (12)

(ii) If Q has nullity 1 and E ∈ Λν
k(V ) is such that KerQ ∩ E = {0}, then Λν

k(V ) is a manifold
near E whose dimension is given by (11).
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Proof. (i) See [BF17, Proposition 4.2].
(ii) Write L0 := Ker(Q). Consider W := V ⊕ R, and extend Q as a non-degenerate quadratic

form Q̃ on W . Let us verify that the submanifolds Λν
k(W ) and Grk(V ) intersect transversally in

Grk(W ) at E.

As L0 �⊂ E, also EQ̃ �⊂ LQ̃
0 = V . Thus, we can find a line L ⊂ EQ̃ \ V . Now any linear map

A : E →W/E decomposes as a sum A = A1 +A2 with A1 ∈ Hom(E, V/E) = TE Grk(V ), A2 ∈
Hom(E, (E + L)/E) ⊂ Hom(E,W/E) = TE Grk(W ). As Q̃(A2u, v) = 0 for all u, v ∈ E0, we have
A2 ∈ TEΛν

k(W ) by (12).
This proves the claim. As Λν

k(V ) = Λν
k(W ) ∩ Grk(V ), it is a manifold near E. The formula

for the dimension then follows from the previous case. �

Corollary 4.2. Let B be a smooth manifold, and W a real vector bundle of rank d over
B. Let Q ∈ Γ(B,Sym2(W ∗)) be a smooth field of quadratic forms, of nullity at most 1 for
all x. Let Grk(W ) be the corresponding bundle of k-subspaces over B, and consider Λν

k(W ) =
{(x,E) ∈ Grk(W ) : E ∈ Λν

k(Wx, Qx)}. If (p,E) ∈ Λν
k(W ) and Ker(Qx) ∩ E = {0}, then Λν

k(W )
is a manifold near (p,E), of dimension

dim Λν
k(W ) = dimB + k(d− k) −

(
ν + 1

2

)
.

Proof. Using a local trivialization, this reduces to Proposition 4.1. �

Lemma 4.3. Let W be a d-dimensional vector space equipped with a quadratic form Q of
nullity 1 with kernel L0. Assume L0 ⊂ E0 ∈ Λν

k(W ), and define the set C ⊂ TE0 Grk(W ) of all
velocity vectors E′(0) of smooth curves E(t) ∈ Λν

k(W ) with E(0) = E0. Then C is a cone over a
closed manifold, and has dimension at most k(d− k) − (ν+1

2

)
.

Proof. If Q is either positive or negative semi-definite, then Λν
k(W ) is empty if ν ≥ 2, whereas

Λ1
k(W ) = {E ∈ Grk(W ) : L0 ⊂ E} is a manifold of dimension (k − 1)(d− k), whence the state-

ment is trivial. We henceforth assume that is not the case, that is Q has both positive and
negative directions.

Fix W0 ⊂W such that W = L0 ⊕W0. Denote

Λν
k(W,W0) = {E ∈ Λν

k(W ) : Ker(Q|E) ⊂W0}.
Consider the map I : Grk(W ) \ Grk(W0) → Grk−1(W0) given by I(E) = E ∩W0.

We claim that the restriction

Ĩ := I : Λν
k(W ) \ Λν

k(W,W0) → Λν−1
k−1(W0)

is well-defined. That is, the nullity of I(E) is (ν − 1) when E /∈ Λν
k(W,W0). Indeed, for such

E of nullity ν, the nullity of I(E) is clearly at least (ν − 1). As Ker(Q|E) �⊂W0, one can find
wE ∈ Ker(Q|E) \W0 so that E = I(E) ⊕ Span(wE). If I(E) contains a ν-dimensional subspace
U that is Q-orthogonal to I(E), then U is also Q-orthogonal to E as Q(wE , I(E)) = 0. Hence,
U ⊕ Span(wE) ⊂ Ker(Q|E), and consequently the nullity of E is at least (ν + 1), a contradiction.

We will describe the fiber Ĩ−1(F ) of F ∈ Λν−1
k−1(W0). Denote

Λν
k(W,L0) = {E ∈ Λν

k(W ) : L0 ⊂ E},
and π0 : W � W0 is the projection along L0. Clearly E ∈ Ĩ−1(F ) ∩ Λν

k(W,L0) if and only if
E = L0 ⊕ F .
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As Q|W0 is non-degenerate, FK := FQ ∩ F ⊂W0 is the kernel of Q on FQ ∩W0. Thus, the
quotient space

VF := FQ ∩W0/FK

inherits a non-degenerate quadratic form, also denoted Q. Let πK : FQ ∩W0 � VF be the
projection, and observe that Q(πKx) = Q(x), so that

πK(Λ1
1(F

Q ∩W0) \ P(FK)) = Λ1
1(VF ).

Denote by π̃0 : L0 ⊕ VF � VF the projection to the second summand, and observe that L0 ⊕ VF

is naturally equipped with a quadratic form Q with nullity 1 and kernel L0.
The manifold Λ1

1(VF ) embeds naturally into Λ1
1(L0 ⊕ VF ) as the image of all lines of the form

0 ⊕ L, L ∈ Λ1
1(VF ). Put

U0(F ) = Λ1
1(L0 ⊕ VF ) \ Λ1

1(VF ),

which is a neighborhood of L0.
Define a smooth map

ΦF : P(L0 ⊕ VF ) \ P(VF ) → Grk(W )

as follows. For N ∈ P(L0 ⊕ VF ) \ P(VF ), choose any 0 �= w ∈ N ⊂ L0 ⊕ VF . Let w̃ ∈ L0 ⊕ (FQ ∩
W0) be a lift of w, and set Ñ := Span(w̃), ΦF (N) := Ñ + F . If w̃′ is another lift, then w̃′ − w̃ ∈
FK ⊂ F and, hence, ΦF (N) is well-defined. In particular, ΦF (L0) = L0 + F . �
Claim. We claim that ΦF (U0(F )) = Ĩ−1(F ), and the restriction ΦF : U0(F ) → Ĩ−1(F ) is
bijective.

Proof. For the first statement, we consider two cases. If N = L0, then L0 ⊕ F ∈ Λν
k(W ), and

I(L0 ⊕ F ) = F . If N �= L0, N /∈ P(VF ) and E = Ñ + F , then one easily verifies that Q|N = 0
implies Q|

Ñ
= 0 and, consequently, Ker(Q|E) = Ker(Q|F ) ⊕ Ñ , so that again E ∈ Λν

k(W ), and
clearly I(E) = F .

For injectivity, first note that ΦF (N) = L0 ⊕ F ⇐⇒ N = L0. All other points N ∈ U0(F )
lie inside a unique projective line P(L0 ⊕ L) with L ∈ Λ1

1(VF ), and N �= L,L0. Put E = ΦF (N) ∈
Ĩ−1(F ) \ Λν

k(W,L0).
Note that if L̃, L̃′ ∈ Λ1

1(F
Q ∩W0) are two lines such that π0(E) = L̃+ F = L̃′ + F , the

projections πKL̃, πKL̃
′ ∈ Λ1

1(VF ) must coincide: choosing ṽ′ ∈ L̃′ we can find ṽ ∈ L̃ such that
ṽ′ = ṽ + f for some f ∈ F . However, ṽ, ṽ′ ∈ FQ, and so ṽ − ṽ′ ∈ FQ ∩ F = FK .

As π0(E) = π0(Ñ) + F , it follows that LE := πKπ0(Ñ) ∈ Λ1
1(VF ) is uniquely defined by E,

and it holds that N ∈ P(L0 ⊕ LE). It remains to observe that ΦF is obviously injective when
restricted to P(L0 ⊕ LE).

We verify that ΦF is onto in the non-trivial case E ∈ Ĩ−1(F ) \ Λ1
1(W,L0). Choose wE ∈

Ker(Q|E) \W0, and decompose wE = w1 + w0, w1 ∈W0, w0 ∈ L0. In particular, Q(w1, w1) =
Q(wE , wE) − 2Q(wE , w0) +Q(w0, w0) = 0. As L0 �⊂ E, we have w1 �= 0 and w1 = wE − w0 ∈
EQ ⊂ FQ. As w0 = wE − w1 /∈ E whereas F = E ∩W0 ⊂ E, it follows that w1 ∈ π0(E) \ F and
so we can write

π0(E) = F + L̃, L̃ = Span(w1) ∈ Λ1
1(F

Q ∩W0).

Put L = πKL̃ ∈ Λ1
1(VF ). Now take N ∈ P(L0 ⊕ L) to be the projection of the line Span(wE) ∈

P(L0 ⊕ L̃⊕ FK). Note also that P(L0 ⊕ L) ⊂ Λ1
1(L0 ⊕ VF ). Clearly, ΦF (N) = E, concluding the

proof of the claim.
Denote by ΨF : Ĩ−1(F ) → U0(F ) the inverse map of ΦF . We may fix an auxiliary Euclidean

structure on W , and choose wE ∈ Ker(Q|E) as the unit vector forming the least angle with L.
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Now the map E 
→ Ker(Q|E), Λν
k(W ) → Grν(W ) is smooth, in the sense that it restricts to

a smooth map on every smooth curve in Λν
k(W ) ⊂ Grν(W ). This is because Ker(Q|E) is the

eigenspace of 0, which has fixed dimension along the smooth curve. It follows that Et ∈ Λν
k(W )

is a smooth curve in Grk(W ) through F ⊕ L0, if and only if ΨF (Et) ∈ Λ1
1(L0 ⊕ VF ) is a smooth

curve in P(L0 ⊕ VF ) through L0.
Define the cone C0 ⊂ TL0P(L0 ⊕ VF ) of tangent vectors to all curves Lt through L0 belonging

to Λ1
1(L0 ⊕ VF ), as well as the cone CF ⊂ TL0⊕F Grk(W ) that consists of all tangent vectors to

smooth curves through L0 ⊕ F inside Λν
k(W ).

We conclude that the differential DL0ΦF : TL0P(L0 ⊕ VF ) → TL0⊕F Grk(W ) restricts to a
bijective map AF : C0 → CF .

Considering all subspaces F ∈ Λν−1
k−1(W0) simultaneously, we have the following fibration.

Ĩ−1(F ) � � �� Λν
k(W ) \ Λν

k(W,W0)

I
����

Λν−1
k−1(W0)

The image of the section F 
→ L0 ⊕ F coincides with Λν
k(W,L0).

Therefore, the cone C ⊂ TE0 Grk(W ) has a linear factor that can be identified with
TE0∩W0Λ

ν−1
k−1(W0). Putting F = E0 ∩W0, the cone C/TF Λν−1

k−1(W0) is then identified with CF .
The dimension of C0 can be readily computed. It can be identified with the abstract cone with

base Λ1
1,+(VF ), the manifold of oriented null lines in VF . As the form Q on VF is non-degenerate

and indefinite, we have dim Λ1
1,+(VF ) = dimV0 − 2 = d− k − (ν − 1) − 2. Hence,

dimC0 = dim Λ1
1,+(VF ) + 1 = d− k − ν.

We have dim Λν−1
k−1(W0) = (k − 1)(d− k) − (ν2) by Proposition 4.1, and so

dimC = dimCF + dim Λν−1
k−1(W0) = dimC0 + dim Λν−1

k−1(W0) = k(d− k) −
(
ν + 1

2

)
. �

We now turn to LC-regular submanifolds. First, we need a simple fact on LC-regular metrics.

Lemma 4.4. Let (M, g) be LC-regular, and assume g is degenerate on TpM . Let v1(x), . . . , vm(x)
be any local frame near p, with Gram matrix A(x) = (g(vi, vj))m

i,j=1 ∈ Symm(R). Then the con-
dition dp(detA) �= 0 is independent of the choice of the frame (vj). Moreover, if the nullity of
gp is ν = 1, then dp(detA) �= 0, and the degenerate subset of the metric near p is a smooth
hypersurface.

Proof. Let ṽ1(x), . . . , ṽm(x) be a different local frame with corresponding Gram matrix Ã(x).
Then the change of basis matrix U(x) ∈ GL(m) satisfies Ã(x) = U(x)TA(x)U(x). By assumption,
detA(p) = det Ã(p) = 0. Thus, dp(det Ã) = detU(p)2dp(detA), which implies the first statement.

For the second statement, choose coordinates x1, . . . , xm on M near p, and take vj = ∂/∂xj .
We may assume that Ker(gp) = KerA(p) = Span(vm), and by assumption A(p) has non-
degenerate principal (m− 1)-minor. By LC-regularity, we can choose a curve p(t) ∈M with
p(0) = p and a smooth vector field v(t) along it with v(0) = vm such that (d/dt)|t=0g(v(t), v(t)) =
(d/dt)|t=0〈A(p(t))em, em〉 �= 0. It follows that

d

dt

∣∣∣∣
t=0

detA(p(t)) =
d

dt

∣∣∣∣
t=0

〈A(p(t))em, em〉 · det(A(p))m−1
i,j=1 �= 0.

As the degenerate subset of g near p is {x : detA(x) = 0}, the last assertion follows. �
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The following is the main result of the section. We use the notation and terminology of §§ 3.1
and 3.4.

Proposition 4.5. Let (V,Q) be a pseudo-Euclidean vector space of dimension (n+ 1), and
M = Q−1(r) with r ∈ {±1} a pseudo-Riemannian space form. Let H ⊂M be an LC-regular
hypersurface, and E ∈ Grn−k+1(V ). Assume E ∈ BH is a regular tangent to H of nullity ν.
Then each embedded part of BH through E intersects Λν

n−k+1(V ) transversally at E.

Proof. Denote the signature of M by (pM , qM ). Write g = Q|H , Ê = E ∩M . As H is a hyper-
surface, the nullity of gx is at most one for all x ∈ H. Define Λ̃ν

n+1−k := τ−1
M Λν

n+1−k(V ), which is
a submanifold of ZM as τM : ZM → Grn+1−k(V ) is a submersion. The relevant maps are given
by the following diagram.

As BH is a hypersurface, one should show for every embedded part F of BH through E that
TEΛν

n+1−k(V ) �⊂ TEF . Assuming the contrary, there is p ∈ H ∩ E such that TEΛν
n+1−k(V ) ⊂

dτH(Tp,EB̃H). Observe that Ker(Q|E) ⊂ TpÊ.
Before proceeding with the more complicated general case, we consider the case ν = 1.

As dim Λ1
n+1−k(V ) = dimBH = k(n+ 1 − k) − 1 by Proposition 4.1, we have TEΛ1

n+1−k(V ) =
dτH(Tp,EB̃H). Let v0 ∈ E ∩ TpH be in the kernel of g|

TpÊ
. For any smooth curve vt ∈ TH through

v0, we may find a smooth curve Et ⊂ BH through E such that vt ∈ Et. Then A := (d/dt)|t=0Et ∈
Hom(E, V/E) satisfies Q(Av0, v0) = 0, and by (12) we have A ∈ TEΛ1

n+1−k(V ).
It follows that (d/dt)|t=0g(vt) = 2Q(v0, Av0) = 0, contradicting the LC-regularity of H.
Let us now consider the general case. Fix an auxiliary Riemannian metric h on M , and let

ρH be the least distance projection to H, defined and smooth in a neighborhood of p.
By our assumption τ̃H is an immersion at (p,E). Using Proposition 4.1 we see that

dim(dτ̃H)−1TEΛν
n+1−k(V ) = dim Λν

n+1−k(V ) = k(n− k + 1) −
(
ν + 1

2

)
. (13)

Claim 1. Let X,Y be manifolds, let F : X → Y be a submersion at p ∈ Z. Let Z ⊂ X and
W ⊂ Y be embedded submanifolds, and p ∈ Z. Denote f := F |Z . Then

(dpf)−1Tf(p)W = TpZ ∩ Tp(F−1W ).

As F−1W is a submanifold near p and Tp(F−1W ) = (dpF )−1TF (p)W , the statement is clear.

Applying the claim to X = ZM , Y = Grn+1−k(V ), Z = B̃H , W = Λν
n+1−k(V ) and F = τM yields

(d(p,E)τ̃H)−1TEΛν
n+1−k(V ) = T(p,E)B̃H ∩ T(p,E)Λ̃

ν
n+1−k(V ).

Case 1: Ker(gp) ∩ E = {0}. Define

B̃ν
H := τ̃−1

H Λν
n−k+1(V ) = {(q, F ) ∈ B̃H : TqF̂ ∈ Λν

n−k(TqH)}.
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By Corollary 4.2 we see that B̃ν
H is a smooth manifold near (p,E), of dimension

dimTp,EB̃
ν
H = dimH + (n− k)(n− 1 − (n− k)) −

(
ν + 1

2

)
= k(n− k + 1) − 1 −

(
ν + 1

2

)
. (14)

Claim 2. We claim that (dp,E τ̃H)−1TEΛν
n+1−k(V ) ⊂ Tp,EB̃

ν
H .

We postpone the proof. Combined with (13) and (14) we get a contradiction.

Case 2: TpH has nullity one, and Ker(gp) ⊂ E. In this case, let S ⊂ H be the degenerate subset
of g. It follows from Lemma 4.4 that S is a smooth hypersurface. Define B̃ν

H(S) = {(q, F ) ∈ B̃H :
q ∈ S, F ∈ Λν

n−k+1(V )}. It is a fiber bundle over S with fiber Λν
n−k(R

pM−1,qM−1,1).

Claim 3. For any (w, ξ) ∈ dp,E τ̃
−1
H TEΛν

n−k+1(V ) with w ∈ TpS there is a curve (q(t), F (t)) ∈
B̃ν

H(S) with (q′(0), F ′(0)) = (w, ξ).

Again we postpone the proof of the claim. The set of all vectors (q′(0), F ′(0)) as in the claim
defines, by Lemma 4.3, a cone in Tp,EB̃H of dimension

N = dimS + (n− k)((n− 2) − (n− k − 1)) −
(
ν + 1

2

)
= (n− k)(k − 1) −

(
ν + 1

2

)
+ n− 2 < dim dp,E τ̃

−1
H TEΛν

n−k+1(V ).

It follows by the claim that we can find a curve (p(t), E(t)) ∈ B̃H through (p,E) with E′(0) ∈
TEΛν

n−k+1(V ) and p′(0) /∈ TpS.
Let vn−1 ∈ TpH span Ker(gp), and recall that vn−1 ∈ TpÊ, in particular, vn−1 ∈

Ker(Q|E). Choosing any smooth vector field vn−1(t) ∈ Tp(t)Ê(t), we find (d/dt)|t=0Q(vn−1(t)) =
2Q(v′n−1(0), vn−1(0)) = 0.

Choose a frame (vj(t))n−1
j=1 for H along p(t) with vn−1(0) = vn−1, such that Tp(t)Ê(t) =

Span(vk(t), . . . , vn−1(t)). Then

d

dt

∣∣∣∣
t=0

det(Q(vi(t), vj(t)))n−1
i,j=1 = det(Q(vi(t), vj(t)))n−2

i,j=1

d

dt

∣∣∣∣
t=0

Q(vn−1(t)) = 0,

which means that dp(det g)(p′(0)) = 0 by Lemma 4.4. As Ker dp(det g) = TpS and p′(0) /∈ TpS,
we get a contradiction. This completes the proof of the proposition, modulo the two claims we
now proceed to prove. �

Proof of Claim 2. Consider a curve (p(t), E(t)) ∈ Λ̃ν
n−k+1 with (p′(0), E′(0)) ∈ Tp,EB̃H . We

ought to find a curve (q(t), F (t)) ∈ B̃ν
H through (p,E) with (q′(0), F ′(0)) = (p′(0), E′(0)).

Set q(t) = ρH(p(t)), evidently q′(0) = p′(0). Fix a subspace W0 ⊂ TpH which is non-
degenerate and contains TpÊ. If TpH is non-degenerate, we can just take W0 = TpH. Otherwise,
dim ker gp = 1 and we may take any hyperplane W0 ⊂ TpH which contains TpÊ and satisfies
W0 ∩ ker gp = {0}. Now fix any linear map A : W0 → V/W0 which makes the following diagram
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commutative.

E
E′(0)

��

i

��

V/E

π

��

W0
A

��

i
��

V/W0

π

��

TpH ⊕ Rp

d
dt

∣∣∣∣
t=0

(Tq(t)H⊕Rq(t))

�� V/(TpH ⊕ Rp)

In addition, we use Lemma 3.1 to find smooth paths W (t) ⊃ E(t), W̃ (t) ⊂ Tq(t)H ⊕ Rq(t) with
W (0) = W̃ (0) = W0 andW ′(0) = W̃ ′(0) = A. For small t,W (t), W̃ (t) are non-degenerate of fixed
signature (α, β).

Consider the manifold Z = {(x,W ) ∈M × Grα+β(V ), x ∈W, sign(Q|W ) = (α, β)}. Clearly
Z is a homogeneous space for O(V,Q), with the equivariant projection πZ : O(V,Q) → Z nor-
malized by πZ(Id) = (p,W0). We can fix a smooth section XZ : Z → O(V,Q) near (p,W0) with
XZ(p,W0) = Id such that πZ ◦XZ = Id. Now define the smooth path Rt ∈ O(V,Q) by

Rt = XZ(q(t), W̃ (t)) ◦XZ(p(t),W (t))−1.

Then Rtp(t) = q(t), and (d/dt)|t=0Rt = 0 because (d/dt)|t=0W (t) = (d/dt)|t=0W̃ (t).
Setting F (t) = RtE(t), we have (q′(0), F ′(0)) = (p′(0), E′(0)), and (q(t), F (t)) ∈ B̃ν

H . This
proves the claim. �

Proof of Claim 3. Consider a curve (p(t), E(t)) ∈ Λ̃ν
n−k+1(V ) through (p,E), with p′(0) = w ∈

TpS and (p′(0), E′(0)) = (w, ξ) ∈ Tp,EB̃H . Let ρS : M → S be the least distance projection with
respect to h, well-defined and smooth in some neighborhood of p. Set q(t) = ρS(p(t)), clearly
q′(0) = p′(0). Denote L0 = Ker(gp) ⊂ TpH ∩ E, and extend to a smooth path of lines Lt ⊂ E(t) ∩
E(t)Q ∈ Λν

ν(Tp(t)M). Consider the manifold of pairs

Z = {(x, L) : x ∈M,L ∈ Λ1
1(TxM)}.

Clearly Z is a homogeneous space for O(V,Q), with the equivariant projection πZ : O(V,Q) → Z
normalized by πZ(Id) = (p, L0). We can fix a smooth section XZ : Z → O(V,Q) near (p, L0) with
XZ(p, L0) = Id such that πZ ◦XZ = Id. Now define the smooth path Rt ∈ O(V,Q) by

Rt = XZ(q(t),Ker(gq(t))) ◦XZ(p(t), Lt)−1.

Then Rtp(t) = q(t), and (d/dt)|t=0Rt = 0, provided that (d/dt)|t=0Lt = (d/dt)|t=0 Ker(gq(t)).
Let us verify that Lt can be chosen in this fashion. In the following, we fix some Riemannian

metric on various manifolds, and write |x− y|X for the corresponding distance between x, y ∈ X.
We also write, for two subspaces E,F ⊂ V , �(E,F ) for the angle between them with respect to
some Euclidean metric. This should not create ambiguity, as we are concerned only with rough
small-scale asymptotics.

As (p′(0), E′(0)) ∈ Tp,EB̃H , we may find a curve (p̃(t), Ẽ(t)) ∈ B̃H through (p,E) with (p′(0),
E′(0)) = (p̃′(0), Ẽ′(0)). Define H̃(t) := Tp̃(t)H ⊕ Rp̃(t). It follows that �(E(t), H̃(t)) = O(t2), and
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by Lemma 3.1 we have the following commutative diagram.

E
E′(0)

��

i
��

V/E

π
��

H̃(0)
H̃′(0)

�� V/H̃(0)

Taking the dual diagram and identifying V = V ∗ using Q, we obtain

L0

f0
��

i

��

V/L0

π
��

EQ
(EQ)′(0)

�� V/EQ

(15)

where f0 = (H̃Q)′(0). As p̃′(0) = p′(0) = q′(0), it is clear that

f0 =
d

dt

∣∣∣∣
t=0

(Tp̃(t)H ⊕ Rp̃(t))Q =
d

dt

∣∣∣∣
t=0

(Tq(t)H ⊕ Rq(t))Q =
d

dt

∣∣∣∣
t=0

Ker gq(t).

By Lemma 3.1, we can find Lt ⊂ E(t)Q with (d/dt)|t=0Lt = f0. Note that Lt is not, in general,
a null line of Q. We now proceed to modify the definition of Lt to force it to be a null line.

Observe that if q ∈ S, Ẽ ∈ Grn+1−k(V ) and Ker(gq) ⊂ Ẽ, then ẼQ ⊂ TqH ⊕ Rq. We have

|p̃(t) − q(t)|M = O(t2),

|Tp̃(t)H − Tq(t)H|Grn−1(V ) = O(t2),

|Lt − Ker(gq(t))|P(V ) = O(t2).

It follows that �(E(t)Q, H̃(t)) = O(t2), and so we may apply Lemma 3.1 to obtain the
commutative square

EQ
(EQ)′(0)

��

i
��

V/EQ

π
��

H̃(0)
H̃′(0)

�� V/H̃(0)

and by duality also

L0

f0
��

i

��

V/L0

π

��

E
E′(0)

�� V/E

(16)

We use the notation K(t) = E(t) ∩ E(t)Q, K0 = K(0). Observe there is a natural inclusion
αK : V/K0 ↪→ V/E ⊕ V/EQ. It follows from Lemma 3.1 applied to the inclusions K(t) ⊂ E(t),
K(t) ⊂ E(t)Q that αK ◦K ′(0) : K0 → V/E ⊕ V/EQ coincides with E′(0) ⊕ (EQ)′(0) : K0 →
V/E ⊕ V/EQ.
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Combining diagrams (15) and (16) then yields the commutative diagram

L0

f0
��

i

��

V/L0

π
��

K0

αK◦K′(0)
�� V/E ⊕ V/EQ

and so also

L0

f0
��

i

��

V/L0

π

��

K0

K′(0)
�� V/K0

By Lemma 3.1, we may redefine Lt such that (d/dt)|t=0Lt = f0 and Lt ⊂ K(t) = E(t) ∩
E(t)Q. In particular, Lt is a null line of Q.

Setting F (t) := RtE(t) we have q(t) ∈ F (t), Tq(t)F̂ (t) ⊂ Tq(t)H because E(t) ⊂ LQ
t , and

F ′(0) = E′(0) because (d/dt)|t=0Rt = 0. This proves the claim. �

Remark 4.6. It is easy to see that the conclusion of the proposition with k = n− 1 is equivalent
to the LC-regularity of H.

Corollary 4.7. Let V,M,H,E be as in Proposition 4.5 with H compact without boundary,
and A ⊂M is either H itself or a domain with ∂A = H. Then Cr WFE(A) ∩N∗

EΛν
n−k+1(V ) = ∅.

Proof. This follows from Propositions 4.5 and 3.17. �

5. Construction of an invariant measure on the Grassmannian

For X ∈ Symr(R) and λ ∈ C we set, as in [Mur99],

|detX|λp :=

{
|detX|λ if sign(X) = (p, r − p)
0 otherwise.

It is well-known, essentially due to Cayley and Gärding [G̊ar48], that |detX|λq extends as a
meromorphic in λ family of generalized functions, which are, in fact, tempered distributions.

We use the set

UC :=
{
Re ζ > 1

2

} ∪ {Im ζ > 0} ⊂ C,

and write
√
z for the unique branch of the square root function on UC such that

√
z > 0 for

z > 1
2 .

5.1 A holomorphic family of Crofton measures
For the following, let Sym+

r (R) ⊂ Symr(R) be the cone of positive-definite matrices, and hr =
Symr(R) ⊕ i Sym+

r (R) ⊂ Symr(C) the Siegel upper half space. The following is well-known.

Lemma 5.1. For Z ∈ hr, detZ �= 0. In particular, we can define for every λ ∈ C the holomorphic
function Z 
→ (detZ)λ, normalized by limε→0+ det(Ir + iεIr)λ = 1. Moreover, all eigenvalues of
Z ∈ hr lie in the upper half plane of C.
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Proof. Write Z = X + iY , Y > 0. Let QX(v) = 〈Xv, v〉, QY = 〈Y v, v〉 be the corresponding
quadratic forms. Choose a basis uj such that the Gram matrix of Y is Ir, and of X is diag-
onal: D = diag(dj). As D + iIr = UTZU with U invertible, and det(D + iIr) =

∏
(dj + i) �= 0,

it follows that detZ �= 0. As hr is simply connected, the second statement follows.
For the last statement, we first note there can be no real eigenvalues. Indeed by the first

statement, det(X + iY − λIr) = det((X − λIr) + iY ) �= 0 for λ ∈ R. Next we argue as before and
select a diagonalizing basis, given by U ∈ GL(r). We furthermore may assume that detU > 0, by
interchanging two basis elements. Choose a smooth path Ut ∈ GL(r) with U0 = Id and U1 = U .
Then UT

t ZUt ∈ hr is a smooth path. For t = 1, the endpoint is D + iIr, which has all eigenvalues
in the upper half plane. If Z has eigenvalues in the lower half-plane, then by continuity for some
t there will be a real eigenvalue, a contradiction. �

Recall for the following that given a non-degenerate quadratic form Q on V , a compatible
Euclidean form is any positive-definite form P such that V admits a decomposition V = V+ ⊕ V−
which is both P - and Q-orthogonal, and Q|V± = ±P |V± .

From here on, let V = Rp ⊕ Rq = Rn+1 with the standard quadratic form Q of signature
(p, q) and the corresponding compatible Euclidean form P0. Define a family of complex-valued
quadratic forms Qζ on V with ζ ∈ C, by

Qζ := Q+ 2ζP0.

We then have

Qζ(x, y) :=

⎧⎪⎨⎪⎩
(2ζ + 1)P0(x, y) x, y ∈ Rp,

(2ζ − 1)P0(x, y) x, y ∈ Rq,

0 x ∈ Rp, y ∈ Rq.

Observe that Qζ is real and positive-definite for ζ > 1
2 , and Q0 = Q. Furthermore, by Lemma 5.1,

detQζ �= 0 for ζ ∈ UC, as either Qζ or iQζ lies in hn+1. Note that a complex-valued non-
degenerate quadratic form Q on a real vector space E defines an element vol2Q ∈ DensC(E)2,
and given a branch of square root we also get a complex-valued density volQ ∈ DensC(E).

By a (P -)frame on an open subset U ⊂ Grn+1−k(V ) we understand a smooth section of
the Stiefel manifold of P -orthonormal (n+ 1 − k)-frames in V defined over U . For a subspace
E ∈ Grn+1−k(V ) and ζ ∈ UC, choose a frame ui(E) on U and define XP

ζ : U → Symn+1−k(C) to
be the corresponding Gram matrix of Qζ , namely XP

ζ (E) = (Qζ(ui(E), uj(E)))n+1−k
i,j=1 .

Note that if X̃ζ is the corresponding matrix for a different frame ũi(E) on U , then

X̃ζ(E) = B(E)TXζ(E)B(E) (17)

for some smooth map B : U → O(n+ 1 − k).
Observe that by (17), det(XP

ζ ) is independent of the choice of P -orthonormal bases of E.
Moreover, either the real or imaginary part of Qζ |E is positive-definite, and consequently by
Lemma 5.1, detXP

ζ (E) �= 0.
The function det(XP

ζ )λ ∈ C∞(Grn+1−k(V ),C) is thus well-defined for all P and λ ∈ C, and
analytic in ζ ∈ UC, once the normalization det(XP

1 )λ > 0 is fixed, as UC is simply connected.
Define the smooth measure m̃ζ,P

k on the Grassmannian Grn+1−k(V ) by

dm̃ζ,P
k := det(XP

ζ )−(n+1)/2(E) dσP (E),

where dσP (E) is the O(P )-invariant probability measure on the Grassmannian.
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Proposition 5.2. The complex-valued smooth measure

mζ
k := (2ζ + 1)p(n+1−k)/2(2ζ − 1)q(n+1−k)/2m̃ζ,P0

k , ζ ∈ UC

depends analytically on ζ and is normalized, i.e.∫
Grn+1−k(V )

dmζ
k = 1.

Proof. The first statement is clear. For the second, we first see how m̃ζ,P
k depends on P . Let P1, P2

be two Euclidean structures on V . From the natural identification TE Grn+1−k(V ) = E∗ ⊗ V/E
we obtain that

Dens(TE Grn+1−k(V )) = Dens∗(E)n+1 ⊗ Dens(V )n+1−k.

Spelling this out gives

dσP1(E)
dσP2(E)

=
(

volP1|E
volP2|E

)−(n+1)(volP1

volP2

)n+1−k

,

As

detXPi
ζ (E) =

vol2Qζ |E
vol2Pi|E

,

we find that

m̃ζ,P1

k =
(

volP1

volP2

)n+1−k

m̃ζ,P2

k .

For ζ > 1
2 , Qζ is a Euclidean structure. Then

1 =
∫
m̃

ζ,Qζ

k =
(

volQζ

volP0

)n+1−k ∫
m̃ζ,P0

k

=
√

2ζ + 1
p(n+1−k)√

2ζ − 1
q(n+1−k)

∫
m̃ζ,P0

k =
∫
mζ

k.

By uniqueness of the analytic continuation, this formula also holds for general ζ ∈ UC. �

5.2 Homogeneous distributions on the space of symmetric matrices
Lemma 5.3. The meromorphic family of generalized functions

fλ(X) :=
r∑

h=0

eiπhλ|detX|λr−h ∈ C−∞(Symr(R))

is analytic in λ ∈ C and satisfies

fλ(−X) = eiπrλfλ(X). (18)

Proof. We recall some results from [Mur99]. Consider a linear combination

gλ(X) :=
r∑

h=0

ah|detX|λr−h

with constant coefficients ah ∈ C and set �a := (a0, . . . , ar) ∈ Cr+1. Then gλ ∈ C−∞(Symr(R)) is
meromorphic with possible poles in the set {−m,−(2m+ 1)/2 : m ≥ 1}.
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The order of the pole at s in this set can be obtained as follows. Set ε = −1 if s is an even
integer and ε = 1 otherwise. Define inductively linear maps d(m) = (d(m)

0 , . . . , d
(m)
r+1−m) : Cr+1 →

Cr+1−m by setting

d
(0)
h (�a) := ah,

d
(1)
h (�a) := ah + εah+1,

d
(2l+1)
h (�a) := d

(2l−1)
h − d

(2l−1)
h+2 , l = 1, 2, . . . ,

d
(2l)
h (�a) := d

(2l−2)
h + d

(2l−2)
h+2 , l = 1, 2, . . . .

Then gλ has a pole of order p at s = −(2m+ 1)/2 if and only if d2p(�a) �= 0, d2p+2(�a) = 0.
Similarly, gλ has a pole of order p at s = −m if and only if d2p−1(�a) �= 0, d2p+1(�a) = 0. Here we
use the convention that d(m) = 0 if m > r + 1 and that a pole of order 0 is a point of analyticity.

In our situation, the coefficients ah = ah(λ) = eiπhλ depend on λ and we cannot apply Muro’s
result directly. However, writing

fλ(X) =
r∑

h=0

ah(λ)|detX|λr−h =
∞∑

j=0

(λ− s)j

j!

r∑
h=0

a
(j)
h (s)|detX|λr−h,

we see that it is enough to prove that the order of the pole of
∑r

h=0 a
(j)
h (s)|detX|λr−h at λ = s

is at most j for all j.
By induction, we find that for all l = 0, 1, . . .

d2l
h (�a(λ)) = eiπhλ(1 + e2πiλ)l,

d2l+1
h (�a(λ)) = eiπhλ(1 + εeiπλ)(1 − e2πiλ)l,

and, hence,

d2j+2
h

(
�a(j)

(
−2m+ 1

2

))
=

dj

dλj

∣∣∣∣
λ=−(2m+1)/2

eiπhλ(1 + e2πiλ)j+1 = 0,

d2j+1
h

(
�a(j)(−m)

)
=

dj

dλj

∣∣∣∣
λ=−m

eiπhλ(1 + εeiπλ)(1 − e2πiλ)j = 0,

which finishes the proof. �

Proposition 5.4. Let C ′ ⊂ Sym+
r (R) be a closed convex cone. Then

lim
Y →0,Y ∈C′ det(X + iY )λ = fλ(X)

in the strong topology on tempered distributions on Symr(R).

Proof. For Reλ ≥ 0 the statement is easy, so in the following we assume Reλ < 0.
First we claim that the limit exists. We show that there are constants α = α(λ) ≥ 0 and

b′ = b(λ,C ′) such that

|det(X + iY )λ| ≤ b′‖Y ‖−α, ∀X ∈ Symr(R),∀Y ∈ C ′ \ {0}. (19)
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First take Y = Ir. Letting (μj)r
j=1 ⊂ R be the eigenvalues of X, we obtain

|det(X + iIr)λ| =
∏

|μj + i|Re λe−Im λ·Arg(μj+i)

≤ eπr|Im λ|∏(μ2
j + 1)Re λ/2

≤ eπr|Im λ|.

Now for general Y , we have

|det(X + iY )λ| = |detY |Re λ|det(
√
Y

−1
X
√
Y

−1
+ iI)λ| ≤ eπr|Imλ||detY |Re λ,

and letting c := sup{‖Y ‖r/|detY | : Y ∈ C ′}, we conclude that (19) holds with b′ =
c−Re λeπr|Imλ|, and α = −rReλ ≥ 0.

It now follows from [Vla66, § 26.3] that the limit

det(X + i0)λ := lim
Y →0,Y ∈C′ det(X + iY )λ ∈ S ′

exists in the strong topology on the space of tempered distributions of order �r|Reλ|� +
(
r+1
2

)
+ 3.

It remains to verify that det(X + i0)λ = fλ(X) for Reλ < 0. We use the notation

Hε = {X + iεIr : X ∈ Symr(R)} ⊂ Symr(C).

Let ψ(X) be a Schwartz function on Symr(R), which is the Fourier transform of a compactly
supported smooth function, in particular it has an analytic extension to Symr(C). Writing dZ =
∧r

i=1 ∧r
j=i dzij , the integral

∫
Hε
ψ(Z) det(Z)λ dZ is convergent, because ψ is rapidly decaying at

infinity and det(Z)λ of polynomial growth. It is clearly analytic in λ ∈ C. Furthermore, its value
is independent of ε as the integrand is a closed form, rapidly decaying at infinity. For λ > 0, we
have

(μj + iε)λ = |μj + iε|λeiλArg(μj+iε) → |μj |λeiλ(π/2)(1−sign(μj)).

Hence,

det(X + iεIr)λ =
r∏

j=1

(μj + iε)λ →
∏

|μj |λeiπ#{μj<0}λ = fλ(X),

and so ∫
Hε

ψ(Z) det(Z)λ dZ →
∫

Symr(R)
ψ(X)fλ(X) dX

for λ > 0. By analytic extension we conclude that for all λ ∈ C and ε > 0,∫
Hε

ψ(Z) det(Z)λ dZ =
∫

Symr(R)
ψ(X)fλ(X) dX,

that is, ∫
Symr(R)

ψ(X + iεIr) det(X + iεIr)λ dX =
∫

Symr(R)
ψ(X)fλ(X) dX.

As ε→ 0, we have ψ(X + iεIr) → ψ(X) in S, whereas det(X + iεIr)λ → det(X + i0)λ in S ′.
It follows by continuity that∫

Symr(R)
ψ(X) det(X + i0)λ dX =

∫
Symr(R)

ψ(X)fλ(X) dX.

Finally, noting that the set of Schwartz functions such as ψ is dense, we conclude that
det(X + i0)λ = fλ for all λ ∈ C, as claimed. �
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Henceforth, we use fλ and det(X + i0)λ interchangeably.
The following statement shows that the convergence along Y ∈ R+Ir holds in a finer topology,

namely the normal Hörmander topology. We refer to [BDH16] for its definition (where it is called
normal topology). The main point for us is that the operation of pull-back of generalized sections
is continuous in this topology, provided some condition on wave fronts is satisfied.

We do not know whether an analogue of the following proposition holds for an arbitrary
distributional boundary value; the proof below is tailored to our particular case, and in essence
leverages strong convergence by induction on dimension.

Proposition 5.5. Denote N∗Γr =
⋃r

ν=0N
∗Γr

ν ⊂ T ∗ Symr(R), where Γr
ν consists of all matrices

of nullity ν. It then holds for all λ ∈ C that det(X + iεIr)λ → fλ(X) in C−∞
N∗Γr(Symr(R)) in the

normal Hörmander topology.

Proof. First note that g∗fλ = det(g)2λfλ for all g ∈ GL(r). Thus, we have the differential equa-
tions (A− 2λ tr(A))fλ = 0, where A is the vector field defined by the infinitesimal action of
A ∈ gl(r). It follows from [Hör03, Theorem 8.3.1] that WF(fλ) ⊂ N∗Γr.

We proceed by induction on r, the case r = 1 being trivial. As det(X + iεIr)λ → det(X +
i0)λ in the strong topology by Proposition 5.4 and N∗

0 Γr
r = T ∗

0 Symr(R), it remains to consider
convergence in Symr(R) \ {0}. Consider a matrix Y ∈ Symr(R) of nullity ν < r. Let E0 be its
kernel, and F0 = E⊥

0 . There is then a unique map E : U → Grν(Rr) in a neighborhood U of Y
such that E(Y ) = E0, and E(X) is an invariant subspace of X. Here and in the following, U is
assumed sufficiently small for various purposes.

We claim E = E(X) is smooth. Indeed, consider Z = {(X,F ) : X(F ) = F} ⊂ Symr(R) ×
Grr−ν(Rr). Clearly Z is the graph of a unique function F = F (X) near (Y, F0). Let us check that
Z is a manifold near (Y, F0). Define α : U × Grr−ν(Rr) → Grr−ν(Rr) × Grr−ν(Rr) by α(X,F ) =
(F,X(F )). Then Z = α−1(Δ), where Δ is the diagonal. Let us verify that α is a submersion at
(Y, F0).

ForM ∈ Symr(R) andH ∈ TF0 Grr−ν(Rr) = Hom(F0,R
r/F0), one computes dY,F0α(M,H) =

(H,Y ◦H +M |F0→Rr/F0
) = (H,M |F0→Rr/F0

), because by construction Y : Rr/F0 → Rr/F0 is
the zero map. Noting that any linear map F0 → Rr/F0 is induced by a symmetric matrix mapping
M : Rr → Rr, it follows that α is submersive and Z is a manifold. Further,

TY,F0Z = {(M,H) : M ∈ Symr(R), H = M |F0→Rr/F0
}.

In particular, if (0, H) ∈ TY,F0Z, then we must have H = 0. It follows that F (X) is smooth in
U , and therefore so is E(X) = F (X)⊥.

Choose arbitrary orthonormal frames ei(X) for E(X) and fi(X) for F (X) = E(X)⊥

depending smoothly on X. Define

A : U → Symν(R), B : U → Symr−ν(R)

by

A(X) = (〈Xei(X), ej(X)〉), B(X) = (〈Xfi(X), fj(X)〉).

Then A is a submersion in U . Indeed one has

dYA(M)i,j = 〈Mei(Y ), ej(Y )〉 + 〈Y ei(Y ), dY ej(M)〉 + 〈Y ej(Y ), dY ei(M)〉,
and the last two summands vanish as ei(Y ), ej(Y ) ∈ E0. It follows that dYA : Symr(R) →
Symν(R) is surjective, and so A is submersive near Y .
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It holds that

det(X + iεIr)λ = A∗ det(X1 + iεIν)λ det(B(X) + iεIr−ν)λ, X1 ∈ Symν(R).

As B(X) is non-degenerate, the second factor is a smooth function in (X, ε) ∈ U × R.
For the first factor, we have by the induction assumption that det(X1 + iεIν)λ → det(X1 +

i0)λ in the normal topology on C−∞
N∗Γν (Symν(R)). It then holds that

WF(A∗ det(X1 + i0)λ) ⊂ A∗(N∗Γν) = N∗(A−1Γν) = N∗(Γr ∩ U),

and by [BDH16], A∗ det(X1 + iεIν)λ → A∗ det(X1 + i0)λ in the normal Hörmander topology on
C−∞

N∗Γr(Symr(R)). We conclude that

det(X + iεIr)λ → det(X + i0)λ

in the normal Hörmander topology on C−∞
N∗Γν (Symr(R)). �

Remark 5.6. Using the Hilbert–Schmidt inner product to identify T ∗
0 Symr(R) = Symr(R), the

statement of the proposition in fact holds with all conormal cones intersected with Sym+
r (R),

which follows from [Hör03, Theorem 8.1.6].

5.3 Construction of an O(p, q)-invariant Crofton distribution
In [Fai17, Proposition 4.9], an O(p, q)-invariant distribution was constructed on Grn+1−k(V ). To
avoid singularities, it made use of several auxiliary Euclidean structures that gave rise to several
locally defined distributions that were then patched together. For the present paper, we need an
alternative construction making use of a single Euclidean structure. To handle the singularities,
we must carefully monitor the wave front set.

Write P = P0 for the Euclidean structure on V . Let dE = dσP denote the O(P )-invariant
probability measure on Grn+1−k(V ). Decompose V = V +

P ⊕ V −
P such that Q|V ±

P
= ±P |V ±

P
.

We use the notation κ = n+ 1 − k. An orthonormal basis u1, . . . , uκ spanning E ∈
Grκ(V ) is called adapted if, using the notation s = dimE ∩ V +

P , t = dimE ∩ V −
P , the vectors

uκ−s−t+1, . . . , uκ−t form a basis of E ∩ V +
P , whereas uκ−t+1, . . . , uκ form a basis of E ∩ V −

P .
A frame ui(E′), i = 1, . . . , κ given near E and adapted at E is well-adapted in a neighbor-
hood W if, whenever E′ ∈W is such that E′ ∩ E is spanned by the subset (ui(E))i�=j for some
1 ≤ j ≤ κ, then ui(E′) = ui(E) for all i �= j.

It is easy to see that a well-adapted frame can always be chosen to extend a given adapted
orthonormal basis ui(E) of E to a small neighborhood: define the frame ui(E′) by orthogonally
projecting ui(E) to E′, and then applying the Gram–Schmidt process.

For X ∈ Symκ(R) and μ ∈ R, denote

Eμ(X) = {v ∈ Rκ : Xv = μv}, mult(μ,X) = dimEμ(X).

Define for a ≥ 0
Ba

μ = {X : mult(μ,X) = a} ⊂ Symκ(R).

We make use of the Hilbert–Schmidt Euclidean structure 〈X,Y 〉 = tr(XY ) to identify
TX Symκ(R) = T ∗

X Symκ(R) = Symκ(R).

Lemma 5.7. The subset Ba
μ ⊂ Symκ(R) is a locally closed submanifold. It holds that

N∗
XB

a
μ = {Ξ ∈ Symκ(R) : XΞ = μΞ} = {Ξ ∈ Symκ(R) : ΞX =μΞ}= Span{vvT : v ∈ Eμ(X)},

and codimBa
μ =

(
a+1
2

)
.

Proof. The subset Ba
0 locally coincides with an orbit of the action of GL(κ) on Symκ(R)

by (g,X) 
→ gTXg, and Ba
μ = μI +Ba

0 . Now Ba
μ fibers over Gra(Rκ) with fiber Symκ−a(R).
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Consequently,

dimBa
μ = a(κ− a) +

(
κ− a+ 1

2

)
and one computes that codimBa

μ =
(
a+1
2

)
.

Let us describe the set N∗
XB

a
μ. As TXB

a
0 = {ATX +XA : A ∈ glκ(R)}, we have

Ξ ∈ N∗
XB

a
0 ⇐⇒ tr(ΞATX + ΞXA) = 0 for all A or, equivalently, N∗

XB
a
0 = {Ξ ∈ Symκ(R) :

ΞX = 0}. It follows that

N∗
XB

a
μ = N∗

X−μIB
a
0 = {Ξ : ΞX = μΞ},

and the second form follows by transposition. Finally, Ξ = uvT + vuT is easily checked to
satisfy ΞX = μΞ when u, v ∈ Eμ(X). By a simple dimension count we conclude that N∗

XB
a
μ =

Span{uvT + vuT : u, v ∈ Eμ(X)}, which coincides with Span{vvT : v ∈ Eμ(X)} as uvT + vuT =
(u+ v)(u+ v)T − uuT − vvT . �
Lemma 5.8. For any Y ∈ Symκ(R) with Y ∈ Br

0 and for every ε > 0, there is a neighborhood
WY of Y such that for all X ∈WY , if X ∈ Br′

0 , then TXB
r′
0 contains a subspace that is ε-close

to TYB
r
0.

Proof. Recall that by Lemma 5.7, TXB
r′
0 = {Ξ ∈ Symκ(R) : XΞ = 0}⊥. The statement now

follows from the following general fact. �
Claim. Let M0 ∈ Matn×n(R) be a matrix. Then for any ε > 0, there is a neighborhood Wε of
M0 such that for any M ∈Wε, Ker(M)⊥ contains a subspace that is ε-close to Ker(M0)⊥.

Proof. Assume that rankM0 = r, and the first r rows u1(M0)T , . . . , ur(M0)T are linearly inde-
pendent. Therefore, Ker(M0)⊥ = Span(u1(M0), . . . , ur(M0)). By choosing Wε small enough,
we may ensure that Span(u1(M), . . . , ur(M)) is r-dimensional, and ε-close to Ker(M0)⊥. As
Span(u1(M), . . . , ur(M)) ⊂ Ker(M)⊥, this concludes the proof. �
Lemma 5.9. Let Mτ be a smooth curve in Symκ(R) such that the spectrum of Mτ lies in [−1, 1]
for all τ . If ε ∈ {−1, 1} and mult(ε,M0) = s, then d/dτ |0Mτ ∈ TM0B

s
ε .

Proof. Write Ṁ0 = d/dτ |0Mτ . By Lemma 5.7, we ought to show that for all unit vectors v ∈
Eε(M0), 〈Ṁ0, vv

T 〉 = 0. Now for any such v, 〈M0v, v〉 = ε. We know by assumption |〈Mτv, v〉| ≤ 1
for all τ , and so

〈Ṁ0, vv
T 〉 = 〈Ṁ0v, v〉 =

d

dτ

∣∣∣∣
0

〈Mτv, v〉 = 0. �

Proposition 5.10. Let X0 be locally defined by a well-adapted frame at E ∈ Grn−k+1(V ).
Then there is a neighborhood WE of E where the distribution

m̃0
k(E

′) := X∗
0f−(n+1)/2(E

′) · dE′

is well-defined. Furthermore, the corresponding distributions agree on non-empty intersections
WE1 ∩WE2 for all E1, E2, giving rise to a globally defined distribution m̃0

k ∈ M−∞(Grn+1−k(V )).
Moreover, m̃0

k is O(Q)-invariant.

Fix E, and a well-adapted to E frame uj(E′) defined in a neighborhood W ′
E . Set Y = X0(E),

s = dimE ∩ V +
P = mult(1, Y ), t = dimE ∩ V −

P = mult(−1, Y ), r = mult(0, Y ).

Claim. It holds that Image(dEX0) + TYB
r
0 = TY Symκ(R).
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Proof. Let us prove the claim. We may assume that Y lies in the singular support of fλ, that is
r ≥ 1. Thus, Y ∈ Br

0 ∩Bs
1 ∩Bt−1.

The intersection Bs,t
1,−1 := Bs

1 ∩Bt−1 is transversal. To this end, simply observe that by
Lemma 5.7, N∗

YB
s
1 ∩N∗

YB
t−1 = {Ξ : ΞY = Ξ = −Ξ} = {0}, so Bs

1 � Bt−1, and Bs,t
1,−1 is a sub-

manifold. It holds that

dimBs,t
1,−1 =

(
κ+ 1

2

)
−
(
s+ 1

2

)
−
(
t+ 1

2

)
.

Similarly, the intersection Br
0 ∩Bs,t

1,−1 is transversal. Indeed, N∗
YB

s,t
1,−1 = {Ξ1 + Ξ2 : Ξ1Y =

Ξ1,Ξ2Y = −Ξ2} and

codimTYB
s,t
1,−1 = codimTYB

s
1 + codimTYB

t
−1 =

(
s+ 1

2

)
+
(
t+ 1

2

)
.

If Ξ = Ξ1 + Ξ2 ∈ N∗
YB

s,t
1,−1 ∩N∗

YB
r
0, then Ξ1 − Ξ2 = Ξ1Y + Ξ2Y = ΞY = 0, so that Ξ1 = Ξ2,

which can only happen if Ξ1 = Ξ2 = 0 because Ξ1Y = Ξ1, Ξ2Y = −Ξ2, therefore Ξ = 0. Thus,
Br

0 � Bs,t
1,−1 as claimed.

Set EY := E1(Y ) ⊕ E−1(Y ), and define

WY = {X ∈ Bs,t
1,−1 : Eμ(X) = Eμ(Y ), ∀μ �= ±1}.

As X ∈WY is uniquely determined by its eigenspace EX(1), WY is evidently a manifold that can
be identified with Grs(EY ) = Grs(Rs+t), in particular dimWY = st. By definition, WY ⊂ Br

0.
Now because −P ≤ Q ≤ P , the spectrum of X0(E) lies in [−1, 1]. By Lemma 5.9 we have

Image(dEX0) ⊂ TYB
s,t
1,−1.

For 1 ≤ j ≤ κ, choose a smooth curve γj(τ) through E given by

γj(τ) = Span(u1(E), u2(E), . . . , cos τuj(E) + sin τξ, . . . , uκ(E)),

where ξ ∈ EP is arbitrary. Observe that TE Grκ(V ) = Span{γ′j(0) : 1 ≤ j ≤ κ}. As the frame
is well-adapted to E, ui(γj(τ)) = ui(E) for i �= j, and so uj(γj(τ)) = cos τuj(E) + sin τξ. One
computes

dEX0(γ′j(0)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 Q(ξ, u1) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 Q(ξ, uj−1) 0 · · · 0
Q(ξ, u1) · · · Q(ξ, uj−1) Q(ξ, 2uj) Q(ξ, uj+1) · · · Q(ξ, uκ)

0 · · · 0 Q(ξ, uj+1) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 Q(ξ, uκ) 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that E ∩ (EP )Q = (E ∩ V +
P ) ⊕ (E ∩ V −

P ). Hence, Q(ξ, u1), Q(ξ, u2), . . . , Q(ξ, uκ−s−t) ∈
(EP )∗ are linearly independent functionals, whereas the bottom right (s+ t) × (s+ t) minor
of dEX0(γ′j(0)) vanishes.

Therefore, for 1 ≤ j ≤ κ− s− t, we may choose ξj ∈ EP such that Q(ξj , ui) = 0 for 1 ≤
i ≤ j − 1, whereas Q(ξj , ui) is arbitrary for j ≤ i ≤ κ− s− t. For κ− s− t+ 1 ≤ j ≤ κ, we may
choose ξj ∈ EP to get arbitrary κ− s− t first entries in the jth row and column. Thus, the entries
of a matrix in Image(dEX0) can be made arbitrary outside of the bottom right (s+ t) × (s+ t)
minor. Consequently, codim(Image(dEX0)) =

(
s+t+1

2

)
.
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We claim that Image(dEX0) ∩ TYWY = {0}. This is because TYWY consists of all matrices
that vanish outside of the bottom right (s+ t) × (s+ t)-minor M , which has zeros in its top left
s× s minor and bottom right t× t minor.

One easily verifies that
(
s+1
2

)
+
(
t+1
2

)
+ st =

(
s+t+1

2

)
, so that

dim Image(dEX0) + dimTYWY ≥ dimTYB
s,t
1,−1.

Hence,

Image(dEX0) ⊕ TYWY = TYB
s,t
1,−1.

As TYWY ⊂ TYB
r
0 and TYB

r
0 + TYB

s,t
1,−1 = TY Symκ(R), we conclude that Image(dEX0) +

TYB
r
0 = TY Symκ(R) as claimed.

Fix ε > 0. For E′ in a sufficiently small neighborhood WE of E, Image dE′X0 must contain
a subspace that is ε-close to Image(dEX0). We may moreover by Lemma 5.8 assume WE is
such that for all E′ ∈WE , Y ′ = X0(E′) has nullity r′ ≤ r, and TY ′Br′

0 contains a subspace that
is ε-close to TYB

r
0. Thus, for sufficiently small ε we find a neighborhood WE such that for all

E′ ∈WE with Y ′ = X0(E′) of nullity r′,

Image(dE′X0) + TX0(E′)B
r′
0 = Symκ(R).

Define

LE′,Y ′ = Ker
(
dX∗

0 : T ∗
Y ′ Symκ(R) → T ∗

E′ Grκ(V )
)
.

Thus, N∗
YB

r′
0 ∩ LE′,Y ′ = {0} for E′ ∈WE .

By Proposition 5.5, WFY (fλ) ⊂ N∗
Y ′Br′

0 . We conclude that WF(fλ) ∩ LE′,Y ′ = ∅.
By [Dui11, Proposition 1.3.3] X∗

0 defines a sequentially continuous linear operator on
C−∞

N∗Γκ(Symκ(R)), where fλ lies. Moreover, X∗
0fλ must itself be an analytic family: for a smooth

compactly supported test measure ψ on WE we have 〈X∗
0fλ, ψ〉 = 〈fλ, (X0)∗ψ〉, and by [GS77,

Chapter VI, Proposition 3.9] we have WF((X0)∗ψ) ⊂ ⋃E′∈WE
LE′,X0(E′). Now analyticity of a

vector-valued function coincides with weak analyticity in quasi-complete locally convex vector
spaces, and C−∞

N∗Γκ(Symκ(R)) is quasi-complete [DB14, Proposition 29]. Furthermore (X0)∗ψ
defines a continuous linear functional on C−∞

N∗Γκ(Symκ(R)) by [DB14, Lemma 3], confirming that
the family of generalized functions X∗

0fλ ∈ C−∞(WE) is analytic.
Now observe that the continuous functionsX∗

0fλ defined separately forWE1 andWE2 coincide
on non-empty intersections WE1 ∩WE2 for Reλ > 0 by (17). If follows by uniqueness of the
analytic extension that this holds for all λ ∈ C. In particular, m̃0

k is a globally well-defined
distribution.

For invariance, we note that for g ∈ O(Q), g∗X∗
0fλ = ψg(E)λX∗

0fλ for λ > 0, and conse-
quently by uniqueness of analytic extension for all λ ∈ C. Here ψg(E) = Jac(g : E → gE)−2,
which for g ∈ O(Q) satisfies ψg(E) = detX0(gE)/detX0(E), see [BF17, Proposition 4.7] for
details. Using the identification

Dens(TE Grn+1−k(V )) = Dens(E∗ ⊗ V/E) = Dens∗(E)⊗(n+1) ⊗ Dens(V )⊗n+1−k,

it follows that X∗
0fλ dE is an O(Q)-invariant distribution on Grn+1−k(V ) when

λ = −(n+ 1)/2. �

Henceforth whenever X0 appears, a local well-adapted frame should be chosen arbitrarily
unless an explicit choice is provided.
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5.4 Some properties of the invariant distributions
We use the following rescaling of the invariant distribution constructed previously, which brings
the total integral to 1 as we show later.

Definition 5.11. Set

mk := e(iπ/2)(n+1−k)qm̃0
k ∈ M−∞(Grn+1−k(V ))O(Q).

Lemma 5.12. Let j : Rp,q → Rq,p be given by j(x, y) = (y, x) where x ∈ Rp, y ∈ Rq. Let us also
denote by j the induced map Grp+q−k(Rp,q) → Grp+q−k(Rq,p). Then

j∗mk = mk.

Proof. We have mk = i(n+1−k)pX∗
0f−(n+1)/2 dσP0 on Rq,p. As X0 ◦ j = −X0 (where X0 is defined

using j-corresponding frames), (18) implies that j∗X∗
0f−(n+1)/2 = i−(n+1−k)(n+1)X∗

0f−(n+1)/2.
It follows that

j∗mk = i(n+1−k)p−(n+1−k)(n+1)X∗
0f−(n+1)/2 dσP0

= i−(n+1−k)qX∗
0f−(n+1)/2 dσP0 ,

which is the conjugate of mk in Rp,q. �
Proposition 5.13. Define

N∗Λ :=
⋃
ν≥1

N∗Λν
n+1−k(V ).

(i) The wave front set of mk is contained in N∗Λ.
(ii) We have miε

k → mk in M−∞
N∗Λ(Grn+1−k(V )) as ε→ 0+ in the normal Hörmander topology.

Proof. Write λ = −(n+ 1)/2. For ζ ∈ UC we have

(2ζ + 1)−((n+1−k)/2)p(2ζ − 1)−((n+1−k)/2)qmζ
k(E) = det(XP0

ζ )λ dE.

We compute, using a well-adapted frame,

det(XP0
iε (E))λ = det(X0(E) + 2iεIn+1−k)λ = X∗

0 det(X + 2iεIn+1−k)λ.

By Proposition 5.5, we have det(X + 2iεIn+1−k)λ → fλ(X) in the normal Hörmander topology on
C−∞

Γn+1−k(Symn+1−k(R)). By the proof of Proposition 5.10, we may use the continuity of the pull-
back X∗

0 in the normal Hörmander topology [BDH16]. Noting that X−1
0 (Γn+1−kν) ⊂ Λν

n+1−k(V )
so that X∗

0N
∗Γn+1−k ⊂ N∗Λ, we find that

X∗
0 det(X + 2iεIn+1−k)λ dE → m̃0

k

in the normal Hörmander topology as stated. �
Corollary 5.14. Let M ⊂ V n+1 be a pseudosphere or a pseudohyperbolic space, and A ⊂M
either a smooth domain with LC-regular boundary, or a smooth LC-regular hypersurface without
boundary. Assume all Q-degenerate tangents to A of codimension k are regular. Then

Cr(mk)(A) =
∫

Grn+1−k(V )
χ(A ∩ E) dmk(E). (20)

Proof. First note that Cr(mk) ∈ V−∞(M) is isometry invariant and by [BFS21, Theorem C] is
given by a linear combination of the intrinsic volumes. Thus, A is WF-transversal to Cr(mk).
The assertion now follows from Corollary 4.7, and Propositions 5.13(i) and 3.14. �
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Corollary 5.15. Let Mn ⊂ V n+1 be a pseudosphere or a pseudohyperbolic space, and A ⊂M
either a smooth domain or a hypersurface without boundary. Denote H = H(A).

(i) Assume that for each x ∈ H, H is either pseudo-Riemannian at x or tangentially regular at
x. Then (20) holds for k = 1.

(ii) If P(H) ⊂ P(V ) is strictly convex, then (20) holds for all k.

Proof. In both cases, it follows from [BFS22, Lemma 4.7] that H is LC-regular, and we can
apply Corollary 5.14. �
Example. The complex-valued distribution mn ∈ M−∞(P(V )) is invariant under the group of
projective transformations preserving the quadric [Q] = {Q = 0}. Its singular support is [Q], and
WF(mn) ⊂ N∗[Q]. In particular, mn(A) is well-defined for any domain A ⊂ P(V ) that is smooth
near [Q] and transversal to it. When Q is definite, the quadric [Q] has no real points and mn is
the Haar measure on the round projective space.

5.5 The flat case
Next we construct a translation- and O(p, q)-invariant distribution on the affine Grassmannian
Grp+q−k(Rp,q).

Proposition 5.16. Let P be a Q-compatible Euclidean structure in W = Rp+1,q = W+ ⊕W−.
Let x ∈W+ ∩ Sp,q, T = TxS

p,q, and define

s : Grp+q−k(T ) −→ Grp+q+1−k(W ), s(v + F ) = F ⊕ R(x+ v), F ∈ Grp+q−k(T ),

which is a diffeomorphism onto its open image. Given t > 0, consider the homothety v 
→ tv on
T and the induced map ht on Grp+q−k(T ).

(i) Let dE be an O(P )-invariant measure on Grp+q+1−k(V ), thus given by a smooth density.
Then

dF =
1
k!
dk

dtk

∣∣∣∣
t=0

h∗t s
∗ dE

is an O(P |T )-invariant measure on Grp+q−k(T ).
(ii) Let X0 : Grp+q+1−k(W ) → Symp+q+1−k(R) be as in Proposition 5.10, and let X ′

0 be the
corresponding map on Grp+q−k(T ). Then

1
k!
dk

dtk

∣∣∣∣
t=0

(h1/t)∗(s−1)∗(X∗
0f−(p+q+1)/2(E) dE) = (X ′

0)
∗f−(p+q+1)/2(F ) dF ,

and this generalized measure is O(Q|T )-invariant. Here (s−1)∗ denotes the push-forward by
s−1 of the restriction to the open set Image(s).

Proof. (i) For g ∈ O(P |T ) = StabO(P )(x) ⊂ O(P ), because g ◦ s ◦ ht = s ◦ ht ◦ g and g∗ dE =
dE, we have g∗h∗t s∗ dE = h∗t s∗g∗ dE = h∗t s∗ dE, which yields O(P |T )-invariance. As for trans-
lation invariance, let ρU : U × Rk → Grp+q−k(T ) be a local trivialization of the bundle
π : Grp+q−k(T ) → Grp+q−k(T ), and put η = ρ∗Us

∗ dE. Then ht ◦ ρU (F,w) = ρU (F, tw) and, thus,

ρ∗Uh
∗
t s

∗(dE)(F,w) = tkη(F,tw) = tkη(F,0) +O(tk+1).

As the induced action of a translation of T on U × Rk has the form (F,w) 
→ (F,w + ϕ(F )), the
translation invariance of dF follows.

(ii) Let f1, . . . , fp+q−k be a P -orthonormal basis of F ∈ Grp+q−k(T ), and let w ∈ T be P -
orthogonal to F . A P -orthonormal basis of s(tw + F ) is (1 + t2P (w))−1/2(x+ tw), f1, . . . , fp+q−k.
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Hence, the Gram matrices X ′
0 and X0 of Q restricted to F and s(tw + F ), respectively, satisfy

detX0 = (1 + t2P (w))−1Q(x+ tw) detX ′
0.

Therefore, for λ > 0, F ∈ Grp+q−k(T ) and w ∈ FP ∩ T we have

fλ(X0(s(tw + F ))) = (1 + t2P (w))−λQ(x+ tw)λfλ(X ′
0(F ))

whenever Q(x+ tw) > 0, where fλ is defined by Lemma 5.3 on Symp+q+1−k(R) or Symp+q−k(R)
depending on the argument.

By analytic continuation we get

s∗X∗
0fλ(tw + F ) = (1 + t2P (w))−λQ(x+ tw)λ(X ′

0)
∗fλ(tw + F )

for all λ. Hence,
lim
t→0

h∗t s
∗X∗

0fλ = (X ′
0)

∗fλ.

In the proof of part (i) we have seen (h1/t)∗(s−1)∗ dE = O(tk). Hence, by continuity

dk

dtk

∣∣∣∣
t=0

(h1/t)∗(s−1)∗(X∗
0f−(p+q+1)/2(E) dE)

= lim
t→0

h∗t s
∗X∗

0f−(p+q+1)/2
dk

dtk

∣∣∣∣
t=0

(h1/t)∗(s−1)∗ dE

= k!(X ′
0)

∗f−(p+q+1)/2 dF .

Translation invariance is clear. Further, if g ∈ O(Q|T ) ⊂ O(Q), then g ◦ s ◦ ht = s ◦ ht ◦ g. As
X∗

0f−(p+q+1)/2(E) dE is O(Q)-invariant, this yields O(Q|T )-invariance. �

Translation-invariance and O(P |T )-invariance characterize dF uniquely up to normaliza-
tion. The normalization can be deduced from Theorem 6.5 in the case q = 0. As for the
translation-invariant and O(Q|T )-invariant generalized measure obtained on T ∼= Rp,q, we take
the normalization of Definition 5.11 as follows.

Definition 5.17. On Grp+q−k(Rp,q) we fix the following translation-invariant and O(p, q)-
invariant generalized measure

m̌k := e(iπ/2)(p+q+1−k)q(X ′
0)

∗f−(p+q+1)/2(F ) dF .

The Crofton map in the flat case is

Cr : M−∞(Grp+q−k(V )) → V−∞(V ),

given by 〈Cr(μ), ψ〉 =
∫
Grp+q−k(V ) ψ(Ē) dμ(Ē) for all ψ ∈ V∞

c (V ).
The results of the present section and §§ 3 and 4 can be easily adapted to the flat pseudo-

Euclidean setting. Let us state explicitly Corollary 5.15 in the flat case.

Corollary 5.18. Let A ⊂ Rp,q be either a smooth domain or a hypersurface without boundary.
Denote by H = H(A) the corresponding closed hypersurface.

(i) Assume that for each x ∈ H, H is either pseudo-Riemannian near x or has non-zero
Gauss curvature at x. Then

Cr(m̌k)(A) =
∫

Grp+q−k(V )
χ(A ∩ E) dm̌k(E). (21)

holds for k = 1.
(ii) If H is strictly convex, then (21) holds for all k.
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6. Crofton formulas for generalized pseudospheres

For the de Sitter space embedded in Lorentz space, one can compute the Crofton formulas
through a direct computation of the restriction of the measures to subspaces, combined with
the Hadwiger theorem and the template method. However, for general signatures, an explicit
computation appears to be hard. Instead, we carry out an analytic extension argument, which
recovers the Crofton formulas for all signatures in a unified fashion.

For ζ > 1
2 , we denote by Sζ = Q−1

ζ (1) ⊂ Rp+q = Rn+1 the unit sphere in the Euclidean space
(Rn+1, Qζ). For ζ = 0 we have Sp−1,q = Q−1

0 (1) with the induced pseudo-Riemannian metric Q0.
We also denote by Sn the unit sphere in Rn+1 with respect to some fixed Euclidean structure
(which is independent of ζ).

In the following we make use of the operation of restriction of Crofton distributions, as
described in § 3.1.

Proposition 6.1. For the standard inclusion e : Rp,q ↪→ Rp+l,q+r, we have e∗mk = mk.

Proof. Note first that the restriction e∗mk is well-defined by [Fai17, Remark 2.13]. For ζ > 1
2 ,

Qζ is positive-definite, and so e∗mζ
k = mζ

k by the uniqueness of probability measure on the
Grassmannian invariant under the positive-definite orthogonal group, as

e∗ : M∞(Grp+q+l+r−k(Rp+l,q+r)) → M∞(Grp+q−k(Rp,q))

is essentially the push-forward operation under intersection with Rp,q. By analytic extension in
ζ, we get e∗miε

k = miε
k . The statement then follows from Proposition 5.13(ii). �

Proposition 6.2. Given A ∈ P(Sp−1,q), let A ∈ P(Sn) be its radial projection. Assume A is
either an LC-regular hypersurface, or a smooth domain with LC-regular boundary. Assume
further that either all Q0-degenerate tangents of codimension k are regular, or χ(A ∩ E) is
constant for almost every plane E of codimension k. Then

lim
ε→0+

CrSn(miε
k )(A) = CrSp−1,q(mk)(A).

Proof. We have by Proposition 3.14

CrSn(miε
k )(A) = 〈miε

k , χ(A ∩ •)〉.
By Corollary 5.14, it holds that

CrSp−1,q(mk)(A) = 〈mk, χ(A ∩ •)〉.
By Proposition 5.13(ii), miε

k tends to mk as ε→ 0+ in the normal Hörmander topology on
M−∞

N∗Λ(Grn+1−k(V )). Combining Corollary 4.7 and Proposition 5.13(i), we see that evaluating
at χ(A ∩ •) = χ(A ∩ •) is continuous in this topology, and the statement follows. �

We consider for a moment the case q = 1. We use two types of templates in the de Sitter
sphere Sp−1,1. The first is the Riemannian (p− 1)-unit sphere

Rp−1,0 = Sp−1,1 ∩ {xp+1 = 0}.
Fix θ ∈ (0, π/4). Our second template is

Rp−1,1 = Rp−1,1(θ) = {x ∈ Sp−1,1 : x2
p+1 ≤ tan2 θ(x2

1 + · · · + x2
p)}.

The points of ∂Rp−1,1 lie at (time-like) distance of ρ = arctanh(tan θ) from Rp−1,0.
For each ζ > 1

2 and s = 0, 1, we denote by T p−1,s
ζ the radial projection of Rp−1,s on Sζ .

Thus, T p−1,0
ζ is a totally geodesic (p− 1)-sphere in Sζ , and the points of ∂T p−1,1

ζ lie at distance
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ε = arctan(
√
ξ tan θ) from T p−1,0

ζ where ξ = (2ζ − 1)/(2ζ + 1). We then have

dρ

dθ
=

1 + tan2 θ

1 − tan2 θ
,

dε

dθ
=
√
ξ

1 + tan2 θ

1 + ξ tan2 θ
.

We denote by μζ
k ∈ V∞(Sζ) the Riemannian intrinsic volumes in Sζ , and by μk ∈ V−∞(Sp−1,q) ⊗

C the (complex-valued) intrinsic volumes on Sp−1,1. Note that μζ
k(T

p−1,0
ζ ) = μk(Rp−1,0) for all

ζ > 1
2 .

Proposition 6.3. For s = 0, 1, the function ζ 
→ μζ
k(T

p−1,s
ζ ) extends to a holomorphic function

fk,s(ζ) on UC such that limζ→0 fk,s(ζ) = μk(Rp−1,s).

Proof. For s = 0, the statement is trivial as μζ
k(T

p−1,0
ζ ) does not depend on ζ. Let us consider

s = 1. The radial projections πζ : Sn → Sζ and π0 : Sn → Sp−1,1 have Jacobians

Jacπζ =
(

cos ε
cos θ

)p−1 dε

dθ
= ξ1/2

(
1 + tan2 θ

1 + ξ tan2 θ

)(p−1)/2+1

, ξ = ξ(ζ) =
2ζ − 1
2ζ + 1

,

Jacπ0 =
(

cosh ρ
cos θ

)p−1dρ

dθ
=
(

1 + tan2 θ

1 − tan2 θ

)(p−1)/2+1

.

As ξ(ζ) = (2ζ − 1)/(2ζ + 1) is continuous on C \ {−1
2}, it maps UC to a simply connected

region in C \ {0}. Moreover, ξ(ζ) ∈ R if and only if ζ ∈ R, and ξ(ζ) > 0 for ζ > 1
2 , so that ξ(ζ), 1 +

ξ(ζ) tan2 θ �= 0 for ζ ∈ UC. It follows that the right-hand side of the first equation extends to a
holomorphic function in UC whose limit as ζ → 0 equals the right-hand side of the second equation
multiplied by i. The statement follows for k = p because μζ

p = volp, and μp = i volp on Sp−1,1.
Now consider k = p− 1. As

μp−1(Rp−1,1) = 1
2 volp−1(∂Rp−1,1), μp−1(T

p−1,1
ζ ) = 1

2 volp−1(∂T
p−1,1
ζ ),

and

d

dθ
vol(Rp−1,1(θ)) =

dρ

dθ

d

dρ
vol(Rp−1,1(θ)) =

1 + tan2 θ

1 − tan2 θ
volp−1(∂Rp−1,1),

d

dθ
vol(T p−1,1

ζ (θ)) =
dε

dθ

d

dε
vol(T p−1,1

ζ (θ)) =
√
ξ

1 + tan2 θ

1 + ξ tan2 θ
volp−1(∂T

p−1,1
ζ ),

this case follows from the previous one.
For (k − p− 1) positive and odd, because N∗Rp−1,1 is contained in the time-like orbit of the

cosphere bundle of Sp−1,1, we have

μk(Rp−1,1) =
∑

ν

ip−1−k−2νcp,k,ν [[0, φ−k+2ν,ν ]](R
p−1,1) + idp,k vol(Rp−1,1), (22)

μζ
k(T

p−1,1
ζ ) =

∑
ν

cp,k,ν [[0, φ
ζ
k+2ν,ν ]](T

p−1,1
ζ ) + dp,k vol(T p−1,1

ζ ), (23)

for certain constants cp,k,ν , dp,k, where φ−k,r is the smooth form given in Lemma 5.1 of [BFS22]

when M = Sp−1,1, and φζ
k,r is the form φ+

k,r in the same lemma when M = Sζ . For k − p− 1 ≥ 0
and even, (22) and (23) hold with the volume term removed.
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As Sζ and Sp−1,q have constant curvature 1, we have φ−k,r = φ−k,0 and φζ
k,r = φζ

k,0. By the
structure equations (see [BFS22, equations (32) and (33)]) we have

dφ−k,0 = θ0 ∧ (−kφ−k−1,0 − (p− 1 − k)φ−k+1,0),

dφζ
k,0 = θ0 ∧ (kφζ

k−1,0 − (p− 1 − k)φζ
k+1,0),

where θ0 is the contact 1-form defined by the pseudo-Riemannian metric.
Now take M = Sp−1,1 and assume ω ∈ Ωdim M−1(PM ), and dω = θ0 ∧ ω′. Let ν :

∂Rp−1,1(θ) → PM be the outer normal map, and extend it smoothly to M . We then have

d

dθ
[[0,ω]](Rp−1,1(θ)) =

d

dθ

〈
ω, [[N∗Rp−1,1(θ)]]

〉
=

d

dθ

〈
ν∗ω, [[∂Rp−1,1(θ)]]

〉
=

d

dθ

〈
ν∗θ0 ∧ ν∗ω′, [[Rp−1,1(θ)]]

〉
=
〈
ν∗θ0 ∧ ν∗ω′,

∂

∂θ
· [[∂Rp−1,1(θ)]]

〉
=
〈
ν∗θ0,

∂

∂θ

〉
· 〈ν∗ω′, [[∂Rp−1,1(θ)]]

〉
=
dρ

dθ
· [[0, ω′]](Rp−1,1(θ)).

Hence, (d/dθ)[[0, φ−k,0]](R
p−1,1(θ)) equals

1 + tan2 θ

1 − tan2 θ

(
−k[[0, φ−k−1,0]](R

p−1,1(θ)) − (p− 1 − k)[[0, φ−k+1,0]](R
p−1,1(θ))

)
,

and similarly (d/dθ)[[0, φζ
k,0]](T

p−1,1
ζ (θ)) is

√
ξ

1 + tan2 θ

1 + ξ tan2 θ

(
k[[0, φζ

k−1,0]](T
p−1,1
ζ (θ)) − (p− 1 − k)[[0, φζ

k+1,0]](T
p−1,1
ζ (θ))

)
.

It follows by induction on k = p, . . . , 0 that [[0, φζ
k,0]](T

p−1,1
ζ (θ)) is holomorphic in ζ ∈ UC and

lim
ζ→0

[[0, φζ
k,0]](T

p−1,1
ζ (θ)) = ip−1−k[[0, φ−k,0]](R

p−1,1(θ)). (24)

By (22) and (23) this completes the proof. �

In order to normalize the leading coefficient in the Crofton formulas, we rescale the measures
mk, m̌k as follows.

Definition 6.4. Let M ⊂ Rp,q be the pseudosphere of curvature σ > 0, or the pseudohyperbolic
space of curvature σ < 0. We define

CrM
k = πωk−1

√
σ−1

k
CrM (mk).

In the flat pseudo-Euclidean space M = Rp,q we take

CrM
k = πωk−1 CrM (m̌k).

1974

https://doi.org/10.1112/S0010437X22007722 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007722


Crofton formulas in pseudo-Riemannian space forms

Theorem 6.5 (Crofton formula). Let M be a pseudosphere, a pseudohyperbolic space, or a
pseudo-Euclidean space. Then, independently of the signature of M ,

CrM
k =

�(n−k)/2�∑
j=0

ωk−1

ωk+2j−1

(−k/2
j

)
σjμk+2j , (25)

where σ is the sectional curvature of M and n its dimension.

Proof. Take first the pseudosphere M = Sp−1,q of curvature σ = 1. We can assume q > 0 as the
formula is known in Sn (cf., e.g., [FW19]). We know that

CrM
k =

�(n−k)/2�∑
j=0

(aj,p,qμk+2j + bj,p,qμk+2j)

for certain coefficients aj,p,q, bj,p,q ∈ C. Indeed, by [BFS21, Theorem C] we may express CrM
k

as a linear combination of the intrinsic volumes and their complex conjugates. As both μr and
CrM

r are the restrictions of elements in Val−∞,+
r and thus belong to the (−1)r-eigenspace of the

Euler–Verdier involution, only the displayed terms appear.
Let e : Sp−1,q↪→Sp−1+l,q and ẽ : Sp−1+l,1↪→Sp−1+l,q be standard inclusions. By

Proposition 6.1, we have

�(p−1+q−k)/2�∑
j=0

aj,p,qμk+2j + bj,p,qμk+2j = CrSp−1,q

k = e∗(CrSp−1+l,q

k )

=
�(p−1+q−k)/2�∑

j=0

aj,p+l,qμk+2j + bj,p+l,qμk+2j ,

�(p+l−k)/2�∑
j=0

aj,p+l,1μk+2j + bj,p+l,1μk+2j = CrSp−1+l,1

k = ẽ∗(CrSp−1+l,q

k )

=
�(p+l−k)/2�∑

j=0

aj,p+l,qμk+2j + bj,p+l,qμk+2j .

By the linear independence of {μi}i
⋃{μi}i [BFS22, Corollary 7.4], and taking l ≥ q − 1, this

yields

aj,p,q = aj,p+l,q = aj,p+l,1,

bj,p,q = bj,p+l,q = bj,p+l,1

for all j ≤ (p− 1 + q − k)/2.
It suffices then to determine aj := aj,p,1, bj := bj,p,1, i.e. to prove the statement in the de Sitter

sphere M = Sp−1,1. To this end, we evaluate both sides on the templates Rp−1,s ⊂M with
s = 0, 1. In order to compute CrM

k (Rp−1,s) we use the spherical Crofton formula:

CrSζ
(πωk−1m

ζ
k) =

∑
j≥0

ωk−1

ωk+2j−1

(−k/2
j

)
μζ

k+2j =:
∑
j≥0

cjμ
ζ
k+2j , (26)

for ζ > 1
2 . Given p ≥ k and s = 0, 1, let Sp be the unit sphere of an arbitrary Euclidean

structure in Rp,1 = Rp+1 and let T p−1,s be the radial projection on Sp of Rp−1,s. By Definition 6.4,
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Proposition 6.2, and applying analytic continuation to (26) via Proposition 6.3, we have

CrM
k (Rp−1,s) = πωk−1 lim

ε→0+
CrSp(miε

k )(T p−1,s)

= lim
ε→0+

∑
j≥0

cjfk+2j,s(iε)

=
∑
j≥0

cjμk+2j(Rp−1,s).

Now, for s = 0, 1, taking p = k + 2l − s+ 1, we obtain∑
j≥0

cjμk+2j(Rk+2l−s,s) =
∑
j≥0

ajμk+2j(Rk+2l−s,s) + bjμk+2j(Rk+2l−s,s)

=
∑
j≥0

(aj + (−1)sbj)μk+2j(Rk+2l−s,s),

because μk+2j(Rk+2l−s,s) ∈ isR by (22).
For l = 0 we have μk+2j(Rk−s,s) = 0 for all j ≥ 1 and, hence, c0 = a0 + (−1)sb0 for

s = 0, 1 and, thus, a0 = c0, b0 = 0. Suppose that aj = cj , bj = 0 for all j < j0. Taking l = j0 we
deduce cj0 = aj0 + (−1)sbj0 for s = 0, 1. By induction, we deduce aj = cj and bj = 0 for all j,
which completes the proof for σ = 1.

For σ > 0 the theorem follows by the homogeneity of the μk (cf. [BFS22, Proposition 1.2(iii)]).
Let us now turn to σ = −1, i.e. to Hp,q−1 ⊂ Rp,q. Note that the anti-isometry j : Rq,p → Rp,q

of Lemma 5.12 maps Sq−1,p to Hp,q−1. Therefore, by Lemma 5.12 and the homogeneity of
the μk,

CrHp,q−1

k (j(A)) = πωk−1ik
∫

Grn+1−k

χ(E ∩ j(A))dmk(E)

= πωk−1ik
∫

Grn+1−k

χ(E ∩A)dj∗mk(E)

= ikCrSq−1,p

k (A)

= ik
∑

ν

cνμk+2ν(A)

= ik
∑

ν

cνi−k−2νμk+2ν(j(A)).

This proves the statement for σ = −1. The case σ < 0 follows as before from the homogeneity
of the μk.

Finally, we consider the case σ = 0. Let us identify M = Rp−1,q with the tangent space
TxS

p−1,q at some x ∈ Sp−1,q. Let Λx
k : V−∞(Sp−1,q)O(p,q) → Val−∞(TxS

p−1,q)O(p−1,q) be given by
(cf. [Ale06a, Proposition 3.1.5])

Λx
k(ϕ) =

1
k!
dk

dtk

∣∣∣∣
t=0

h∗tφ
∗ϕ,

where φ : U ⊂ TxS
p−1,q → Sp−1,q is defined on a neighborhood of x by

φ(w) = Q(x+ w)−1/2(x+ w)
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and ht(w) = tw. By Proposition 5.16 we have

Λx
k CrSp−1,q

k = CrRp−1,q

k .

On the other hand, denoting by g the metric on Sp−1,q, because μk ∈ W−∞
k , behaves naturally

with respect to isometries and is k-homogeneous, we have

Λx
kμ

g
k = lim

t→0
t−k(φ ◦ ht)∗μ

g
k = lim

t→0
μ

(φ◦ht)∗g/t2

k .

As (φ ◦ ht)∗g/t2 converges, C∞-uniformly on compact sets, to the flat metric g0, we conclude by
[BFS22, Proposition 1.2(ii)] that

Λx
kμ

g
k = μg0

k .

Applying Λx
k to both sides of (25) the case σ = 0 follows. �

Recall from [BFS22] that the intrinsic volumes μk were defined in terms of certain generalized
curvature measures C0

k,p, C
1
k,p. On a manifold of constant curvature σ, these fulfill Ci

k,p = σpCi
k,0.

Using this and [BFS22, Eq. (61)], the Crofton formula (25) becomes

CrM
k = iq

∑
j

dk,jσ
j glob(C0

k+2j,0 + iC1
k+2j,0),

where glob : C−∞(M) → V−∞(M) is the globalization map (cf. [BFS22, § 2]). The constants dk,j

are independent of the signature and the curvature and can, thus, be deduced from the case of
Euclidean spheres. Therefore, by [FW19, § 3.2] we obtain

CrM
k =

πk

k!ωk
iq
∑

j

(
σ

4

)j

glob(C0
k+2j,0 + iC1

k+2j,0). (27)

Remark 6.6. It is interesting to note that (27) yields

χ− σ

2π
CrM

2 = iq glob(C0
0,0 + iC1

0,0),

which can be seen as a generalization of the fact that the angular excess of a spherical triangle
is proportional to its area.
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