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AN EXISTENTIAL ∅-DEFINITION OF Fq [[t]] IN Fq((t))

WILL ANSCOMBE AND JOCHEN KOENIGSMANN

Abstract. We show that the valuation ring Fq [[t]] in the local field Fq((t)) is existentially defin-
able in the language of rings with no parameters. The method is to use the definition of the henselian
topology following the work of Prestel-Ziegler to give an ∃-Fq-definable bounded neighbouhood of 0.
Then we “tweak” this set by subtracting, taking roots, and applying Hensel’s Lemma in order to find an
∃-Fq -definable subset of Fq[[t]] which contains tFq [[t]]. Finally, we use the fact that Fq is defined by the
formula xq − x = 0 to extend the definition to the whole of Fq[[t]] and to rid the definition of parameters.
Several extensions of the theorem are obtained, notably an ∃-∅-definition of the valuation ring of

a nontrivial valuation with divisible value group.

§1. Introduction. This paper deals with questions of definability in power series
fields. Unless stated otherwise, all definitions will be in the language Lring of rings.
Let q = pk be a power of a prime and let Fq((t)) be the field of formal power series
over the finite field Fq ; sometimes this is called the field of Laurent series over Fq .
The ring Fq[[t]] of formal power series with nonnegative exponents is the valuation
ring of the t-adic valuation on Fq((t)).
A predicate is said to be ∃-C -definable, for a subsetC of the field, if it is definable
by an existential formula with parameters from C . In particular, it is ∃-∅-definable
if it is defined by an existential formula which uses no parameters.
In section 2 of this paper we prove the following theorem.

Theorem 1.1. Fq[[t]] is ∃-∅-definable in Fq((t)).
This result fits into a long history of definitions of valuation rings in valued fields.
In the particular case of power series fields, a lot is already known.
IfK = C orQp, thenK [[t]] is not ∃-K-definable inK((t)). For the proof of this,
see Observation A.1 in the appendix.
In the field Qp the valuation ring Zp is ∃-∅-definable by the formula

∃y 1 + xlp = yl , for any prime l �= p. This formula is not, however, uniform in p.
Analogies between Qp and Fp((t)) naturally suggest the following “folkloric”
definition: Fq[[t]] is defined in Fq((t)) by the formula ∃y 1 + xl t = yl , whenever
l is a prime not equal to p.
Other definitions are also well-known. One example is an ∃∀∃∀-definition with
no parameters due to Ax, from [1], which applies to all power series fields.
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Fact 1.2 (Implicit in [1]). Let F be any field. Then F [[t]] is ∃∀∃∀-∅-definable in
F ((t)).

Another definition, in even greater generality, which uses no parameters is due to
the second author and is from [4]. However, this definition is not existential.

Fact 1.3 (Lemma 3.6, [4]). Let F be any field and suppose that O is an
henselian rank 1 valuation ring on F with a nondivisible value group. Then O is
∅-definable.
Recent work of Cluckers-Derakhshan-Leenknegt-Macintyre on the uniformity

of definitions of valuation rings in henselian valued fields includes the follow-
ing theorem. They use certain expansions of the ring language by predicates:
theMacintyre predicateP2 is interpreted as the set of squares andPAS2 is interpreted
as the image of the polynomial y2 + y.

Fact 1.4 (Theorems 2 and 3, [2]). There is an existential formula inLring∪{PAS2 }
which defines the valuation ring in all henselian valued fields with finite or pseudo-finite
residue field. Furthermore, if the residue field is not of characteristic 2 then this formula
is equivalent to an existential Lring ∪ {P2}-formula.
One consequence of Theorem 1.1 is in the study of definability in Fq((t)):

it reduces questions of existential definability in the language of valued fields (for
example Lring expanded with a unary prediate for the valuation ring) to existential
definability in Lring without needing more parameters.
It is famously unknownwhether or not the theory of Fp((t)) is decidable, whereas

Qp is decidable by the work of Ax-Kochen and Ershov. In [3] Denef and Schoutens
prove that Hilbert’s 10th problem has a positive solution in Fq[[t]] (in the language
Lring∪{t} of discrete valuation rings) on the assumption of Resolution of Singulari-
ties in characteristic p. As a consequence of Theorem 1.1, we prove in Corollary 3.4
that Hilbert’s 10th problem in Lring has a solution over Fq((t)) if and only if it has
a solution over Fq[[t]]. Of course, the analogous result for the language Lring ∪ {t}
follows from the “folkloric” definition above.
As an imperfect field, Fp((t)) cannot be model complete in the language of rings;

however, it is still unknown whether it is model complete in a relatively “nice”
expansion of that language, for example some analogy of the Macintyre language
(see [5]) suitable for positive characteristic.

§2. The ∃-∅-definition of Fq[[t]] in Fq((t)).
2.1. Spheres and balls in valued fields. We briefly make a few definitions and

notational conventions. Let (K,O) be a valued field, let v be the corresponding
valuation, and let vK denote the value group.

Definition 2.1. For n ∈ vK , we let
1. S(n) := v−1({n}) be the set of elements of value n,
2. B(n) := v−1((n,∞]) be the open ball of radius n around 0, and
3. B̄(n) := v−1([n,∞]) be the closed ball of radius n around 0.

We let 	 denote a disjoint union.

https://doi.org/10.1017/jsl.2014.27 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.27


1338 WILL ANSCOMBE AND JOCHEN KOENIGSMANN

Lemma 2.2. Let n ∈ vK . Then
1. B(n) ⊆ S(n)− S(n),
2. B̄(n) = S(n) 	 B(n), and
3. B̄(n)− B̄(n) = B̄(n).
Proof.

1. Let x ∈ B(n) and let y ∈ S(n). Then v(y) = n < v(x), so that v(x − y) = n
(by an elementary consequence of the ultrametric inequality) and x − y ∈
S(n). Thus x = x − y + y ∈ S(n) − S(n).

2. Let x ∈ B̄(n). Then either v(x) = n or v(x) > n.
3. Let x, y ∈ B̄(n). By the ultrametric inequality v(x − y) ≥ n. Thus x − y ∈
B̄(n). �

2.2. An ∃-definable filter base for the neighbourhood filter of zero.

Definition 2.3 (Section 7, [7]). Let K be any field. We say that K is t-henselian
if there is a field topology T onK induced by an absolute value or a valuation with
the property that, for each n ∈ N, there existsU ∈ T such that 0 ∈ U and such that
each f ∈ {xn+1 + xn + un−1xn−1 + · · ·+ u0 | ui ∈ U} has a root in K . In this case,
T is said to be a t-henselian topology.

We say that a given field topology is definable if there is a base of the filter of
neighbourhoods around zero which forms a definable family. The following lemma
shows that in a t-henselian field there is a base for the filter of neighbourhoods of
zero which forms an existentially definable family. It is due to Prestel (from [6]),
and corrects an earlier result of Prestel-Ziegler (from [7]).
Let D := Dx denote the formal derivative with respect to the variable x.

Lemma 2.4 (Proof of Lemma, [6]). Suppose thatK is t-henselian and not separably
closed. Let f ∈ K [x] be a separable irreducible polynomial without a zero in K .
Let a ∈ K \ Z(Df) be any element which is not a zero of the formal derivative of f.
Let Uf,a := { 1

f(x) −
1
f(a) | x ∈ K}. Then U := {c · Uf,a |c ∈ K×} is a base for the

filter of open neighbourhoods around zero in the (unique) t-henselian topology.

We prove a simple consequence of the Lemma.

Proposition 2.5. Let K be t-henselian and suppose that C ⊆ K is a relatively
algebraically closed subfield of K which is not separably closed. There exists V ⊆ K
which is an ∃-C -definable bounded neighbourhood of 0 in the t-henselian topology.
Proof. We choose f ∈ C [x] to be nonlinear, irreducible, and separable.
Let n := deg(f); thus deg(Df) ≤ n − 1. If |C | > n − 1 then we may choose
a ∈ C \ Z(Df). On the other hand, if C is a finite field, then C allows separable
extensions of degree 2. So we may choose f to be of degree 2; whence Df is of
degree ≤ 1 and again there exists a ∈ C which is not a root of Df. Let V := Uf,a .
Clearly V is ∃-C -definable. As discussed in Lemma 2.4, V is a bounded neighbour-
hood of 0. �

2.3. An ∃-F -definable set between O and M in F ((t)). Now let K := F ((t))
be the field of formal power series over a field F . Let v be the t-adic valuation,
let O := F [[t]] be the valuation ring of v, letM := tO be its maximal ideal, and let
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vK = Z be its value group. Note that (K,O) is henselian. Let C ⊆ K be any subset.
Let P := S(1) be the set of elements of value 1; thus P is the set of uniformisers.
In the following proposition we show how to “tweak” a definable bounded neigh-

bourhood of 0 until we obtain a subset of O containingM, in such a way as to
preserve definability.

Proposition 2.6. Suppose that V ⊆ K is an ∃-C -definable bounded neighbour-
hood of 0.

1. There existsW ⊆ K which is bounded, ∃-C -definable, and is such that P ⊆W .
2. There exists X ⊆ K which is bounded, ∃-C definable, and is such thatM ⊆ X .
3. There exists Y ⊆ K which is bounded by O, ∃-C -definable, and is such that

M ⊆ Y .
Proof.

1. V is a neighbourhood of 0. Let n ∈ Z be such that B(n) ⊆ V . Without loss
of generality, we suppose that n ≥ 0. Choose any m > n; then Pm ⊆ S(m) ⊆
B(n) ⊆ V . Let φ(x) be the formula expressing xm ∈ V , and letW := φ(K)
be the set defined by φ in K . Note thatW is ∃-C -definable, and P ⊆W .
It remains to show that W is bounded. Since V is bounded, there exists
l ∈ Z such that V ⊆ B(l). Let l ′ := min{l,−1} and let b /∈ B(l ′).
Since vb ≤ l ′ ≤ −1 < 0, we have that vbm = mvb ≤ vb ≤ l ′ ≤ l .
Thus bm /∈ V and (

xm ∈ V =⇒ x ∈ B(l ′)) .
SoW ⊆ B(l ′).

2. Let W ′ := W ∪ {0} and set X := W − W ′. Clearly X is bounded and
∃-C -definable. By Lemma 2.2, we see that B(1) ⊆ S(1) − S(1) = P − P ⊆
W −W ⊆ X . Also P ⊆W − 0 ⊆ X . ThusM = B̄(1) = P 	 B(1) ⊆ X .

3. X is boundedbut containsM, so onemay chooseh ∈ N such thatX ⊆ B(−h).
Let �(x) be the formula expressing xh ∈ X , and set Y := �(K) − �(K).
Observe that Y is ∃-C -definable. It remains to show that Y is bounded by
O and thatM ⊆ Y .
If va ≤ −1 then vah = hva ≤ −h. Thus if va ≤ −1, then ah /∈ B(−1) ⊇ X
and a /∈ �(K). Therefore, �(K) ⊆ O. By Lemma 2.2, Y = �(K) − �(K) ⊆
O −O = O.
Since Ph ⊆ S(h) (where Ph is the set of h-th powers of elements of P)
and S(h) ⊆ M ⊆ X ; we have that P ⊆ �(K). Thus P − P ⊆ �(K)− �(K).
By Lemma 2.2, B(1) ⊆ P − P ; thus B(1) ⊆ �(K) − �(K). Since 0h = 0 ∈
M ⊆ X , 0 ∈ �(K) and P − 0 ⊆ �(K) − �(K). By another application
of Lemma 2.2, this means that M = P 	 B(1) ⊆ �(K) − �(K) = Y ,
as required. �

2.4. The ∃-∅-definition of Fq[[t]] in Fq((t)). Finally, we consider the special case
where F is the finite field Fq for q a prime power. Thus now we have K = Fq((t)),
O = Fq[[t]], andM = tFq [[t]].

Lemma 2.7. There exists an ∃-Fq-definable bounded neighbourhood of 0.
Proof. Fq ⊆ K is relatively algebraically closed inK and is not separably closed.

By Proposition 2.5 there exists V with the required properties. �
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Proposition 2.8. O is ∃-Fq-definable in K .
Proof. We combine Lemma 2.7 and Proposition 2.6 to obtain an ∃-Fq-definable
set Y which containsM and is bounded by O. Note that Fq is the set of zeros of
the polynomial xq − x in K . Let � be the formula ∃y(yq − y = 0 ∧ x ∈ y + Y ).
This is obviously an ∃-Fq-formula. Since O = Fq +M andM ⊆ Y ⊆ O, it is clear
that �(K) = O. �
We will improve Proposition 2.8 by removing the parameters. In the definition of
the set Uf,a we used a and the coefficients of f as parameters. All of these come
from Fq , but not necessarily from Fp. Although elements of Fq are not closed terms,
they are algebraic over Fp. We use this algebraicity and a few simple tricks to find
an existential formula with no parameters which defines O.
Lemma 2.9. There exists an ∃-∅-definable bounded neighbourhood of 0.
Proof. We seek a polynomialf ∈ Fp[x] which is irreducible in Fq[x] and is such
that not all elements of Fq are roots of Df, i.e., xq − x � Df.
Write q = pk and let l be the least prime not dividing k. We claim that l ≤ 1+k.
To see this, let P be the set of primes dividing k and consider 1 +

∏
p∈P p ≤

1 + k. Then Euclid’s famous argument shows that there is a prime l /∈ P (thus not
dividing k) which does divide 1 +

∏
p∈P p.

As a consequence l ≤ pk = q. Let f ∈ Fp[x] be an irreducible polynomial of
degree l . Since l � k, f is still irreducible in Fq[x]. Furthermore, Df is of degree
≤ l − 1 < q. Thus it cannot be the case that every element of Fq is a zero of Df.
For any a ∈ Fq which is not a zero of Df, Uf,a = { 1

f(x) −
1
f(a) | x ∈ K} is an

∃-Fq-definable bounded neighbourhood of 0. We note that the only parameter in
this definition not from Fp is a.
The union of finitely many bounded neighbourhoods of 0 is also a bounded
neighbourhood of 0. Thus the formula �, which is defined to be

∃y (yq − y = 0 ∧ ¬Df(y) = 0 ∧ x ∈ Uf,y),
is an ∃-Fp-formula which defines the union

V :=
⋃

{Uf,a | a ∈ Fq,Df(a) �= 0}.

Finally note that each element of Fp is the image of a closed term; thus each
remaining parameter can be replaced by a closed term and we are left with an
∃-∅-definition of V . �
Remark 2.10. Here is an alternative method to find an irreducible separable
polynomial f ∈ Fp[x] and an element a ∈ Fp which is not a root of Df.

Let l be a prime such that p � l � k. Let g ∈ Fp[x] be any monic irreducible
polynomial of degree l . Since l � k, g is still irreducible over Fq . Let α be a root of g
in a field extension. Either the coefficient of xl−1 in g is nonzero; or else we consider
h := g(x − 1), which is the minimal polynomial of α +1. The coefficient of xl−1 in
h is then l �= 0. Thus wemay assume that the xl−1 term in g is nonzero. The polyno-
mialf := xlg(1/x) is the minimal polynomial of 1/α and has nonzero linear term.
Therefore, Df(0) �= 0. Thus Uf,0 is an ∃-Fp-definable bounded neighbourhood
of 0. As before, elements of Fp are closed terms, so we may remove all parameters
from the definition.
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Finally, we prove Theorem 1.1.
Theorem 1.1. O is ∃-∅-definable in K .
Proof. From Lemma 2.9 we obtain an ∃-∅-definable bounded neighbourhood

of 0. Using again Proposition 2.6, we obtain an ∃-∅-definable set Y which contains
M and is bounded by O. As before, we let � be the formula

∃y (yq − y = 0 ∧ x ∈ y + Y ).
This is an ∃-formula with no parameters and it defines O. �
Nevertheless the formula still depends on Fq in several ways: our choices ofm and h
in Proposition 2.6 and our choice of f in Theorem 1.1 depend on Fq . The number
q also appears directly in several of the formulas. All these factors tell us that
� is highly nonuniform in q. In fact, in the recent paper of Cluckers, Derakhshan,
Leenknegt, andMacintyre ([2]) it is shown that no definition exists which is uniform
in p or in k (where q = pk).

Remark 2.11. With a little more effort we can bemore explicit about the formula
�. Suppose for the moment thatK = Fp((t)). Let ℘ := xp − x and let f := ℘ − 1.
Observe that ℘ − 1 is separable and irreducible in K [x] and Df(1) = D(℘)(1) =
−1 �= 0. Denote x = (x1, . . . , x4) and y = (y1, . . . , y4). Working back through the
formulas and rearranging, we find that Fp[[t]] is defined by

∃abxy
(
℘(x − a + b) = 0 ∧ ah = x1 − x2 ∧
bh = x3 − x4 ∧

∧4
i=1 f(yi)(x

m
i − 1)− 1 = 0

)
,

where h,m ∈ N are chosen as in the proof of Proposition 2.6.

§3. Extensions of the result.
3.1. The field

⋃
n∈N

Fq((t1/n)) of Puiseux series. Let KPx :=
⋃
n∈N

Fq((t1/n))
denote the field of Puiseux series over Fq , where (t1/n)n∈N is a compatible system
of n-th roots of t (for n ∈ N). Note that KPx can be formally defined as a direct
limit. Let OPx :=

⋃
n∈N

Fq[[t1/n]] denote the valuation ring of the t-adic valuation.
Note that the value group is Q.
The following theorem is the first example of an ∃-∅-definition of a nontrivial

valuation ring with divisible value group.
Theorem 3.1. OPx is ∃-∅-definable in KPx.
Proof. By Theorem 1.1, we may let � be an ∃-formula (with no parameters)

which defines O in K . In each field Fq((t1/n)) the formula � defines the valuation
ring Fq[[t1/n]] since each of these fields is isomorphic to Fq((t)). In the union,
� defines the union of the valuation rings (in any union of structures an existen-
tial formula defines the unions of sets that it defines in each of the structures).
Thus � defines OPx =

⋃
n∈N

Fq[[t1/n]], as required. �

3.2. The perfect hull Fq((t))perf . Let Kperf :=
⋃
n∈N

Fq((tp
−n
)) be the perfect hull

of Fq((t)); this is also formally defined as a direct limit. Now we use Theorem 1.1
to existentially define the valuation ring Operf :=

⋃
n∈N

Fq[[tp
−n
]] in Kperf .

Theorem 3.2. Operf is ∃-∅-definable in Kperf .
Proof. The proof is almost identical to the proof of Theorem 3.1. �
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3.3. Consequences for ∃-definability in Lval. We return to the field Fq((t)) and
its valuation ring Fq[[t]]. Let Lval := Lring ∪ {O} be the language of valued fields,
so that (Fq((t)),Fq [[t]]) is an Lval-structure. The most important consequence of
Theorem 1.1 is that questions of existential definability in Lval reduce to questions
of existential definability in Lring, in the field Fq((t)).
Let C ⊆ Fq((t)) be any subfield of parameters.

Proposition 3.3. Let φ ∈ Lval be an existential formula with parameters in C .
Then there exists an existential formula � ∈ Lring with parameters in C such that φ
and � are equivalent modulo the theory of Fq((t)).
Proof. Recall that we denote K := Fq((t)), O := Fq[[t]], andM := tFq [[t]].
Let b = (bi)i<q be some indexing of the field Fq such that b0 = 0. Let � be a
quantifier-free formula in free variables y = (yi )i<q expressing the quantifier-free
type of b. We let 	 be the formula

∃y
(
x ∈ O ∧ �(y) ∧

∧
0<i<q

yi + x ∈ O×
)
.

We claim that 	 existentially definesM. Let a ∈ O. Then a ∈ M if and only if,
for each b ∈ F×

q , a + b ∈ O \M = O×; that is if and only if K |= 	(a). Thus 	 is
an ∃-∅-definition forM. Consequently,K \ O = (M\{0})−1 is ∃-∅-definable; and
so O is ∀-∅-definable.
SinceO is both ∀-∅-definable and ∃-∅-definable, wemay convert any ∃-C -formula
φ of Lval into an ∃-C -formula � of Lring. �
Corollary 3.4. Hilbert’s 10th problem has a solution over Fq((t)) if and only if it
does so over Fq[[t]], in any language which expands the language of rings by adding
constants from Fq[[t]].
Proof. Let φ be a quantifier-free formula with x the tuple of free-variables.
Suppose that Hilbert’s 10th problem (H10) has a solution over Fq((t)).
In order to decide the existential sentence ∃x φ(x) in Fq[[t]] we apply our algorithm
for Fq((t)) to the sentence

∃x
(
φ(x) ∧

∧
x∈x
�(x)

)
,

where � denotes the existential formula defining Fq[[t]] in Fq((t)).
Conversely, suppose that H10 has a solution over Fq[[t]]. By standard equiva-
lences in the theory of fields we may assume that φ is the formula f = 0 for some
polynomial f ∈ Fp[x].
We need to find a quantifier-free formula which is realised in Fq[[t]] if and only if
f has a zero inFq((t)). We adopt the convention that tuples are allowed to be empty,
so the empty tuple is a subtuple of any tuple. For a variable x ∈ x we let dx denote
the degree off in x; and for any subtuple x′ ⊆ xwe let x′′ := (x\x′)∪{x−1|x ∈ x′}
be a new tuple formed from x by inverting the elements of x′. Then we set fx′ :=
f(x′′)

∏
x∈x′ x

dx . Importantly, fx′ is a polynomial. Note that if x′ is empty, then
fx′ = f. Finally we let φ′ be the formula

∨
x′⊆x

(
fx′ = 0 ∧

∧
x∈x′

¬x = 0
)
.
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Then Fq((t)) |= ∃x f(x) = 0 if and only if Fq[[t]] |= ∃x φ′(x). Therefore, in order
to decide ∃x φ(x) in Fq((t)) we apply our algorithm for Fq[[t]] to the existential
sentence ∃x φ′(x). �

Appendix A. The fields C((t)) and Qp((t)). The following observation is well-
known, but we give the proof here for completeness.

ObservationA.1. K [[t]] is not ∃-K-definable in K((t)) for K = Qp,C.

Proof. Let K((t))Px :=
⋃
n∈N
K((t1/n)) be the field of Puiseux series and let

K [[t]]Px :=
⋃
n∈N
K [[t1/n]]. IfK [[t]] is ∃-K-definable inK((t)) thenK [[t]]Px is ∃-K-

definable in K((t))Px by the same formula. If K = C then, by Puiseux’s Theorem,
C((t))Px is algebraically closed and thus no infinite co-infinite subsets are definable.
In particular, C[[t]]Px is not definable.
Now let K = Qp and let φ be an existential formula (with parameters).

Suppose that φ defines Qp[[t]] in Qp((t)); then in Qp((t))Px the formula φ defines
Qp[[t]]Px, which is a proper subring. Note also thatQp is contained in this definable
set. The field Qp((t))Px is p-adically closed, thus Qp � Qp((t))Px. Thus φ defines
Qp in Qp, which is not a proper subset. This is a contradiction because Qp is an
elementary substructure of Qp((t))Px. �
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