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To spontaneously break their intrinsic symmetry and self-propel at the micron scale,
isotropic active colloidal particles and droplets exploit the nonlinear convective transport
of chemical solutes emitted/consumed at their surface by the surface-driven fluid flows
generated by these solutes. Significant progress was recently made to understand the
onset of self-propulsion and nonlinear dynamics. Yet, most models ignore a fundamental
experimental feature, namely the spatial confinement of the colloid, and its effect on
propulsion. In this work the self-propulsion of an isotropic colloid inside a capillary tube
is investigated numerically. A flexible computational framework is proposed based on
a finite-volume approach on adaptative octree grids and embedded boundary methods.
This method is able to account for complex geometric confinement, the nonlinear
coupling of chemical transport and flow fields, and the precise resolution of the surface
boundary conditions, that drive the system’s dynamics. Somewhat counterintuitively,
spatial confinement promotes the colloid’s spontaneous motion by reducing the minimum
advection-to-diffusion ratio or Péclet number, Pe, required to self-propel; furthermore,
self-propulsion velocities are significantly modified as the colloid-to-capillary size ratio
κ is increased, reaching a maximum at fixed Pe for an optimal confinement 0 < κ < 1.
These properties stem from a fundamental change in the dominant chemical transport
mechanism with respect to the unbounded problem: with diffusion now restricted in most
directions by the confining walls, the excess solute is predominantly convected away
downstream from the colloid, enhancing front-back concentration contrasts. These results
are confirmed quantitatively using conservation arguments and lubrication analysis of the
tightly confined limit, κ → 1.
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1. Introduction

Recent developments in the design of synthetic microswimmers open new opportunities
for engineering and biomedical applications (Nelson, Kaliakatsos & Abbott 2010). Popular
designs closely follow locomotion strategies observed in nature, such as beating flexible
appendages (Dreyfus et al. 2005) or rotating chiral filaments (Magdanz et al. 2020),
breaking time reversibility to ensure for the propulsion of such small-scale swimmers
in viscous environments (Purcell 1977; Lauga & Powers 2009). But in contrast to their
biological counterparts, these synthetic bio-mimetic swimmers essentially behave as
marionettes (Brooks & Strano 2020), relying on some external tether for both energy
supply and motion control, such as magnetic, optic or acoustic fields (Rao et al. 2015;
Bunea & Glückstad 2019; Koleoso et al. 2020). Still, practical difficulties, such as
miniaturisation and manufacturing of their moving parts, have so far hindered their use
for practical applications.

Active colloids stem from a fundamentally different paradigm, featuring no moving
parts (Moran & Posner 2019). Just like bacteria or other swimming cells (Berg 1993)
they are instead able to extract and convert into motion energy tapped directly from their
immediate environment (e.g. non-uniform distribution of physico-chemical properties) in
a mechanism known as phoresis (Anderson 1989). Beyond technological applications,
active colloids have been central to the recent developments in the study of so-called
active matter, in an effort to understand and characterise the collective dynamics
and self-organisation among large suspensions of microscopic self-propelled systems
(Marchetti et al. 2013; Bechinger et al. 2016).

Surface activity of the colloid is the most popular approach to the generation of the
local physico-chemical (e.g. solute) gradients required for propulsion, and can take the
form of reactions catalysed by a surface coating (Howse et al. 2007), encapsulated in
a droplet (Thutupalli, Seemann & Herminghaus 2011) or rely on micellar dissolution
(Izri et al. 2014; Moerman et al. 2017). Combined with a mobility, namely the ability
to convert local gradients along the surface into fluid motion or fluid stresses, this opens
the way for the self-diffusiophoretic motion of chemically active swimmers that are able to
generate themselves the local gradients into which they subsequently propel (Golestanian,
Liverpool & Ajdari 2007; Maass et al. 2016; Moran & Posner 2017).

The fundamental propulsion features are critically impacted by the transport of chemical
solutes involved in phoresis within the fluid, or more specifically, by the ratio of convective
transport and molecular diffusion, measured by the Péclet number, Pe. Based on that
measure, two different classes of active colloids can be distinguished. When Pe � 1,
solute transport is dominated by diffusion and is thus independent from the fluid (and
colloid’s) motion: this is specifically the case of classic autophoretic particles, such as the
canonical Au-Pt Janus colloids (Paxton et al. 2004), that are typically micron scale and
use small and rapidly diffusing solutes (e.g. dissolved gases, Moran & Posner 2017). In
that case, generating gradients requires embedding some asymmetry in the design of the
swimmer through inhomogeneous surface activity (Paxton et al. 2004; Howse et al. 2007)
or an anisotropic geometry (Kümmel et al. 2013; Michelin & Lauga 2015). This can also be
achieved through asymmetric assembly of isotropic colloids (Varma, Montenegro-Johnson
& Michelin 2018; Yu et al. 2018).

In contrast, chemically active droplets are relatively large (typically 10–100 μm in
diameter) and their activity is based on their micellar dissolution into the outer fluid
phase (Maass et al. 2016; Morozov 2020). The solutes exchanged at the droplet’s surface
and responsible for its propulsion are large molecular structures (surfactant, micelles,
. . .) and, thus, diffuse slowly in the fluid: advective effects are here non-negligible and
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Confined self-propulsion of an isotropic active colloid

Pe = O(1) − O(100) (Hokmabad et al. 2021). Symmetry breaking is achieved through an
instability resulting from the nonlinear convective transport of the solute species by the
fluid flows generated from phoretic and Marangoni effects at the droplet surface (Izri et al.
2014; Morozov & Michelin 2019b). In contrast with autophoretic particles with Pe � 1,
this nonlinear hydrochemical coupling provides the droplet with complex and tunable
individual behaviour (Suga et al. 2018; Hokmabad et al. 2021), and can even lead to the
emergence of chaotic dynamics (Hu et al. 2019; Morozov & Michelin 2019a).

The mechanism at the heart of the droplet’s self-propulsion, i.e. the nonlinear feedback
coupling between the flow and chemical fields, is mathematically and physically relevant
regardless of whether the mobility stems from phoretic slip flows or Marangoni stresses,
both emerging from tangential gradients in solute concentration (Michelin, Lauga &
Bartolo 2013; Izri et al. 2014; Morozov & Michelin 2019a). In fact, both mechanisms most
likely co-exist in active droplets, whose surface is densely covered by surfactant species
due to the saturation of the suspending fluid. Also, in experiments, active droplets remain
spherical (the relevant capillary numbers are small) except when their radius is larger than
the capillary or chamber size (see, e.g. de Blois et al. 2021). As a result, isotropic phoretic
particles can be considered in a first approximation as the limit case of swimming droplets
with large internal viscosity.

Despite their systematic presence in experimental settings, due to the droplets’
non-neutral buoyancy (Krüger et al. 2016; Cheon et al. 2021) or as a requirement for
accurate quantitative measurements (e.g. confocal microscopy Hokmabad et al. 2021),
theoretical models most often ignore the presence of confining boundaries and focus on
droplets in unbounded fluid domains, leaving unexplored their role on the emergence and
persistence of self-propulsion. Recent experimental measurements have shown significant
modifications of the flow field around the droplet when placed close to or between rigid
walls (de Blois et al. 2019), and theoretical modelling unveiled the non-trivial alterations
of the hydrochemical coupling induced by confinement (Lippera et al. 2020b). Beyond
the influence of a single flat wall, recent experiments have also shown that self-sustained
motion can also occur in strongly confined settings, such as small capillary tubes (Illien
et al. 2020; de Blois et al. 2021).

Although few quantitative measurements or estimates can be found, active droplets
are likely to evolve very close to their confining boundaries (Cheon et al. 2021), in a
regime where classical work on lubricating flows or model microswimmers demonstrate
that hydrodynamic drag (Kim & Karrila 1991) and self-propulsion velocities (Zhu, Lauga
& Brandt 2013) are significantly modified in comparison with their characteristics in
unbounded fluid domains. Significant changes in the self-propulsion of active droplets
would therefore not be surprising.

The central goal of the present work is to provide a much needed insight on the sustained
self-propulsion of such isotropic active particles or droplets in strongly confined settings,
i.e. inside a capillary tube. In the case of diffusion-dominated diffusiophoretic swimmers
(Pe → 0), the hydrodynamic and solute evolutions reduce to sequential linear Laplace
and Stokes problems, for which a number of different numerical techniques are available,
such as boundary element methods (Montenegro-Johnson, Michelin & Lauga 2015) or two
recent extensions of hydrodynamic solvers for the diffusive problem, based on Stokesian
dynamics (Yan & Brady 2016) or the force coupling method (Rojas-Pérez, Delmotte &
Michelin 2021).

In contrast, the numerical simulation of instability-driven, isotropic autophoretic
swimmers at non-zero Pe poses new and specific challenges due to the inherent
nonlinearity of the problem in addition to the presence of moving boundaries where
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chemical and hydrodynamic forcings are applied. Up to date, most simulations considering
the full nonlinear hydrochemical coupling of active droplets rely on some truncated
spectral expansion, mapped either onto cylindrical (Hu et al. 2019), spherical (Michelin
et al. 2013) or bi-spherical coordinates (Lippera, Benzaquen & Michelin 2020a; Lippera
et al. 2020b). This approach is well suited for simple geometric configurations (e.g.
unbounded flows, two-sphere interactions), but precludes the study of the dynamics of
such swimmers placed under generic spatial confinement or even in a cylindrical pipe.

To overcome this hurdle, we present here a generic method to obtain the nonlinear
hydrochemical dynamics of a single isotropic autophoretic particle under complex
confinement using a novel approach based on embedded boundaries (Johansen & Colella
1998; Schwartz et al. 2006) and developed on top of the adaptive quadtree-octree flow
solver Basilisk (Popinet 2015). Our approach, based on a finite-volume framework, does
not require any a priori assumption on the form of the hydrodynamic or chemical fields,
nor on the number or shape of the solid boundaries, thus making it suitable for the study
of complex confinement geometries and/or collective particle/droplet dynamics.

The paper is organised as follows. Section 2 introduces the physical problem considered,
namely that of a single isotropic autophoretic particle swimming along the axis of a round
capillary tube. The numerical technique used to solve the problem is then presented in
§ 3 together with several numerical validations. The impact of spatial confinement, i.e.
the relative radius of the capillary and particle, is then analysed in detail in § 4 using
this numerical method. Using global conservation arguments and lubrication analysis, § 5
then confirms theoretically the qualitative and quantitative evolution of the propulsion
characteristics in the strong-confinement limit (i.e. tightly fitting sphere). Finally, we
summarise our findings and outline some perspectives on this work in § 6.

2. Phoretic self-propulsion in a capillary

We consider the dynamics of a single spherical phoretic particle of radius a, immersed in
a Newtonian fluid of viscosity η and density ρ, inside a circular capillary of radius R and
axis ez. The particle is chemically active and releases or absorbs a solute of concentration
c∗ and molecular diffusivity D into its fluid environment with a constant and isotropic flux
A (activity), so that along the particle’s boundary Γp,

Dn · ∇c∗∣∣
Γp

= −A, (2.1)

with n the unit outward normal. The short-ranged interaction of solute molecules with the
particle surface within a thin interaction layer of thickness λ� a introduces an effective
hydrodynamic slip ũ∗ along the particle surface in response to local tangential solute
gradients (Anderson 1989)

ũ∗ = M∇sc∗, (2.2)

with M ≈ kBTλ2/η the phoretic mobility of the particle, with kBT the thermal energy and
∇s = (I − nn) · ∇ the tangential gradient operator projected onto the particle surface.
Note that taking M as a constant characteristic property of the particle surface is valid
for neutral solutes, but can also be valid when concentration contrasts are small enough
(Anderson 1989).

The activity A and mobility M coefficients characterise the physico-chemical
properties of the particle surface and can be positive or negative; from these, a
characteristic phoretic velocity scale can be defined as V = |AM|/D. Given the
characteristic size and velocities of confined phoretic microswimmers (de Blois et al. 2019;
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Lippera et al. 2020b; Hokmabad et al. 2021), the fluid and colloid inertia can be neglected,
i.e. the Reynolds number Re = ρVa/η is negligible, so that the motion of the particle can
be described using the steady Stokes equations.

In the following, all quantities of interest are made dimensionless using a,V, a/V
and a|A|/D as characteristic length, velocity, time and concentration, respectively. The
resulting dimensionless equations for the dimensionless flow velocity u, pressure p and
concentration c are

∇2u = ∇p, ∇ · u = 0, (2.3a,b)

∂c
∂t

+ u · ∇c = 1
Pe

∇2c, (2.4)

with Pe = |AM|a/D2, the Péclet number, which is a measure of the relative contribution
of advection and diffusion to the transport of solute. The radius ratio, κ = a/R ∈ [0, 1], is
a measure of the confinement level and is the second key dimensionless parameter of the
problem.

The relevant boundary conditions for the concentration field at the surface of the (active)
particle Γp and (inert) confining wall Γd are

∂c/∂n|Γp = −A, ∂c/∂n|Γd
= 0, (2.5a,b)

while, for the velocity field,

u|Γp = ũ + U + Ω × (x − X ), u|Γd = 0, (2.6a,b)

where U and Ω are the translation and rotation velocities of the particle, ũ = M∇sc is the
dimensionless phoretic slip velocity at a general point x on the particle surface and X is the
position of the particle centre. The phoretic mobility of the wall is neglected here in front
of that of the active particle/droplet, but could easily be accounted for within the same
framework (see, e.g. Sherwood & Ghosal 2018). Here, A = A/|A| and M = M/|M|
denote the dimensionless activity and mobility. When AM = −1, no self-propulsion is
observed for an isolated particle in unbounded flow (Michelin et al. 2013); as our goal is
to analyse the effect of confinement on self-propulsion, we consider in the following that
A = M = 1.

Finally, in the absence of any external force, the total hydrodynamic force and torque on
the particle must vanish at all time,

F =
∫

Γp

σ · ndS = 0, T =
∫

Γp

(x − X ) × (σ · n) dS = 0, (2.7a,b)

with σ = −pI + ∇u + ∇uT the Newtonian stress tensor.

3. Numerical solution

3.1. Axisymmetric problem and co-moving frame
In the following, we will focus on the axial self-propulsion of the particle, for which the
problem remains completely axisymmetric. In steady state, the concentration and velocity
fields are time independent when measured in a reference frame moving with the particle.
For convenience (e.g. to avoid any need for remeshing of the computational domain), we
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Figure 1. Self-propulsion of a single isotropic phoretic particle of radius a along the axis of a cylindrical pipe
of radius R (viewed here in the reference frame of the particle). The particle-to-pipe radius ratio, κ = a/R, is
a measure of the level of confinement. The particle and pipe surfaces are noted Γp and Γd , respectively. Here
Γin and Γout denote cross-sections of the pipe far ahead and behind the particle, respectively. Inset: within a
thin interaction layer of thickness λ, local surface gradients in the chemical solute (orange) released from the
particle surface induce a net hydrodynamic slip.

analyse the problem in that co-moving reference frame, where the particle is fixed, and the
boundary conditions for the velocity field become

u|Γp = ũ, u|Γd = −Uzez, (3.1a,b)

where Uz is the physical velocity of the particle relative to the wall in the laboratory frame,
and completely determines the steady self-propulsion dynamics of the particle along the
confining tube’s axis (see figure 1).

It should be noted nevertheless that the numerical methodology presented in the
following can be generalised to non-axisymmetric and unsteady configurations. Unsteady
simulations of the particle’s dynamics in the laboratory frame were also performed with
non-axisymmetric initial conditions (i.e. particle position, direction and intensity of the
particle velocity) and showed that this axisymmetric self-propulsion state is a stable
attractor for the problem when Pe < 15, for all κ: when the particle is released initially
away from the axis, it relaxes after a transient to either a stationary state on the axis or
steady propulsion along the axis, establishing the physical relevance of the axisymmetric
setting considered here.

3.2. Numerical method
Equations (2.3a,b), (2.4) and (2.7a,b), with boundary conditions, (2.5a,b) and (3.1a,b),
form a fully coupled set of nonlinear partial differential equations problem. We solve these
equations numerically in a cylindrical domain of length L � R with the particle located at
its centre.

Boundary conditions must be prescribed for the solute and flow fields on the upstream
and downstream cross-sections of the computational domain, Γin and Γout located
respectively at z = ±L/2 from the centre of the particle. In the lab frame, the fluid is
expected to be at rest with a homogeneous concentration of solute, far enough upstream
and downstream of the particle, so that, in the reference frame co-moving with the particle,

u|Γin,Γout = −Uzez,
∂c
∂z

∣∣∣∣
Γin,Γout

= 0, (3.2a,b)
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with Uz the a priori unknown particle velocity, which is determined as part of the solution
by enforcing the force-free condition on the particle.

As for the inertial fluid–solid coupling in high Reynolds configurations (Selçuk
et al. 2021), the presence of the nonlinear advective coupling in the solute transport
equations prevents the use of other popular numerical techniques such as multipole
expansion (Sangani & Mo 1996), boundary elements methods (Pozrikidis 1992;
Montenegro-Johnson et al. 2015) or the force coupling method (Delmotte et al. 2015;
Rojas-Pérez et al. 2021), which are particularly suitable for purely diffusive problems.
In such a limit, a detailed knowledge of the flow and concentration fields in the domain
bulk (i.e. away from the computational domain boundary Γ = Γp ∪ Γd ∪ Γin ∪ Γout) is
unnecessary to obtain the particle dynamics. In contrast, when Pe /= 0, the presence of the
advective contribution to the solute transport, u · ∇c, which is key to the understanding
and capture of the spontaneous self-propulsion of isotropic phoretic particles and droplets
(Michelin et al. 2013; Izri et al. 2014), imposes a change in the resolution paradigm, by
requiring to determine u and c everywhere in the computational domain, and an accurate
numerical treatment of this nonlinear term in the solute transport equation.

We present here a novel approach to solve for the diffusiophoretic propulsion
based on Basilisk, a popular open source framework for computational fluid dynamics
(Popinet 2015). Borrowing techniques developed for high-Re flow simulations, the
nonlinear diffusiophoretic problem is split into multiple sub-problems. The equations
of evolution for the solute and flow fields are solved using finite volumes on
hierarchically arranged, adaptive quadtree/octree grids (Popinet 2003). To adapt to the
Basilisk framework most efficiently, the hydrodynamic problem is described by the
unsteady Stokes equations with a small Reynolds number (Re = 0.05). To reach the
steady-state solutions, the hydrodynamic solver is called iteratively on a pseudo-time t̃,
until the residuals between two pseudo-time steps reaches a convenient threshold, i.e.
|u(t̃ + Δt̃) − u(t̃)| � 10−6|u(t̃)|, which generally takes O(10) successive calls. Note that
this step represents the most time consuming part of the method. Stokes equations are
solved using an operator-splitting method (Bell, Colella & Glaz 1989), with a viscous step
(Poisson solver) followed by a projection onto a divergence-free space (Helmholtz solver).
For the solute transport, (2.4), the diffusive Laplacian term is handled implicitly while
the advective contribution is computed using the Bell–Colella–Glaz second-order upwind
method (Bell et al. 1989).

The description of all solid–fluid interfaces that do not match a rectangular mesh
is based on the method of embedded boundaries (Johansen & Colella 1998; Schwartz
et al. 2006), allowing for a second-order accurate computation of the additional fluxes
to be included in the finite-volume balance in order to enforce a prescribed boundary
condition within cells containing a fluid–solid interface Γp or Γd (Schneiders et al. 2016).
Hydrodynamic forces are then computed a posteriori by numerical integration of the stress
tensor on the particle surface.

At this point, we dispose of an efficient numerical framework for the computation of the
flow velocity and solute concentration, (u, p, c), for boundaries of any shape, for a given
particle velocity. The dynamics of the particle (here completely characterised by Uz, its
axial velocity) is further determined through the instantaneous force-free constraint, which
writes here simply as Fz = 0. The Stokes problem is linear regardless of the confinement
level κ; therefore, the axial force on the particle is an affine function of the solid body
translation Uz, for a given slip velocity ũ, i.e.

Fz(ũ, Uz) = RUz + Q(ũ), (3.3)
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with R is the axial drag coefficient on a rigid sphere translating along the axis of the
cylindrical pipe and Q is a scalar that is completely determined by the surface slip and
the level of confinement. Both Q and R are independent of Uz and solely depend on
geometry (and on the slip velocity in the case of Q), and are determined numerically as
follows. At each time step, the Stokes problem is solved twice for the same slip velocity ũ:
(i) for the real problem, using a first guess of the swimming speed Uz from the previous
time step, and (ii) for an auxiliary problem with a different and arbitrary Uaux

z . For
each, the corresponding axial force on the particle is computed and, using both solutions
together with (3.3), provides (Q,R) from which the correct swimming speed satisfying
the force-free condition is obtained as Uz(Fz = 0) = −Q/R.

A cubic domain of size L/a = 128 was used on an adaptive mesh refinement, with
the finest spatial discretisation reaching 32 computational cells per particle radius a, with
≈2000 cells describing the particle surface. The fluid domain (figure 1) is then cut out
from this cubic volume employing the embedded boundaries approach (Bell et al. 1989)
and the particle is set in the origin of the coordinate system, placed in the centre of the
computational cuboid. Mesh is automatically adapted so as to ensure that maximum spatial
refinement is always ensured on top of solid–liquid interfaces. Elsewhere, mesh is refined
(respectively coarsened) whenever velocity or solute gradients is more (respectively less)
than a prescribed threshold using an adaptive wavelet algorithm (see, e.g. van Hooft et al.
2018). Using this approach and comparing the results for maximum spatial discretisations
of 32 and 64 cells per unit length, we obtained a match in both swimming velocity and
solute concentration fields, with a typical discrepancy on the swimming velocity lower
than 0.1 % (Pe = 6, κ = 0.5) and reaching a maximum 2 % discrepancy for the most
confined case considered (Pe = 6, κ = 0.9).

3.3. Validation
We now proceed with the validation of the proposed framework and algorithms by testing
the main physical features against classical literature cases, namely (i) the self-propulsion
of a model micro-organism using a prescribed surface slip (i.e. a so-called squirmer)
in strong spatial confinement (Zhu et al. 2013), and (ii) the self-propulsion of isotropic
particles due to nonlinear hydrochemical coupling (Michelin et al. 2013). The first case,
for which the hydrodynamic slip is imposed, allows for the validation of the hydrodynamic
solver and the enforcement of the force-free constraint, while the second provides a
validation of the coupled hydrochemical solver.

3.3.1. Squirmer in a pipe
The behaviour of a single squirmer inside a cylindrical pipe for different levels of
confinement is considered, as studied in Zhu et al. (2013) using a boundary element
method. A steady slip velocity ũ is imposed on the particle surface, which corresponds to a
neutral squirmer, which would swim at a velocity U∗

z ez in the absence of any confinement,
namely

ũsquirmer = −2U∗
z

3
(I − nn) · ez. (3.4)

For an unconfined case, the algorithm recovers within ±0.1 % the swimming velocity
predicted by the reciprocal theorem (Stone & Samuel 1996), i.e. the average of the surface
slip velocity (3.4) on the particle surface. For confined cases, with 0 < κ ≤ 0.5, the
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κ = a/R Zhu et al. (2013) Present work Relative error (%)

0.2 0.984 0.983 0.102
0.3 0.948 0.943 0.530
0.4 0.884 0.872 1.376
0.5 0.791 0.776 1.933

Table 1. Steady-state swimming speed of a squirmer along the axis of a capillary tube for varying confinement
ratio κ and comparison with the results of Zhu et al. (2013). The swimming velocity is normalised by that in
unbounded fluid domains.

0 250 500
t

0

0.1

0.2

0.3

Uz(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

κ

Figure 2. Unsteady axisymmetric propulsion velocity Uz(t) of an isotropic phoretic particle along the
capillary’s axis for increasing level of confinement κ (colour) and Pe = 2.5. The results are reported for
κ = 1/16, 1/8, 1/4, 1/2, 2/3 and 3/4. During the initialisation phase (t < ts with ts = 25), the slip velocity
on the particle surface is imposed (neutral squirmer), (3.4); for t > ts, the phoretic slip velocity and particle
dynamics are computed based on the actual surface concentration distribution of the solute, (2.2), and the
force-free condition on the particle.

maximum relative error between the present results and that of Zhu et al. (2013) is less
than 2 % (table 1).

Physically, for the axisymmetric configurations tested here, the squirmer’s swimming
velocity is observed to decrease with increasing confinement.

3.3.2. Autophoretic propulsion in an unbounded domain
The second comparison allows for the validation of the hydrochemical solver in the
absence of confinement (κ � 1) and, in particular, of the treatment of the nonlinear
advective coupling of the Stokes and chemical problems, which is the essential ingredient
of the spontaneous autophoretic motion studied here. The results are then compared with
those of Michelin et al. (2013) for strictly unbounded domains. Steady self-propulsion is
observed beyond a critical Pe after a transient, with a constant non-zero swimming speed
as depicted in figure 2. A detailed comparison with the results of Michelin et al. (2013)
shows that the present method is able to recover the correct swimming velocity with an
error lower than ≈1 % for the resolution considered (table 2).
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Pe Michelin et al. (2013) Present work Relative error (%)

4.0 0.0 0.0 0.00
5.0 0.04672 0.04670 0.043
6.0 0.06652 0.06649 0.045
7.5 0.08342 0.08387 0.53
10. 0.08671 0.08782 1.26
12.5 0.08333 0.08360 0.33
15.0 0.07902 0.07953 0.64

Table 2. Steady-state swimming velocities as a function of Pe, for an isotropic autophoretic particle in an
unbounded domain, and comparison with the results of Michelin et al. (2013) for infinite domains.

4. Axisymmetric self-propulsion inside a capillary

4.1. Unsteady vs steady-state self-propulsion
In practice, the coupled equations for the solute concentration and fluid velocity are
integrated numerically in time for fixed values of the Péclet number Pe and confinement
ratio κ . For 0 ≤ Pe ≤ 15, at long time, the particle propels at a steady velocity along the
capillary axis: an axisymmetric steady state is therefore reached in the reference frame of
the particle for the solute concentration and flow fields, and we specifically focus here on
the characterisation of such axisymmetric steady states.

The simulation is initialised by prescribing during a short initialisation phase (0 ≤ t ≤ ts
with ts = 25 in non-dimensional units) a fixed axisymmetric slip velocity on the surface
of the particle, corresponding to a neutral squirmer with intrinsic swimming velocity
U∗

z = 0.1. For t ≥ ts, the true phoretic slip is computed directly from the actual
concentration distribution and imposed at the particle surface. Such a procedure allows
us to perturb the system and break the left-right symmetry. The resulting evolution of
the swimming velocity is shown in figure 2 for Pe = 2.5 and for an increasing level of
confinement. The self-propulsion of the particle during the initialisation (squirmer) phase
decreases with κ , in agreement with the results of Zhu et al. (2013); indeed, in figure 2
the velocity Uz in the initialisation phase (t ≤ 25) where the slip velocity is imposed, is
observed to be lower for larger values of κ (tighter confinement).

For t ≥ ts, once the actual phoretic slip condition is enforced, the particle relaxes after a
transient toward its steady-state dynamics. Unless indicated otherwise, we thus refer to Uz
as the steady-state self-propulsion velocity of the particle when t � ts. Two fundamentally
different types of steady-state dynamics are observed in figure 2 for Pe = 2.5, depending
on the level of lateral confinement κ of the particle. For weak confinement (i.e. small
κ), the particle slows down and eventually comes to a stop; this is consistent with
Pe = 2.5 being lower than the critical threshold for self-propulsion in unbounded domains
(Pec = 4 for κ = 0) (Michelin et al. 2013). Note that a steady state is reached for the
particle velocity, flow field and concentration gradients, but not the average concentration
which keeps increasing in time due to the fixed emission of solute at the particle surface
and the confinement of the particle by chemically inert walls. In contrast, for κ ≥ 0.2,
the particle maintains a net velocity that increases with κ and saturates for the strongest
confinements considered (κ ≈ 0.8). Note that changing the magnitude of the initialisation
velocity or the duration of the initialisation phase only modified the transient regime past
t ≥ ts, but did not alter the nature of the observed steady state (i.e. fixed or self-propelled
particle).
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Figure 3. (a) Steady-state axisymmetric swimming velocity Uz of an isotropic active particle as a function of
the convection-to-diffusion ratio, Pe, and for increasing confinement κ (colour). (b) Same as (a) in logarithmic
scale. The results for a single isolated particle in unbounded domains (κ = 0, Michelin et al. 2013) is shown
for comparison (red dashed line). In (b) the dotted black line indicates the minimum velocity to determine the
emergence of a net propulsion. The results are reported here for κ = 1/16, 1/8, 1/4, 3/8, 1/2, 2/3 and 3/4.

4.2. Self-propulsion velocity and critical threshold
In the following, we focus on the evolution of this steady-state self-propulsion and the
influence of the proximity of the confining walls. To that end, for 0 ≤ κ ≤ 0.8 and
0 < Pe ≤ 15, we systematically run time-dependent simulations until a steady state is
reached, with a constant swimming speed along the axis of the capillary. The results for
Uz(Pe, κ) are reported in figure 3, and demonstrate the strong influence of confinement
and an increase of the self-propulsion velocity with confinement κ for all Pe. This effect is
significant provided the distance to the wall is of the order of a few particle radii (κ � 0.2),
confirming experimental observations (de Blois et al. 2021).

Beyond a systematic increase of the swimming velocity, figure 3 also demonstrates
several other important features. Most importantly, confinement effects are strongest
for low-to-moderate values of Pe. We first note a significant reduction with κ of the
critical self-propulsion threshold Pec. Furthermore, the presence of confinement strongly
affects the evolution of Uz(Pe): in weakly confined configurations the velocity varies
non-monotonically with Pe, and increases smoothly from the threshold until it saturates for
Pe ≈ 10–20 and decreases as Pe is increased further (Michelin et al. 2013). In contrast, the
velocity of strongly confined particles (κ � 0.5) scales as 1/

√
Pe for most of the parameter

range except in the immediate vicinity of the threshold Pec(κ) where it increases sharply
with Pe (figure 3b). As a result, the maximum swimming velocities are observed at low
Péclet in strongly confined environments (figure 3a). Note that self-sustained motion is
never observed for Pe = 0, regardless of κ: as for unbounded environments, convective
transport of the solute by the phoretic flows is essential to the propulsion of isotropic
particles, as it provides the required symmetry-breaking mechanism (Michelin et al. 2013;
Izri et al. 2014).

Stronger confinement significantly promotes self-propulsion, by reducing the minimum
Péclet number, Pec required for self-sustained autophoretic motion: while Pec = 4 for
κ = 0, the existence of a minimum Pe for self-propulsion persists throughout the range of
confinement investigated but this threshold drops quickly as κ is increased, with Pec ≈ 0.1
for κ � 0.5 (figure 4). However, with the present numerical approach, it is not possible
to analyse the lubrication limit with significant precision to conclude on the asymptotic
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Figure 4. (a) Evolution with confinement (κ) of the critical threshold Pec for the onset of propulsion. For
fixed κ , the numerical uncertainties on Pec are defined using the smallest (respectively largest) value of Pe for
which the steady-state velocity is greater (respectively smaller) than a numerical threshold U∗

z = 5 × 10−3. (b)
Evolution of the rescaled particle velocity with confinement κ .

behaviour of Pec when 1 − κ � 1, and this asymptotic limit would require further analysis
using a different approach.

Except for rare examples (Hokmabad et al. 2021), the Péclet number is fixed in most
experimental systems, and only spatial confinement can be controlled. For this reason, we
also report in figure 4(b) the evolution of the rescaled swimming velocity for fixed Pe and
variable confinement κ . In all cases, this rescaled representation (where we account for
the dominant Pe−1/2 scaling of the velocity, see also § 5) demonstrates a non-monotonic
evolution of the swimming velocity with κ , with a maximum at κ ≈ 2/3, before entering
the lubrication regime. This behaviour and its origin will be further discussed in § 5.1.

4.3. Effect of confinement on the solute distribution
The peculiar evolution of the swimming velocity with confinement and its enhancement
at low Pe is analysed by considering the detailed variations of the solute concentration
around the isotropic phoretic particle in confined steady-state regimes (figure 5). For fixed
Pe, the solute distribution around the particle is fundamentally modified by confinement.

In unbounded domains and for weak confinements, the solute distribution is
characterised by a monotonic decrease in all radial directions around the particle, with
a small front-back asymmetry maintained by the self-generated phoretic flows (figure 5,
κ = 0.1): in that case, the solute production at the particle surface is predominantly
balanced by its radial diffusion away from the particle.

In contrast, for stronger levels of confinement (e.g. figure 5, κ = 0.8), lateral diffusion
of the solute away from the particle is prevented by the lateral inert wall Γd: in that
case, the solute production by the particle’s catalytic surface is predominantly balanced
by its downstream convective transport by the phoretic flows. As a result, the capillary
upstream from the particle is essentially solute free, and the solute concentration saturates
downstream from the particle at a much larger and uniform value. The largest solute
concentrations are therefore found downstream and away from the particle, rather than
on its surface as for the unbounded configuration.

A more detailed observation for strong confinement reveals that far upstream and
downstream from the particle, the solute concentration becomes homogeneous due to the
rapid lateral diffusion across the capillary (figure 5, κ = 0.8). Additionally, as confinement
is increased, the fluid layer separating the particle from the wall becomes very thin and
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Figure 5. Steady-state relative solute concentration distribution and representative streamlines (colour coded
by the fluid velocity magnitude) around an isotropic phoretic particle in axisymmetric confinement for Pe = 6
and increasing κ (in the laboratory reference frame, i.e. fixed with respect to the capillary walls).

chemical diffusion across this thin gap becomes dominant over other solute transport
mechanisms: as a result, the solute concentration is homogenised across the whole fluid
layer, despite the steady emission of solute from the particle surface (figure 5, κ = 0.8,
zoom).

This last observation is further confirmed quantitatively by the detailed evolution of the
distribution of the concentration across the thin fluid layer (figure 6a). While the solute
concentration is only significant near the surface of the particle for small κ , the distribution
of solute across the gap is uniform when κ → 1.

The dominance of lateral diffusion, and resulting homogenisation of the concentration
in most of the domain (i.e. apart from |z| ∼ 1), justifies focusing on the mean concentration
along the capillary axis, defined as the average within each cross-section (fixed z),

〈c〉xy(z) = 1
π(R2 − Rmin(z)2)

∫ R

Rmin(z)

∫ 2π

0
c(r, z)r dr dθ, (4.1)

with Rmin(z) = √
a2 − z2 for |z| < a and Rmin(z) = 0 otherwise. This function of z only

takes a uniform value far upstream and downstream of the particle (figure 7), so that the
front-back concentration contrast can be defined as

Δc = 〈c〉xy(z = −L/2) − 〈c〉xy(z = L/2). (4.2)

Figure 7(a) shows that the evolution with z of the average concentration, once rescaled
by Δc, becomes essentially independent of κ for κ � 0.5, and that this universal profile is
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Figure 6. Relative spanwise distribution of (a) solute concentration and (b) streamwise flow velocity (in the
particle’s reference frame) within the fluid gap between the swimmer and the fixed walls (z = 0) for increasing
confinement κ (colour) and Pe = 6.0. The rescaled radial variable r̂ = (r − a)/(R − a) is defined such that
r̂ = 0 (respectively r̂ = 1) corresponds to the particle (respectively wall) surface for all values of κ . In (b) the
rescaled fluid velocity with respect to the particle is ŵ = (w + Uz)/(wslip + Uz) (note: here w < 0 throughout
the gap in the particle reference frame, and w = −Uz at the wall, r̂ = 1, while w = wslip < 0 at the particle
surface, r̂ = 0). The results are reported for κ = n/10 with 1 ≤ n ≤ 9.

characterised by (i) constant values behind and ahead of the particle (z < −1 or z � 2) and
(ii) a linear profile (constant streamwise gradient) in most of the vicinity of the particle.
The amplitude of the front-back concentration contrast however increases sharply with
κ , diverging as (1 − κ)−1/2 as κ → 1, demonstrating the confinement-induced chemical
saturation (figure 7b). This behaviour is quantitatively consistent with the asymptotic
predictions (5.26) (see also § 5).

The fore-aft asymmetry of the concentration profile, observed in figure 7(a) for Pe = 6,
results from the accumulation of solute in the wake of the propelling droplet due to the
restricted lateral diffusion when the droplet is sufficiently confined (large enough κ) and is
also present for larger Pe. A small overshoot of the concentration profile can be observed
immediately behind the particle for the least confined configurations (small κ) for which
the solute transport balance is fundamentally different.

4.4. Effect of confinement on the flow field
The flow pattern and intensity generated by the swimming particle inside the capillary is
also significantly modified by the presence and distance to the neighbouring walls. For
strong confinement, the largest fluid velocities and velocity gradients are observed within
the thin fluid gap: a finite volume of fluid needs to be moved from one side of the particle
to the other through a narrower gap in order to allow for the particle motion through the
capillary where the flow is at rest away from the particle. As κ approaches 1, the typical
fluid velocity within the gap is therefore much higher than the particle velocity itself (see
also § 5 for a more quantitative discussion), resulting in strong spanwise gradients of the
fluid streamwise velocity within the narrow gap (figure 5).

A more detailed analysis of the velocity distribution within the fluid gap further reveals
that, as κ is increased, the velocity profile tends to a Couette flow profile (figure 6b):
the dominant fluid transport in the narrowest fluid layer is therefore driven solely by the
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Figure 7. (a) Evolution of the spanwise-averaged solute concentration in the fluid around the particle along the
pipe for increasing confinement κ (colour) for Pe = 6. The particle’s position and limits are shown (respectively
dash-dotted and dotted lines). The results are reported for κ = n/10 with 2 ≤ n ≤ 8. (b) Evolution with κ of the
front-back concentration contrast measured using the spanwise-averaged concentration at |z| � R upstream and
downstream from the particle. The dashed line corresponds to the analytical prediction of § 5; see (5.26a–c).

phoretic slip at the particle surface, resulting from the front-back concentration contrast
observed in strongly confined configurations (figure 5). In particular, the absence of
curvature in the velocity profile indicates that longitudinal pressure gradients play a
negligible effect on the dominant flow.

We therefore turn our attention to the evolution of this slip forcing for increasing
κ and, more specifically, on its streamwise component that plays a major role in the
thinnest regions. Once again, a transition can be clearly seen between two different regimes
(figure 8a): for weak confinement, the relative distribution of slip is rather constant along
the sphere, except near the front and back poles. A slight maximum is observed at the
back of the particle, which is in qualitative agreement with the established result that
the particle acts as a pusher swimmer in unbounded domains (Michelin et al. 2013;
Izri et al. 2014). As confinement is increased, the slip profile becomes more front-back
symmetric with a maximum value attained in the narrowest region: this indicates a stronger
localisation of the forcing in the regions where it has the most hydrodynamic influence on
the self-propulsion. Note that such localisation in the regions of strongest hydrodynamic
influence was also recently identified for a chemically active droplet propelling along a
planar wall (Desaï & Michelin 2021). The evolution of the maximum phoretic slip with
κ confirms the enhancement of the phoretic forcing as the distance to the confining walls
is reduced, with the average fluid velocity in the gap, W = 〈w(z = 0)〉xy, diverging as
(1 − κ)−1 when κ → 1. This increase of the phoretic slip with confinement directly results
from the increased (and diverging as κ → 1) concentration contrast between the front and
back of the phoretic particles that was discussed in greater details in § 4.3. The results
are in good agreement with the asymptotic prediction for the evolution of W as κ → 1
(figure 8(b) and (5.26a–c)).

Finally, the velocity field away from the particle (i.e. upstream and downstream) is
almost uniform and eventually decays to zero (in the laboratory reference frame). Here a
brief comment should be made regarding the boundary conditions imposed at the inlet and
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Figure 8. (a) Distribution of the surface slip velocity normalised by the average fluid velocity in the
particle-capillary gap. The results are reported for κ = n/10 with 2 ≤ n ≤ 8. (b) Average fluid velocity in
the particle-capillary gap W at varying confinement κ . Results are shown here for Pe = 6.0. The dashed line
corresponds to the analytical prediction, (5.26a–c).

outlet boundaries of the computational domain (figure 1). A Dirichlet boundary condition
on the flow velocity is imposed on Γin and Γout, representing that the flow is at rest far
upstream and downstream from the particle in the lab frame. This will be the case, for
example, when the domain considered (figure 1) is part of an infinitely long tube: away
from the particle, the large hydrodynamic resistance prevents the existence of any flow
within the tube.

4.5. Resistance to particle motion and pressure
We noted earlier that, because fluid is at rest in front of and behind the phoretic particle,
a finite volume of fluid must pass through the thin fluid gap for the particle to move
forward. Driving such a volume flux through a thin viscous fluid layer results in the
establishment of a net pressure difference between the front and back of the sphere,
as demonstrated in figure 9 by the evolution of the spanwise-averaged pressure 〈p〉xy
along the capillary (i.e. its average on each cross-section) and of the front-back pressure
difference Δp (both quantities defined in a similar way as their counterparts for the
concentration).

We first note that the pressure difference Δp vanishes when κ � 1, i.e. for unbounded
phoretic particles, as expected. When κ becomes larger, the pressure still reaches constant
values far upstream and downstream of the particle, but they are now different and their
difference quickly grows with confinement and diverges as κ → 1 (figure 9b). While a
clear scaling is difficult to identify from the numerical results, it can still be concluded
that the divergence observed is weaker than (1 − κ)−2 (see § 5.2 for further discussion).
The emergence of a finite (and increasing) pressure difference exerts a resisting force on
the particle, balancing the net forcing exerted within the thin fluid gap by the phoretic
flows generated by the particle.

It should further be noted that the pressure variations are not monotonic, showing a local
minimum in the vicinity of the narrowest regions (figure 9a).
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Figure 9. (a) Evolution of the spanwise-averaged fluid pressure in the fluid around the particle for increasing
confinement κ (colour). The particle’s position and limits are shown (respectively dash-dotted and dotted
lines). The results are reported for κ = n/10 with 1 ≤ n ≤ 9. (b) Evolution with κ of the front-back mean
pressure difference measured using the spanwise-averaged pressure at |z| � R upstream and downstream from
the particle. In both panels, results were obtained for Pe = 6. The dashed line with (1 − κ)−3/2 is shown for
comparison only.

5. Self-propulsion of a tightly fitting particle

5.1. Global conservation arguments
The analyses and results of the previous sections provide some critical insight on
the physical balances and phenomena determining the evolution of the confined
self-propulsion, in particular in the limit of strong confinement (κ � 0.5).

In the following, these different arguments are summarised and combined to obtain a
prediction for the scaling of the swimming velocity in this limit, in terms of the two main
parameters of the problem, Pe and κ . Throughout, we focus exclusively on the steady-state
regime at the centre of our attention in § 4. We will relate three specific quantities: (i) Uz
the swimming velocity of the phoretic particles, (ii) Δc the difference in the uniform solute
concentration observed far downstream and upstream of the particle, respectively, and (iii)
W = 〈w(z = 0)〉xy the mean flow velocity (relative to the particle) through the narrowest
fluid region (z = 0) (oriented along −ez, i.e. from the front toward the back).

5.1.1. Solute conservation
Considering the entire computational domain as a control volume, the conservation of
solute imposes ∫

Γ

j · n dS = 0, (5.1)

with Γ = Γp ∪ Γd ∪ Γout ∪ Γin (figure 1), n the unit normal to Γ pointing into the
fluid domain, and u the fluid velocity in the reference frame of the particle. The
non-dimensional solute flux j = Pecu − ∇c (characteristic scale: |A|) includes the
contributions of convective transport by the fluid flow and diffusion, respectively.

The channel’s wall are inactive and impermeable so that j · n = 0 on Γd. At the
particle surface the solute flux is purely diffusive and matches the total production rate
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Figure 10. Global conservation of solute: the dimensionless solute emission (κ2) is compared with the
dimensionless excess solute convected downstream from the sphere (Pe UzΔc).

at the particle surface
∫
Γp

j · n dS = 4π. Far from the particle, near Γin and Γout, the
concentration is uniform so that the diffusive flux is negligible on these surfaces. The
velocity is also uniform and equal to −Uzez so that∫

Γin∪Γout

j · n dS = −πPe UzΔc
κ2 . (5.2)

Equation (5.1) then leads to
Pe UzΔc = 4κ2. (5.3)

This result was found in agreement with the numerical results for strong enough
confinements (κ � 0.2, figure 10). Note that for lower κ , such a balance is not expected
to hold as the transport mechanism of the solute away from the particle surface vicinity is
fundamentally different.

5.1.2. Conservation of mass
A similar argument for the conservation of mass on the upstream half of the computational
domain leads to ∫

Γ +
u · n dS = 0, (5.4)

with Γ + = Γin ∪ Γ +
p ∪ Γ +

d ∪ Γ0 with Γ +
d and Γ +

p the parts of the wall and particle
surfaces with z > 0, and Γ0 the fluid cross-section at z = 0. The particle surface Γp and
the wall Γd are impermeable and do not contribute to the integral above. On Γin, the
velocity is uniform and equal to −Uz, so that

∫
Γin

u · n dS = πUz/κ
2. By definition of W,∫

Γ0
u · n dS = −π(1 − κ2)W/κ2, so that

Uz = (1 − κ2)W. (5.5)

5.1.3. Fluid velocity trough the gap
One of the main features of the flow within the thin fluid gap identified in § 4.2 when the
gap thickness is reduced (i.e. 1 − κ � 1) was the emergence of a Couette-like dominant
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Figure 11. Relative evolution of the spanwise-averaged axial velocity W of the fluid (relative to the particle)
at z = 0 (narrowest fluid gap) and of the front-back solute concentration Δc. The dotted line corresponds to
Δc/3.

flow driven by the slip velocity wslip at the surface of the particle. For a cylindrical Couette
flow (Leal 2007),

W = wslip

2
f (κ), with f (κ) = 1

log(1/κ)
− 2κ2

1 − κ2 (5.6)

and f (κ → 1) = 1 (plane Couette flow). The non-dimensional slip velocity is
(dc/dz)(z = 0) ≈ (d/dz)〈c〉xy since the concentration is uniform across the fluid gap for
large enough κ . The results of figure 7 suggest that the variations of 〈c〉xy with z are almost
linear so that the axial concentration gradient in the gap is proportional to the front-back
concentration contrast Δc and, accordingly, the phoretic slip and mean flow in the gap W
satisfy

W ≈ KΔc (5.7)

with K a constant of proportionality.
Figure 11 provides supporting evidence of this linear relationship between the average

velocity W and the front-back concentration contrast, with K ≈ 1/3, except for the lowest
Pe-values.

5.1.4. Approximation of the particle velocity
A combination of macroscopic conservation principles, (5.3) and (5.5), and qualitative
argument, (5.7), allowed us to obtain three independent relationships between the three
quantities of interest Uz, W and Δc. Combining these provide the following predictions
for each of these quantities:

Uz ≈ 2κ

√
1 − κ2

3Pe
, W ≈ 2κ√

3Pe(1 − κ2)
, Δc ≈ 2κ

√
3

Pe(1 − κ2)
. (5.8a–c)

These predictions are in quantitative agreements with the numerical results (figure 12)
in particular for larger κ (i.e. κ � 0.5 or 1 − κ2 � 0.7), except for the lowest value of Pe
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Figure 12. (a) Evolution of the rescaled steady-state swimming velocity Uz with Pe and κ . In each plot, the
dotted line corresponds to the equality of the two plotted quantities. (b) The same data are reported to identify
the behaviour for κ → 1.
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Figure 13. Evolution of the rescaled particle velocity with Pe for different confinement levels, κ . The dashed
line corresponds to Pe−1/2.

investigated. This better agreement for larger Pe was to be expected as convective transport
of solute plays a dominant role in that limit.

Furthermore, this relationship shows that Uz is not a monotonic function of κ but instead
should be maximum around κ = 1/

√
2 ≈ 0.7 in agreement with the results of figure 4.

These predictions also clearly establish that Uz ∼ 1/
√

Pe, in particular for larger Pe and
larger κ , which is confirmed in figure 13. We finally observe that the numerical evolution
of W and Δc with κ are consistent with these predictions (see figures 7 and 8).

5.2. Asymptotic analysis
We focus now specifically on the lubrication limit, i.e. when R ≈ a or equivalently κ → 1
and, thus, define ε = 1 − κ � 1. Note that, the result above establishes that the dominant
swimming velocity is set solely by the slip forcing inside the hydrodynamic lubrication
region of width

√
ε around the region of smallest thickness (and not anywhere else). In
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turn, this requires knowing the leading-order evolution of the surface concentration in that
region.

The scalings obtained from the balance arguments of the previous sections indicate that,
for ε = 1 − κ � 1,

Uz = O
(√

ε

Pe

)
and W, Δc = O

(
1√
εPe

)
. (5.9a,b)

Physically, this indicates that as the fluid layer between the particle and the wall is
reduced, the velocity of the particle tends to zero while the front-back concentration
difference diverges. This is not surprising as we focus here on the steady self-propulsion
of the particle. In § 4.3 we noted that the confined limit of the particle self-propulsion
corresponds to a fundamental change in the way the solute produced at the particle
surface is evacuated: when κ → 0 (unbounded flow), the solute is mostly diffused away
in the far field and in all directions, while for κ → 1, it must be convected downstream
by the displacement of the particle, as steady diffusive solutions do not exist for these
confined configurations. Lower self-propulsion velocities (e.g. due to the increase of
viscous stresses at the boundary) therefore require larger concentration accumulation in
the back of the self-propelled particle.

These arguments demonstrate not only a typical O(ε−1/2)-scale for the magnitude of the
concentration in the thin lubrication layer located between the particle and the wall (with
respect to the reference concentration far ahead of the particle, taken as zero here), but also
that this concentration contrast Δc is established at the scale of the size of the particle, so
that the relevant scale of horizontal variations for c is O(1) not the classical O(ε1/2)-length
of the lubrication zone relevant for hydrodynamic lubrication problems. Within the thin
fluid layer surrounding z = 0, one must therefore expect

c = O(ε−1/2), ũ ∼ ∂c
∂x

= O(ε−1/2), (5.10a,b)

where ũ is the slip velocity forcing at the particle surface.

5.2.1. Hydrodynamic lubrication
When ε → 0, the fluid’s motion within the thin annular layer surrounding the particle at
z = 0 corresponds to a lubrication flow forced at the surface of the particle by the phoretic
slip ũ(z) along its surface. It is therefore described by the two-dimensional lubrication
equations

∂p
∂ρ

= 0,
∂2uz

∂ρ2 = ∂p
∂z

,
∂uz

∂z
+ ∂uρ

∂ρ
= 0, (5.11a–c)

with ρ = κ−1 − r the radial distance from the outer cylinder of radius 1/κ (measured
inward) and uρ the corresponding velocity component. The boundary conditions on the
axial velocity are at leading order

uz(ρ = 0, z) = −Uz, uz(ρ = h(z), z) = ũ(z), (5.12a,b)

with ρ = h(z) the equation for the surface of the particle, i.e.

h(z) = 1
κ

−
√

1 − z2 ∼ ε

[
1 + z2

2ε
+ O

(
z4

ε

)]
. (5.13)

Note that the present analysis is similar to that in Sherwood & Ghosal (2018) for the
electrophoretic motion of a sphere inside a tightly fitting tube. The lubrication equations
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can be integrated to find the axial flow uz(z),

uz(ρ, z) = ρ(ρ − h)

2
dp
dz

+ ũ(z)
(ρ

h

)
+ Uz

(ρ

h
− 1

)
, (5.14)

and integration across the fluid layer and around the particle provides the volume flux

q(z) = Q = 2π

∫ h

0
uz(ρ, z) dρ = −πh3

6
dp
dz

+ πh (−Uz + ũ(z)) , (5.15)

which must indeed be a constant for all z in order to conserve the total volume flux through
the different cross-sections. We first note that Q = 2πεW, with W the average axial
velocity within the narrowest gap. Using the conservation of mass around the particle,
(5.5), as ε → 0, we further note that

Q = 2πεW = πUz (5.16)

when ε → 0 so that the Uz-contribution to the right-hand side of (5.15) is O(εUz) and is
negligible in front of the left-hand side of that equation, as Q = O(Uz).

Classically, this equation can then be used to compute the pressure difference between
the two ends of the hydrodynamic lubrication region (Leal 2007)

ΔP =
∫ l

−l

∂p
∂z

dz = −6Uz

∫ l

−l

dz
h3 + 6

∫ l

−l

ũ(z) dz
h2 , (5.17)

with l � ε1/2 a length scale much larger than the typical ε1/2-width of the lubrication
region. We note that because 1/h varies from 0 to 1/ε over a O(ε1/2) length scale, the two
integrals on the right-hand side of (5.17) scale respectively as O(Uzε

−5/2) and O(ũε−3/2).
The phoretic slip ũ, as the forcing phenomenon of the problem, should remain part of

the dominant balance in the conservation of volume flux, (5.15), so that Q = O(εũ). As a
result, and using (5.16), both terms on the right-hand side of (5.17) are of the same order
and contribute to the dominant balance.

The left-hand side of (5.17) represents a pressure difference between the upstream and
downstream regions away from the particle. This would lead to a O(ΔP) resistive force
on the phoretic particle, that must be balanced by a driving force of the same order
for self-propulsion to occur. This driving force can only arise from the phoretic slip
forcing and associated shear stress ∂uz/∂ρ = O(ũε−1) at the particle’s boundary within
the lubrication zone, resulting in a O(ũε−1/2)-driving force on the particle once integrated
over the O(ε1/2)-lubrication region, so that, at most ΔP = O(ũε−1/2). This establishes
that ΔP is subdominant in (5.17) and both integrals on the right-hand side of (5.17) must
therefore balance exactly. Consequently, the swimming velocity Uz is obtained from the
slip velocity ũ along the particle surface as

Uz =

∫ l

−l

ũ(z) dz
h2∫ l

−l

dz
h3

, (5.18)

that demonstrates that Uz = O(εũ).
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Confined self-propulsion of an isotropic active colloid

5.2.2. Chemical transport through the hydrodynamic lubrication layer
Note that, the result above establishes that the dominant swimming velocity is set solely
by the slip forcing inside the hydrodynamic lubrication region of width

√
ε around the

region of smallest thickness (and not anywhere else). In turn, this requires knowing the
leading-order evolution of the surface concentration in that region. It was however noted
earlier that the chemical transport is externally constrained by the front-back concentration
contrast imposed by the displacement of the particle in a confined setting, so that
axial concentration gradients are essentially constant along the hydrodynamic lubrication
region.

As for the hydrodynamic lubrication, the leading-order problem for the concentration
is two dimensional in the (z, ρ)-plane. The relevant boundary conditions satisfied by the
concentration field are then

∂c
∂ρ

= 0 at ρ = 0, (5.19)

∂c
∂ρ

= 1 + h′ ∂c
∂z

at ρ = h(z), (5.20)

since n = −eρ + h′ez at leading order.
Equations (5.19)–(5.20) indicate that the relevant length scale for the variations of

c in the ρ direction is h = O(ε). We noted earlier however that the relevant length
scale in the axial z-direction is O(1). From the hydrodynamic lubrication problem,
we also obtained that uz = O(ũ) = O(ε−1/2) so that by mass conservation uρ = O(1).
Furthermore, the steady advection–diffusion equation satisfied by c, i.e. Pe u · ∇c = ∇2c,
becomes at leading order ∂2c/∂ρ2 = 0, establishing that the leading order O(ε−1/2)
concentration field must necessarily satisfy ∂c/∂ρ = 0 and that the non-homogeneous
boundary condition, (5.20), corresponds to subdominant corrections of the concentration
field.

Since the problem is axisymmetric around the particle, the conservation of solute in the
fluid volume contained between two successive cross-sections at z and z + dz provides the
following simplified equation for the evolution of c(z):

d
dz

(
h

dc
dz

)
− Pe Q

2π

dc
dz

+ 1 = 0. (5.21)

The successive terms in the previous equation arise from the balance of diffusion,
convection by the flow within the lubrication layer and production at the particle surface,
respectively.

Previously, we noted that the variations of c along the z-direction occur at the O(1) scale
of the particle. The dominant transport balancing the production at the particle surface
is therefore purely convective (diffusive terms are subdominant in the hydrodynamic
lubrication region). As a result the leading-order axial concentration gradient, and surface
slip velocity, are constant and obtained simply as

ũ = ∂c
∂z

= 2
Pe Uz

. (5.22)
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Reporting this result into (5.18), we obtain

Pe U2
z =

2
∫ l

−l

dz
h2∫ l

−l

dz
h3

. (5.23)

The integral at the numerator, keeping only the leading-order contribution as ε � 1 and
l � √

ε, can be expanded as

∫ l

−l

dz
h2 = 1

ε2

∫ l

−l

dz[
1 + z2/(2ε)

]2 =
√

2
ε3/2

∫ l/
√

ε

−l/
√

ε

du
(1 + u2)2 = π

ε3/2
√

2
. (5.24)

Similarly, the denominator integral in (5.23) is obtained as 3π/4ε5/2
√

2 so that finally,

Uz =
√

8ε

3Pe
. (5.25)

This result is consistent with the qualitative and quantitative simulations and analysis
of §§ 4 and 5.1 when κ → 1. It further validates analytically the numerical prefactors
obtained in § 5.1 from the simulation results for the swimming velocity Uz, mean fluid
velocity in the gap W and concentration contrast Δc, (5.8a–c) so that as κ → 1, the
leading-order behaviour of the swimming velocity, mean fluid velocity in the gap and
global concentration contrast are

Uz ∼ 2

√
2(1 − κ)

3Pe
, W ∼

√
2

3Pe(1 − κ)
, Δc ∼

√
6

Pe(1 − κ)
. (5.26a–c)

6. Conclusions and perspectives

Following recent experimental observations and characterisation of the behaviour of
chemically active droplets inside small capillaries (de Blois et al. 2021), the influence
of spatial confinement on the self-propulsion of such droplets was investigated here using
a combination of direct numerical simulations and asymptotic analysis.

To overcome the triple challenge posed by the complex geometry of the problem, the
nonlinear hydrochemical coupling and the need for a precise implementation of surface
boundary conditions, we specifically developed a novel approach based on embedded
boundaries and implemented on top of the popular flow solver Basilisk (Popinet 2015).
Our focus was here on the axisymmetric motion of a single particle along the centreline
of a straight capillary. Nevertheless, the framework is completely general and can be
easily adapted to account for more complex geometric domains and/or larger numbers
of particles.

Using this versatile numerical tool, we analysed the dual effect of spatial confinement
and of convective transport of the solute. The particle-to-capillary size ratio, κ , was
found to alter significantly the dynamics of an isotropic autophoretic swimmer, generally
promoting and enhancing self-propulsion. Indeed, with increased confinement (larger κ),
the self-propulsion threshold Pec is starkly reduced, becoming essentially negligible as
κ → 1. Additionally, for fixed Pe ≥ Pec, the swimmer’s velocity increases significantly
with confinement, up to a maximum value reached for 0 < κ < 1, before decreasing again
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and vanishing as
√

1 − κ when κ → 1 (near-contact limit). For fixed κ , the swimming
velocity of strongly confined particles scales as 1/

√
Pe.

Below the self-propulsion threshold Pec, convective transport is not sufficient to
destabilise a symmetric solution and the system relaxes (in time) toward a front-back
symmetric solute distribution and no particle motion. Note that, no steady state can be
reached for the concentration whose average value around the particle increases linearly
in time as diffusion, restricted to occur along the axis of the capillary, is not sufficient to
transport away the solute produced at the particle surface. Yet, a steady regime is reached
for the concentration gradients and flow fields.

These observations stem from a fundamental alteration of the chemical transport, as the
presence of the confining passive walls prevents solute diffusion away from the particle,
except along the capillary axis. Then, convective transport becomes the predominant
mechanism to balance the solute production by the swimmer, resulting in an increased
front-aft concentration contrast as the particle leaves a solute-saturated wake behind. The
phoretic surface slip velocities are thus increased promoting the particle’s self-propulsion,
despite the increased viscous stresses introduced by the lateral confinement. When κ → 1,
the particle dynamics is in fact completely driven by the most confined regions consisting
of a thin fluid gap around the particle’s equator. The solute distribution is homogeneous
across this thin fluid layer, and the flow field is completely driven by the phoretic slip at
the particle surface.

We confirmed these results in the near-contact limit (κ → 1) using lubrication analysis,
that demonstrated that, for Pe = O(1), the concentration gradient inside the lubrication
region is, in fact, essentially uniform and set by the balance of mass and solute between
the upstream and downstream regions, in stark contrast with what is observed for weaker
confinement such as a particle near an infinite planar wall (Desaï & Michelin 2021). Using
these arguments, a predictive model for the swimming velocity with no fitting parameter
was obtained and validated against the direct numerical simulations. This model confirmed
the dependence with κ and Pe of the swimming velocity, as well the existence of an optimal
confinement maximising self-propulsion. The detailed dynamics of the solute and particle
near the propulsion threshold (Pe ≈ Pec) remains however to be characterised.

Throughout this work, we adopted a simplified phoretic model with a rigid particle
generating slip flows in response to chemical gradients; yet, the similarity in the solute
transport dynamics between rigid isotropic particles and active droplets (Izri et al. 2014;
Morozov & Michelin 2019a) suggests that much of the qualitative conclusions presented
here remain valid if a more complete hydrodynamic description of the droplet is retained,
in particular the dominant dependence of the velocity with (κ, Pe). Despite our focus
on a strictly confined geometry (i.e. a capillary surrounding the particle tightly), our
results shed fundamental light on the role of the lubrication layer. This is critical for
understanding the propulsion of active droplets along flat boundaries or in Hele–Shaw
geometries, although the absence of confining walls around most of the particle surface
introduces key distinctive features in the solute transport and associated dynamics (e.g. the
critical threshold Pec is reduced to a reduced O(1) value as the particle gets closer to the
wall; see Desaï & Michelin 2021).

Finally, our numerical framework unlocks the possibility to simulate the full nonlinear
hydrodynamic coupling leading to spontaneous motion of autophoretic swimmers under
any generic confinement and for many particles. In particular, it can be used to analyse
the off-axis self-propulsion of the particle and the detailed stability of the axisymmetric
solution considered here with respect to fully three-dimensional perturbations, which was
purposely left here for a later publication for clarity. This would provide some critical
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insight into the non-straight motion observed experimentally for mildly confined active
droplets (de Blois et al. 2021). It could also provide a much needed understanding of the
individual dynamics of active droplets in complex geometries (Jin et al. 2019) or their
collective organisation (Hokmabad et al. 2020; Illien et al. 2020).
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