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We present experimental measurements conducted on freely propagating, turbulent,
steady thermal air plumes. Three plumes are studied with differing source conditions,
ranging from jet-like, momentum flux dominated releases, to pure plume releases,
characterised by a balance between the momentum, volume and buoyancy fluxes
at the source. Velocity measurements from near the source to a height of tens of
source diameters were made using particle image velocimetry (PIV), providing a
high spatial resolution. Temperatures were measured with thermocouples. From these
measurements, we investigate the vertical development of the plume fluxes and radial
profiles of the mean velocity and temperature. These allow us to analyse the local
self-preserving characteristics of the mean flow and to estimate the dependence with
height of the plume Richardson number Γ . In addition, we analyse the similarity
of one-point and two-point second-order velocity statistics, and we discuss the role
of Γ on the vertical development of the bulk dynamical parameters of the plume,
namely, the turbulent viscosity, the turbulent Prandtl number and the entrainment
coefficient αG. Comparison with previous experimental results and with estimates
of the entrainment coefficient based on the mean kinetic energy budget allow us to
conclude on the influence of Γ on the entrainment process and to explain possible
physical reasons for the high scatter in estimates of αG in the literature.

Key words: plumes/thermals, turbulent convection, turbulent mixing

1. Introduction
Axisymmetric turbulent forced plumes produced by horizontal, circular sources

of constant buoyancy, momentum and volume fluxes have been the subject of
considerable research over the last 70 years or so. Zel’dovich (1937), Priestley
& Ball (1955) and Morton, Taylor & Turner (1956) developed the classic plume
model assuming a conceptual point source of buoyancy flux alone, complete
dynamical self-similarity, fully developed turbulence, small density differences and
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negligible diffusion and radiation. The backbone of this theory has remained virtually
unchanged since. The validation of this theory has been comprehensive and has
essentially fallen into two categories: the first through widespread application where
the bulk flow of plumes occurring over a range of different scales, in the natural
and built environments, and in industry, are of interest; and the second through
predominantly experimental campaigns focusing on the details of the internal flow.
Although relatively few in number, the latter have provided a quantification of some
of the key dynamical quantities, such as the entrainment coefficient, the mean to
turbulent ratio of the vertical fluxes and of the radial spread of the buoyancy and
velocity profiles. These quantities are however characterised by a non-negligible
scatter, with differences that can exceed 20–25 % (Linden 2000). Despite this scatter,
the classic plume solutions provide a robust and reliable model for buoyant plumes in
geophysical and industrial contexts and have been extended to account for stratified
environments (Batchelor 1954; Caulfield & Woods 1998; Kaye & Scase 2011),
non-constant source strengths (Scase et al. 2006), negative buoyancy (Baines, Turner
& Campbell 1990; Carazzo, Kaminski & Tait 2008; Burridge & Hunt 2012; Mehaddi,
Vauquelin & Candelier 2012), chemical reactions (Zhou 2002; Campbell & Cardoso
2010; Ülpre, Eames & Greig 2013) and their non-Boussinesq counterparts (Rooney
& Linden 1996; Carlotti & Hunt 2005). For further reading on the development of
plume theory, review papers by List (1982), Kaye (2008), Woods (2010) and Hunt &
van den Bremer (2011) are recommended as is the text of Linden (2000).

More generally, we can assert that the dynamical properties of buoyant jets in their
asymptotic states of ‘pure jet’ and ‘pure plume’ are nowadays widely identified in
the literature. Much less is known about the variability characterising the dynamics
of buoyant releases in what may be regarded as the ‘transition’ states between
these asymptotic states, for example as the buoyancy flux of a highly forced plume
is systematically increased. Assuming a fully turbulent Boussinesq plume, with
negligible influence of diffusive phenomena, developing in an unstratified quiescent
ambient fluid, the flow dynamics can be shown to depend on a single non-dimensional
parameter: the plume Richardson number Γ . This may be evaluated at any height
z above the source (at z = 0) based on the local volume, momentum and buoyancy
fluxes (Hunt & Kaye 2001) as

Γ (z)= 5
27/2π1/2αref

Q(z)2B(z)
M(z)5/2

(1.1)

where αref denotes the reference value of the entrainment coefficient for Gaussian
profiles and the mean fluxes of volume Q, specific momentum M and specific
buoyancy B are defined as

Q(z)= 2π

∫ ∞
0

w(r, z)rdr

M(z)= 2π

∫ ∞
0

w2(r, z)rdr

B(z)= 2π

∫ ∞
0

w(r, z)g′(r, z)rdr,


(1.2)

where w is the Reynolds-averaged vertical velocity, r denotes the radial coordinate
of the axisymmetric plume (figure 1) and g′ = g((ρe − ρ)/ρe) denotes the Reynolds-
averaged buoyancy (g is the gravitational acceleration) of the plume fluid, of density
ρ(r, z), relative to a fixed representative density ρe of the ambient.
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FIGURE 1. Schematic of the experimental set-up for PIV on thermal air plumes with the
coordinate system (r, z) employed herein.

It is worth mentioning that when the plume density is significantly lower than
that of the ambient, such that the conditions are non-Boussinesq (Rooney & Linden
1996; Carlotti & Hunt 2005; van den Bremer & Hunt 2010), the ratio ρ/ρe has to
be considered as a second non-dimensional parameter on which the flow dynamics
depend.

The dependence of the plume dynamics on Γ and on ρ/ρe has rarely been
investigated experimentally and represents nowadays a major research axis in
this field. In order to focus on this variability, and primarily on the role of Γ ,
benefitting from advancement in visualisation and data acquisition techniques, we
have performed experiments on steady, thermal air plumes injected into a nominally
quiescent, unstratified laboratory enclosure at differing source Richardson number.
The remainder of this paper is structured as follows. We begin by reviewing the
major findings of previous experimental works on buoyant plumes in order to
motivate a further experimental investigation. The experimental set-up and plume
source conditions investigated are outlined in § 2. Radial profiles of time-averaged
velocities derived from particle image velocimetry (PIV) velocity and thermocouple
temperature measurements are examined in § 3. From the high spatial resolution of the
PIV measurements, we investigate the turbulent intensities, the turbulent momentum
transfer and the spatial structure of the turbulent flow (§ 4). Finally, in § 5 we present
different estimates of the entrainment coefficient that allow us to conclude on the
influence of Γ on the entrainment process.

1.1. Previous experimental results
In early experimental work, Ricou & Spalding (1961) injected air radially inwards
towards buoyant jets enclosed by a porous cylinder until they measured a zero pressure
drop across the cylinder. This satisfied what they called the ‘entrainment appetite’ of
the flow and, as a result, they determined the entrainment coefficient for buoyant gas
jets of varying densities. Although the releases were buoyant, the forcing at source
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was such that the flows were relatively jet-like over the region of interest. The major
contribution of their work was to establish a dependence of the entrainment coefficient
on the ratio ρ0/ρe of the injected fluid density (ρ0 = ρ(z = 0)) to the ambient fluid
density; the subscript ‘0’ is used throughout to denote the value of quantities at the
source.

George, Alpert & Tamanini (1977) investigated the buoyant plume and made
concurrent temperature and velocity measurements using two-wire probes. The
plumes were neither Boussinesq nor fully turbulent at the source. They found
that the velocity profiles were Gaussian and approximately 10 % wider than their
buoyancy counterparts. Their measurements of the fluctuating flow components show
that these were still developing at heights exceeding 20 source radii, yet also tend
towards Gaussian profiles. The entrainment coefficient in the far field was estimated
as αG = 0.108 (throughout the paper we always refer to Gaussian entrainment
coefficients, a factor

√
2 lower than the top-hat equivalent in classic plume theory).

Finally, George et al. (1977) estimated that the turbulent fluxes of momentum,
i.e. related to the standard deviation of the vertical velocity σ 2

w, and of buoyancy,
i.e. related to the correlation of vertical velocity and temperature w̃T̃ , are responsible
for 8 and 15 % of the overall fluxes, respectively. The same experimental apparatus
was used by Shabbir & George (1994), who conducted simultaneous velocity and
temperature measurements by means of a set of hot-wire and cold-wire probes. In
this case, the experimental facility was completed by a rack of thermocouples to
monitor the ambient air stratification and by concentric screens placed around the
source to prevent horizontal plume drift: the latter may have inadvertently influenced
plume entrainment. Source Reynolds numbers were slightly higher than those attained
by George et al. (1977), but not high enough to produce fully turbulent plumes
at the source. The study extended the George et al. (1977) analysis to third-order
moments of the velocity components, of the temperature and of their correlations. A
relatively poor fit of the mean vertical velocity data to a Gaussian curve is presented.
Given this poor fit of the key first statistical moment of the data, the validity of
the computation of second and third moments is questionable. Nevertheless, good
agreement is achieved between the measurements of the vertical fluxes and the
power-law relationships predicted by the classic plume model. Both George et al.
(1977) and Shabbir & George (1994) focus on the region where the flow reaches the
truly plume-like asymptotic condition, i.e. Γ = 1, and do not provide any information
on the transition region, as the flow adjusts from either jet-like (Γ � 1) or highly
lazy (Γ � 1) states at its source.

A first systematic investigation of buoyant jets examining the role of the plume
Richardson number at the source was performed by Papanicolaou & List (1988). They
used laser-Doppler anemometry (LDA) combined with laser-induced fluorescence
(LIF) to simultaneously measure velocities and concentrations in saline plumes at
frequencies of up to 50 Hz over a vertical extent of 80 cm (≈40–100b0, where b0
is the source radius) from an orifice measuring 0.75–2.0 cm in diameter. The spatial
resolution of their measurements was an order of magnitude lower than that reported
herein and their velocity data was acquired at points rather than over a plane. However,
the simultaneous measurement of salinity and velocity signals enabled correlation of
the two, and thereby one of the few published estimates of the turbulent buoyancy
flux in plumes: of approximately 16 % of the mean buoyancy flux. The source
Richardson number varied from jet-like to plume-like buoyant releases. Papanicolaou
& List (1988) found that the forced plume examined behaved in a jet-like manner
for z/LM < 1, a plume-like manner for z/LM > 5 and a smooth vertical transition
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between the two regimes occurred over 1< z/LM < 5, LM = C ·M3/4
0 /B1/2

0 denoting a
characteristic length known as the ‘jet length’ (with C = (5/9αref )

1/2(2/π)1/4). The
vertical extent of these regions agrees well with the theoretical prediction of Morton
(1959). Their measurements showed that the radial profiles of the statistics of density
and velocity within jet-like and plume-like releases do not differ significantly from
each other. Furthermore, these profiles do not show any significant discrepancy with
the LDA measurements on isothermal jets performed by Hussein, Capp & George
(1994). The noteworthy differences observed were related to the transport of buoyancy
produced turbulence, with almost twice the flux in pure plumes as in jet-like releases.
Other major differences concerned the ratio of length scales

ϕ = bg′/bw (1.3)

between the spread of buoyancy bg′ and velocity bw profiles that took an average
value of ϕ = 1.19 in plume-like releases and ϕ = 1.33 in jet-like releases, thereby
contradicting the findings of George, Alpert & Tamanini (1977). Finally, the
entrainment coefficient αG was found to be equal to αj = 0.0545 in pure jets and
αp = 0.0875 in pure plumes. The investigation of the dependence of ϕ and αG with
the plume Richardson number, however, was beyond the scope of their study.

Only relatively recently have plume dynamics been investigated with PIV thereby
allowing for higher spatial resolution of the velocity measurements than earlier
techniques. Wang & Law (2002) performed simultaneous velocity and density
measurements with PIV and planar laser-induced fluorescence (PLIF). They performed
experiments over a large number of saline plumes that were all highly forced at the
source, i.e. Γ0 � 1. As far as we are aware, this is the first experimental study
reporting the variability of ϕ and αG with the local Richardson number. Wang & Law
(2002) found a general trend of a decreasing ϕ with increasing Richardson number,
whereas αG was shown to increase with the Richardson number. Both features will
be widely discussed throughout the present paper. More recently Pham, Plourde &
Kim (2005) focused on the dynamics of a thermal plume generated by a heated plate
maintained at a constant temperature T0 = 400 ◦C. Pham et al. (2005) provided a
detailed description of the three-dimensional structure of the velocity field by means
of stereoscopic PIV, but did not report any temperature or density measurement.
From their PIV measurements they directly measured the entrainment coefficient
and compared it with estimates provided by classic indirect methods. However, the
lack of temperature data prevented them from linking the values of the entrainment
coefficient to the variation of Γ .

This overview of previous studies highlights the general lack of knowledge on the
behaviour of a buoyant plume in the transition state characterised by a local variation
of the plume Richardson number. This lack of knowledge motivates our work, which
aims to shed light on the dynamical variability of buoyant plumes. To this end we
performed experiments on plumes with highly contrasting conditions at the source,
characterised by values of Γ0 varying over three orders of magnitude.

2. Experimental set-up and parameters
We measured velocities and temperatures using PIV and thermocouples, respectively,

in thermal air plumes in a windowless, thermally insulated enclosure.
The experimental set-up is shown in figure 1. Air was fed from a compressor to

a mass flow-rate meter, where the mass flux was monitored and controlled by an
electronic feedback system. A small fraction of the air (≈5 % by volume) passed
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via a chamber where it was seeded with incense particles. The seeded air rejoined
the unseeded air immediately upstream of the heating element. The heated air then
passed through a diverging–converging section, over a turbulence grid and finally
through a diaphragm opening. Air temperature was monitored continuously at the
diaphragm to ensure steady source conditions. The ambient air was seeded using a
stage smoke generator, which filled the whole enclosure with approximately spherical
1 µm polyethylene glycol particles. Over a 10 min period, the release of smoke
spread to fill the enclosure uniformly. When the ambient air motion induced by the
initial jet of smoke dissipated, acquisition of data could begin. Approximately one
smoke injection per hour seeded the ambient sufficiently. Seeding both plume and
ambient air was necessary in order to obtain proper velocity statistics, statistics which
would otherwise be biased when solely seeding the plume.

Temperature measurements were made with a horizontal rake of thermocouples
spaced at 10 mm intervals. The uncertainty associated with these measurements was
estimated as ±0.5 K. The rake was sequentially displaced vertically at increments
of 10 mm, from z = 12 to z = 512 mm. Temperatures were measured for 3 min at
10 Hz.

We acquired and processed PIV data using LaVision’s DaVis 7.2 software.
Circular interrogation areas with a 50 % overlap were employed, resulting in a
spatial resolution of 0.7 mm. To achieve this resolution, the measurement plane was
split into various fields of view with 3000 image pairs acquired sequentially for
each field. In order to record sufficiently large particle images to allow for PIV
processing at 16 × 16 pixels and to minimise peak-locking, we split the acquisition
into 8 adjacent fields of view measuring approximately 150 mm (horizontal) ×
100 mm (vertical) with a 15 mm vertical overlap between successive fields to ensure
continuity of data. The camera could not be moved further than 1.5 m from the
laser plane to prevent peak-locking from becoming significant. Subpixel accuracy of
the processing algorithm was thus maintained. Measurements on plumes at a spatial
resolution of less than 1 mm have seldom been undertaken and those presented herein
represent a resource for numerical practitioners, experimentalists and theoreticians
alike. Velocity measurements were made at a frequency of 4 Hz, and the duration
of each acquisition was 12.5 min. Dynamic statistics were obtained from the 3000
instantaneous measurements.

In order to compare the spatial and temporal resolutions of our measurements
with characteristic (turbulent) time and length scales of the flows, estimates of a
typical length scale ` and velocity scale υ, the former approximately equal to the
plume radius and the latter to the standard deviation of the vertical velocities, were
computed. In the flows analysed here, ` varied from a minimum of approximately
10 mm in the near field of release J to a maximum of 75 mm in the far field of
release P (see table 1), whereas υ is of the order 1 m s−1 in release J and 0.1 m s−1

in release P. From these we obtained typical time scales τ ∼ `/υ of the order 10−2 s
for release J and 10−1 s for release P. The temporal resolution of the PIV and
thermocouple measurements are therefore slightly larger than τ and insufficient to
allow the computation of turbulent velocity and temperature spectra. The spatial
resolution of the PIV measurements is at least one order of magnitude lower than
` allowing for a detailed description of the velocity field structure. Conversely, for
thermocouple measurements the spatial resolution is coarser and approaches ` in the
near field of release J.

The injected air velocity was kept as high as practicable in order to maximise the
Reynolds number and reduce the influence of background disturbances. A nozzle was
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Release b0 T0 g′0 Q0 M0 B0 LM Γ0 Re0 zB
zmax

b0

zmax

LM
(cm) (K) (cm s−2) (cm3 s−1) (cm4 s−2) (cm4 s−3) (cm) (cm)

J 0.5 381 0.0232 0.54× 103 3.7× 105 1.3× 105 98 0.001 7700 15 132 0.8
F 1.5 381 0.0232 1.49× 103 3.1× 105 3.46× 105 47 0.034 2600 15 44 1.8
P 2.5 391 0.0252 1.01× 103 5.6× 104 2.65× 105 15 0.96 1100 13 26 5.5

TABLE 1. The three source conditions of the releases investigated giving the plume
Richardson number Γ0 = {0.001, 0.034, 0.96}; note that the value αref = 0.1 has been
assumed when calculating Γ0 from (1.1). The source buoyancy is g′0 = g(1T0/T0). Here
J refers to jet-like, F to forced plume and P to pure plume. We use zB to denote the
non-Boussinesq length scale (2.1), LM = C ·M3/4

0 /B1/2
0 to denote the jet-length, with C =

(5/9αref )
1/2(2/π)1/4. The final two columns report, respectively, the limiting measurement

heights, zmax, scaled on the source radius, b0, and on the jet length, LM .

selected with a maximum radius of 2.5 cm. With the 2 kW coiled heating element,
a maximum temperature difference of 1T0 = T0 − Te ≈ 90–100 K (Te is the ambient
air temperature) was possible and this enabled us to achieve a relatively high source
buoyancy flux at the lower velocities we considered. Table 1 summarises the three
different releases studied, where the letters J, F and P refer to jet-like, forced and pure
plume releases, respectively. Measurements were made over a vertical extent ranging
from 1 to 70 cm above the source. The corresponding non-dimensional heights are
listed in the final two columns of table 1.

For our set-up, the Reynolds number at the source (Re0= (w0b0)/ν, w0 denoting the
velocity at the source and ν the air kinematic viscosity) decreases with increasing Γ0.
The higher source Richardson number (table 1) of the pure plume required relatively
low flow velocities so that Re0≈ 1000, implying that the near-source flow field is not
fully turbulent (we return to this in § 3). The temperature at the source reached 393 K,
producing flow conditions that are nominally beyond the limits of the Boussinesq
approximation. Woods (1997) suggested a length scale over which non-Boussinesq
effects are significant as

zB = 5
3

(
B2

0

20α4
ref g3

)1/5

. (2.1)

An estimate of this length scale for our experiments leads to zB ∼ 15 cm. A non-
negligible part of the domain could therefore be affected by non-Boussinesq effects
on the flow dynamics.

The experimental apparatus was conceived to produce buoyant turbulent plumes
within an unstratified quiescent environment. We however observed two main features
inducing non-negligible departures from these ideal conditions. The first concerned
the diffusion of heat along the horizontal rigid wooden base plate within which the
nozzle was mounted (figure 1). Heat transferred from this plate (at z = 0) resulted
in a region, of approximately 5 % of the vertical extent of the domain, where the
ambient air temperatures could not be considered to be uniform. Figure 2 shows the
mean temperatures in the ambient measured over the course of the three experiments
using a rack of thermocouples. From these we estimate the temperature gradient to
be 1 K cm−1 over a layer approximately 3 cm thick immediately above the plate.
The second concerned the ambient air which was not perfectly still. Background
air motion was unavoidable for a number of reasons: the release induces a flow
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FIGURE 2. Vertical profiles of ambient temperature T (degrees centigrade) registered in
experiments for releases (a) J, (b) F and (c) P.

Symbol E u � 1 D B ∗ + × C ♦ ‘ e

J 9.0 16.1 23.2 30.2 37.3 44.4 51.5 58.5 65.6 72.7 79.8 86.8 93.9
F 3.0 5.4 7.8 10.2 12.5 14.9 17.3 19.7 22.0 24.5 26.8 29.2 31.6
P 1.8 3.2 4.6 6.0 7.4 8.8 10.2 11.6 13.0 14.4 15.8 17.2 18.6

TABLE 2. Non-dimensional profile heights zb= z/b0 plotted in figures 3, 4, 9, 10 and 15.

within the confines of the test room as it was necessary to seed the environment with
smoke. Mean air velocities in the background, as estimated by PIV measurements,
never exceeded 10 % (for releases J and F this percentage was far lower) of the mean
centreline plume velocity wm and the standard deviation of this fluctuation about
this mean was always less than 0.1wm: equivalent to an actual velocity of 7 cm s−1.
These intensities of background motion are directly comparable with those in previous
plume studies.

3. Mean flow and temperature field

First, we focus on the evolution of mean velocity and buoyancy (temperature). We
examine the radial evolution of the vertical component of the mean velocity and of
the mean temperature. Whilst over 800 velocity profiles were gathered for each release,
plotting all of the data collected was unhelpful in explaining the trends; for this reason
each plot shows 13 radial profiles equally spaced in height and spanning the entire
vertical extent of each experiment. See table 2 for heights and symbols used in these
plots. Mean temperature profiles are given at these same distances from the source.
We discuss the reliability of the assumption of Gaussian profiles (§§ 3.1 and 3.2),
profiles which allow us to readily identify characteristic scales for the plume width,
velocity and buoyancy with height. The analysis of the variation with height of these
local scales (§§ 3.3.1 and 3.3.2) provides first evidence of the dynamical behaviour
of the three releases. To discuss this further, we compute the vertical evolution of
the plume Richardson number Γ (z) by integrating the radial profiles of mean vertical
velocity and temperature (§ 3.3.3). Finally, we discuss the implication of self-similarity
of radial profiles in light of the concept of ‘local self-similarity’ proposed by George
et al. (1977).
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(a)
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FIGURE 3. (Colour online) Non-dimensionalised radial profiles of time-averaged vertical
velocity in releases (a) J (profiles plotted in the range 9< z/b0<94); (b) F (profiles plotted
in the range 3< z/b0 < 32); and (c) P (profiles plotted in the range 2< z/b0 < 19).

3.1. Radial profiles of mean vertical velocity
From each profile of the measured averaged vertical velocity, w(r, z), a Gaussian
profile centred on r= 0 was fitted to the data. The form of each profile

w(r, z)
wm(z)

= exp
{ −r2

b2
w(z)

}
, (3.1)

is determined by bw, which we define to be the plume width and by wm, the mean
vertical centreline velocity, which, in a quiescent environment, corresponds to the
maximum mean velocity. Due to background air motion and camera positioning
uncertainties (estimated to be ±2 mm horizontally) the maximum mean velocity did
not always perfectly coincide with the axis (r = 0) of the experiment. When this
was the case, the maximum value of w(r) was recorded and the radial coordinate
system locally translated so that wm(z)=w(0, z), so as not to introduce errors in the
determination of the plume radius and the bulk quantities. These adjustments were
never more than ±3 mm.

Figure 3 shows non-dimensionalised radial profiles of mean vertical velocity.
Figure 3(a,b) shows that the mean vertical velocity for plumes J and F exhibit a
clear self-similarity and collapse tightly on to a Gaussian curve. Examination of
figure 3(c) reveals a slightly increased scatter for plume P, compared to cases J
and F. The reasons are twofold. Given the intermediate source Reynolds number,
Re0 ≈ 103, in plume P (table 1), self-similarity of even the mean flow field is not to
be expected in the near-source region. Moreover, the profiles for release P were at
lower non-dimensional distances above the source (see table 1), where the flow was
still influenced by the source profile. However, we verified that the Gaussian function
provided a very good fit to the data, with R2 > 0.95, for z/b0 > 5.

3.2. Buoyancy profiles
The radial profiles of buoyancy are now examined. Figure 4 shows that, albeit with
non-negligible scatter, the buoyancy profiles exhibit approximate self-similarity at all
heights and in all experiments, even close to the source. The near-source behaviour
noted in the velocity profiles is not observed, probably due to the cooling from
the injector walls which resulted in a more pronounced parabolic shape of the
outlet profiles. An identical curve-fitting procedure was used as that described in the
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FIGURE 4. (Colour online) Non-dimensionalised profiles of buoyancy g′/g′m for releases
(a) J, (b) F and (c) P plotted over the same vertical extent as in figure 3.

previous section, with a fit of the form

g′(r, z)
g′m(z)

= exp

{
−r2

b2
g′(z)

}
. (3.2)

The characteristic length scale is now the standard deviation of the Gaussian
buoyancy profiles, denoted bg′ , and the characteristic buoyancy scale is the maximum
centreline buoyancy, g′m. The goodness of the fit with a Gaussian function is lower
than for the velocity profiles, with R2 > 0.95 for releases J and F, and R2 > 0.9 for
release P.

3.3. Vertical evolution of plume dynamics
In order to unravel the dynamical evolution with height of the releases considered, we
plot the vertical evolution of the centreline velocity and buoyancy, the plume radii and
the local Richardson number Γ (z).

To allow for direct comparisons between the different releases and the experimental
data of others, the dynamic quantities are scaled on their source values and all lengths
on the source radius, b0.

3.3.1. Radial growth from velocity and temperature profiles
Figure 5 shows how the normalised plume radius bw/b0 evolves with height. From

this we observe that all three releases tend to spread linearly with height in the far
field, but at different rates.

While in both forced releases, J and F, the radius grows monotonically from very
close to the source, albeit in a less-than-linear fashion, release P exhibits a different
behaviour. The pure plume P appears to be straight-sided over a vertical distance of
approximately 5b0, indicating that entrainment is substantially reduced in this section.

In the same figure we show the vertical evolution of the radius bg′ as estimated
from the temperature profiles; bg′ equals or exceeds bw for all releases and at all
heights. This suggests that the radial turbulent transfer of heat is more effective than
that of momentum. A further discussion on the physical implications of this feature
is provided in § 4.3.

It is worth noting that the estimates of bg′ , as shown in figure 5, are characterised
by a non-negligible scatter: scatter that becomes increasingly visible from release J to
release P, as we ‘zoom in’ the spatial resolution (note the difference in the vertical
axis scale in figure 5a–c). We attribute this scatter to the experimental uncertainties
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FIGURE 5. Comparison of normalised widths of velocity profiles bw/b0 and buoyancy
profiles bg′/b0 with height z/b0 for releases (a) J, (b) F and (c) P. Filled circles denote
bw/b0, hollow circles denote bg′/b0.
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FIGURE 6. Vertical dependency of normalised centreline velocity wm/w0 for the three
releases J, F, P with the pure jet, ∼(z/b0)

−1, and pure plume, ∼(z/b0)
−1/3, power laws.

in temperature measurement which lead to a variability in the estimates of bg′ of
approximately ±5 %. The uncertainty related to bw was approximately ±2.5 %.

3.3.2. Centreline vertical velocity and buoyancy
We plot in figures 6 and 7 the vertical variations of centreline vertical velocity and

centreline buoyancy, showing as a reference their theoretical pure-plume and pure-jet
dependencies, that is wj/w0∼ (z/b0)

−1 and g′j/g
′
m0∼ (z/b0)

−1 in pure jets (Fischer et al.
1979) and wp/w0 ∼ (z/b0)

−1/3 and g′p/g
′
m0 ∼ (z/b0)

−5/3 in pure plumes (Morton et al.
1956).

Figures 6 and 7 highlight a substantial variation in the nature of the velocity decay
with height for the three releases (in figure 6, data for plume P has been shifted to the
left for ease of comparison). Release J, the most jet-like, closely follows the ∼(z/b0)

−1

trend (dashed line) for both wm/w0 and g′m/g
′
m0: the latter for sufficiently large z/b0.
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FIGURE 7. Vertical dependency of normalised centreline buoyancy g′m/g
′
m0 for the three

releases J, F, P, with the pure plume, ∼(z−5/3), and pure jet, ∼(z−1), dependencies.

This data indicates that heat is little more than a passive scalar quantity in this flow
and the source momentum flux completely dominates that induced by the action of
the buoyancy force. This is unsurprising as zmax ≈ LM/3, so the entire experiment is
well within one jet-length of the source.

In release F, fluid decelerates and dilutes at a rate intermediate to the pure jet and
pure plume. Even at a non-dimensional height of z/b0 ≈ 40, the behaviour shows
no appreciable tendency to approach the wm/w0 ∼ (z/b0)

−1/3 and g′m/g
′
m0 ∼ (z/b0)

−5/3

behaviour (dot–dashed line). Experiment F reaches a height of zmax ≈ 2LM and is
therefore entirely within the five jet lengths over which the flow is expected to
exhibit a smooth transition between the near-field jet-like and the far-field plume-like
asymptotic states (Morton 1959; Papanicolaou & List 1988).

As expected, release P exhibits a vertical behaviour that is fully consistent with
the scaling laws of a purely buoyancy-driven plume, with a deceleration of the form
wm/w0 ∼ (z/b0)

−1/3 and a dilution of buoyancy g′p/g
′
m0 ∼ (z/b0)

−5/3.
It is worth noting that figures 6 and 7 show that close to the source, i.e. for z/b065,

all releases dilute and decelerate slowly, suggesting the presence of a non-turbulent
core that, in turn, may be related to a reduced entrainment rate of ambient air.
This tendency is particularly evident in release P. As figure 6 shows, the centreline
velocity increases in release P by up to 20 % over the interval 0. z/b0 . 5; this is a
similar height range to that required for the velocity profiles to exhibit approximate
self-similarity. The near-source acceleration is likely to be due to the relatively low
Reynolds number in the near-source zone which implies a suppression of entrainment
into the plume. In this condition, the unmixed fluid released accelerates due to its
buoyancy. This acceleration persists until the flow becomes sufficiently turbulent to
entrain at a rate consistent with a fully developed turbulent plume, with a radial
momentum transfer that acts to reduce the centreline velocity.
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FIGURE 8. Vertical dependency of plume Richardson number Γ .

This simple analysis of the vertical variation of wm and g′m clearly shows that the
dilution rate with increasing distance from the source varies significantly between the
three cases considered. Therefore, behind an apparent similarity of the radial profiles
of mean velocity and mean buoyancy, the flows develop with different dynamical
behaviours which results in the entrainment of ambient air at different rates.

3.3.3. Plume Richardson number
An estimate of the plume Richardson number, Γ (z) from (1.1), is essential in order

to physically interpret the different behaviour of the three releases.
The plume Richardson number could be estimated at all heights by means of

the mean vertical fluxes of volume, momentum and buoyancy. These fluxes were
explicitly computed by means of the integrals (1.2), fitting the experimental data with
the Gaussian profiles presented in §§ 3.1 and 3.2 and assuming rotational symmetry.
Figure 8 shows this estimate for Γ . Error bars of amplitude 15 %, are associated
primarily with uncertainty in the estimates of bg′ and bw (§ 3.3.1).

Encouragingly, the values of Γ near to the source closely match those in table 1,
indicating that the source Richardson numbers achieved were very similar to those
intended.

As has been customary, in this section we begin with an assessment of releases
J and F; both low Richardson number, high Reynolds number flows at source. As
expected, for both, Γ tends towards unity, release F at an increased rate compared to
J as the theoretical models predict (Hunt & Kaye 2001).

The behaviour of Γ (z) in plume P for small z/b0 may appear surprising, since the
Richardson number slightly ‘overshoots’ unity for z/b0 6 5 – i.e. Γ first increases
above unity and then decreases to unity with height. A similar behaviour can be
observed in the numerical simulation performed by Devenish, Rooney & Thomson
(2010). However, in our case, the ‘overshoot’ has to be attributed to a numerical
artefact associated with the significant errors in the interpolation of the near-source
velocity profiles with a Gaussian curve, and has therefore no physical significance.
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Figure 8 clearly captures the variability of the dynamical state of the three releases
examined. It is worth noting that, although there is considerable dynamical variability,
the mean radial profiles previously examined showed a self-similar profile over the
majority of the rise height. This then provides a clear example of what George (1989)
defines as a ‘local self-preserving flow’, i.e. a flow that appears to scale with local
quantities even though the equations of motion do not admit self-similar solutions,
since any solution should account for the variability of Γ . However, as is evident in
the analysis of the vertical variation of the centreline velocity and centreline buoyancy,
behind this local self-similarity the plumes develop different dynamical behaviour with
height that results, notably, in a different mixing rate with the ambient.

4. Turbulence
The aim here is to use turbulent statistics of the velocity data to illuminate

the discussion that follows in § 5, particularly with regards to the (non-constant)
entrainment coefficient.

4.1. Turbulence intensities
Figure 9 contains plots showing non-dimensionalised radial profiles of second-order
moments of the velocity statistics, namely the vertical and radial turbulence intensities,
Iw= σw/wm and Iu= σu/wm (where σw and σu are the root mean squares (r.m.s.) of the
vertical and radial velocity), respectively. Heights of the radial profiles and symbols
used in these plots are the same as those used for the mean velocities, as specified in
table 2.

For release J, the turbulence intensity (figure 9a,b) exhibits a very good collapse
on to a single curve with the exception of the four lowermost profiles. Neither these
near-source profiles, nor those further from the source, are approximately Gaussian
in contrast to the suggestion of Papanicolaou & List (1988). Rather, the maximum
turbulence intensities are approximately constant within the range |r/bw| < 1 (at
Iu = 0.2 and Iw = 0.25). As the other experimental results demonstrate in due course,
these turbulence intensity profiles are consistent for the three release conditions in
the developed flow field and, what is more, they are consistent with previous data
(Hussein et al. 1994; Shabbir & George 1994; Wang & Law 2002).

Figure 9(c,d) reveal that the lowermost turbulence intensity profiles for release F
differ significantly from the developed profiles. A core of reduced turbulent intensities
centred on the plume axis is clearly identifiable, becoming less pronounced with
height. This appears to correspond to the zone of flow establishment, where the shear
layer which develops on the plume perimeter has not fully penetrated into the plume
interior. The fully developed turbulence intensity profiles approximately match those
in release J. For F and J, the peak values of Iw and Iu show good agreement with the
experimental results for non-buoyant jets of Hussein et al. (1994), namely Iw ' 0.27
and Iu ' 0.22, Shabbir & George (1994), namely Iw ' 0.32 and Iu ' 0.19, and Wang
& Law (2002), namely Iw ' 0.3 and Iu ' 0.2. This confirms one major finding of the
previous results; even though the increased buoyancy within the plume enhances local
turbulence production, the excess of turbulent kinetic energy (t.k.e.) ∝ I2 appears to
be fully scalable with the local variables wm and bw. In other words, the intensity of
the t.k.e. and its spatial distribution within the plume appear to be independent of
the processes that are responsible for its generation, i.e. related to inertial instabilities
or thermal stratification. The concept of local self similarity can therefore also be
extended to the t.k.e. levels within the release.
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FIGURE 9. (Colour online) Non-dimensionalised radial profiles of the normalised
r.m.s. vertical Iw and radial Iu velocities: (a,b) release J (profiles plotted in the range
9< z/b0 < 94); (c,d) release F (profiles plotted in the range 3< z/b0 < 32); (e, f ) release
P (profiles plotted in the range 2< z/b0 < 19).

For release P, plots 9(e, f ) show that for small z/b0 the turbulent intensities are as
low as 5 % inside the plume, indicating a quasi-laminar flow. The core of reduced
turbulent intensity persists over approximately 5 source diameters and is noticeable
in plots of both Iw and Iu. The maximum turbulence intensity is slightly increased
in magnitude compared with the previous, more forced cases. However, this could
be reasonably attributed to the higher scatter in the data and to the role of ambient
turbulence (due to an ambient that is not perfectly quiescent) which increases as
the velocities in the plume are reduced. Similar features can be observed in the
measurements, obtained with the same measurement technique, of Wang & Law
(2002). Their radial profiles of both Iw and Iu exhibit a similar scatter, and a similar
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tendency to approach a value of approximately 0.1 (i.e. non-zero) beyond the plume
borders.

A final remark concerns the fetch needed by the second-order velocity statistics to
become (locally) self-similar. The analysis of the radial profiles of Iu and Iw suggest
that self-similarity is attained between 30 < z/b0 < 35 for release J, 10 < z/b0 < 15
for F and 5 < z/b0 < 10 for P. This observation is in agreement with the idea that
the higher the value of Γ at the source, the more rapid is the transition toward
an asymptotic state of plume equilibrium. However, given the non-identical nozzle
geometry for the three releases and their different source Reynolds numbers, these
relationships between Γ0 and the fetch required to attain self-similarity cannot be
considered to be general values.

4.2. Radial turbulent transfer of momentum and buoyancy
4.2.1. Reynolds stress and turbulent viscosity

Figure 10(a) shows radial profiles of the Reynolds stress ũw̃ (ũ is the fluctuation of
the radial velocity) for the jet-like, high-source-Reynolds-number release J. Evidently,
the Reynolds stress profiles tend towards a single profile at sufficiently high elevation.
The form of the Reynolds stress profile is qualitatively very similar to that published
in the numerical work of Zhou (2001) and with the measurements of Hussein
et al. (1994) in isothermal jets, with a maximum stress value of approximately
|ũw̃/w2

m| ' 0.025. Examination of figure 10(c) for release F leads to the same broad
observations as those above. As in release J, the Reynolds stresses for release F tend
toward a single profile and show profiles very similar to those in figure 10(a). These
observations are in very good agreement with the findings of Wang & Law (2002).

For the nominally pure plume release P, near to the source the Reynolds stresses
(figure 10e) are negligible and approximately constant across the plume. However,
with increasing distance from the source, the profiles begin to converge towards a
self-similar profile which is similar in form to release F.

The high spatial resolution of the velocity statistics gathered allows us to achieve
an experimental estimate of the turbulent viscosity, usually defined as

νT(r, z)=−ũw̃(r, z)
/(

∂w(r, z)
∂r

)
. (4.1)

This quantity provides potentially important information concerning both the
turbulence dynamics and the momentum transfer within the plume. The curves
for the corresponding non-dimensional turbulent viscosity ν̂T = νT/(wmbw) are shown
in figure 10. Near the plume axis, the small Reynolds stress is divided by a small
velocity gradient which explains why the turbulent viscosity peaks here. In the two
releases characterised by high Reynolds number, namely J and F, the radial profiles of
ν̂T (figure 10b,d), although scattered, tend towards a single profile at sufficiently high
elevations that is similar to that identified by Hussein et al. (1994) for non-buoyant
jets. This confirms that the momentum transfer within the releases is almost unaffected
by buoyancy, as are the t.k.e. levels (see § 4.1), in the sense that any variation can
be fully rescaled on local quantities leading to the same local self-similar curves.

It is questionable whether the values of ν̂T in release P (figure 10f ) genuinely
exceed those of the other plumes. Non-dimensional profiles are far from collapsing
on to a single curve (and the data is affected by significant scatter) which indicates
the varying dynamical nature of the plume with height. Despite this, several profiles
show a qualitative tendency that is very similar to that observed for releases J and F.
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FIGURE 10. (Colour online) Radial profiles of non-dimensional Reynolds stress (a,c,e)
and non-dimensional turbulent viscosity ν̂T = νT/(wmbw) (b,d,f ) for (a,b) release J (profiles
plotted in the range 9 < z/b0 < 94), (c,d) release F (profiles plotted for 3 < z/b0 < 32)
and (e, f ) release P (profiles plotted for 2< z/b0 < 19). The continuous (red online) line
represents the fit of the experimental data of Hussein et al. (1994) in a non-buoyant jet.

We can therefore conclude that evidently there is no one-to-one dependence of ν̂T

on Γ , i.e. that the increased role played by buoyancy in the dynamics as Γ increases
does not necessarily result in a more effective turbulent radial transfer of momentum
as is consistent with an increase in ν̂T . Just as for the other turbulent quantities
examined, variations in the turbulent viscosity can be completely rescaled by local
quantities confirming the ‘local’ self-similar behaviour.

To unravel the influence of Γ on the radial turbulent transfer of momentum it
is instructive to examine the vertical evolution of a non-dimensional bulk turbulent
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FIGURE 11. Vertical evolution of the non-dimensional bulk turbulent viscosity 〈ν̂T〉 for
releases J, F and P.

viscosity 〈ν̂T〉, representing a spatial average of ν̂T over the plume section. Values
of 〈ν̂T〉 were estimated as those giving the best agreement on fitting the ũw̃ profiles
with a function of the form

F (r, z)= 2〈ν̂T〉 r
2

b2
w

exp
r2

b2
w

(4.2)

i.e. assuming the Gaussian form of the velocity profile (3.1). The vertical evolution
of 〈ν̂T〉 plotted in figure 11 sheds light on the influence of a varying Γ on the
plume dynamics. Despite a non-negligible uncertainty in the estimate of 〈ν̂T〉, which
is reflected in error bars of 10–25 %, figure 11 depicts a clear tendency in its vertical
evolution for the three releases considered. The quantity 〈ν̂T〉 evolves with height
up to a far-field value of approximately 0.035 in all three cases, as could also be
inferred by examining figure 10(b,d,f ). It is however evident that the enhanced role of
buoyancy in the plume dynamics accelerates significantly this evolution. As a result,
for release J, 〈ν̂T〉 requires a distance of almost 100 radii to attain its far-field value.
By contrast, for release P the evolution to the far-field value occurs over a fetch of
approximately 10b0. As discussed in § 5, this feature plays a major role in the way
the different releases entrain ambient air.

4.3. Turbulent Prandtl number
An experimental estimate of the radial turbulent transfer of heat (or mass) requires
simultaneous measurement of velocity and temperature (or solute concentration c)
in order to assess the radial variability of the correlation between fluctuations of
temperature T̃ (or concentration c̃) and radial velocity. Just as for the momentum
transfer, the adoption of a gradient closure model of the form (4.1), leads to an
estimate of a turbulent diffusivity of heat (or mass) DT , and therefore to the turbulent
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Prandtl (or Schmidt) number PrT = νT/DT , that characterises the relative effectiveness
of the two transport phenomena.

This kind of simultaneous measurement has seldom been undertaken and represents
a major challenge in the experimental investigation of buoyant plumes. Shabbir &
George (1994) performed these measurements in air plumes with hot-wire anemometry.
Despite the remarkable experimental effort however, the radial profiles of ũT̃ presented
in their study were affected by a considerable scatter, showing the limitations of wire
anemometry in evaluating the variation of ũT̃ for varying dynamical plume conditions.
Far smoother profiles were obtained by means of optical techniques in saline plumes
by Papanicolaou & List (1988) and Wang & Law (2002). Both papers report profiles
of ũw̃ and ũc̃ in jets and plumes with similar results. Far-field profiles of ũw̃/w2

m

were insensitive to enhanced buoyancy, whereas ũc̃/wmcm showed a clear tendency
to be higher in plumes compared with jets. Papanicolaou & List (1988) found that
ũc̃/wmcm ' 0.12 in jets and ' 0.25 in plumes, whereas Wang & Law (2002) found
ũc̃/wmcm' 0.15–0.2 in jets and ' 0.25–0.3 in plumes. Both studies indicate a general
tendency of PrT to decrease as Γ increases.

Given the difficulty associated with the direct estimation of PrT , several authors
could only infer its spatial average (over the plume section) by estimating the ratio
ϕ = bg′/bw between the local spread of the buoyancy and velocity profiles. Assuming
Gaussian profiles, the (spatially averaged) turbulent Prandtl number can be estimated
as

〈PrT〉 = ϕ−2, ϕ = bg′

bw
. (4.3)

It is worth noting that the values for ϕ in the open literature show a high variability.
For example, Papanicolaou & List (1988) find ϕ = 1.19 in nominally pure plumes.
Their estimates are consistent with their direct measurements of the radial turbulent
fluxes of momentum and mass, and indicate that the spread of buoyancy exceeds that
of the velocity owing to turbulence radially transferring buoyancy more effectively
than momentum. However, experiments of other researchers on buoyancy-dominated
plumes, including George et al. (1977) and Nakagome & Hirata (1977), led to the
contradictory conclusion that ϕ<1. This unexplained contradiction in the experimental
results is particularly evident in the study of Wang & Law (2002). Their measurements
indicate that ϕ decreases with increasing Γ , from a value of approximately 1.25 for
a pure jet close to the source, toward unity for a pure plume in the far field. We
stress here that this decrease is in contrast to the results of Papanicolaou & List (1988)
and with Wang & Law’s own experimental results, results that showed a tendency for
ũc̃/wmcm to increase with Γ .

The ratio ϕ, as a function of the normalised distance from the source, obtained from
the estimates of bg′ (±5 %) and bw (±2.5 %) (see § 3.3.1 for details) is plotted in
figure 12. A cursory examination clearly shows that the width of the error bars on ϕ
are of the same order as its variation over the plume’s vertical extent. This feature
highlights a striking difference between the vertical evolution of ϕ (and PrT) and that
of 〈ν̂T〉 (see figure 11) and Γ (see figure 8); while the trends in 〈ν̂T〉 and Γ are clear,
the precise trend in ϕ is less clear.

Beyond this general uncertainty one could argue that there is a tendency in releases
J and F for ϕ to increase with height. For release P the values of ϕ are higher
although it is difficult to discern a clear trend. In all three cases, ϕ tends to a far-field
value slightly higher than 1.2, which corresponds to 〈PrT〉= 1/1.22' 0.7: a result that
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FIGURE 12. Vertical evolution of ϕ = bg′/bw for releases J, F and P.

supports the findings of Papanicolaou & List (1988) and Panchapakesan & Lumley
(1993) who found ϕ ≈ 1.2 for pure plumes.

Kaminski, Tait & Carazzo (2005) suggested that the considerable discrepancy
reported in the literature in the values of ϕ could be explained by the distance
from the source at which profiles were measured. They noticed that researchers who
obtained ϕ < 1 acquired data close to the source (z/b0 ∼ 10), whereas measurements
further away (z/b0 ∼ 100) resulted in ϕ > 1. Kaminski et al. (2005) plotted the
parameter A = (2/3)(ϕ2 + 1) against z/b0, which varied from approximately A = 1.1
for z/b0 6 10 to approximately A = 1.9 for z/b0 ' 100. This led them to conclude
that ϕ increases slowly with height, with typical values of ϕ < 1 in the near field and
ϕ ' 1.36 (〈PrT〉 ' 0.56) in the far field. They referred to this evolution in the value
of ϕ as ‘similarity drift’.

Our data plotted in figure 12 partially supports their assertion. For releases J and F,
ϕ shows a tendency to increase with z/b0 to attain slightly higher values compared
with those reviewed by Kaminski et al. (2005). In contrast, the data for release P
suggests a tendency of ϕ to decrease with height, a tendency that is not consistent
with ‘similarity drift’. As already mentioned, a similar anomalous (with respect to the
‘similarity drift’ model) decrease of ϕ can be observed in the data of Wang & Law
(2002). In the present case however, it is worth noting that this tendency is captured
only over a limited vertical range from the source, since zmax/b0 = 19 for plume P,
and is inconclusive given the significant amplitude of the error bars. We therefore
conclude that our data agrees partially with the concept of ‘similarity drift’ and that
the non-negligible uncertainty in the estimates of ϕ does not bring to an end this
controversy.

However, our experimental results highlight two important features that concern the
nature of this ‘drift’. These warrant discussion as they could help in explaining the
wide spread of the literature data. First, whilst at the outset it may have been tempting
to examine the variation of ϕ with Γ , we cannot identify any clear one-to-one
relationship between them, and therefore between PrT and Γ (or indeed between 〈ν̂T〉
and Γ ). Second, for two of the releases we observed a tendency of ϕ to increase.
These aspects suggest that the evolution of 〈ν̂T〉 and ϕ is similar. From the nozzle
the flow develops seeking its equilibrium state, with a near-field evolution whose
rapidity is influenced by Γ . Therefore, at a given distance from the source, a forced
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plume can exhibit varying ϕ depending on its Γ0 ( just as it can exhibit different
〈ν̂T〉), which explains the variety of values presented in the literature.

There is another reason that can potentially explain this variability. In their analysis,
Kaminski et al. (2005) refer to data from 9 different experimental data sets; 5 of
these refer to measurements taken between 10 and 30 radii from the source. It is
well known from the literature data, and as discussed in §§ 4 and 4.2.1, that in this
region intermediate to near field and to far field, the flow has not necessarily reached
conditions for self-similarity. The region of the ‘drift’ is therefore, at least partially,
a region within which the flow retains some memory of its source state. We cannot
then exclude that the observed variability of ϕ is due to the influence of the source
conditions (conditions that cannot be perfectly controlled by the experimentalist)
on the subsequent evolution of the flow dynamics. It is customary to refer to the
source condition as given by steady and self-similar radial profiles of velocity and
temperature (or concentration), so that we can fully characterise the release by
the governing parameters: Γ0, Re0 and T0/Te. The actual source flow conditions
reproduced in an experiment (or in a numerical simulation) may, however, exhibit
non-negligible departures from these idealised reference conditions. This can be due,
for example, to a different form of the velocity and temperature profiles, to non-null
intensities of the turbulent fluctuations or of the Reynolds stress. Thus, for identical
values of Γ0, Re0 and T0/Te (defined by means of spatially averaged quantities), we
can then have a variety of source conditions; these can exert their influence over a
distance of several source diameters (see figure 8), along which the release evolves
toward a condition of dynamical equilibrium and may exhibit a high variability of the
local Γ . We stress that, if the uncertainties associated with the conditions imposed at
the source do indeed have a significant influence on the near-field plume behaviour,
it would be unclear how to dissociate them from the dependence of flow variables,
such as ϕ (or αG), on the local variation of Γ (or Re).

4.4. Turbulence structure
To provide further information on the turbulence dynamics we investigated its spatial
structure by computing two-point velocity correlations throughout the domain. We
focus here on the two-point correlation functions Ruu and Rww of the vertical and
radial velocity components, defined as

Ruu(x0, s)= ũ(x0)ũ(x0 + s)
σ 2

u (x0)
(4.4)

Rww(x0, s)= w̃(x0)w̃(x0 + s)
σ 2

w(x0)
(4.5)

where x0 is any point in the domain, s is a displacement relative to x0 and
the ensemble averaging is performed over the 3000 instantaneous velocity field
measurements.

The integral over s of the functions (4.4) and (4.5) gives a length scale, referred to
as an Eulerian integral length scale, which is representative of the maximal distance
over which the velocities are correlated and, thus, provides an indication of the scale
of an eddy. As an example we have plotted, in figures 13 and 14, isolines of Ruu and
Rww for releases F and P, computed on the centreline at the same non-dimensional
distance from the source (z/b0 = 15). Two main features are shown. First, a clear
anisotropy of the turbulent field is evident with vertical velocity correlations that are
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FIGURE 13. Correlation coefficient Ruu = (ũ(x0)ũ(x0 + r))/σ 2
u computed on the centreline

at z/b0 = 15 for release: (a) F and (b) P. Isolines vary from 0.8 for the inner contour to
0.3 for the outer.
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FIGURE 14. Correlation coefficient Rww= (w̃(x0)w̃(x0 + r))/σ 2
w computed on the centreline

at z/b0 = 15 for release: (a) F and (b) P. Isolines vary from 0.8 for the inner contour to
0.3 for the outer.

considerably larger than their horizontal counterparts and with higher correlations.
Second, the correlations for release P are higher than for release F. The influence of
buoyancy in marginally widening (figure 13) and in elongating (figure 14) the eddy
structure is immediately evident.

In order to quantify these differences and investigate the spatial variation of the
Eulerian integral length scales we have attempted to estimate typical correlation
distances over the whole domain. To that end, we have assumed that the two-point
correlation functions can be modelled as an exponential function. Accordingly, we
fitted the vertical and horizontal sections of Ruu and Rww with functions of the form

f (r)= exp{−r/Luu} (4.6)
f (z)= exp{−z/Lww}. (4.7)

Values of the parameters Luu and Lww, fitting this exponential curve to the data,
provide a measure of a radial and a vertical integral length scale, respectively. The
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FIGURE 15. (Colour online) Radial profiles of the integral length scales, horizontal scale
Luu and vertical scale Lww, non-dimensionalised on plume width, bw, for (a,b) release J
(profiles plotted in range 9 < z/b0 < 94), (c,d) release F (profiles plotted in range 3 <
z/b0<32) and (e, f ) release P (profiles plotted in range 2< z/b0<19). The continuous line
indicates the experimental estimates by Wygnanski & Fiedler (1969) for a non-buoyant jet.

resulting non-dimensional integral length scale profiles are shown in figure 15 and are
compared with the results of Wygnanski & Fiedler (1969) for non-buoyant releases.

This data highlights the anisotropy of the large-scale turbulent motion, as the
vertical length scale, Lww, is 1–3 times larger than the radial scale Luu. Results
bolster the findings of § 3 showing that approximate self-similarity of the profiles is
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achieved for each of the three release conditions. The local self-similar behaviour,
however, differs slightly from release J to release F, and markedly from release P.
Data for J and F agrees well with Wygnanski & Fiedler’s (1969) measurements of
non-buoyant plumes showing, once again, that the effect of an excess of buoyancy on
the plume dynamics can be fully re-scaled by local quantities, thereby indicating a
local self-similarity of the flow, characterising even the local turbulence structure. The
only difference that can be observed between releases J and F is the slightly higher
values of non-dimensional Lww towards the perimeter of release F. Conversely, a clear
departure from this self-similar behaviour can be observed for plume P, which is also
characterised by higher values of both Luu and Lww compared with the others. This
departure from self-similarity can be reasonably attributed to two features. First, to
the vorticity production by the baroclinic torque, whose effect is enhanced for higher
Γ . This produces a coalescence of vortices that extends, both laterally and vertically,
the larger eddies within the plume. Second, the higher values of Luu observed for
higher Γ can be also attributed to the meandering that characterises the morphology
of release P: meandering that was hardly detectable in releases J and F.

5. Entrainment coefficient
Finally, we focus on the rate of entrainment. Our aim is twofold. First, we aim

to quantify the apparent differential entrainment coefficient evidenced by the vertical
profiles of centreline buoyancy examined in § 3.3.2. Second, in light of the analysis
of the flow structure performed so far, we aim to shed light on the dynamical causes
of this variation.

The entrainment coefficient αG= ue/wm is defined as the ratio of two velocities, the
entrainment velocity ue and the mean centreline vertical velocity, and represents the
simplest way to close the volume flux conservation equation:

dQ
dz
= 2πbwue = 2πbwαGwm. (5.1)

Although widely and successfully applied to many problems of practical interest
(Turner 1986), this form of turbulence closure that attempts to capture the turbulent
process, by which ambient fluid is entrained across the shear layers forming the plume
boundary and into the plume, is nonetheless a rather crude model of a complex
physical phenomenon. Many researchers have attempted to infer the entrainment
coefficient from experimental observations (Turner 1986) as it is central to plume
theory. A major problem in the experimental estimates of αG reported in the literature,
for both jets and plumes, is the consistent scatter in the data. A comprehensive
review of the estimates of the entrainment coefficient provided by previous authors is
presented by Linden (2000) and by Carazzo, Kaminski & Tait (2006). For Gaussian
profiles, the entrainment coefficient is in the range 0.045 < αj < 0.056 in pure
momentum-dominated jets and 0.07< αp < 0.11 in pure buoyancy-dominated plumes
(Carazzo et al. 2006). Whilst this variability remains only partially explained it can, in
part, be attributed to different conditions at the source, the nozzle geometry, or to the
different experimental techniques deployed. In addition to this uncertainty, however,
we can expect that buoyant plumes produce different entrainment rates according to
their local dynamical condition. Assuming fully-turbulent plumes with relatively low
density differences, we may therefore expect the dynamics of the entrainment process
to depend on the plume Richardson number Γ . Previous authors have tried to define
the functional dependence of αG on Γ , or to equivalent non-dimensional parameters
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FIGURE 16. Entrainment coefficient αG plotted against local plume Richardson number
Γ . Experimental data of the present study refers to release J (E), F (+) and P (�). The
grey shaded area represents estimates based on the Priestley & Ball model (5.2) assuming
an upper and lower bound provided by maximal and minimal entrainment values for jets
and plumes from the literature data (see the text). Experimental data from Wang & Law
(2002) is referred to as W&L.

(the Froude number). Among these, we cite the semi-empirical model derived from
the theoretical analysis of Priestley & Ball (1955)

αG(Γ )= αj + (αp − αj)Γ, (5.2)

which assumes a linear variation between two asymptotic values (determined
experimentally) for a pure jet αj and a pure plume αp. Then 50 years later Kaminski
et al. (2005), following Priestley & Ball (1955), proposed a formulation of the
entrainment coefficient based on a mean kinetic energy budget, and that includes
explicitly the direct contribution of the variation of Γ on αG.

The entrainment coefficient is computed herein from the PIV velocity estimates
of the mean vertical volume flux Q(z). To avoid scatter in the data due to spatial
discretisation, prior to determining its derivative, the volume flux variation with height
was fitted by means of a sixth-order polynomial, and thereafter αG estimated from
(5.1). Results are shown in figure 16, where we plot the entrainment coefficient for
the three releases as a function of Γ . We have excluded only the data of release P
for z/b06 5, data that was highly affected by the non-fully turbulent condition of the
flow, as widely discussed in §§ 3.3.1, 3.3.3 and 4.

Results are compared with the model of Priestley & Ball (1955) discussed above
and with experimental results reported by Wang & Law (2002). To the best of the
authors’ knowledge, Wang & Law (2002) provide the only experimental estimate
of the entrainment coefficient as a function of the local Richardson number in
the literature. The data of Wang & Law (2002) was originally plotted against
a non-dimensional parameter, denoted here as Fr, which is related to the plume
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Richardson number via Γ = Fr2(5/(27/2√παref )). Wang & Law (2002) estimated Fr,
taking also into account the turbulent fluxes of buoyancy and momentum, which are
neglected in (1.1). Since the turbulent fluxes constitute approximately 20 % of the
total buoyancy flux and 10 % of the total momentum flux, neglecting these leads
to overestimates of Γ of approximately 5 %. The outcome of the Priestley & Ball
(1955) model is plotted assuming the two limits for both asymptotic values of αG
identified by Carazzo et al. (2006), i.e. αj = 0.045 and αj = 0.056 for Γ → 0, and
αp = 0.07 and αp = 0.11 for Γ → 1.

As a general remark we note that our estimates show a clear tendency for αG to
increase with Γ . For the condition of a ‘highly forced plume’, Γ → 0, our αG tends
to be slightly lower than that in the literature for jets. For increasing Γ , our results
show generally good agreement with the lower bound defined by the semi-empirical
model of Priestley & Ball (1955). Across the whole range of forced plume conditions
0 < Γ < 1, our estimates are systematically lower than those provided by Wang &
Law (2002). This discrepancy is significantly reduced for pure plume conditions. In
addition, our estimates show good agreement with the other literature on pure plumes,
in particular the PIV estimates by Pham et al. (2005) within a thermal plume rising
above a heated plate.

To help explain the differences between our estimates of αG and the estimates
of Wang & Law (2002), as well as the differences in αG in our own data at a
given value of Γ (i.e. for releases J and F for 0.06 < Γ < 0.2) we turn to the
expression developed by Kaminski et al. (2005) for the entrainment coefficient.
Following recent developments proposed by Craske & van Reeuwijk (2014) for the
analysis of unsteady jets, we adopt a formulation that makes no assumption about
the slenderness of the flow. In particular, this allows us to quantify the behaviour of
the entrainment in the very near field, where the usual assumption of ‘thin plume’
(negligible vertical gradients of second-order statistics compared with radial gradients)
does not necessarily hold. Assuming that the radial profiles of velocity and buoyancy
are well approximated by a Gaussian, even close to the source (as we verified in
§§ 3.1 and 3.2), and adopting a simple gradient-law closure to model the Reynolds
stress, the entrainment coefficient can be expressed as

αG = (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉 + αnf − αm (5.3)

where

αnf = 3bwI7 − 2bw
dI6

dz
, (5.4)

αm = 2bwI6
d
dz

ln
(
b2

ww2
m

)
, (5.5)

and where I6 and I7 are related to integrals of radial profiles of second-order velocity
statistics. Details on the derivation of (5.3) are provided in the appendix A.

The formulation of the entrainment coefficient (5.3) helps to clarify the role of
the different terms in the entrainment process and their physical meaning. The first
term (2ϕ2 − 1)(2αref /5)Γ reflects the effect of the radial gradient of hydrostatic
pressure, induced by the presence of a column of warm air, in drawing ambient
air into the plume. This term is therefore related to the mean radial velocity field.
The second term (3/2)〈ν̂T〉 is directly linked to the local production of t.k.e. by
inertial instabilities (Kaminski et al. 2005), i.e. to the product of Reynolds stress
and mean vertical velocity radial gradient. It is therefore related to the fluctuating
component of the velocity field. The remaining two terms, originally neglected by
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Kaminski et al. (2005), are both related to the t.k.e. production and to the vertical
mean kinetic energy transfer (and thereby related to the vertical gradient of the first-
and second-order velocity statistics). The term αnf tends to zero in the far field, as
the second-order velocity statistics attain self-similarity and therefore plays a role
only in the very near field. The term αm tends to zero in the far field only in pure
jets, Γ = 0, as the mean momentum flux maintains a constant value. Its contribution
however is non-null for buoyant releases. It is instructive to evaluate the magnitude
of αm in the case of a nominal pure plume, i.e. Γ ≈ 1. Considering simple scaling
relations for a pure plume, i.e. b2

ww2
m ∝ z4/3 and bw ∝ (6/5)αref z, and estimating the

integral I6' 0.05 from our experimental data, we can estimate αm' 1.6× 10−2, which
represents a contribution of approximately 10 % to the total entrainment.

As pointed out in appendix A, it is worth noting that, under the assumption of
Gaussian radial profiles of mean vertical velocity and temperature, the contribution
to αG given by the ‘drift term’ and pointed out by Kaminski et al. (2005) vanishes,
even in the case of a varying ϕ.

A systematic comparison of estimates of the entrainment coefficient obtained from
(5.1) with those from (5.3) offers a means to explain the variability of αG = αG(Γ )

shown in figure 16.
First, we analyse the Wang & Law (2002) data. Their estimates of αG are obtained

for releases with 0.01 < Γ0 < 0.1 and in the range 60 < z/b0 < 110. In contrast to
us, Wang & Law (2002) focus on the far-field region, i.e. where 〈ν̂T〉 is expected to
have reached its asymptotic value, and where the second-order statistics have clearly
already attained a condition of self-similarity, so that the contribution of the term αnf

is null. An examination of their Reynolds stress and mean velocity vertical profiles
suggests 〈ν̂T〉 ' 0.35, which leads to values of the parameter C = (3/2)〈ν̂T〉(ϕ2 + 1)
(see appendix A) in the range 0.12 < C < 0.14 (Kaminski et al. 2005). This value
of 〈ν̂T〉 corresponds approximately to the same value as observed in the far field of
all three releases examined here (see figure 11). Over a similar range of distances
from the source Wang & Law (2002) data exhibits a decrease of ϕ, from a near-field
value of 1.25 down to 1.05 in the far field. As a first approximation, we neglect the
contribution of αm in (5.3), and estimate the entrainment coefficient as

αG ' (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉. (5.6)

On imposing 〈ν̂T〉 = 0.35 we plot αG from (5.6) for ϕ = 1.05, 1.15 and 1.25. As
is clear from figure 17, the tendency of αG = αG(Γ ) from Wang & Law (2002) can
be fully reproduced by (5.6) with ϕ = 1.05. For Γ > 10−1 we note that entrainment
responds sensitively to ϕ, with variation of ϕ less than 10 % inducing considerable
variation in αG. As a consequence of this sensitivity, the actual variation of ϕ with
height in the Wang & Law (2002) experiments, that we have here neglected, is likely
to alter the close agreement seen. However, a detailed estimate of all terms in (5.3)
for the Wang & Law releases is clearly beyond the scope of the present study and
requires further information on the velocity statistics, specifically those related to the
term αm. Our aim here is only to demonstrate that the estimates of αG provided by
Wang & Law (2002) are consistent with the plume dynamics in the far field, where
both ϕ and 〈ν̂T〉 have reached their asymptotic values: values that closely match their
experimental estimates.

Second, we focus on our three releases J, F and P. The measurements gathered
during our experimental campaign allow for a direct estimate of all terms comprising
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FIGURE 17. (Colour online) Entrainment coefficient αG plotted against local plume
Richardson number Γ . Experimental data from Wang & Law (2002) and estimates of the
formulation of Kaminski et al. (2005) given by (5.6) for a fixed 〈ν̂T〉 = 0.035 and three
different values of ϕ (see text).

αG in (5.3). However, an estimate of the terms in αnf , involving vertical derivatives
of second-order velocity statistics, is characterised by a large uncertainty due to
an insufficient number of sampled velocity fields. Accurate estimates of these terms
would require a number of samples of at least an order of magnitude larger. For these
reasons, in estimating αG by means of (5.3), we consider as a first approximation,
αnf = 0 which we expect to lead to underestimations of αG in the near field.

Since release P exhibits almost no variation of Γ , the evolution of the estimates of
αG provided by (5.1) and (5.3) shown in figure 18 is plotted against z/b0, rather than
against Γ . Estimates from (5.3) are shown for all three releases with 20 % error bars,
evaluated taking into account the uncertainties related to Γ (figure 8), 〈ν̂T〉 (figure 11)
and ϕ (figure 12).

For releases J and F, estimates from (5.3) tend to systematically underestimate those
from (5.1) in the near field. This can be explained by the neglected contribution of
αnf . Even in the case of plume P, the two estimates of αG differ significantly in
the near field. This difference can primarily be attributed to the non-fully turbulent
condition of the plume for z/b0 < 5, conditions that invalidate the formulation of
(5.3). Discrepancies in the near-field region can also be attributed to the two features
discussed in § 2, i.e. eventual non-Boussinesq effects and the thermal stratification of
the ambient very close to the source (in a region that extends up to z/b0∼6 for release
J, z/b0 ∼ 2 for F and z/b0 ∼ 2 for P). Both features are not accounted for in the
formulation of (5.3). However, despite the non-negligible extent of the error bars, we
observe a relatively good agreement between the two estimates for releases J, F and
P. This allows us to interpret the physical variation of αG with z/b0 as given by the
variations with z/b0 of the terms on the right-hand side (r.h.s.) of (5.3) and to shed
light on the role of Γ in the intensity of the entrainment of ambient air. Focusing on
the first two terms on the r.h.s. of (5.3), terms that represent the highest contribution
to the total entrainment, we may assert that the role of Γ is twofold: directly through
term (2ϕ2 − 1)(2αref /5)Γ and indirectly through the vertical evolution of 〈ν̂T〉.
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FIGURE 18. Variation of entrainment coefficient as a function of distance from source.
Comparison of entrainment coefficient estimated from the volume flux balance equation
(5.1) and from the formulation (5.3) for releases (a) J, (b) F and (c) P.

The relatively low values of αG in the near field of releases J and F can then be
fully explained by the corresponding low values of 〈ν̂T〉 (figure 11). Moving away
from the source, Γ → 1 and the contribution of 〈ν̂T〉 to αG increases (at a rate that
depends on Γ ) as does the direct contribution of the term including Γ . As widely
discussed in § 4, a buoyant release can exhibit different 〈ν̂T〉 and ϕ for a given Γ ,
depending on the release conditions and distance from the source. This explains why,
in general, a plume can exhibit a different value of αG for the same local Γ and
provides, in this particular case, a robust justification for the differences observed
between our estimates of αG and those reported by Wang & Law (2002). This feature
is also likely to explain the high variability of values of the entrainment coefficient
reported in the literature.

6. Summary of findings
We have presented a highly resolved set of velocity and temperature measurements

carried out on three turbulent plumes of source Richardson number (1.1) in the range
10−2 < Γ0 < 1. These measurements have been used to assess local dynamical self-
similarity, to confirm the evolution of key dynamic quantities, to investigate the large
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scale structure of the flow and the variability of the rate of entrainment with height
from the source.

Despite a variable local dynamical condition, characterised by a varying plume
Richardson number Γ , the radial profiles of the mean and of the r.m.s. of the velocity
components can be rescaled on local quantities, namely the mean centerline velocity
wm and the mean plume radius bw, to yield self-similar profiles for the flow variables
for a wide range of distances from the source. This local self-similarity applies also to
the mean temperature (buoyancy) profiles and to the turbulent viscosity ν̂T , showing
that even the increased radial turbulent momentum transfer induced by an excess of
buoyancy can be fully rescaled by local quantities. Even the Eulerian length scales
Luu and Lww appear to rescale locally when normalised with the plume radius. In
contrast to the other flow variables however, the local self-similar function describing
the spatial evolution of the Eulerian length scales differs significantly depending
on Γ .

The influence of Γ on the turbulence dynamics within each release was studied
by focusing on the evolution of radial profiles of second-order velocity statistics and
estimating bulk quantities, including the spatially averaged turbulent viscosity 〈ν̂T〉 and
ϕ= bg′/bw which is directly linked to the spatially averaged turbulent Prandtl number.
Summarising, our results show that:

(a) the higher the value of Γ , the lower is the fetch required for second-order
statistics to attain local self-similarity;

(b) the higher the value of Γ , the more rapid the rate of increase of 〈ν̂T〉 toward its
asymptotic value;

(c) the influence of Γ on ϕ is likely to be similar to the influence of Γ on 〈ν̂T〉,
but this effect is difficult to unequivocally confirm, given the vertical variation of
ϕ exhibited by a buoyant release is comparable with the uncertainty associated
with its experimental estimate;

(d) neither 〈ν̂T〉 nor ϕ do not show a one-to-one dependence with Γ , since their
magnitude depends, at least in a region of flow transition, also on the distance
from the source.

The study culminated with an analysis of the influence of Γ on the rate of
entrainment of ambient air as quantified by the entrainment coefficient αG. Two
distinct experimental estimates of αG were obtained. The first by estimating the
vertical variation of the volume flux. The second adopting a formulation of αG

similar to that originally proposed by Kaminski et al. (2005), and that makes explicit
the role of the main non-dimensional parameters governing the dynamics of the
plume, i.e. Γ , 〈ν̂T〉 and ϕ. In this way we could fully explain the observed variations
of αG in the three releases studied as well as in the existing literature data, depending
on Γ and on the distance from the source.

Our analysis shows that it is not possible to identify a one-to-one dependence of αG

on Γ , since its variations are due also to changes in 〈ν̂T〉 and ϕ, whose magnitude,
for a given Γ depends on the distances from the source and the value of Γ at the
source.
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Appendix A

Following the analysis undertaken by Craske & van Reeuwijk (2014) on unsteady
jets, we present an extension of the model of Kaminski et al. (2005). For clarity, the
notation will be kept as similar as possible to that adopted by Kaminski et al. (2005).
We begin by writing the steady balance equations for mass, momentum and buoyancy
in cylindrical coordinates under the Boussinesq approximation and assuming negligible
viscous effects:

∂rw
∂r
+ ∂ru
∂r
= 0,

∂

∂z
(rw2)+ ∂

∂r
(ruw)= rg′ − ∂

∂r
(rũw̃)− 1

ρe

∂

∂z
( pr)− ∂

∂z
(σ 2

wr),

∂

∂z
(rwg′ + rw̃g̃′)+ ∂

∂r
(rug′ + rũg̃′)= 0,


(A 1)

where p represents the difference from hydrostatic pressure pe = ρegz. In contrast
to Kaminski et al. (2005), equation (A 1) includes the vertical derivatives of σ 2

w and
pressure. Since the pressure distribution is difficult to measure, its vertical gradient
is usually modelled as (Hussein et al. 1994; Shabbir & George 1994; Wang & Law
2002)

− ∂p
ρe∂z
≈ ∂(σ

2
u + σ 2

v )

2∂z
≈ ∂σ

2
u

∂z
, (A 2)

where σv denotes the standard deviation of the azimuthal velocity component.
By combining mass and momentum balances, we can write the mean kinetic energy

balance as

∂

∂z

(
1
2

rw3

)
+ ∂

∂r

(
1
2

ruw2

)
= rwg′ −w

∂

∂r

(
rũw̃
)
−w

∂

∂z

(
σ 2

w − σ 2
u

)
r. (A 3)

The balance equations (A 1) can be integrated over r, from 0 to ∞, assuming as
boundary conditions that limr→∞ ruw= limr→∞ rũw̃= limr→∞ rug′ = limr→∞ rũg̃′ = 0,
so that

d
dz

∫ ∞
0

rwdr=− [ru]∞0 ,

d
dz

∫ ∞
0

rw2dr=
∫ ∞

0
rg′dr− d

dz

∫ ∞
0

(
σ 2

w − σ 2
u

)
rdr,

d
dz

∫ ∞
0
(rwg′ + rw̃g̃′)dr= 0,

d
dz

∫ ∞
0

1
2

rw3dr=
∫ ∞

0
rwg′dr+

∫ ∞
0

rũw̃
∂w
∂r

dr−
∫ ∞

0
rw
∂

∂z

(
σ 2

w − σ 2
u

)
dr.


(A 4)
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As in Kaminski et al. (2005), the mean and variance of the vertical velocity, the
mean buoyancy and the Reynolds stress are expressed by shape functions:

w(r, z)=wm(z)f (r, z),
g′(r, z)= g′m(z)h(r, z),

ũw̃=− 1
2 wm(z)2j(r, z),

σ 2
w − σ 2

u = 1
2 w2

ml(r, z).

 (A 5)

With reference to (4.2) in § 4.2.1 we note that, for Gaussian profiles, j(r, z) =
2F (r, z). These shape functions allow the computation of the integrals in (A 4)
without making any assumption regarding the similarity of the profiles,

I0 =
∫ ∞

0
r∗f (r∗, z)dr∗,

I1 =
∫ ∞

0
r∗f (r∗, z)h(r∗, z)dr∗,

I2 =
∫ ∞

0
r∗h(r∗, z)dr∗,

I3 =
∫ ∞

0
r∗f (r∗, z)2dr∗,

I4 =
∫ ∞

0
r∗f (r∗, z)3dr∗,

I5 =
∫ ∞

0
r∗j(r∗, z)

∂f
∂r∗

dr∗,

I6 =
∫ ∞

0
r∗l(r∗, z)dr∗,

I7 =
∫ ∞

0

(
2l

d
dz

ln wm + ∂l
∂z

)
f (r∗, z)r∗dr∗,



(A 6)

where r∗ = r/bm, with bm denoting a generic radius scale.
Top-hat variables are defined according to the following relations

R2W2 =
∫ ∞

0
rw2dr,

R2G′ =
∫ ∞

0
rg′dr,

R2WG′ =
∫ ∞

0
rwg′dr,

R2Σ2
q =

∫ ∞
0
(σ 2

w − σ 2
u )rdr.


(A 7)

With the integrals (A 7), introducing the usual entrainment assumption in the volume
balance equation (A 4)

−[ru]∞0 = αGbmwm, (A 8)
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and neglecting the vertical turbulent transfer of buoyancy (i.e. w̃g̃′), the system (A 4)
can be rewritten in top-hat equation form as

d
dz

R2W = 2RWαt,

d
dz

R2W2 = R2G′ − d
dz

R2Σ2
q ,

d
dz

R2WG′ = 0,

d
dz

R2W3 = 2
A

R2WG′ − R2W3 d ln A
dz
−W3R(C+ RD),


(A 9)

where the relations between ‘top-hat’ variables and the real variables are

R= I1/2
3 I2

I1
bm,

W = I1

I2
wm,

G′ = I2
1

I2I3
g′m,

Σ2
q =

1
2

I2
1I6

I2
2I3

w2
m,


(A 10)

where
A= I2I4

I1I3
,

C= I2I1/2
3 I5

I1I4
,

D= I7

I4
,


(A 11)

and where the top-hat entrainment coefficient αt in (A 9) is related to the Gaussian
coefficient αG in (A 8) by

αt =
[
αG

2
I1/2

3 I2

I1I0
− R

2
d
dz

ln
I1I0

I3I2

]
. (A 12)

It is worth noting that the relation between the ‘top-hat’ entrainment coefficient αt

and αG is not simply given by a proportionality coefficient, i.e.
√

2, as in the classic
top-hat formulations of the plume equations (Morton et al. 1956). This is due to the
fact that the definitions of the top-hat variables in (A 7) differ from those of Morton
et al. (1956).

With some algebra, the top-hat momentum and mean kinetic energy balance can be
manipulated in order to conveniently express the continuity equation as

d
dz

R2W = 2RW

Ri
(

1− 1
A

)
+ 1

2
R

d ln A
dz
+ 1

2
C+ 1

2
RD− 1

RW2

d
dz

(
Σ2

q R2
)

︸ ︷︷ ︸
αt

 , (A 13)
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where the term within the square brackets is equal to the entrainment coefficient αt
in (A 9) and Ri ≡ (RG′)/W2 represents a bulk Richardson number. The volume flux
balance (A 13) provides a formulation for αt that allows for its direct estimate from
first- and second-order velocity statistics.

We now assume local self-similarity of the first-order velocity statistics (but not of
second-order statistics) and adopt Gaussian profiles of velocity and buoyancy of the
form f = e−r∗2 and h= e−(r∗2/ϕ2), with r∗= r/bw. Furthermore, we model the Reynolds
stress by a gradient law of the form j= 〈ν̂T〉(∂f /∂r∗). The integrals in (A 6) then
reduce to I0 = 1/2, I1 = ϕ2/(2(ϕ2 + 1)), I2 = ϕ2/2, I3 = 1/4, I4 = 1/6, I5 = 〈ν̂T〉/2,
so that the relations in (A 10), (A 11) can be written

R= 1
2(ϕ

2 + 1)bw,

W = wm

ϕ2 + 1
,

G′ = 2ϕ2

(ϕ2 + 1)2
g′m,

Σ2
q =

2
(ϕ2 + 1)2

I6w2
m,

A= 2
3(ϕ

2 + 1),

C= 3
2 〈ν̂T〉(ϕ2 + 1),

D= 6I7



(A 14)

and the Richardson number Ri in (A 13) can be expressed as

Ri≡ bwg′m
w2

m

ϕ2(ϕ2 + 1)= 2αref

5
(ϕ2 + 1)2Γ. (A 15)

From (A 12), the relation linking the entrainment coefficients αG and αt then reduces
to

αG = 2
ϕ2 + 1

αt − bw

2
d
dz

ln(ϕ2 + 1). (A 16)

By combining (A 13)–(A 16) we finally obtain an expression for the Gaussian
entrainment coefficient as a function of the first- and second-order velocity statistics

αG = (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉 + 3bwI7 − 2

bww2
m

d
dz

(
I6b2

ww2
m

)
. (A 17)

Note that, assuming Gaussian radial profiles of mean vertical velocity and buoyancy,
even with a variable ϕ, the ‘drift’ term (R(d ln A/dz))/2 in (A 13) vanishes when
converting αt in αG. The last term can be expressed as

2bw

b2
ww2

m

d
dz

(
I6b2

ww2
m

)= 2bw
dI6

dz
+ 2bwI6

d
dz

ln
(
b2

ww2
m

)
, (A 18)

so that (A 17) can be finally written as

αG = (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉 + αnf − αm, (A 19)
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with

αnf = 3bwI7 − 2bw
dI6

dz
, (A 20)

and

αm = 2bwI6
d
dz

ln
(
b2

ww2
m

)
. (A 21)
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