
J. Fluid Mech. (2021), vol. 925, A35, doi:10.1017/jfm.2021.563

Impact of polydispersity and confinement on
diffusion in hydrodynamically interacting
colloidal suspensions

Emma Gonzalez1, Christian Aponte-Rivera2 and Roseanna N. Zia1,†
1Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
2Department of Chemical Engineering, Cornell University, Ithaca, NY 14850, USA

(Received 1 January 2021; revised 8 April 2021; accepted 17 June 2021)

We present a computational study of the equilibrium dynamics of a polydisperse
hard-sphere colloidal dispersion confined in a spherical cavity. We account for many-body
hydrodynamic and lubrication interactions between particles and with the confining cavity
utilizing our confined Stokesian dynamics model, expanded here for size polydispersity.
We find that, even though the tendency of polydispersity to homogenize structure in
a suspension is still present in confinement, strong correlations induced by the cavity
resist homogenization. Although seemingly opposite, these two effects have a common
driver, which is to maximize configurational entropy of particles in the cavity interior.
These structural effects couple with the hydrodynamics to change the particle dynamics:
polydispersity weakens lubrication effects near the cavity wall, allowing small (large)
particles to diffuse faster (slower) than in a monodisperse suspension. As a small (large)
particle gets farther from the wall, polydispersity weakens many-body hydrodynamic
couplings, driving diffusivity up (down). While the local cage dynamics dominates
short-time self-diffusion, long-time dynamics is also affected. In the concentrated regime,
polydispersity and confinement combine to induce radial de-mixing into size-segregated
populations. The cavity becomes the most influential ‘nearest neighbour’, setting the
length scale of and dynamics within these radial domains. This intermediate length-scale
caging makes the angular dynamics insensitive to polydispersity but leads to radial
long-time mean-square displacement that changes qualitatively with volume composition.
These results hold promise for explaining colloidal-scale physics implicated in the
functioning of biological cells, and the engineering of non-living confined colloids
where size de-mixing could be useful in the design of encapsulated micro-reactors and
therapeutic vesicles.
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1. Introduction

Particle dynamics plays a central role in living and non-living confined colloidal
suspensions, with broad impact on biological engineering, the industrial and agricultural
industries and pharmaceuticals. For example, diffusive transport of biomolecules plays a
central role in life-essential processes in biological cells (Maheshwari et al. 2019). One
recently demonstrated example is protein synthesis in Escherichia coli (E. coli), where
changes in the relative abundances of biomolecules of different sizes drives changes in
packing fraction and diffusivity of the biomolecules that, in consequence, play a key
role in the transport latency associated with protein synthesis rates (Maheshwari et al.
2021). Confined dynamics plays an important role in the functionality of many industrial
suspensions as well, for example the application and curing of particle-laden droplets such
as pesticides, coatings and paints, which is a complex function of particle concentration,
size polydispersity and confinement (Galliker et al. 2012; Gilet & Bourouiba 2014; Bansal,
Basu & Chakraborty 2017). In the pharmaceutical industry and research, some drug
delivery mechanisms rely on enclosing a therapeutic suspension within vesicles, where
stability inside the vesicle can be affected by polydispersity (Grenha et al. 2008; Wilhelm
et al. 2008). The impact of size polydispersity on the colloidal dynamics has been studied
to some extent in unconfined suspensions, providing a baseline for understanding these
effects in confined systems.

For unconfined suspensions it is well known that the presence of size polydispersity
modifies suspension structure and dynamics and can fundamentally change phase and flow
behaviour. For example, size polydispersity changes the maximum packing fraction well
beyond that of a monodisperse suspension, which is widely used in industry as a strategy
to prevent cracking during drying, to reduce the number of coating steps or to repair
antiquities without generating drying stress (Santiso & M’uller 2002; Miltiadou-Fezans
et al. 2008; Farr & Groot 2009). Polydispersity can also alter phase behaviour, for example
by delaying crystallization or suppressing it altogether, leading to vitrification (Pusey &
van Megen 1986; Van Megen & Underwood 1994; Brambilla et al. 2009; Zaccarelli, Liddle
& Poon 2015) – a problem that has plagued the industrial coatings industry for decades
but also was recently shown to underlie survival strategies in bacteria (Parry et al. 2014).
Polydispersity also modifies the flow rheology of a suspension, for example by imparting
a qualitative and sometimes dramatic influence on viscosity (Chong, Christiansen & Baer
1971; Poslinski et al. 1988; Rodriguez, Kaler & Wolfe 1992), and can lead to the formation
of channels (Allen & Uhlherr 1989; Daugan et al. 2004) or margination (Semwogerere
& Weeks 2008; Qi & Shaqfeh 2018). Entropic and hydrodynamic effects underlie these
rich behaviours: size intermixing reduces free energy to permit higher packing fractions;
non-continuum colloidal interactions lead to vitrification rather than crystallization; and
hydrodynamic asymmetry effects and depletion forces lead to margination and viscosity
changes. Given the recently demonstrated interplay between spherical confinement and
these microscopic forces (Aponte-Rivera, Su & Zia 2018), it is likely that new behaviours
resulting from a coupling between confinement and polydispersity will affect the particle
dynamics. The study of particle dynamics in confinement presents some of the same
challenges as in the study of particle dynamics in unconfined suspensions, and presents
new challenges as well.

The current experimental exploration of colloidal dynamics inside biological cells and
particle-laden droplets contends with the competing demands of spatial and temporal
resolution, which sometimes forces a tradeoff. Single-particle tracking techniques
(Mattheyses, Simon & Rappoport 2010; Xiao et al. 2011; Sun et al. 2012; Willets et al.

925 A35-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.563


Polydisperse diffusion in confinement

2017; Kim et al. 2019; Kovari et al. 2019) aim to provide the sizes and dynamics of
target colloidal objects. However, current experimental techniques for the study of highly
mobile, dense and polydisperse suspensions face two primary challenges: the need for a
uniform background and high frame-rate to particle-velocity ratio (Chenouard et al. 2014;
Ma et al. 2019). These challenges become more pronounced for confined systems, where
capturing images of the interactions with the confining boundary requires high contrast
(difference in refractive index) between the suspended particles and the wall (Ma et al.
2019). Such complications can in principle be avoided via numerical modelling, where
positions and velocities of particles ranging from nanometres to microns can be monitored
over macroscopic distances, and with fine temporal resolution over intervals much longer
than those of microscopic transport or reaction processes. However, faithful numerical
modelling of microscopic physics of colloidal hydrodynamics requires accurate modelling
of Brownian motion, many-body hydrodynamic interactions, confinement and crowding.
Most prior models neglect one or more of these effects, which can be appropriate
approximations in some contexts (Ando & Skolnick 2010; McGuffee & Elcock 2010;
Chow & Skolnick 2015; Li et al. 2020), but the problem being studied here requires all
three. Our confined Stokesian dynamics algorithm models Brownian motion, many-body
hydrodynamic interactions, confinement and crowding, but thus far could not represent
polydisperse particle size (Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018). Size
polydispersity is a non-trivial extension of both the hydrodynamics theoretical framework
and the computational algorithm.

It is the objective of this work to study the impact of confinement and size polydispersity
on the dynamics of confined colloidal suspensions by expanding our confined Stokesian
dynamics framework. Our model expands the fundamental Stokesian dynamics algorithm
developed by Brady and co-workers (Durlofsky, Brady & Bossis 1987; Bossis & Brady
1989; Sierou & Brady 2001; Banchio & Brady 2003), which provides high accuracy and
efficiency by effectively bypassing the details of fluid motion and focusing computational
power on particle motion. Fluid motion and its effect on particle motion are incorporated
by combining Ladyzhenskaya’s integral expression (Ladyzhenskaya 1963) for fluid
velocity with Faxén formulae (Faxén 1922) to give particle motion. A key element in
this framework is the separation of hydrodynamic couplings into far-field many-body
interactions, accomplished by developing analytical couplings known as resistance and
mobility tensors, with near-field lubrication theory and pair-hydrodynamics functions
(Jeffrey & Onishi 1984; Jeffrey 1992; Jones 2009). In our previous work we constructed
an entirely new version of this framework for confinement (Aponte-Rivera & Zia 2016;
Aponte-Rivera et al. 2018). However, none of the many-body couplings were explicitly
worked out for polydisperse particle size. Here, we expand our computational algorithm
to model different particle sizes, for any degree of size polydispersity. To do so, we
incorporated explicitly the difference in size in both the multipole expansion that describes
disturbance flows generated by the particles, and in the Faxén laws that relate those
flows to particle motion, all with finite confinement. Our prior work leveraged a crucial
simplification of mobility matrices based on symmetry relations that are valid only for
same-size particles; this symmetry is lost for polydisperse size. While the symmetry of
the total grand mobility tensor remains, each diagonal and off-diagonal entry requires
different algebraic expressions reflecting the different particle sizes that are coupled
hydrodynamically. We carried out the same careful accounting of different particles
sizes for the lubrication interactions between interacting pairs – particle–particle and
particle–cavity, generating a model that rigorously accounts for many-body hydrodynamic
and lubrication interactions in a confined colloidal dispersion of arbitrary particle-size
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distribution, cavity size and volume fraction (from dilute to maximum packing).
Here, we employ the model to study the dynamics of confined, polydisperse suspensions,
for a wide range of concentrations, particle-size ratios and particle-to-cavity size ratios,
as well as various volume compositions, focusing on a bidisperse suspension to establish
the basic interplay between confinement, hydrodynamics, entropic forces and particle-size
differences on structure and dynamics.

The rest of this paper is organized as follows. In § 2, we describe the theoretical aspects
of the polydisperse confined Stokesian dynamics framework as well as the methods
utilized to calculate the short- and long-time self-dynamics of the confined particles.
An in-depth analysis of the changes induced in the structure and particle dynamics by
coupling polydispersity and confinement is given in § 3. Finally, § 4 offers conclusions
and a discussion of the broader impact of our results on the understanding of biological
and non-living confined suspensions.

2. Methods

The confined Stokesian dynamics algorithm developed by Zia and coworkers
(Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018) is expanded in this work to
describe the dynamics of unequal-sized hard spheres confined by a spherical cavity.
A brief outline of the methods follows.

2.1. Model system
We consider a system of N hard spheres of different hydrodynamic sizes suspended in a
Newtonian fluid of constant viscosity η and density ρ, all confined inside a hard spherical
cavity of radius R (figure 1a). The suspended spheres are of K different sizes aK > aK−1 >

. . . > ai > . . . > a1, with Ni particles each of radius ai, and N = ∑K
i Ni. The size of one

species of colloids relative to another is λp(i) and is set without loss of generality with
respect to the radius of the smallest colloid, such that the particle-to-particle size ratio is
always greater than unity, λp(i) ≡ ai/a1 > 1. The total volume fraction of particles φ is a
simple sum over the volume fractions of the different size populations, φ = ∑K

i φi, where
φi = 4/3πa3

i ni, and ni is the number density of particles with radius ai inside of the cavity.
The degree of confinement is set by the ratio of the radius of a particle to the radius of the
enclosing cavity, λc(i) ≡ ai/R < 1. Together, a set of K values from λc(i) ∪ λp(i), and a set
of K values from φi ∪ φ fully specify the suspension composition of the model system.

2.2. Modelling particle displacements in dense spherically confined colloidal
suspensions

Modelling the motion of the suspended particles enables the computation of transport
properties, and reveals how confinement, crowding and size polydispersity affect the
particle dynamics and suspension rheology. All of the particles are colloidal and therefore
their dynamics is described by the N-body Langevin equation

m · dU
dt

= F P + F Ext + F B + F H. (2.1)

Here, m is the mass (or moment of inertia) matrix and U is the vector containing both
translational and rotational particle velocities. This motion arises from forces and torques
acting on the particles, shown on the right-hand side. The interparticle force F P arises
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Figure 1. (a) Conceptual sketch of model system for a spherically confined bidisperse (K = 2) suspension
with (b) particle labelling based on size.

from a spherically symmetric potential, F P = −∇V(r). An external force F Ext can act
on one or all of the particles, e.g. owing to an electromagnetic or gravitational field. The
Brownian force F B arises from collisions with solvent molecules as the fluid fluctuates
thermally, and obeys Gaussian statistics

F B = 0 and F B(0)F B(t) = 2kTRFUδ(t), (2.2a,b)

where k is Boltzmann’s constant, T is the absolute temperature and δ(t) is the Dirac
delta distribution. The overbar indicates an average over times long compared to the
solvent molecule time scale. The Brownian force de-correlates instantaneously over
particle momentum-relaxation time scale m/6πηa, and has an amplitude RFU set by
the fluctuation-dissipation theorem, where colloid motion due to thermal fluctuations are
dissipated viscously back into the solvent. Finally, the hydrodynamic force F H is the
configuration-dependent solvent drag on each particle, arising from the surface traction
exerted by the fluid on a particle and includes the influence of many-body interactions
from surrounding particles.

For a Newtonian suspending liquid, fluid motion is governed by the Stokes equations
because for colloids the Reynolds number is vanishingly small. Considering the linearity
of Stokes equations, Brenner and co-workers (Brenner 1963, 1964a,b; Brenner & O’Neill
1972) showed that the hydrodynamic force/torque on the particles in a bulk linear flow is
given by

F H = −RFU · (U − u∞)+ RFE : E∞. (2.3)

Here, u∞ is the imposed translational/rotational velocity of the fluid evaluated at the
particle centre, E∞ is the imposed rate of strain tensor of the fluid and RFU and RFE are
the so-called resistance matrices that couple particles’ forces and torques to their motion
relative to the fluid and to the imposed straining flow, respectively. For a fluid with constant
viscosity, the resistance matrix depends only on the geometry of the system (boundaries,
as well as positions and sizes of particles). All forces on the right-hand side of (2.1)
depend on the spatial configuration of all particles, as well as their sizes relative to other
colloids and the enclosing cavity. In our previous work (Aponte-Rivera 2017) we showed
that hydrodynamic interactions between spherically confined colloids are long range and
influenced qualitatively by confinement. The compounding effect of polydispersity has not
been studied.

In this study, the focus is on equilibrium suspensions, i.e. no imposed flow (u∞ = E∞
= 0) or external force (F Ext = 0), and on time intervals �t large enough for a colloid to
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have received many uncorrelated solvent molecule impacts and to have relaxed colloidal
particle momentum – the so-called over-damped limit. Integrating twice (2.1) under these
conditions yields the particle displacement equation (Ermak & McCammon 1978)

�x = (R−1
FU · F P + kT∇ · R−1

FU)�t + X (�t). (2.4)
The terms on the right-hand side of (2.4) correspond to the displacements due to
interparticle forces, Brownian drift and Brownian motion. The last of these is given by

X̄ = 0 and X (t)X (t) = 2kTR−1
FU�t. (2.5a,b)

This stochastic displacement X obeys Gaussian statistics with zero mean and variance
proportional to the hydrodynamic drag. It is evident from (2.4) and (2.5a,b) that the
hydrodynamic coupling R−1

FU is at the heart of the calculation of particle displacements.

2.3. Obtaining the many-body hydrodynamic couplings for polydisperse confined
Stokesian dynamics

As described in (2.1), there are two types of forces that influence particle motion: those
that are purely hydrodynamic in origin (F H) and those that are not (F P, F Ext and F B).
In this section we briefly describe the approach for computing many-body hydrodynamic
forces. While analytical solution of the Stokes equations is sufficient to obtain velocity
disturbances arising from pair-level hydrodynamic interactions (Happel & Brenner 1983;
Jeffrey & Onishi 1984; Kim & Karrila 1991; Jeffrey 1992; Jones 2009), that approach
becomes intractable for three or more particles. An alternative approach was developed by
Ladyzhenskaya (1963) to describe the velocity disturbance arising from the interactions
between many particles, u′(x) = u(x) − u∞(x), where u(x) is the total fluid motion,
u∞(x) is the imposed flow, and x is any field point in the fluid. In this approach, the
surface of each particle perturbs the fluid with a force density f (y) distributed over
its surface points y, and that disturbance propagates throughout the suspension via the
Green’s function G(x, y), the fundamental solution to the Stokes equations. This is written
compactly in a form known as the integral representation of Stokes flow

u′(x) = u(x) − u∞(x) = −
K∑

i=1

Ni∑
j=1

∫
Sy(i,j)

f (y) · G(x, y) dS, (2.6)

summing interactions between all particles Ni whilst keeping track of particle sizes K.
The force density (the hydrodynamic traction) is given by the Cauchy relation, f (y) =
σ (x, y) · n(y), where σ (x, y) is the stress exerted by the fluid on the particle and n(y) is
the unit surface normal pointing out of the particle surface into the fluid. Equation (2.6) is
an integro-differential equation implicit in the desired quantity, the fluid velocity u(x), and
thus cannot be solved directly. This difficulty was circumvented by Brady and co-workers
in the Stokesian dynamics algorithm (Bossis & Brady 1984) by Taylor expanding the
Green’s function G(x, y) with respect to the particle centre yi,j (Durlofsky et al. 1987).
This produced a multipole expansion

u′(x) = u(x) − u∞(x) = −
K∑

i=1

Ni∑
j=1

[(
1 + a2

i
6

∇2
y

)
G(x, y) · F H

i,j + 1
2
∇y × G(x, y) · LH

i,j

+
(

1 + a2
i

10
∇2

y

)
K(x, y) : SH

i,j + · · ·
]∣∣∣∣∣

y=yi,j

, (2.7)
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where the hydrodynamic torque LH
i,j and stresslet SH

i,j are the anti-symmetric and symmetric
parts of the first moment of the traction, and K(x, y) = ∇yG(x, y) + (∇yG(x, y))T. This
disturbance velocity is related to the translation U i,j and rotation Ω i,j of a particle via
Faxén formulae

U i,j − u∞ (x) =
−F H

i,j

6πηai
+
(

1 + a2
i

6
∇2

x

)
u′(x)

∣∣∣∣∣
x=yi,j

, (2.8a)

Ω i,j − ω∞ (x) =
−LH

i,j

8πηa3
i

+ 1
2
∇2

xu′(x)

∣∣∣∣∣
x=yi,j

, (2.8b)

−E∞ =
−SH

i,j
20
3 πηa3

i

+
(

1 + a2
i

10
∇2

x

)
E′(x)

∣∣∣∣∣
x=yi,j

, (2.8c)

where E′(x) = {∇xu′(x) − [∇xu′(x)]T}/2. In (2.8), the velocity disturbance u′(x) felt by a
particle at field point x is generated by the remaining particles in the suspension. Equations
(2.8) thus give a linear relation between particle relative motion and hydrodynamic traction
moments, expressed compactly as

⎛
⎜⎜⎝

U − u∞
Ω − ω∞
−E∞

...

⎞
⎟⎟⎠ = −M ·

⎛
⎜⎜⎜⎝

F H

LH

SH

...

⎞
⎟⎟⎟⎠ , (2.9)

where M is the coupling tensor known as the grand mobility matrix. In this compact
expression, U − u∞ is a 3N-dimensional vector of all N-particle relative translational
motions. Similarly, all other traction moments and fluid velocity derivatives pertain to
all N particles. The grand mobility matrix comprises submatrices that describe couplings
between each of the velocity derivatives and traction moments, which are superimposable
owing to the linearity of Stokes flow

M =

⎛
⎜⎜⎜⎝

MUF MUL MUS · · ·
MΩF MΩL MΩS · · ·
MEF MEL MES · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ . (2.10)

The grand mobility matrix is the inverse of the similarly defined grand resistance matrix,
R = M −1, but the inverse does not generally hold block-wise. Inversion of this matrix
automatically couples all N particles to one another, and captures an infinitude of reflected
interactions between them to give a true many-body hydrodynamic interaction matrix
(Durlofsky et al. 1987). In linear flows, truncation at the stresslet renders the inversion
finite without loss of accuracy except in the near field. The result is a many-body
far-field matrix M −1

ff . The near field is easily represented by well-established analytical
expressions (Jeffrey & Onishi 1984; Jeffrey 1992). Superposition of the near- and far-field
resistance tensors yields a complete grand resistance matrix that gives many-body far-field
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as well as near-field and lubrication interactions (Durlofsky et al. 1987)

R = M −1
ff + Rnf . (2.11)

In this many-body grand resistance matrix, the component RFU containing force and
torque couplings is used to model the particle dynamics according to (2.4). This
foundational framework for Stokesian dynamics has been utilized extensively to model
unconfined suspensions (Phillips, Brady & Bossis 1988; Sierou & Brady 2001; Banchio &
Brady 2003; Wang & Brady 2015, 2016).

However, for enclosing boundaries, the hydrodynamic functions in both the near and
far fields were not included, and were only recently developed to account for spherical
confinement. To that end, we recently expanded the Stokesian dynamics framework
to model spherically confined monodisperse suspensions (Aponte-Rivera & Zia 2016;
Aponte-Rivera et al. 2018). This required development of new far-field Mff and near-field
Rnf hydrodynamic functions. For Mff , the function G inserted into Ladyzhenskaya’s
integral equation becomes the Green’s function inside a sphere (Oseen 1927), expressed
as a superposition of two Green’s functions G(x, y) = J u(x, y) + J c(x, y). The function
J u(x, y) is the well-known Stokeslet for an unbound domain, and J c(x, y) is a cavity image
function that enforces the conditions at the boundary. Here, we select a no-flux and a
no-slip condition at the particle and cavity surfaces. An image particle placed outside the
cavity at a position y′(y) produces this behaviour (a detailed discussion can be found in
Aponte-Rivera & Zia 2016).

In the present work we take into account the effect of size polydispersity in Mff ,
a feature built, in principle, into the previous theory of Aponte-Rivera & Zia (2016);
Aponte-Rivera et al. (2018), but not explicitly incorporated into the mathematical
expressions, or implemented in the computational model or explored in simulations. The
difference in particle sizes is incorporated here in both the multipole expansion (2.7) and
the Faxén formulae (2.8) during the generation of each of the components in Mff . The
algebraic expressions for the hydrodynamic couplings in Mff that reflect the interaction
with the wall for particles of different sizes is given in the supplementary material
available at https://doi.org/10.1017/jfm.2021.563. Because there is both a near field for
cavity–particle interactions and a near field for particle–particle interactions, the total
near-field grand resistance matrix Rnf requires new expressions for each. For the cavity,
we built this from the existing series solution and lubrication theory (Jones 2009). The
effect of size polydispersity for arbitrary particle–particle size ratios λp(i) was generated
in the present work; for particle–cavity interactions, expressions for various degrees of
confinement λc(i) were also generated.

2.4. Calculating the short- and long-time dynamics
We utilize a stochastic sampling technique reported in Sierou & Brady (2001) and in Zia,
Swan & Su (2015), expanded to particles under spherical confinement by Aponte-Rivera
et al. (2018), to compute the short-time self-diffusion tensor, which reflects the average
hydrodynamic mobility in a suspension. A brief description of this sampling technique is
as follows. The fluctuation-dissipation theorem connects the short-time self-diffusion in a
concentrated suspension, Ds

0,i(φ) of particle i, to its self-mobility MUF
ii ,

Ds
0,i(φ) = kT〈MUF

ii 〉(φ), (2.12)

where the repeated indices indicate self-diffusion, the angle brackets denote an ensemble
average over many statistically equivalent particle configurations and φ is the volume
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fraction of particles. Physically, the averaging of the self-mobility over all particles in
a large suspension is the same as placing a tracer particle in every permissible position
in the suspension, computing its mobility at each position and then averaging over all
of the resulting mobility values. This can be done efficiently and fast in accelerated
Stokesian dynamics following Sierou & Brady (2001), which computes the velocity of
particle i as U i = MUF

ii · F i. In this approach, the force applied is a stochastic test force
F i of zero mean and identity covariance. The mobility of the test particle within one
configuration is obtained by applying the test force many times, where the decorrelation
of the stochastic forces ensures that an average of the product U iF i over many forces F i
gives the configuration-dependent mobility MUF

ii (y) (times the identity tensor). The same
procedure is applied simultaneously to all particles in the suspension and the resulting
values averaged together to give a configuration-independent, averaged self-mobility
〈MUF

ii 〉 and thence Ds
0,i. Historically, there are no angle brackets around the self-diffusion

coefficient, even though it is an average quantity that contains no position dependence.
However, spherical confinement produces a position-dependent and anisotropic

diffusion tensor (Aponte-Rivera et al. 2018), where both characteristics arise from the
mobility tensor. Physically, the hydrodynamic coupling of particles with the cavity
depends on distance to the cavity wall; thus, particles with nominally the same radial
distance from the wall, y, will experience a similar hydrodynamic coupling. To capture
this position dependence of the diffusion coefficient across the cavity, we discretize the
domain into m = 100 concentric bins of uniform width (figure 2). The bin with the smallest
volume surrounds the cavity centre (m = 0); each subsequent bin is located at a position
ym and each has progressively larger volume. The anisotropy of Ds

0,i indicates that the force
required to move a particle toward the cavity wall, along the radial direction, is different
from the force required to move it transverse to that direction, even at the same position
y = ym in the cavity, when averaged over all positions where y = ym, i.e. all particles
within a bin. This is captured by projecting the tensor Ds

0,i onto two orthogonal bases,
along and transverse to the line of centres connecting a particle and the cavity

Ds
0,i(C) = D

s‖
0,i(C)ŷŷ + Ds⊥

0,i(C)
[
I − ŷŷ

]
. (2.13)

Here, C = (φ, φi/φ, λc(i), λp(i), y) is compact notation indicating the dependence of the
self-diffusion (mobility) tensor on total volume fraction, volume composition, cavity size,
particle-size ratio and position relative to the centre of the cavity. The unit vector ŷ points
from the cavity centre toward the particle centre, and D

s‖
0,i and Ds⊥

0,i give the magnitude
of the short-time self-diffusivity in the parallel and perpendicular directions, respectively.
Each particle-size group i ∈ [1, K] has its own value of Ds

0,i(C). We will report both the
diffusion coefficient for a specific particle size as well as an average over all particle-size
groups.

Beyond the short-time limit, Brownian motion allows particles to explore the suspension
throughout the cavity. As a result, particle motion arises from both entropic and
hydrodynamic effects. The mean-square displacement 〈rr〉i of spherically confined
particles is anisotropic (Aponte-Rivera et al. 2018), where r is the vector displacement of
a particle over some time interval �t. The mean-square displacement can be orthogonally
decomposed with respect to the cavity-to-particle line of centres ŷ, as

〈rr〉i(�t, ŷ) = 〈r2
‖〉i(�t)ŷŷ + 〈r2

⊥〉i
(
�t)(I − ŷŷ

)
. (2.14)

Here, 〈r2
‖〉i and 〈r2

⊥〉i are projections of the mean-square displacement onto radial and
transverse motions, respectively. The scalar values of the mean-square displacement 〈r2

‖〉
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viscosity η and

density ρ
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Figure 2. Conceptual sketch of binning scheme. The spherical cavity volume is radially divided into 100 bins
of constant width �y (thus, each of varying volume). The bins span the entire cavity, from centre to just inside
the cavity wall, with the centre of the bin, ym, defining its location. The final (in this case, 100th) bin is located
at the closest permissible position of the centre of the smallest particle relative to the cavity wall.

and 〈r2
⊥〉 are averaged over all particle sizes. A plot of mean-square displacement over

time can reveal whether motion is diffusive, sub-diffusive or super-diffusive, depending
on whether the slope is linear or nonlinear.

3. Results

The framework described in the methods section is valid for any degree of polydispersity,
but as a case study we focus on bidisperse systems, K = 2, see (2.6), a good starting
point for understanding the combined effects of confinement, polydispersity, Brownian
motion and hydrodynamic interactions. As indicated in § 2.1, the suspension composition
is fully specified by λp2 = a2/a1, λc2 = a2/R, φ = φ1 + φ2 and φ2/φ. We will vary the
volume composition φ2/φ from zero to unity, 0 ≤ φ2/φ ≤ 1, to study changes induced by
sequentially moving from all small particles to a mixture of both to all large particles.

3.1. Equilibrium structure in spherically confined bidisperse suspensions
The structure of a monodisperse suspension of hydrodynamically interacting colloids
inside a spherical cavity was described by Aponte-Rivera et al. (2018) via a cavity-centred
radial distribution function, g(y), which gives the distribution of particle positions, y,
relative to the cavity centre. The correlation function g(y) gives the likelihood of finding
a particle centre at some distance y from the centre of the cavity, normalized by a
homogeneous distribution of particle centres. In simulation, the domain is discretized into
100 concentric bins of uniform width as described in § 2.4, each identified by its position
ym, as illustrated in figure 2. Following this programme, the likelihood of finding a particle
of size ai in the mth bin is

gi(ym) = VTi

Ni

〈
Ni,m

Vm

〉
. (3.1)

Here, Ni is the total number of particles of size ai, VTi is the total volume accessible
to those particles centres, Ni,m is the number of those particles located in the mth bin
and Vm is the volume of the mth bin. In (3.1), the angle brackets 〈·〉 denote an ensemble
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Polydisperse diffusion in confinement

average over many realizations. In this normalized distribution, g > 1 (g < 1) indicates an
accumulation (depletion) of particle centres with respect to a homogeneous distribution,
establishing the cavity itself as the reference particle.

The equilibrium structure of a colloidal suspension is independent of the
hydrodynamics, and for the suspensions studied in this section, equilibrium structure
depends only in the hard-sphere interaction potential and the suspension composition
(particle-size ratio λp2 , level of confinement λc2 , volume fraction φ and volume
composition φ2/φ). As has been shown elsewhere (Bossis & Brady 1984), in the Stokesian
dynamics framework, the equilibrium distribution resulting from hard-sphere exclusion is
recovered when lubrication interactions prevent contact – that is, a hard-sphere repulsion
need not be explicitly represented. This is confirmed here: the particle correlation peaks of
the suspensions studied in this section are separated by distances corresponding precisely
to the entropic exclusion between particles and with the cavity wall (as discussed below).

We measured in simulations in the present study the cavity-centred radial distribution
function for monodisperse and bidisperse suspensions, plotted in figure 3 as a function
of a normalized position in the cavity y/R for a total volume fraction φ = 0.40, particle
size ratio λp2 = 2, confinement λc2 = 0.2 and for different volume compositions φ2/φ.
For clarity, the curves are separated from one another by the addition of multiple vertical
axes, with φ2/φ = 0, φ2/φ = 1 on the left, and all other φ2/φ on the right. The two
monodisperse suspensions (top and bottom curves) display clear peaks and troughs that are
characteristic of liquid-like structure; the correlations are strongest at the cavity wall and
propagate inward, as previously reported for crowded monodisperse confined suspensions
(Aponte-Rivera et al. 2018). The distance between neighbouring peaks is approximately
one particle size, in this case λc2 = 0.2 and λc1 = 0.1 for large and small particles,
respectively. New in this study is the structure of bidisperse confined suspensions, shown
by the remaining curves. The correlation is averaged over all particles in the cavity, large
and small. To move from all large particles to all small particles, we first replaced 5 %
of the monodisperse large-particle suspension with the same volume fraction of small
particles (second curve from bottom). We then systematically replaced greater volumes
of large particles with equivalent volumes of small particles until the entire suspension
was composed of small particles (top curve). The well-known action of polydispersity
to destroy correlation (Van Beurten & Vrij 1981) is easily recognized here in the case
of equal volume compositions of small and large particles (φ2/φ = 0.5): the structure is
nearly uniform, g ∼ 1, throughout most of the cavity. Physically, bidispersity generates
many more permissible configurations such that the probability of finding particle centres
is nearly uniform throughout the cavity, smearing out correlations everywhere – except
two pronounced peaks near the cavity wall (discussed below). Evidently, there is a
competition between the strong correlation imparted by the immobile cavity and the strong
de-correlation enabled by polydispersity.

The tendency of the cavity to preserve correlations and counteract the smoothing
effect of polydispersity is most visible near contact with the cavity wall (y/R = 0.9 and
y/R = 0.8, for small and large particles, respectively); this correlation propagates into
the cavity. Confinement so strongly preserves correlations that polydispersity cannot fully
wipe out these correlations. For all large particles, there is one clear peak at y/R = 0.4;
replacement of just 5 % with small particles softens the peak but it is still pronounced.
As the ratio of large particles is further decreased, this peak does eventually vanish,
because there are fewer configurations that permit an accumulation of large particles there.
However, two new peaks emerge on either side, at positions y/R ∼ 0.3 and y/R ∼ 0.5,
corresponding to an accumulation of small particles at those positions. This shows that
size and relative abundance, which are coupled, determine which configurations are
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Figure 3. Cavity-centred radial distribution function g( y) for monodisperse and bidisperse suspensions
confined in a spherical cavity. Particle-size ratio is λp2 = 2, total volume fraction is φ = 0.40 and the size
of large particles relative to the cavity is λc2 = 0.2. Several volume compositions are shown, plotted in terms
of the volume fraction of large particles relative to the total volume fraction, 0.0 ≤ φ2/φ ≤ 1.0.

most probable. Overall, polydispersity drives the decaying strength and shifting position
of correlation peaks, whereas confinement sets the absolute location of these peaks and
resists structural homogenization.

Mechanistically, polydispersity and confinement drive distinctly different shifts in
particle distribution, each acting to maximize the number of permissible configurations.
Polydispersity intermixes particles of different sizes with one another to achieve more
homogeneous distributions, while the cavity gathers particles near the wall to allow for
more available space (hence configurations) in the interior of the cavity. Confinement
wins the competition near the wall: the peaks at y/R = 0.9 and y/R = 0.8 persist for
all degrees of bidispersity, and are never smeared out. While the peak at y/R = 0.8
contains both sizes of particles, the peak nearest the wall only ever includes small particles,
enabling greater accumulation of both sizes of particle centres when there is any degree
of bidispersity. Overall, particles are located preferentially near the wall, regardless of
size, as evidenced by the strong peaks in g( y) near the wall (figure 3), with the peak at
y/R = 0.8 representing the closest large particles can get to the wall but also representing
the presence of small particles; and the peak at y/R = 0.9 representing only small-particle
centres. This preferential packing can be understood as follows. As large particles are
replaced with small ones at fixed volume fraction (going from right to left in figure 12
in Appendix B), four things happen. First, the total number of particles increases, even
at fixed volume fraction (figure 12a). The total number of large particles near the wall
decreases, which tends to cause a loss in configurational entropy in the interior of the
cavity. However, small particles increase packing density along the wall, which allows the
total number of particles close to the wall to increase at fixed volume fraction, causing a
gain in configurational entropy near the wall. Evidently the increase in configurational
entropy near the wall outweighs the loss of bulk configurational entropy. Second, the
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Polydisperse diffusion in confinement

number of small particles near the wall increases (at fixed total φ), simply because there
are more small particles everywhere. Third, the fraction of small particles N1,wall/N1,total
near the wall (rather than the bulk) increases. However, this fraction is less than unity
regardless of volume composition, showing that small particles still populate the entire
cavity (figure 12b). Finally, the excluded volume gained in the bulk by packing particles
near the wall is greater for a large particle compared with a small particle; as the
suspension becomes more abundant in small particles the fraction of large particles placed
near the wall increases (figure 12b). This terminates in a finite number greater than zero
at 100 % large particles, showing that large particles will populate both the bulk and wall
regions.

The seeming discontinuity at y/R = 0.8 (figure 3) simply reflects the fact that, when
the surface of a large particle is in contact with the wall, its centre is located at y/R =
0.8 (for a particle 20 % the size of the cavity). However, when the surface of a small
particle contacts the cavity wall, its centre is at y/R = 0.9 (for particle-size ratio λp2 = 2).
Together these produce a rapid drop in the structural peak at y/R = 0.8. Beyond that value,
g(y/R) grows again, reflecting the entropic advantage of particles located near the wall,
but in this region, for small particles only. Overall, the peak at y/R = 0.8 includes both
particle sizes, but g(y/R > 0.8) includes only small particles. Overall, confinement sets
the behaviour everywhere by accumulating particles at the wall. The cavity then imparts
this strong correlation to all enclosed particles; that is, the cavity itself can be viewed as
a large, immobile particle with which the suspension interacts. Meanwhile, polydispersity
utilizes the ‘extra’ interior space generated by wall accumulation to generate additional
configurations, producing more homogeneous structure.

The tandem influence of confinement and polydispersity at moderate to high volume
fraction holds for all cavity sizes (see figure 13 in Appendix B) and particle-size ratios
(see figure 14 in Appendix B).

Overall, there are two ways to smear out these correlations: polydispersity, which
quantitatively weakens correlations, and diluteness, which smears them everywhere except
at the wall. At lower volume fractions, there is so much accessible space that even a
monodisperse suspension is nearly structureless, whether the suspension is unconfined
(Van Beurten & Vrij 1981) or confined (Aponte-Rivera et al. 2018). Polydispersity at
low volume fractions therefore exerts negligible influence on structure throughout most of
the cavity, although confinement still produces measurable correlations near wall contact
(figure 15 in Appendix B).

The dominance of the influence of the cavity in resisting homogenization can be
understood by recognizing that the cavity serves as the reference particle ‘around’ (within)
which the rest of the suspension is arranged, and by comparing correlations in confinement
to those without confinement. Typically in the study of bidisperse unconfined suspensions,
the goal is to understand how correlations between one species (of size a1) is affected
by the introduction of a second species (of size a2). In support of that goal, the radial
distribution function is typically computed for correlations between same-size particles,
with one particle selected as a reference particle – one that provides radial symmetry.
In a confined suspension we are likewise interested in how small–small and large–large
correlations are affected by the other species, but here, the reference particle must be the
cavity, because it is the only one that can provide radial symmetry. The radial distribution
functions g(d) are plotted in figure 4, where we focus on correlations among the small
particles in figure 4(a) and among the large particles in figure 4(b). We compare them
to the same correlations among particles in an unbound suspension by plotting g(d) as a
function of surface-to-surface separation, d. In both cases, the distribution function g(d)

measures correlations between two particles interacting across a crowded milieu (all of
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Figure 4. Confinement preserves correlations, even with pronounced polydispersity. The cavity-centred radial
distribution function of colloidal spheres inside a cavity (symbols) computed in the present study via dynamic
simulation is shown alongside the pair distribution function of the same size particles in an unconfined
suspension (curves) obtained from the Percus–Yevick closure relation (Smith et al. 2008), at the same
volume compositions. All are plotted as a function of the separation between hard-sphere surfaces, i.e.
particle-to-cavity (confined data) and particle-to-particle surface separation (unconfined data). Total volume
fraction is φ = 0.40, particle-size ratio is λp2 = 2; for the confined data, the cavity size is specified based on the
large particle-to-cavity size ratio λc2 = 0.2. (a) Correlations between small particles as large particles become
more numerous in the suspension. Three volume compositions φ1/φ are shown. (b) Correlations between large
particles as small particles become more numerous in the suspension. Three volume compositions φ2/φ are
shown.

arbitrary size ratio). The figures show data for monodisperse and bidisperse suspensions
at the same total volume fraction, φ = 0.40, particle-size ratio λp2 = 2 and several volume
compositions (relative volume fractions), both from the perspective of small particles in
figure 4(a) and of large particles in figure 4(b). The sketches next to the horizontal axis
in figure 4 illustrate the two interacting test particles (coloured black) and the intervening
suspension (coloured grey) for the unbound and confined scenarios. For the unconfined
monodisperse suspension (lowest solid curve), the nearest-neighbour peaks smooth out
as the interparticle separation increases. Replacing 30 % volume of small particles by
the same volume of large particles smooths the particle correlations over all distances
– all peaks are less pronounced. Further replacement of small particles by large particles
(φ1/φ = 5 %) suppresses entirely the likelihood of finding two small particles separated
by a third small particle; instead, there is now a much higher probability of finding a large
particle between the two small test particles. Next, we focus on the effect of confinement.

Confinement does not appreciably change the position of the correlation peaks
compared to the unconfined system: small particles are still preferentially located at the
same distances from the test particle in both the confined and unconfined suspensions.
However, there is a substantial increase in the height of the peaks, showing that
confinement drives up the strength of correlations throughout the cavity. Physically, the
entropic penalty of confinement is a pronounced decrease in the number of available
configurations a particle can explore when confined. That is, the cavity itself excludes
volume – it acts as a very large particle, much larger than any other particle in either the
confined or the unconfined system. Owing to this reduction in available volume inherent
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Polydisperse diffusion in confinement

to confinement, particle configurations that ameliorate the loss of available volume are
highly favoured: configurations with particles located close to the wall and configurations
comprising contiguous neighbours of either small–small or small–large particles. The
more pronounced correlations in confined suspensions compared to unconfined ones
similarly affect other volume compositions (Appendix B, figure 13a,b). Altogether,
polydispersity either weakens nearest-neighbour correlations or redistributes nearest
neighbours but, in contrast, confinement induces pronounced long-range order throughout
the cavity. Parsing out the individual species reveals that cavity-induced correlations are
quite pronounced and strongly preserved by the cavity even as bidispersity is introduced.

Overall, we have expanded the equilibrium thermodynamics literature that predicts the
structure of unconfined suspensions to now include the entropic effects of confinement.
Although the equilibrium configuration is independent of the hydrodynamics, it is well
known that the particle dynamics is not, viz. the reduction of equilibrium self-diffusion
in the presence of hydrodynamics (Batchelor 1976). This difference owes its origin to
the dependence of diffusion on the average configuration of an unbound suspension,
as illustrated by the familiar relation D = kTM . In the presence of confinement, the
tensorial form of the hydrodynamic mobility tensor is inherently position dependent;
the dependence of the hydrodynamic functions (§ 2.3) on particle configuration makes
the dynamics a function of both microstructure and hydrodynamics. This interrelation is
explored in the following section.

3.2. Dynamics of spherically confined bidisperse suspensions
The presence of a spherical cavity imposes entropic exclusion on the space accessible
for dynamic exploration, and produces additional hydrodynamic coupling not present in
unconfined systems. These entropic and hydrodynamic effects alter particle self-motion.
The most obvious consequence is that self-diffusion becomes anisotropic, as shown by
Zia and co-workers (Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018). In addition,
while there are two well-separated regimes of short-time self-diffusion and long-time
dynamics connected by the typical ‘cage-escape’ correlated regime, the long-time limit
is not diffusive owing to entropic exclusion by the cavity. The finite enclosure limits
particle exploration to a finite volume and produces a long-time plateau in the mean-square
displacement (MSD) that is invariant with confinement. Monodisperse suspensions
produce monotonically decreasing short- and intermediate-time MSD as a function of
both increasing volume fraction and decreasing cavity size. Here we explore the impact of
polydispersity on entropic and hydrodynamic effects in confinement.

3.2.1. Short-time self-diffusion in spherically confined bidisperse suspensions
A confined test particle experiences, at all positions, a hydrodynamic coupling with
the enclosure, making the short-time self-diffusion tensor anisotropic (Aponte-Rivera
et al. 2018) (an overview of diffusive regimes relevant to this work is given in
Appendix A). The short-time self-diffusion tensor of a confined particle can be
orthogonally decomposed into diffusion parallel and perpendicular to the line of
centres connecting a test particle with the cavity, the same decomposition applied
to an unconfined pair of particles interacting with each other. In the present work,
we computed the self-diffusion coefficients along the radial direction from the cavity
centre to the wall, D

s‖
0 (φ, φ2/φ, λc2, λp2) and transverse to that, the angular diffusion,

Ds⊥
0 (φ, φ2/φ, λc2, λp2). We computed these for a range of total volume fraction, size
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Figure 5. The radial component of the short-time self-diffusivity obtained here utilizing our new confined
mobility functions (see supplementary material, equation (S3)), implemented in polydisperse confined
Stokesian dynamics simulations. Plotted as a function of the normalized particle positions in the cavity,
for volume compositions of the large particles (symbols) 0.0 ≤ φ2/φ ≤ 1.0 with particle-size ratio λp2 = 2,
volume fraction φ = 0.10 and large particle-to-cavity relative size λc2 = 0.2. Dashed lines are the proposed
‘colloidal Dalton’s law’ where a simple number average of the two monodisperse curves is used to predict the
bidisperse D

s‖
0 /D0,1.

composition, cavity size and particle-size ratio, for bidisperse confined suspensions
following the procedure we described in section § 2.4.

We start with the semi-dilute regime. The self-diffusion along the radius of the
cavity, D

s‖
0 , is shown in figure 5 as a function of position in the cavity y/R for various

combinations of large and small particles, 0.0 ≤ φ2/φ ≤ 1.0, at fixed total volume fraction
φ = 10 %, particle-size ratio λp2 = 2 and confinement λc2 = 0.2. In the limit of all-small
or all-large particles (uppermost and lowermost curves), radial diffusion is fastest near the
centre of the cavity and decreases radially outward until it approaches zero near the wall.
The expected monodisperse case is recovered: small particles diffuse faster than large
ones. Starting with all large particles, the gradual replacement of volume fraction with
small particles drives diffusivity up everywhere in the cavity (except at the wall where
it must decay to zero). Thus, at the dilute condition shown in figure 5, polydispersity
plays only a quantitative role. A common discontinuity at y/R = 0.8 corresponds to the
closest a large-particle centre can get to the wall. Beyond that position, only small particles
directly contribute to average calculation of the radial diffusion coefficient. In fact, all the
curves overlap onto the small-particle monodisperse curve, showing that, in the region
near the wall, bidispersity does not affect the diffusivity of small particles, at least in this
semi-dilute regime.

We captured the quantitative effect of semi-dilute bidispersity at φ = 0.1 using a simple
mixing rule – a ‘colloidal Dalton’s law’ – based on the number of particles, indicated by
the dashed lines in figure 5. The linear additivity of the monodisperse curves reflects the
rarity of particle–particle interactions in semi-dilute suspensions, even rarer for encounters
between different species. The same behaviours are observed for the perpendicular Ds⊥

0
self-diffusivity (Appendix B, figure 16), and whether the dynamics monitored is that of
the small D

s‖
0,1 or large particles D

s‖
0,2 (Appendix B, figure 17).
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Figure 6. The radial component of the short-time self-diffusivity obtained here utilizing polydisperse confined
Stokesian dynamics simulations, plotted as a function of the normalized particle positions in the cavity. Volume
compositions of the large particles are 0.0 ≤ φ2/φ ≤ 1.0; particle-size ratio is λp2 = 2, total volume fraction
is φ = 0.40 and large particle-to-cavity size ratio is λc2 = 0.2. Transverse short-time self-diffusivity data can
be found in Appendix B, figure 18.

Crowding changes this picture substantially, as shown in figure 6 for φ = 0.40, where
we have plotted the diffusivity averaged over all particles at various positions in the
cavity for various size compositions. In the two monodisperse limits, peaks and troughs in
the diffusivity curves correlate with liquid-like microstructure, i.e. high (low) density of
particle centres corresponds to zones of low (high) mobility, as expected (Aponte-Rivera
et al. 2018). But polydispersity gives a new result: a non-monotonic change in radial
diffusivity with volume composition at some positions in the cavity. This non-monotonic
behaviour indicates that at high volume fraction, pair- and higher-order interactions change
substantially with size composition. A direct consequence of such interactions is that
replacement of even one large particle with small particles drives average diffusivity up
everywhere in the cavity; that is, bidispersity increases mobility from the viewpoint of an
all-large particle confined suspension. The origin of this behaviour is the disruption of
ordered structure: replacing even 5 % volume with small particles destroys the structure
(see Appendix B, figure 19), which increases the mobility of the suspension-averaged
diffusivity (figure 6).

Surprisingly, the average radial diffusivity in bidisperse suspensions can exceed that of
the seemingly ‘fastest’ scenario of all-small particles, where individual particles have the
highest mobility owing to small size. This increment is seen in figure 6 at several positions
in the cavity and is most pronounced near the cavity wall, y/R > 0.8, where only small
particle centres reside. Although mobility vanishes at contact, small-particle diffusivity
first increases markedly close to the wall. To understand this counterintuitive result, we
recognize that the annular volume is semi-dilute in small-particle volume fraction for
φ2/φ = 0.95, and becomes more concentrated as φ2/φ decreases, which allows small
particles to increasingly populate it. Even though the centres of large particles do not
reside within the wall annulus, the volume of large particles do occupy it; that is, the
annulus is never dilute in total volume fraction. Thus, the increased mobility of small
particles near the wall (as the total volume composition of large particles increases)
arises not from the emergence of a depleted layer, but from a decrease in the number
of hydrodynamic couplings. More specifically, the near-field two-body couplings underlie
this near-wall behaviour. This can be understood as follows. Although many-body far-field
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and two-body near-field interactions are present everywhere in the cavity, the former
dominate qualitative dynamical behaviour throughout the bulk, and the latter dominate
qualitative dynamical behaviour near the wall. To illustrate, we extract the far-field

contributions to the short-time self-diffusion (D
s,ff ,‖
0 ) from the total diffusion coefficient

D
s‖
0 and plot both everywhere in the cavity (figure 20 in Appendix B), which confirms that

many-body interactions are sufficient to describe the qualitative behaviour in the bulk but
not near the wall, and that two-body interactions are necessary to capture the qualitative
behaviour near the wall (and are also required to produce quantitative accuracy in the
bulk). Having established that near-field pair interactions set the particle dynamics near
the wall, we return to the observation that small-particle mobility increases as the total
volume composition of large particles increases. Recall from § 3.1 that the number of
neighbours near a small particle in the annulus near the wall decreases with increased
large-particle fraction (cf. figure 12a in Appendix B). Obviously, the pair interactions
with the wall do not change with volume composition, so we conclude that changes
in the number of nearest neighbours of a tracer near the wall drives the change in the
near-wall particle dynamics. Overall, for a small particle near the wall, as the annulus
becomes bidisperse, the number of lubrication neighbours decreases, and this decrease
in the number of near-field interactions drives up self-mobility and reliably predicts
the dynamics near the wall (but this simple predictive connection does not hold in the
bulk of the cavity where many-body interactions dominate). To see if the small-particle
mobility is faster also elsewhere in the cavity, we compute the average diffusivity within
each population: diffusion of either small or large particles in a bidisperse suspension.
This analysis is plotted in figure 7(a), which shows the radial self-diffusion averaged
over only the small particles D

s‖
0,1 in bidisperse suspensions, made dimensionless on

the Stokes–Einstein diffusivity of small particles, D0,1 = kT/6πηa1. It is evident that
small particles in a confined bidisperse suspension are more mobile everywhere in the
cavity than small particles in a monodisperse confined suspension. This speedup becomes
more pronounced as volume composition shifts to higher and higher fraction of large
particles. Small-particle diffusion is faster for almost all positions in the cavity – except
at y/R = 0.5: small particles get faster monotonically as the composition shifts to more
large particles, but around 95 % large particles, there is a high probability that small
particles have a large particle nearby, which is close to contact with the cavity and thus
slow. Counterintuitively, the more a suspension comprises large (less mobile) particles (at
fixed total volume fraction), the faster its smaller particles diffuse. This surprising result
can be understood as emerging from a decrease in the number of which, as mentioned
above, comprise both far-field many-body and near-field two-body couplings. The former
scales as the number of particles in the suspension. Thus, a bidisperse suspension will
always have fewer many-body couplings than a monodisperse small-particle suspension;
having fewer many-body hydrodynamic couplings increases the mobility of small particles
everywhere in the cavity. Overall, small-particle dynamics is found to be faster everywhere
in the cavity in a bidisperse suspension, owing to a decrease in the number of many-body
couplings. Near the wall, however, the effect of reduction in many-body couplings adds
to the effect of the decrease in the number of lubrication interactions with bidispersity to
produce a dynamical zone near the wall in which small-particle diffusivity is fastest in
bidisperse suspensions.

A similar examination of the radial self-diffusivity of large particles, D
s‖
0,2, given

in figure 7(b), reveals similarities and differences to the small-particle behaviour. The
monodisperse case exhibits the expected vanishing mobility at the wall, and a trough
half-way between that point and the centre, where there is a high density of particle centres.
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Figure 7. Species-specific contributions to the radial component of the short-time self-diffusivity, plotted as
a function of distance from the cavity centre, for the same conditions as figure 6. (a) Diffusivity of small
particles in a suspension at fixed total volume fraction φ = 0.40, as large particles become more numerous.
(b) Diffusivity of large particles in a suspension at fixed total volume fraction φ = 0.40, as small particles
become more numerous.

Accordingly, there are two prominent peaks of high mobility (y/R ≈ 0.6 and y/R ≈ 0.2)
in the regions where there is a low density of particle centres. As large particles are
replaced by an equal volume of small particles, the structure is disrupted (see Appendix B,
figure 13a). Now the interstitial space is populated by small particles, displacing
large particles from the previously packed regions. This structural change smooths the
dynamical heterogeneity: troughs in the large-particle diffusivity in the radial direction are
shallower, and the peaks in mobility are lower. There are new peaks in D0,2, because large
particles now sample a greater range of positions. Although structural changes explain the
smoothing, hydrodynamics drives the pronounced decrease at y/R ≈ 0.6 and y/R ≈ 0.2:
bidisperse suspensions have more particles than a monodisperse large-particle suspension,
which increases the number of many-body hydrodynamic couplings experienced by large
particles, in turn decreasing their mobility. Overall, large-particle short-time self-diffusion
is made more spatially uniform by bidispersity.

Finally, the separate contributions of the small and large particles now explain the highly
non-monotonic behaviour in figure 6 – the inhomogeneities (peaks and troughs) change
as a function of volume composition reflecting the structural changes of the suspension
– which is a consequence of the change in structure induced by polydispersity (see
Appendix B, microstructure plots g1( y) and g2( y) in figure 13a,b) and the change in
hydrodynamic couplings (far-field many body and near-field two body). At short times,
the self-diffusion of a particle is always influenced by many-body couplings no matter
its location in the cavity, and even though it describes motion within a nearest-neighbour
cage and reflects the coupling with those nearest neighbours, those nearest neighbours are
hydrodynamically coupled to every other particle in the suspension and thus so is the caged
particle. At longer times, further spatial exploration driven by Brownian motion will lead
to not only hydrodynamic but also entropic interactions with other suspended particles
and with the cavity. In the next section, we study this self-motion as the particles move
throughout the entire cavity.

3.2.2. Long-time behaviour: mean-square displacement
Here, we measure the MSD as a function of time, as described in § 2.4. The slope of
these data indicates whether motion is diffusive, giving confirmation of the short-time
self-diffusivity calculation from hydrodynamic theory in § 3.2.1, and also exposes the
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long-time dynamics. We will examine vertical shifts in MSD curves that arise from
changes in volume composition and lag time.

The radial MSD, 〈r2
‖〉, for monodisperse and bidisperse suspensions, is plotted in

figure 8(a) for a moderately concentrated, confined suspension at total volume fraction
φ = 0.25 and several volume compositions φ2/φ. The two monodisperse limits recover
behaviour observed previously: a linear (diffusive) growth at short times, followed by
transition regions of sublinear (subdiffusive) growth at intermediate times and lastly
a long-time plateau. Unsurprisingly, the smaller particles reach the plateau earlier and
have a slightly higher terminal displacement plateau, both owing to their smaller size.
Bidisperse suspensions display a smooth quantitative transition from one monodisperse
limit to the other, as smaller particles replace larger ones; in fact, this progressive growth
at moderate concentration is a simple linear combination of the confined monodisperse
MSD data. This is made obvious by extracting the average over small particles at each
of the six compositions and plotting them in figure 8(b), where the curves overlay the
monodisperse average, showing that the absolute value and the temporal evolution of
MSD of small particles is the same regardless of their relative abundance. The same
procedure is followed for the large-particle population, where the average MSD of large
particles within the suspension at the six volume compositions all fall together on the
monodisperse curve for large particles (figure 8c). This linear-superposition effect reflects
the structural observations that polydispersity does not significantly change structure in
the semi-dilute regime (Appendix B, figure 15). We conclude that, in semi-dilute to
moderately concentrated regimes, particles that sample the entire confined suspension
behave as though they are in a monodisperse suspension at the same volume fraction.
One can thus know the average MSD at any volume composition by knowing only the
total volume fraction – provided that φ ≤ 0.25. Therefore, at low and moderate volume
fractions, hydrodynamic and entropic interactions between particles produce an effective
or mean-field viscosity. However, recalling figure 7, we expect more qualitative effects at
higher concentrations, which we examine next.

For more concentrated suspensions, figure 9(a), radial packing leads to a more
pronounced caging plateau at intermediate times, followed by a superdiffusive regime
not seen at lower volume fractions but observed previously for confined monodisperse
suspensions (Aponte-Rivera et al. 2018). More importantly, at higher volume fractions,
volume composition plays a qualitative role in the radial MSD. At short times, the
transition from all-small to all-large particles is monotonic, but some of the MSD curves
shift toward the large-particle limit and the others toward the small-particle limit – the
dynamics is dominated by the most numerous species, Ni/N, as shown in the legend. At
intermediate times, bidispersity lengthens and prolongs the correlation plateaus beyond
those in the monodisperse limits. While the all-large-particle system has a pronounced
plateau and ostensibly the slowest particles, we find the surprising result that having
even slight bidispersity produces a flatter and more prolonged caging plateau. Similarly,
replacing small particles with some large ones also produces flatter and more prolonged
caging plateaus. In fact, the changes in caging behaviour induced by polydispersity is
present in the radial MSD curves for each particle size in bidisperse suspensions, as shown
in figure 9(b,c) for small 〈r2

‖〉1 and large 〈r2
‖〉2 particles, respectively. Also, in both (b)

and (c), the strength of caging follows the same non-monotonic behaviour with volume
composition as observed in figure 9(a), where the radial MSD of either small or large
particles at φ2/φ = 90 % exhibits the strongest caging. This leads to a more complex
influence of volume composition on the long-time dynamics. This behaviour is analysed
next.
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Figure 8. The MSD 〈r2
‖〉/a2

1 as a function of time at moderate volume fraction (φ = 0.25) for particle-size ratio
λp2 = 4/3 and confinement λc2 = 0.2. Volume composition φ2/φ varies from one monodisperse limit to the
other as shown in legend. (a) The MSD is averaged over all particles, giving a measure of how polydispersity
affects the entire suspension-averaged dynamics. The average dynamics of (a) small and (b) large particles in
a surrounding suspension, as they change in the presence of more (a) large or (b) small particles, at fixed total
volume fraction. (a) Averaged over all particles. (b) Small-particle contribution. (c) Large-particle contribution.

At long times, the volume-composition effect in figure 9(a) is not monotonic: the
polydisperse curves move downward from all-small particles until φ2/φ = 70 %, but
suddenly jump below the all-large particles at φ2/φ = 90 %, then move upward. In
figure 9(b), we observe that small particles in bidisperse suspensions shift from a
more to a less mobile behaviour than those in monodisperse suspensions around
t/(a2

1/D0,1) ∼ O(1). This behaviour arises because a small particle can explore its
immediate (polydisperse) surroundings faster than it could in a monodisperse suspension,
owing to a decrease in the number of many-body hydrodynamic couplings. An inset
is provided, figure 9(b), to show this speedup more clearly. However, at longer times
its motion is suppressed – it is more difficult for small particles to explore longer
distances when it must exchange places with particles larger than itself. Physically,
small particles get radially trapped between less mobile large particles, which ultimately
decides their long-time fate. This behaviour is reversed for large particles: figure 9(c)
shows that large particles in bidisperse suspensions are less mobile than they are in
monodisperse suspensions for short to intermediate times t/(a2

1/D0,1) � O(10), while
at longer times t/(a2

1/D0,1) ∼ O(100), more mobile behaviour than in monodisperse
suspensions is only possible for large particles in suspensions with a high relative
number of small particles N2/N = 0.30 and 0.15. Physically, large particles in bidisperse
suspensions are slower to explore their immediate surroundings (in-cage diffusion) than
in monodisperse suspensions (inset figure 9c), owing to an increase in the number of
many-body hydrodynamic couplings. As large particles try to break out of their initial
cages, they encounter small, very mobile particles, but these are densely packed around
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Figure 9. The MSD 〈r2
‖〉/a2

1 for (a) monodisperse and bidisperse suspensions at total volume fraction φ =
0.40, with particle size ratio λp2 = 4/3, confinement λc2 = 0.2, for several volume compositions of large
particles φ2/φ. The MSD of either (b) small 〈r2

‖〉1/a2
1 or (c) large 〈r2

‖〉2/a2
1 particles at the same suspension

compositions. (a) Averaged over all particles. (b) Small-particle contribution. (c) Large-particle contribution.

them, overall creating more durable cages than an all-large-particle cage. Overall, parsing
the MSD into the separate contributions of the two species reveals that polydispersity
increases cage durability; this reverses the early-time polydispersity trend of small particles
but reinforces the early-time trend of large particles; and size polydispersity slows down
long-time motion, regardless of size: both small and large particles diffuse slower when
placed in a polydisperse confined suspension (cf. figure 9), indicating a mechanism for
polydisperse diffusion that is independent of particle size. The next step is to understand
the extent to which this polydisperse cage dynamics is influenced by confinement
(figure 9a).

The result that bidispersity suppresses the long-time radial MSD of each species relative
to the monodisperse limit can be understood by connecting cavity-length-scale structural
fluctuations to the dynamics. The plots of the radial distribution function g( y) in figure 3 in
§ 3.1 and figure 21 in Appendix B showed that polydispersity to some extent homogenizes
cavity-induced layering, but not to the extent that polydispersity smears out structure
in unbound suspensions. Evidently, this structural smoothing slows MSD, starting with
either all-small or all-large particles. The suppression of MSD arising from smoother
structural variations can be understood by recognizing that structural homogeneity
suppresses velocity fluctuations, where we recall that MSD is the autocorrelation of
velocity fluctuations

〈r2(t)〉 = 2t
∫ ∞

0
〈u(τ ) · u(0)〉 dτ. (3.2)

The angle brackets signify an inner product or average with weighting set by the
particle distribution. A mobile particle moving through a more heterogeneous structure
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Figure 10. The MSD 〈r2
⊥〉/a2

1 for (a) monodisperse and bidisperse suspensions at total volume fraction
φ = 0.40, particle-size ratio λp2 = 4/3 and confinement λc2 = 0.2, for several volume compositions of large
particles φ2/φ. The MSD of either (b) small 〈r2

⊥〉1/a2
1 or (c) large 〈r2

⊥〉2/a2
1 particles at the same suspension

compositions. (a) Averaged over all particles. (b) Small-particle contribution. (c) Large-particle contribution.

– encountering densely packed regions alternating with solvent pores, or large particles
alternating with small particles – will experience pronounced fluctuations in its velocity
(Einstein 1906; Batchelor 1970; Batchelor & Green 1972; Batchelor 1976; Ermak &
McCammon 1978; Russel & Glendinning 1981; Batchelor 1983; Rallison & Hinch 1986;
Davis & Hill 1992). Conversely, a more homogeneous structure will induce fewer such
fluctuations and hence reduce Brownian MSD. The plots for the structure g(y) confirm this
view and produce the same trends with added polydispersity: as one moves from all-small
or all-large particles (from one curve to another) to a more balanced mixture, the structure
becomes more homogeneous. As a probe travels radially outward (left to right along one
g( y) curve), it encounters the heterogeneity that produces velocity fluctuations, which
becomes less and less pronounced with added polydispersity, weakening fluctuations.
At low volume fractions, the structure is nearly uniform, explaining the absence of this
effect in figure 8. This analysis of g(y) explains the reduction in the magnitude of
the MSD, including the seemingly non-monotonic dependence on volume composition.
The correlations induced by the cavity also explain the long-time dynamics, as follows.
As a particle traverses the cavity, it will get caged between zones of high particle
density. Thus, the width between peaks in g(y) (see figure 21 in Appendix B) establishes
cavity-length-scale caging, and such width increases for bidisperse suspensions, setting
the onset and length of the caging plateau. Parsing the two contributions to g( y) from
the two particle sizes gives two curves with separate but very closely spaced correlation
peaks – because the peaks coincide, this generates wider zones between the double peaks,
producing stronger caging, as shown in figure 3 in § 3.1 and figure 21 in Appendix B.

Now we turn our attention to transverse MSD in in the concentrated regime. In contrast
to the rich radial dynamics discussed above, the angular motion in figure 10(a) shows
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Figure 11. Confinement-induced layering convolves with polydispersity to induce de-mixing into
size-segregated radial layers that change with volume composition. Contour plots of the average distribution
of particle types, calculated by monitoring the occupants in each of the radial bins as particles diffuse over a
time 1200 a2

1/D0,1, the average time required for particles to explore the length of the cavity. Occupants were
identified only based on size, with a value 1 assigned to small particles and a value 2 assigned to large particles.
Seven plots are shown, corresponding to different volume compositions. Colour scheme shown in legend.

a simple monotonic and progressive growth of MSD between the two monodisperse
limits as the relative abundance of small particles is increased. This behaviour can be
understood by examining the MSD computed for only large or only small particles
(figure 10b,c), which shows almost no volume-composition dependence, leading to a
simple weighted-average behaviour. This behaviour is quite similar to both the radial and
angular MSD in semi-dilute suspensions in figure 8, and has a similar explanation here for
concentrated transverse MSD: there is very high likelihood that a particle will encounter
only particles of its same size when exploring in the transverse direction.

To further illustrate this idea, we constructed contour plots of the average distribution
of particle types (small or large) in our dynamic simulations at high concentration
(figure 11). The cavity-induced layering is clear, as is the impact of polydispersity and
volume composition: together they lead to distinct radial domains that vary with the
degree of polydispersity. Small and large particles are effectively segregated from one
another; as a result, a particle moving transversely through the cavity at fixed radius
will encounter mostly other particles of its own size and thus experience much weaker
fluctuations than one moving radially across the layered microstructure. The particle
ordering shown in figure 10 explains why, in contrast to the angular MSD, the radial
MSD of small and large particles in bidisperse suspensions is noticeably distinct from their
respective monodisperse radial MSD, i.e. the volume-composition-dependent de-mixing
explains the non-monotonicity in figure 9. Suspensions with a high volume composition
of large particles have wider radial domains, which correlate with stronger caging; as
large particles are replaced with small ones, the radial domains shrink, producing weaker
caging. While this in turn leads to radial long-time MSD that changes qualitatively
with volume composition, the caging effect leaves the angular dynamics insensitive to
polydispersity.
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Overall, in the concentrated regime, many-body interactions produce a new effect:
polydispersity and confinement combine to induce radial de-mixing into size-segregated
populations. The cavity becomes the most influential ‘nearest neighbour’, setting the
length scale of and dynamics within intermediate-length-scale radial domains or cages.

4. Conclusions

We have presented a new theoretical framework to model size–polydisperse confined
colloidal suspensions via an expansion of the confined Stokesian dynamics algorithm,
in order to explore the dual effects of confinement and particle-size polydispersity
on the equilibrium dynamics of hydrodynamically interacting Brownian spheres.
Our previous work established that hydrodynamic interactions produce qualitative effects
on the dynamics of confined suspensions that persist up to very high volume fraction.
Here, we explored how bidisperse particle size further impacts these effects.
The framework rigorously accounts for many-body hydrodynamic interactions and
confinement, and is applicable to any degree of polydispersity, enclosure size,
and crowding. We focused our studies here on bidisperse suspensions at different
volume fractions, volume compositions, degrees of confinement and particle-size ratios,
measuring their impact on particle configuration as well as the short- and long-time
dynamics.

We first studied structural effects. Our model recovers previously reported
cavity-centred radial distribution function (RDF) data for monodisperse confined
suspensions. At low volume fraction, confinement induces structural effects only
at the walls; polydispersity effects are negligible. At high volume fraction, the
cavity-centred RDF shows that changing volume composition away from a monodisperse
system acts to homogenize structure – a well-known effect induced by polydispersity.
Confinement, however, resists this homogenization, starting with a very strong correlation
peak near the wall that propagates into the cavity. Away from the wall, the strength of the
correlation peaks is set by bidispersity, while the specific location of the peaks is set by
confinement – similar to how a reference particle sets the location of nearest-neighbour
peaks in unconfined suspensions. We analysed the structural correlations within each size
species as these correlations changed with surrounding volume composition. Doing so
revealed that cavity-induced correlations (within a size species) are quite pronounced and
strongly preserved by the cavity even as bidispersity is introduced. Although seemingly
opposite, these two effects – the tendency of the cavity to induce strong correlations and
the tendency of polydispersity to smear them out – have a common driver, which is to
maximize configurational entropy of particles in the cavity interior. The interplay between
confinement and polydispersity in setting structure remains strong regardless of cavity size
or volume composition.

The configuration-dependent short-time self-diffusion tensor encodes these structural
effects and expresses them as hydrodynamic effects. We first examined the short-time
self-diffusion (STSD), calculating it via a stochastic sampling method to extract the
hydrodynamic mobility in simulation. The STSD in a confined suspension is anisotropic
(Aponte-Rivera et al. 2018) and here we find that this anisotropy varies with volume
composition, relative particle size and particle-to-cavity size ratio. In the semi-dilute to
moderately concentrated regime, polydispersity plays only a quantitative role in STSD: it
is a linear superposition of the two monodisperse limits weighted by volume composition.
This owes its origin to the rarity of inter-species particle–particle interactions, which
obviates the effect of polydispersity on STSD.
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In contrast, at higher concentrations, bidispersity exerts a qualitative impact on confined
STSD, because interactions between the different species are frequent and because
crowding promotes higher-order hydrodynamic interactions, which themselves are altered
by difference in particle sizes. Even very weak polydispersity makes particles on average
diffuse faster at short times, compared to a monodisperse suspension of all large particles.
Surprisingly, the average radial diffusivity in bidisperse suspensions can exceed that
of the seemingly ‘fastest’ scenario of all-small particles. Size bidispersity makes small
particles diffuse faster throughout the cavity. This effect is most pronounced near the wall,
owing to the combined effects of lubrication interactions and confinement. Meanwhile,
large-particle STSD is made more spatially uniform by bidispersity. These individual
changes in concentrated short-time self-diffusion led to volume composition-driven
non-monotonicity of the STSD.

We next examined the dynamics over longer time scales by measuring the MSD
as a function of time, confirming the short-time self-diffusivity calculated from our
hydrodynamic theory framework, and exposing the long-time dynamics. In the semi-dilute
to moderately concentrated regime, inter-species particle encounters are infrequent enough
that polydispersity makes only a quantitative contribution to the particle dynamics over
all time scales. However, in the concentrated regime, many-body interactions produce
a new effect: polydispersity and confinement together induce radial de-mixing into
size-segregated populations. The cavity becomes the most influential ‘nearest neighbour’,
setting the length scale of and dynamics within these intermediate-length-scale radial
domains or cages. The volume composition (degree of bidispersity) changes the structure
of the radial domains, amplifying the anisotropy of the MSD tensor. Because radial
displacements involve frequent inter-species encounters as a particle travels across the
secondary cages, this de-mixing effect drives non-monotonic dependence of radial MSD
on volume composition. In contrast, the angular or transverse MSD displays little of the
rich behaviour seen in the radial MSD because angular displacements do not require a
particle to migrate out of the secondary cages; instead, a particle can migrate through a
band of same-size particles, encountering little to no polydispersity effect. These effects
on MSD are both entropic and many-body hydrodynamic in origin.

While the theoretical framework and computational algorithm developed here is general
for any degree of polydispersity and volume fraction, we have presented results for only
binary mixtures. More general size polydispersity could change the strength of some of the
effects reported here (structural homogenization, particle-size segregation, size specific
mobility changes, strength of caging), as well as introduce entirely new effects. However,
the present work sets a foundation for how confinement and polydispersity interact to
change the suspension dynamics.

The results presented here hold promise for explaining colloidal-scale physics
implicated in the function of biological cells. For example, most intracellular binary
reactions involve differently sized particles, such as protein synthesis in bacteria,
which involves enzymatic reactions between macromolecules (‘mRNA translation’) with
well-known size polydispersity in the crowded, confined cytoplasm. In E. coli, most of
the translation molecules are localized near the cell membrane; our findings regarding
enhancement of STSD of small particles and suppression of long-time MSD may be key
to explaining how these protein factories remain localized near the cell wall. There are
many other examples of colloidal-scale physics implicated in life-essential processes that
may benefit from our results; see our recent review (Maheshwari et al. 2019). In terms of
non-living systems, the de-mixing behaviour we discovered could be useful in the design
of encapsulated micro-reactors and therapeutic vesicles, where spatial segregation can
be used to control reactions or delivery. Future enhancements of our model (including
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particle softness, interaction potentials and ellipticity) can support such exploration, such
as modelling the impact on reactions and binding or self-assembly. Also, it would be
interesting to investigate the effects that incommensurate particle-size ratios and levels
of confinement (Németh & Löwen 1999; Desmond & Weeks 2009; Schrack et al. 2020)
have on the demixing, diffusivity, and, more interestingly, the promotion of glassy-like
states of confined polydisperse colloidal suspensions.
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Appendix A. Diffusive regimes

At infinite dilution, a spherical particle undergoes translational diffusion that is given at
all times (beyond the solvent time scale) by the Stokes–Einstein relation. As soon as there
is even one additional particle, the added length scale produces new relaxation times
and, in turn, new diffusive regimes emerge, each arising from a distinct rate process.
A tracer particle moving hardly a fraction of its size senses the no-slip surfaces of other
particles via hydrodynamic interactions; it can diffuse without disturbing the arrangement
of surrounding particles. This STSD DS

0(φ) is a purely hydrodynamic quantity, and is
slower than self-diffusion in pure solvent, D0 = kTI/6πηa, because the presence of other
no-slip surfaces make the surrounding medium more viscous. At longer times, the tracer
will wander out of its nearest-neighbour cage, eventually migrating from cage to cage,
undergoing a random walk through the suspension. This long-time self-diffusion DS∞(φ) is
slower than STSD because it requires distortion of the surrounding particle configuration,
and thus has both hydrodynamic and entropic contributions. The long-time limit of
self-diffusion is well defined in unbound suspensions, where a particle can wander far (in
an absolute sense) from its original starting point. The collective diffusion, DC(φ, ∇φ),
is entirely distinct from self-diffusion, and arises when particles migrate down a bulk
concentration gradient. We focus our studies on self-diffusion.

The self-diffusion coefficient in suspensions can be measured in both the short-
and long-time limits in experiments or simulations by monitoring absolute particle
displacement over time and computing the slope of the ensemble-averaged MSD.
Analytical theory relating STSD to hydrodynamic mobility can also be utilized to predict
the diffusion tensor via the Einstein–Smoluchowski relation for dilute suspensions of
spheres (Batchelor 1976) and has been recently expanded to concentrated, unbound
suspensions (Sierou & Brady 2001; Zia et al. 2015). Theoretical prediction of the STSD
thus rests on obtaining the hydrodynamic mobility tensor, which is a function only of the
geometry of the system. The long-time self-diffusion tensor is modelled analytically in
dilute suspensions and is proportional to the STSD(Batchelor 1983) with a correction for
pair interactions; in concentrated suspensions, this correction is adjusted for many-body
interactions (Brady 1994). Overall the rate processes involved in short-time and long-time
self-diffusion in unbound suspensions are well-known to depend on hydrodynamic
coupling and entropic exclusion, both of which are strongly influenced by geometry.
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In particular, spherical confinement was recently shown to produce qualitative changes
in self-diffusion of colloids (Aponte-Rivera & Zia 2016; Aponte-Rivera et al. 2018).

Appendix B. Supplemental figures
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Figure 12. (a) Per cent increment in the total number of particles at wall contact with respect to a monodisperse
(all-large) suspension, 100 % × [(Ntot − Nmono,2)/Nmono,2]wall, as it changes with bidispersity. (b) Fraction of
large (left axis) and small (right axis) particles at wall contact.

Discussion of figure 12: as large particles are replaced with small ones at fixed volume
fraction (going from right to left in figure 12), four things happen. First, the total number
of particles increases, even at fixed volume fraction (figure 12a). The total number of large
particles near the wall decreases, which tends to cause a loss in configurational entropy in
the interior of the cavity. However, small particles increase packing density along the wall,
which allows the total number of particles close to the wall to increase at fixed volume
fraction, causing a gain in configurational entropy near the wall. Evidently the increase in
configurational entropy near the wall outweighs the loss of bulk configurational entropy.
Second, the number of small particles near the wall increases (at fixed total φ), simply
because there are more small particles everywhere. Third, the fraction of small particles
N1,wall/N1,total near the wall (rather than the bulk) increases. However, this fraction is less
than unity regardless of volume composition, showing that small particles still populate
the entire cavity (figure 12b). Finally, the excluded volume gained in the bulk by packing
particles near the wall is greater for a large particle compared to a small particle; as the
suspension becomes more abundant in small particles the fraction of large particles placed
near the wall increases (figure 12b). This terminates in a finite number greater than zero
at 100 % large particles, showing that large particles will populate both the bulk and wall
regions.
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Figure 13. Cavity-centred RDF g( y) for monodisperse and bidisperse suspensions confined in a spherical
cavity. The total volume fraction is φ = 0.40, the particle size ratio λp2 and the size of large particles relative
to the cavity are λc2 for (a) λp2 = 2.0 and λc2 = 0.15 and (b) λp2 = 4/3 and λc2 = 0.2. Several volume
compositions are shown, plotted in terms of the volume fraction of large particles relative to the total volume
fraction, 0.0 ≤ φ2/φ ≤ 1.0.

Discussion of figure 13: at high volume fraction, the cavity-centred RDF shows that
changing volume composition away from a monodisperse system acts to homogenize
structure – a well-known effect induced by polydispersity. Confinement, however, resists
this homogenization, starting with a very strong correlation peak near the wall that
propagates into the cavity. Away from the wall, the strength of the correlation peaks is
set by bidispersity, while the specific location of the peaks is set by confinement – similar
to how a reference particle sets the location of nearest-neighbour peaks in unconfined
suspensions. Although seemingly opposite, these two effects – the tendency of the cavity
to induce strong correlations and the tendency of polydispersity to smear them out – have
a common driver, which is to maximize configurational entropy of particles in the cavity
interior. The interplay between confinement and polydispersity in setting structure remains
strong regardless of cavity size, volume composition, or particle size ratios (figures 3
and 13).
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Discussion of figure 14: in figure 14, we analysed the structural correlations within each
size species showing that these correlations change with surrounding volume composition.
Doing so revealed that cavity-induced correlations (within a size species) are quite
pronounced and strongly preserved by the cavity even as bidispersity is introduced
irrespective of volume composition.
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Figure 15. Cavity-centred RDF g( y) for monodisperse and bidisperse suspensions confined in a spherical
cavity for two total volume fractions (a) φ = 0.25 and (b) φ = 0.10. The particle-size ratio is λp2 = 2 and the
size of large particles relative to the cavity is λc2 = 0.2. Several volume compositions are shown, plotted in
terms of the volume fraction of large particles relative to the total volume fraction, 0.0 ≤ φ2/φ ≤ 1.0.

Discussion of figure 15: figure 15 shows that polydispersity at low volume fractions exerts
negligible influence on structure throughout most of the cavity, although confinement still
produces measurable correlations near-wall contact.

1.0

0.8

0.6

0.4D
0s ⊥

/D
0
,1

0.2

0 0.2 0.4

Position from the centre (y/R)

0.6 0.8 1.0

φ = 0.10
λc2

= 0.2

λp2
= 2.0φ2/φ : 100 %

50 %
90 % 70 %

Increasing % of large paticles

0 %
95 %
30 %

Figure 16. The perpendicular component of the short-time self-diffusivity Ds⊥
0 /D0,1 plotted as a function

of the normalized particle position in the cavity, for several values of volume composition of large
particles (symbols) 0.0 ≤ φ2/φ ≤ 1.0 with particle size ratio λp2 = 2, volume fraction φ = 0.10 and large
particle-to-cavity relative size λc2 = 0.2. Dashed lines are the proposed ‘colloidal Dalton’s law’ where a simple
number average of the two monodisperse curves is used to predict of the bidisperse Ds⊥

0 /D0,1.

925 A35-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.563


Polydisperse diffusion in confinement

Discussion of figure 16: as shown in figure 16, the proposed ‘colloidal Dalton’s law’,
§ 3.2.1, is also valid for transversal diffusion of bidisperse confined colloidal suspensions
in the semi-dilute regime φ < 10 %.
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Figure 17. The radial component of the short-time self-diffusivity averaged over (a) only large and (b)
only small particles and plotted as a function of the normalized particle positions in the cavity, for volume
compositions of the large particles 0.0 ≤ φ2/φ ≤ 1.0 with particle-size ratio λp2 = 2, volume fraction φ =
0.10 and large particle-to-cavity relative size λc2 = 0.2.
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Figure 18. The perpendicular component of the short-time self-diffusivity obtained here utilizing polydisperse
confined Stokesian dynamics simulations, plotted as a function of the normalized particle positions in the
cavity. Volume compositions of the large particles are 0.0 ≤ φ2/φ ≤ 1.0; particle-size ratio is λp2 = 2, total
volume fraction is φ = 0.40 and large particle-to-cavity size ratio is λc2 = 0.2.
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Figure 19. Comparison of structure for large particles in monodisperse, φ2/φ = 100 %, and bidisperse
suspensions, φ2/φ = 95 %, with particle-size ratio λp2 = 2, volume fraction φ = 0.40 and large
particle-to-cavity relative size λc2 = 0.2.
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λc2 = 0.2 at a volume fraction φ = 0.4, particle-size ratio λp2 = 2.0 and for several volume compositions
0 % ≤ φ2/φ ≤ 100 %.
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Discussion of figure 20: although many-body far-field and two-body near-field interactions
are present everywhere in the cavity, the former dominate qualitative dynamical behaviour
throughout the bulk, and the latter dominate qualitative dynamical behaviour near the

wall. To illustrate, we extract the far-field contributions to the STSD (Ds,ff ,‖
0 ) from the

total diffusion coefficient D
s‖
0 and plot both everywhere in the cavity (figure 20), which

confirms that many-body interactions are sufficient to describe the qualitative behaviour
in the bulk but not near the wall, and that two-body interactions are necessary to capture the
qualitative behaviour near the wall (and are also required to produce quantitative accuracy
in the bulk).
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Figure 21. Cavity-centred RDF g(y) for monodisperse and bidisperse suspensions confined in a spherical
cavity (a) averaged over all the particles and (b) averaged over either small or large particles. Particle-size
ratio is λp2 = 4/3, total volume fraction is φ = 0.40 and the size of large particles relative to the cavity is
λc2 = 0.2. Several volume compositions are shown, plotted in terms of the volume fraction of large particles
relative to the total volume fraction, 0.0 ≤ φ2/φ ≤ 1.0.

Discussion of figure 21: in regard to figure 21, the contour plots in figure 11 give similar
information because they too map the position of particle centres in the cavity. Indeed,
the signature of particle segregation is visible here in the plots of g1( y) and g2( y) for the
two particle sizes, where each plot reflects cavity zones of higher and lower correlation of
particle centres of a given particle size. For example, according to g1( y) at φ2/φ = 30 %,
there are three zones in the cavity where small particles are more likely to reside (y/R ∼
0.25, 0.55, 0.85). These peaks match the locations of the three main ‘halos’ observed in
corresponding contour plot in figure 11. However, the combined (contour) plots combine
the signals of both particle sizes, similar to a colour-coded superposition of g1( y) and
g2( y), with the additional display of the angular distribution. The contour plots also give
clear visual information about the composition of the suspension, which is evident in the
shift from blue-like to red-like contours. Such clear visual illustration of the composition
effect is lost in the separate plots of g1( y) and g2( y) owing to the normalization with
respect to the number density of each particle kind. As a final point, the contour plots
in figure 11 show whether a position in the cavity is mostly occupied by either small or
large particles, neglecting the frequency with which each bin is occupied. In contrast, the
frequency of occupation is captured in g1( y) and g2( y) owing to the difference in size of
the correlation peaks and troughs.
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