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Abstract. We re-investigate the theory of deformations of tilings using P-equivariant
cohomology. In particular, we relate the notion of asymptotically negligible shape
functions introduced by Clark and Sadun to weakly P-equivariant forms. We then investi-
gate more closely the relation between deformations of patterns and homeomorphism or
topological conjugacy of pattern spaces.

1. Introduction
The study of aperiodic systems in physics or geometry has led to the definition of
cohomology groups associated with aperiodic tilings or point sets of Rn (we use here the
word pattern to mean either of them). In physics some elements of these groups are related
(via K -theory and cyclic cohomology) to topologically quantized transport properties; see
[KR06] for a recent overview. In geometry, Sadun, Williams and Clark have given an
interpretation of the cohomology group (with values in Rn) in terms of deformation theory
of tilings [SW03, CS06]. In short, an (admissible) 1-cocycle defines a deformation of a
tiling by redefining the shape of its tiles. If the cocycle is a coboundary then the deformed
tiling is locally derivable from the original one. A deformation alters the properties of
the dynamical system associated with the tiling, except if the new tiling is topologically
conjugate to the old one, a notion which is, however, strictly weaker than being mutually
locally derivable. To capture also topological conjugacy in cohomological terms, Clark and
Sadun introduced the concept of asymptotically negligible cocycles and showed that such
cocycles yield deformations which are topologically conjugate.

Clark and Sadun used a formulation of tiling cohomology which is based on the
Anderson–Putnam–Gähler construction. This construction furnishes a system of finite
CW-complexes so that one can make use of their cellular cohomology. Our aim here is
to provide a formulation of deformation theory in terms of pattern equivariant functions
making use of de Rham cohomology. From this point of view a deformation of a pattern
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is given by a pattern equivariant 1-form. This allows us to formulate the somewhat ad
hoc notion of asymptotically negligible cocycles in terms of natural analytic properties
of pattern equivariant functions (Theorem 3.4). In fact, as was introduced in [KP06],
there are naturally strongly and weakly pattern equivariant forms on Rn and we find that
the theory of deformation modulo topological conjugacy of a pattern P is related to the
mixed quotient

Z1
s−P (R

n, Rn)/B1
w−P (R

n, Rn) ∩ Z1
s−P (R

n, Rn),

where Z1
s−P (R

n, Rn) denotes the Rn-valued strongly P-equivariant closed 1-forms and
B1
w−P (R

n, Rn) the Rn-valued weakly P-equivariant exact 1-forms. A study of the mixed
quotient for certain classes of tilings is under investigation; for substitution tilings the
results of [CS06] point out that this is worthwhile.

As has already been observed by Sadun and Williams, deformations give rise to
homeomorphisms between tiling spaces. We review this result in the framework of
P-equivariant functions. We find that homeomorphisms coming from deformations
preserve the canonical transversals and show that this property characterizes such homeo-
morphisms: any homeomorphism between two pattern spaces preserving the canonical
transversals and identifying the two patterns comes from a deformation (Corollary 4.11).

We further investigate deformations which give (topologically) conjugate patterns. Our
Theorem 4.13 can be seen as the analogue of Clark and Sadun’s result about asymptotically
negligible cocycles: deformations differing from the identity by a weakly P-equivariant
1-form lead to conjugate patterns. More precisely, we find that they give rise to a second
homeomorphism which also identifies P with its deformed pattern, but does not preserve
the canonical transversal. Instead it commutes with the Rn actions. Under an additional
assumption on the deformation, which we call boundedness, a converse can be obtained:
bounded deformations which yield (pointed) conjugate patterns differ from the identity by
a weakly P-equivariant 1-form (Theorem 4.15).

Finally, we present a detailed analysis of the question of invertibility of deformations
(which somehow is hidden in the notion of admissibility in [CS06]). We show
that there exists a neighbourhood of the identity deformation which contains only
invertible deformations.

2. Preliminaries
2.1. Pattern spaces and their dynamical systems. The objects we are interested in and
which we want somehow to compare are closed subsets of Euclidean space, mostly of
finite local complexity. These will mostly be uniformly discrete sets, but for comparison
with [CS06] we consider also tilings; for shortness we call them patterns. A tiling can
either be viewed as a covering of Euclidean space by compact sets, which we assume for
simplicity to be polyhedral and touch face to face, or as a closed subset, namely the set
given by the boundary points of its tiles. The latter point of view is the one taken for the
definition of the distance.

Let P, Q be two closed subsets of Rn . Define their distance to be

D(P, Q)= inf
{
ε > 0

∣∣∣∣ dH

(
B1/ε[P] ∪ ∂B

(
0,

1
ε

)
, B1/ε[Q] ∪ ∂B

(
0,

1
ε

))
≤ ε

}
.
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Here B(x, r) is the (open) ball of radius r around x , ∂B(x, r) denotes its boundary,

Br [P] = B(0, r) ∩ P,

and dH is the Hausdorff distance. We call Br [P], x ∈ Rn , the r -patch of P around zero.
Again, for tilings we define their r -patches viewing them as the closed subset given by the
boundary points of their tiles.

For a closed subset P ⊂ Rn the completion of orb(P) := {P − x | x ∈ Rn
}, the Rn-orbit

of P , is called the continuous hull of P , written �P ,

�P := orb(P)
D
.

�P is a compact space which carries a continuous action of Rn induced by the translation
action on P . We denote the action of x by ω 7→ ω − x . This defines the (continuous)
dynamical system (�P , Rn) of P .

P is uniformly discrete if its points have a minimal distance, i.e. if

rmin(P)= inf{|x − y| : x 6= y ∈ P}

is strictly positive. If h ∈ Rn and |h|< rmin/2 then D(P, P − h)≤ |h|.
P is relatively dense if it does not have arbitrarily large holes, i.e. there exists r such that,

for all x ∈ Rn , Br [P − x] contains at least one point. A uniformly discrete and relatively
dense set is called a Delone set.

If P is uniformly discrete we consider also its discrete hull

4P := {P − p | p ∈ P}
D
.

It is a transversal for the Rn action and also referred to as the canonical transversal of P .
If T is a tiling we associate to it the discrete set T 0 containing the vertices of its tiles. Most
of the statements below about discrete sets P apply to tilings when we take P = T 0. For

instance, we define the transversal of a tiling T to be 4T := {T − p | p ∈ T 0}
D

†.
P (or T ) has finite local complexity (with respect to the translation group) if for any

given r there are only finitely many distinct r -patches Br [P − x] with x ∈ P (x ∈ T 0).
Finite local complexity has strong implications on the structure of the hull. First, all

elements of the hull of a discrete pattern P with finite local complexity can be viewed as
uniformly discrete subsets of Rn (including, if P is not relatively dense, the empty set).
Second, such a hull carries an equivalent but somewhat simpler metric, namely

Dt (Q, Q′)= inf
r>0

{r−1
| Br [Q] ∼=r−1 Br [Q′

]},

where we write Br [Q] ∼=r−1 Br (Q′) for there exists x, x ′
∈ B(0, 1/2r) with Br [Q − x] =

Br [Q′
− x ′

]. Restricted to the canonical transversal, the metric is even equivalent to

D0(Q, Q′)= inf
r>0

{r−1
| Br [Q] = Br [Q′

]}.

Third, the canonical transversal 4P is totally disconnected. Finally, at least if P is also
relatively dense, the hull is a foliated space whose leaves are locally homeomorphic to Rn .

† Another transversal of the hull of a tiling would be obtained if one replaced T 0 by a set of punctures; that is, a
set containing a point from each tile. The results would be similar.
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To see this let Uε(Q) be the open ε-ball around Q ∈�P with respect to the metric Dt

and TQ,ε,V = {Q′
− v | B1/ε[Q′

] = B1/ε[Q], v ∈ V } where V ⊂ Rn . Then for any small
enough ε one finds ε1, ε2 > 0 such that Uε1(Q)⊂ TQ,ε,B(0,ε) ⊂ Uε2(Q). If P is relatively
dense then translates Uε(Q)− x with Q ∈4P and |x |< rmax(P) generate the topology
and hence the family of sets TQ,ε,B(x,ε), Q ∈4P , |x |< rmax(P), ε < rmin(P)/2 generates
the topology as well. Now TQ,ε,B(x,ε) is the homeomorphic image of TQ,ε,{0} × B(x, ε)
under the map (Q′, v) 7→ Q′

− v. We thus have charts which are Cartesian products of
totally disconnected sets (clopen subsets of 4P ) with open balls of Rn . These are the
foliation charts. This has two consequences which will be important further down: first,
the path-connected components of �P are the orbits under the translation action; second,
the pre-image under the map Rn

→ orb(P): x 7→ P − x of the path-connected component
of P in orb(P) ∩ Uε(P) lies in B(0, ε).

2.2. Notions of equivalence. There are a variety of equivalence relations between
patterns. Some of them are expressed directly between the patterns, as, for instance, mutual
local derivability.

Definition 2.1. [BSJ91] Let P and Q be subsets of Rn . Q is locally derivable from P if
there exists an R > 0 such that, for all x, y ∈ Rn ,

BR[P − x] = BR[P − y] H⇒ {0} ∩ (Q − x)= {0} ∩ (Q − y).

We say that R is a derivability range of the local derivation.

Equivalently, Q is locally derivable from P if and only if for all r > 0 there exists r ′

such that, for all x, y ∈ Rn ,

Br ′ [P − x] = Br ′ [P − y] H⇒ Br [Q − x] = Br [Q − y].

This has the following interpretation which explains the name: one can construct the
r -patch of Q around x from the r ′-patch of P around x .

Other notions of equivalence refer to the spaces and dynamical systems defined by the
patterns. For instance, we could regard patterns as equivalent if they have:
(1) homeomorphic hulls; or
(2) topological conjugate (continuous) dynamical systems.
Relation (2) implies relation (1) (trivially). In fact, we will find a stronger relation
associated with a deformation, namely an invertible deformation P ′ of P (we explain
the notion further down) leads to a homeomorphism between the hulls which preserves
the canonical transversal and identifies P with P ′. Likewise we find a relation stronger
than (2), namely we say that P ′ is pointed conjugate to P if there is a topological
conjugacy between the (continuous) dynamical systems which maps P to P ′. We will
also say that P ′ is pointed semi-conjugate to P if there is a continuous surjection
�P →�P ′ which commutes with the action of Rn and maps P to P ′. Note that pointed
conjugacy implies homeomorphic hulls but the conjugacy will not, in general, preserve the
canonical transversal.
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2.3. P-equivariant functions. Topological spaces can equivalently be described by
commutative C∗-algebras. Here these algebras consist of P-equivariant functions. For that
we need to assume that our subset P has finite local complexity.

Roughly speaking, a function f on Rn is P-equivariant with range R if it satisfies the
following property: if the patterns in P surrounding two points x and y are equal in a ball
of radius R (after translating by −x and −y, respectively), then f must take the same
values at x and y. More precisely, we have the following.

Definition 2.2. [Ke03] Let f be a function defined on Rn . We say that f is P-equivariant
with range R if, for x, y ∈ Rn ,

BR[P − x] = BR[P − y] H⇒ f (x)= f (y).

f is strongly P-equivariant if it is P-equivariant with finite range. We also call a function f
defined on a subset Q ⊂ Rn which is locally derivable from P strongly P-equivariant if it
satisfies the above conditions for x, y ∈ Q.

Note that Q is locally derivable from P if and only if the indicator function on Q is
strongly P-equivariant.

A priori our definition does not require a strongly P-equivariant function to satisfy any
further regularity conditions. By adding such conditions we arrive naturally at the concept
of weakly P-equivariant functions. Let f : Rn

→ Rm and

sk( f )= sup{|Dα f (x)| : x ∈ Rn, |α| ≤ k},

α = (α1, . . . , αn) ∈ Nn , where Dα f = ((∂α1/∂α1 x1) · · · (∂αn/∂αn xn)) f , and | · | denotes
any norm on Rm but |α| =

∑n
i αi .

Definition 2.3. We denote by Ck
s−P (R

n, Rm), k ∈ N ∪ {∞} the space of strongly
P-equivariant Ck-functions over Rn with values in Rm . We say that a Ck-function f is
weakly P-equivariant if, for all ε > 0, there exists a strongly P-equivariant Ck-function
fε such that sk( f − fε) < ε, if k is finite, and, for all l ∈ N, sl( f − fε) < ε, if k = ∞.
The space of weakly P-equivariant Ck-functions over Rn with values in Rm is denoted
by Ck

w−P (R
n, Rm).

Since strongly P-equivariant functions are bounded, Ck
w−P (R

n, Rm) is the closure of
Ck

s−P (R
n, Rm) in the space of functions f : Rn

→ Rm which have bounded continuous
derivatives up to order k with respect to the topology induced by sk , if k is finite, or
by all sl , l ∈ N, if k = ∞. Smooth strongly or weakly P-equivariant forms can then be
identified with elements of C∞

s−P (R
n, 3Rn∗) or C∞

w−P (R
n, 3Rn∗), respectively. As usual,

d f =
∑

i (∂/∂xi ) f dxi , and we view {dxi | i = 1, . . . , n} as a base for Rn∗.
Complex-valued continuous weakly P-equivariant functions† form a C∗-algebra. The

map f 7→ fP , fP (x) := f (P − x) induces an algebra isomorphism between C(�P ) and
C0
w−P (R

n, C). The compactness of �P is reflected in the following lemma whose simple
proof is left to the reader.

† These were also simply called P-equivariant functions over Rn .

https://doi.org/10.1017/S014338570700065X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570700065X


1158 J. Kellendonk

LEMMA 2.4. Let P be a uniformly discrete set with finite local complexity. If
f ∈ C0

w−P (R
n, Rm) then its image is compact. If even f ∈ C0

s−P (R
n, Rm) then its

restriction to P takes only finitely many values.

We now present some general results about P-equivariant functions.

LEMMA 2.5. Let P be a uniformly discrete set of finite local complexity. Let ϕ and ψ be
two differentiable functions which coincide on P. Suppose that dϕ and dψ are strongly
P-equivariant. Then ϕ − ψ is strongly P-equivariant.

Proof. Let η = ϕ − ψ . Hence η vanishes on P and dη is P-equivariant, say with
range R. Let r = R + rmin. Let Br [P − x] = Br [P − y]. Choose p ∈ P such that
p − x ∈ Brmin [P − x]. Let q = p − x + y. Then q − y = p − x ∈ Brmin [P − y] and, by
P-equivariance of dη,

η(x)− η(p)=

∫ x

p
dη =

∫ y

q
dη = η(y)− η(q).

Since η(p)= η(q), η is strongly P-equivariant. 2

Let f : P → Rn be a function. For h = P − P := {p − q | p, q ∈ P}, we define 1h f :

P ∩ (P − h)→ Rn by
1h f (x)= f (x + h)− f (x).

LEMMA 2.6. Let ψ : P → Rm be a function on a uniformly discrete set P with finite
local complexity.
(1) If ψ is strongly P-equivariant there exists a smooth strongly P-equivariant function

ϕ : Rn
→ Rm which restricts on P to ψ .

(2) If, for all ε > 0, there exists a strongly P-equivariant function ψε : P → Rm

such that, for all p ∈ P, |ψ(p)− ψε(p)|< ε, then there exists a smooth weakly
P-equivariant function ϕ : Rn

→ Rm which restricts on P to ψ .
(3) Suppose that P is, moreover, relatively dense. If, for all h ∈ P − P, the function

1hψ : P ∩ (P − h)→ Rn is strongly P-equivariant then there exists a smooth
function ϕ : Rn

→ Rm which restricts on P to ψ and has strongly P-equivariant
differential dϕ.

Proof. Let ρ : Rn
→ R be a smooth positive function with support contained in B(0, r),

r ≤ rmin/2. For the first two parts of the lemma we consider

ϕ(x)=

∑
p∈P

ρ(x − p)ψ(p)

and suppose that ρ(0)= 1 so that ϕ(p)= ψ(p) for p ∈ P . If ψ is P-equivariant with
range R then ϕ is smooth and P-equivariant with range R + rmin/2.

Suppose that ψ satisfies the conditions of the second part. Then, by the first part,
ϕε(x)=

∑
p∈P ρ(x − p)ψε(p) defines a smooth strongly P-equivariant function. Now

|Dα(ϕ(x)− ϕε(x))| ≤ ‖ψ − ψε‖∞

∣∣∣∣∑
p∈p

Dαρ(x − p)

∣∣∣∣ ≤ ε‖Dαρ‖∞

and hence ϕε tends to ϕ in the Fréchet topology when ε tends to zero.
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For the third part consider the Voronoi domains Vp for p ∈ P . Let A be an upper bound
for their diameter; it is finite by the relative density of P . Define for all x in the interior
int(Vp) of the domain

φ̃(x) := ψ(p). (2.1)

Then φ̃ is defined almost everywhere and

ϕ := ρ ∗ φ̃

is a smooth function where we suppose that
∫
ρ = 1 so that ϕ coincides with ψ on P

provided r is small enough. Now suppose that for all h = P − P with |h| ≤ A, 1hψ

is P-equivariant with range R > 3A, and hence, if BR(P − p)= BR(P − q) for some
p, q ∈ P ∩ P − h, then, for almost all x ∈ B(0, R), φ̃(x + p + h)− φ̃(x + p)= φ̃(x +

h + q)− φ̃(x + q). This implies that the equation φ̃(x + p)− ψ(p)= φ̃(x + q)− ψ(q),
which by (2.1) holds for x ∈ Vp − p, extends to x ∈ B(0, 2A). It follows that φ̃(x + p +

h)− ψ(p)= φ̃(x + h + q)− ψ(q) for x ∈ B(0, 2A) and hence

(dρ ∗ φ̃)(x + p + h)= (dρ ∗ (φ̃ − ψ(q)+ ψ(p)))(x + q + h)= (dρ ∗ φ̃)(x + q + h)

where we have used that dρ ∗ (ψ(q)− ψ(p))= 0. Since dϕ(x)= (dρ ∗ φ̃)(x) the
statement follows. 2

We finally provide a condition under which a differentiable function with strongly
P-equivariant differential is weakly P-equivariant.

PROPOSITION 2.7. Let P ∈ Rn be a Delone set of finite local complexity and ϕ : Rn
→ R

be a Ck-function, 1 ≤ k ∈ N ∪ {∞}, with strongly P-equivariant differential. Then ϕ

is weakly P-equivariant if and only if for all ε there exists a finite partition of P
into subsets P1, . . . , PN which are locally derivable from P and such that for all i ∈

{1, . . . , N } for all p, q ∈ Pi : |ϕ(p)− ϕ(q)|< ε.

Proof. Suppose that ϕ is weakly P-equivariant. Choose ε and a strongly P-equivariant
function ϕε such that ‖ϕ − ϕε‖∞ < ε. In particular, ϕε(P) is a finite set, let us say
{x1, . . . , xN }. Define Pi = ϕ−1

ε (xi ) ∩ P which is certainly locally derivable from P .
The Pi partition P and by construction for all p, q ∈ Pi we have |ϕ(p)− ϕ(q)|< 2ε.

We prove the converse: given δ choose a finite partition P1, . . . , PN of sets which are
locally derivable from P and such that, for all i ∈ {1, . . . , N } for all p, q ∈ Pi , |ϕ(p)−

ϕ(q)|< δ. Note that this and the strong P-equivariance of dϕ imply that ϕ has bounded
derivatives Dαϕ, |α| ≤ k. Choose a point pi in each Pi . Consider the Voronoi domains
Vp of p in P . For x in the interior of Vp and p ∈ Pi let σδ(x) be given by σδ(x)=

ϕ(p)− ϕ(pi ). Then σδ is defined almost everywhere and is constant on the interior of
the Voronoi domains. Since the Pi are locally derivable from P , ϕ − σδ is strongly P-
equivariant. It is also δ-close to ϕ where defined and the aim is to smoothen it out.

Let ρ : Rn
→ R be a smooth positive function with support contained in B(0, 1)

and
∫
ρ = 1. Let ρδ(x)= δ−nρ(x/δ). Define ϕδ1,δ2 = ρδ1 ∗ (ϕ − σδ2) which is by

construction a smooth strongly P-equivariant function. We claim that for all ε > 0 and
l ≤ k there exists δ1, δ2 such that sl(|ϕ − ϕδ1,δ2 |) < ε. This then proves that we can
approximate ϕ in the relevant topology by strongly P-equivariant functions.
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To prove the claim we fix ε and l ≤ k. We have

‖ρδ1 ∗ σδ2‖α ≤ ‖σδ2‖∞‖Dαρδ1‖1 ≤ δ2δ
−|α|

1 ‖Dαρ‖1.

Hence
sl(|ϕ − ϕδ1,δ2 |)≤ sl(|ϕ − ρδ1 ∗ ϕ|)+

∑
|α|≤l

δ2δ
−|α|

1 ‖Dαρ‖1.

Since Dαϕ is bounded continuous for |α| ≤ k we can find δ1 such that sl(|ϕ − ρδ1 ∗ ϕ|) <

ε/2 and then δ2 such that
∑

|α|≤l δ2δ
−|α|

1 ‖Dαρ‖1 < ε/2. 2

2.4. Cohomology groups for patterns and tilings. Let P be a uniformly discrete subset
or a tiling, of finite local complexity. Associated with P is a cohomology group H(P, A),
the pattern cohomology, with coefficients in an abelian group A. It can be described in a
variety of equivalent ways as follows.

2.4.1. Cech-cohomology. H(P, A) is the Cech-cohomology Ȟ(�P , A) of the
continuous hull.

2.4.2. Cellular cohomology. Let T be a polyhedral tiling, that is a tiling whose tiles
are polyhedra and match face to face. We can view T as an infinite CW-complex for Rn

choosing an orientation of its cells such that translational congruent cells have the same
orientation. We also assume that T has finite local complexity. The Anderson–Putnam–
Gähler construction expresses �P as an inverse limit of CW-complexes. We recall the
construction: the k-neighbourhood of a tile t in a polyhedral tiling T is the patch of all
tiles of T which meet the (k − 1)-neighbourhood of t . Here the 0-neighbourhood of t is
simply t itself. A k-collared tile is a tile labelled with its k-neighbourhood. A k-collared
prototile is a translational congruence class of a k-collared tile. Since T has finite local
complexity there are only finitely many k-collared prototiles. The CW-complex 0k is the
complex obtained from the disjoint union of all k-collared prototiles upon identifying any
two faces f1, f2 of two k-collared prototiles p1, p2 if one finds in T two tiles t1, t2 whose
k-neighbourhood corresponds to the two k-collared prototiles p1, p2 such that the faces of
t1 and t2 which correspond to f1, f2 agree in T . There are surjective maps αk : 0k+1

→ 0k

associating to a point in a k+1-collared prototile the same point in the k-collared prototile
obtained by reducing the labelling of the (k+1)-neighbourhood to the k-neighbourhood.
Then one has the following result [G, Sa03]: �T is the inverse limit of the chain

· · ·
αk+1
−→ 0k+1 αk

−→ 0k
· · ·

α0
−→ 00.

Moreover, we have maps πk : T → 0k associating to a point x in a tile of T the point at
the same position in the k-collared prototile to which it corresponds.

As a consequence, Ȟ(�P , A) is the direct limit of the chain

H(00, A)
α∗

0
−→ · · · H(0k, A)

α∗
k

−→ H(0k+1, A) · · · .

Here H(0k, A) is the cohomology of CW-complexes. In particular, there are
homeomorphisms Ik : H(0k, A)→ Ȟ(�P , A) satisfying Ik = Ik+1 ◦ α∗

k .
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2.4.3. P-equivariant cohomology. The strongly P-equivariant forms on Rn form a sub-
complex of the de Rham complex for Rn . The cohomology of this complex is called the
strongly P-equivariant cohomology (of Rn) and is denoted by Hs−P (Rn, R). It has been
shown in [KP06] that Hs−P (Rn, R) is isomorphic to Ȟ(�P , R). This isomorphism has
been revisited in [Sadun] where the description of �P as an inverse limit was used. We
provide an explicit description of this isomorphism in degree one.

Let T be a polyhedral tiling of finite local complexity and set P = T 0. Recall
the quotient map πk : T → 0k . Let e be a 1-cell in 0k . Then π−1

k (e) is a union of
(oriented) edges of T . Suppose that dϕ is P-equivariant with range r and that r is small
compared with k (i.e. the tubular r -neighbourhood of any tile in T is smaller than its
k-neighbourhood). Then

∫
ẽ dϕ is independent of the choice of ẽ ∈ π−1

k (e), since two
such pre-images agree on their k-neighbourhood. Denoting by Z1

r−P (R
n, Rn) the closed

P-equivariant 1-forms of range r we may thus define J k
r : Z1

r−P (R
n, Rn)→ Z1(0k, Rn) by

J k
r (dϕ)(e)=

∫
ẽ

dϕ = ϕ(t (ẽ))− ϕ(s(ẽ)), (2.2)

where s(ẽ) and t (ẽ) are the vertices at which ẽ starts and terminates. It is clear that
J k

r (dϕ) is closed, i.e. vanishes on cycles. J k
r (dϕ) is exact if and only if also ϕ(s(ẽ))

is independent of the choice of the pre-image for e which means that ϕ is strongly
P-equivariant (with a range which is large compared to k but finite). It follows that
2 : H1

s−P (R
n, Rn)→ Ȟ1(�P , Rn)

2[dϕ] = Ik[J k
r (dϕ)]

is well defined. It does not depend on the precise choice for r and k as long as dϕ is
P-equivariant with range r and k large compared to r . Using this flexibility one easily sees
that 2 is additive and hence defines a group homeomorphism.

We show that2 is surjective. Let f ∈ Z1(0k, Rn), choose x0 ∈ T 0 and defineψ : T 0
→

Rn by
ψ(t (ẽ))− ψ(s(ẽ))= f (πk(ẽ)), ψ(x0)= 0, (2.3)

for all (oriented) edges ẽ of T . Let h ∈ Rn be the vector corresponding to the edge ẽ.
Then 1hψ(x)=1hψ(y) for all x, y ∈ T 0

∩ (T 0
− h) which have the same (k + 1)-

neighbourhood. It follows that1hψ is P-equivariant with a range large compared to k + 1.
By part (3) of Lemma 2.6 there exists a smooth function ϕ which coincides with ψ on P
and has strongly P-equivariant differential. It follows that, for large enough r and l,
J l

r (dϕ)= f ◦ αl−1 · · · αk and hence 2([dϕ])= Ik([ f ]). Hence 2 is surjective. To see
that 2 is injective we note that, by (2.2), J k

r (dϕ)= 0 whenever ϕ is constant on the
vertices of the tiling. From Lemma 2.5 it follows then that ϕ is strongly P-equivariant,
and hence [dϕ] = 0.

Also the weakly P-equivariant forms on Rn form a sub-complex of the de Rham
complex for Rn and hence a cohomology group which is called the weakly P-equivariant
cohomology of Rn . We will not consider weakly P-equivariant cohomology in this article,
but one of our conclusions will be that the mixed quotient

Z1
s−P (R

n, Rn)/B1
w−P (R

n, Rn) ∩ Z1
s−P (R

n, Rn)
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is a parameter space of deformations of P modulo bounded deformations which are pointed
topological semi-conjugate to it.

3. The first cohomology and deformations
3.1. The approach of Williams, Sadun and Clark. Let T be a polyhedral tiling of finite
local complexity with its system of Anderson–Putnam–Gähler complexes 0k , k ≥ 0.

A shape function is an Rn-valued 1-cocycle on 0k , i.e. a function f : 0k
→ Rn such that

δ f (w) := f (δw)= 0 for any 2-cellw in 0k (δw is the chain corresponding to the boundary
of w). With a little luck a shape function defines a new tiling (up to translation) which is
obtained from T by changing the shape of the prototiles. A 1-cell e of 0k is an (oriented)
edge of a k-collared prototile. f (e) is a vector in Rn and hence defines an oriented straight
line segment up to translation which is going to be an edge of a new prototile. Replacing
each edge e of a k-collared prototile by a line segment parallel to f (e), the condition δ f = 0
guarantees that these line segments can be matched together at their boundary points with
the same combinatorics as in the prototile. One thus obtains a new 1-skeleton. A priori
there is no reason that one can complete the new 1-skeleton to a tile by adding in higher-
dimensional faces in such a way that the combinatorial structure is that of the prototile. But
if this is the case, we can construct from T , tile by tile, a whole new tiling up to an overall
translation, and hence a new tiling space which we denote by (�T ) f . It is somewhat clear
that all this works if the new edges differ only slightly from the old edges. It then makes
sense to speak of a deformation of T .

A question which we will investigate in more detail than has been done in [CS06] is
whether the above process is invertible, i.e. whether one can obtain T back from the new
tiling by a similar procedure. Certainly, if the new tiling would be periodic whereas the old
one was not, the process could not be inverted. One may argue that invertibility should be
no problem if the new edges differ little from the old edges. This is, however, only obvious
if k is fixed, since the larger k the more shapes are redefined by the shape function.

Let us call shape functions that allow for all this admissible.

THEOREM 3.1. [SW03, CS06] Let f : 00
→ Rn be a cocycle which is admissible. Then

�T is homeomorphic to (�T ) f .

THEOREM 3.2. [CS06] Let f, g : 00
→ Rn be two cocycles which are admissible. If

I0( f )= I0(g) then (�T ) f is mutually locally derivable with (�T )g .

Here the relation of being mutually locally derivable is extended to hulls of tilings
by saying that two such hulls are mutually locally derivable if there exists a topological
conjugacy between them which maps a tiling to a mutually locally derivable tiling with a
uniform derivability range.

Clark and Sadun introduce the notion of asymptotically negligible elements in
H1(�T , Rn). Let us suppose that r is larger than the maximal diameter of a prototile. Then
an ordered pair of vertices (x1, x2) of T is called a recurrence of size r if Br [T − x1] =

Br [T − x2] but Br+δ[T − x1] 6= Br+δ[T − x2] for δ > 0. If k is small enough so that the
(k + 1)-neighbourhood of any tile is contained in the r -tubular neighbourhood of the tile,
then a path between x1 and x2 along edges defines a loop in the 1-skeleton of 0k , different
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paths leading to homologous loops. An element η ∈ H1(0k, Rn) can be evaluated on (the
cycle defined by) a loop in 0k . It is said to be asymptotically negligible if for all ε there
exists an rε such that, when η is evaluated on a loop in the 1-skeleton of 0k which is
defined by a recurrence of size larger than rε , then the result is smaller than ε in norm. The
images under the Ik of asymptotically negligible elements in H1(0k, Rn) are by definition
the asymptotic elements of H1(�T , Rn).

THEOREM 3.3. [CS06] Let f, g : 00
→ Rn be two cocycles which are admissible. If

I0( f )− I0(g) is asymptotically negligible then ((�T ) f , Rn) is topologically conjugate
to ((�T )g, Rn).

It is rather clear that the three theorems extend to shape functions on 0k . Note also that
if f : 0k

→ Rn is a shape function then f ◦ αk : 0k+1
→ Rn is also a shape function and

it leads to the same deformation.

3.2. Negligible elements versus weakly P-equivariant 1-forms. The aim is to reinterpret
negligible elements as weakly P-equivariant 1-forms and to interpret Theorem 3.3 in terms
of a mixed quotient.

THEOREM 3.4. An element η ∈ Ȟ1(�P , Rn) is asymptotically negligible if and only if
2−1(η) belongs to B1

w−P (R
n, Rn) ∩ Z1

s−P (R
n, Rn)/B1

s−P (R
n, Rn).

Proof. Suppose that dϕ ∈ B1
w−P (R

n, Rn) ∩ Z1
s−P (R

n, Rn). Hence for all ε > 0 there exists
Rε such that ϕ = ϕε + ψε where ϕε is P-equivariant with range Rε and ‖ψε‖∞ < ε. Also
dϕ is P-equivariant with some finite range which we may suppose to be smaller than Rε .
Let k be large compared to Rε and rε be large compared to k + 1. Finally, let (x1, x2) be a
recurrence of size larger than or equal to rε . Denote by [x1, x2] the cycle it defines in 0k .
Then we have

J k
Rε (dϕ)([x1, x2])= ϕε(x2)− ϕε(x1)+ ψε(x2)− ψε(x1).

The first difference drops out since [x1, x2] is a loop in 0k and so |J k
Rε
(dϕ)([x1, x2])|< 2ε.

This shows that 2([dϕ]) is asymptotically negligible.

For the converse suppose that f ∈ Z1(0k, Rn) such that [ f ] is asymptotically
negligible. As explained in §2.4.3, 2−1([ f ]) is represented by the differential of a smooth
strongly P-equivariant function ϕ : Rn

→ Rn which extends the function ψ : T 0
→ Rn

defined as in (2.3). Let ε > 0 and rε such that f applied to a loop defined by a recurrence
(x1, x2) of size larger than or equal to rε is smaller in norm than ε. By the finite
local complexity of T there exist finitely many points p1, . . . , p f ∈ T 0 such that the
sets T 0

i := {y ∈ T 0
| Brε [T − y] = Brε [T − pi ]} are pairwise disjoint, locally derivable

from T 0, and their union exhausts T 0. Furthermore, the elements of
⋃

i T 0
i × T 0

i are
precisely the recurrences of size larger than or equal to rε . Hence for all x1, x2 ∈ T 0

i we
have |ϕ(x1)− ϕ(x2)| = | f ([x1, x2])|< ε. From Proposition 2.7 it follows therefore that ϕ
is weakly P-equivariant. 2
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4. Deformations and P-equivariant functions
The aim of this section is to present a theory of deformations which is formulated entirely in
the framework of P-equivariant functions. We will recover the results of Theorems 3.1–3.3
(see Theorems 4.8, 4.13 and Corollary 4.20) but are able to go further as we obtain
refined information about the homeomorphisms involved. As a consequence, we are able to
decide whether two pattern spaces are homeomorphic (with homeomorphism preserving
the abstract transversal) by means of pattern equivariant functions, and to a large extent
this turns out to be the case for topological conjugacy as well. Finally, we investigate the
question of invertibility of deformations.

Our first aim is to interpret the elements entering in the first P-equivariant cohomology
with values in Rn . Since Rn is contractible, any closed 1-form on Rn , P-equivariant or
not, can be written as dϕ for a smooth function ϕ : Rn

→ Rn . The first P-equivariant
cohomology is therefore related to functions, but the restriction that their differential is
P-equivariant does not imply that they are themselves P-equivariant which is what makes
the cohomology non-trivial. For instance, ϕ = id is never P-equivariant, but d id is.

One may view �P as the compactification of Rn defined by P ∈ Rn . It is then
natural to ask how a function ϕ : Rn

→ Rn affects the compactification. In other words,
how does �ϕ(P) compare to �P ? Furthermore, one may ask how the pattern dynamical
systems compare.

We will often need to make the following assumption about ϕ.

Hypothesis 4.1. For all r > 0 there exists r ′ > 0 such that for all x ∈ Rn

B(ϕ(x), r) ∩ ϕ(P)⊂ ϕ(B(x, r ′) ∩ P).

This assumption is, for instance, verified if

for all r > 0 there exists r ′ > 0 for all x ∈ Rn
: ϕ−1(B(ϕ(x), r))⊂ B(x, r ′). (4.1)

Note that if ϕ satisfies (4.1) and η is bounded then also ϕ − η satisfies (4.1). We say that
ϕ : Rn

→ Rn is a bi-Lipschitz map if there exists λ > 1 (the Lipschitz constant) such that

λ−1
|x − y| ≤ |ϕ(x)− ϕ(y)| ≤ λ|x − y|.

A bi-Lipschitz map is a homeomorphism which satisfies (4.1) with r ′
= λr . In fact, it is

injective and continuous, and hence has open image by Brouwer’s theorem. Moreover,
its image is also closed since a pre-image of a Cauchy sequence is a Cauchy sequence,
and hence it is surjective. A further advantage of a bi-Lipschitz map is that it maps
Delone sets to Delone sets. We are particularly interested in the case ϕ = id + η

where η is differentiable and ‖dη‖∞ < 1 (or ϕ = g + η with g ∈ GL(n, R) and ‖dη‖∞ <

(‖g−1
‖∞)

−1). Such a map ϕ is a bi-Lipschitz map with λ−1
= 1 − ‖dη‖∞.

LEMMA 4.2. Let P be a uniformly discrete set of finite local complexity. Let ϕ : Rn
→ Rn

be a function, g ∈ GL(n, R) and ϕ − g be P-equivariant with range R. Then we have, for
all r > 0 and x, y ∈ Rn ,

BR+r [P − x] = BR+r [P − y] H⇒

for all h ∈ B(0, r) : ϕ(x + h)− g(x)= ϕ(y + h)− g(y).
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In particular,

BR+r [P − x] = BR+r [P − y] H⇒ Br (ϕ(P)− g(x))= Br (ϕ(P)− g(y))

and ϕ(P) is locally derivable from g(P).

Proof. By assumption, BR+r [P − x] = BR+r [P − y] implies that, for all h ∈ B(0, r),
ϕ(x + h)− g(x + h)= ϕ(y + h)− g(y + h). The statement follows therefore from the
linearity of g. The last statement is trivial for g = id. Now if ϕ − g is strongly
P-equivariant then ϕ ◦ g−1

− id is strongly g(P)-equivariant. This implies the last
statement for general g. 2

Note that d(ϕ − g) is strongly P-equivariant whenever dϕ is strongly P-equivariant.

LEMMA 4.3. Let P be a uniformly discrete set of finite local complexity and let ϕ : Rn
→

Rn be a differentiable function. If dϕ is P-equivariant with range R then, for all x, y ∈ Rn ,

BR+r [P − x] = BR+r [P − y] H⇒

for all h ∈ B(0, r) : ϕ(x + h)− ϕ(x)= ϕ(y + h)− ϕ(y).

If, moreover, ϕ satisfies Hypothesis 4.1, then for all r > 0 there exists r ′ such that

Br ′ [P − x] = Br ′ [P − y] H⇒ Br (ϕ(P)− ϕ(x))= Br (ϕ(P)− ϕ(y)). (4.2)

Proof. Let BR+r [P − x] = BR+r [P − y] and h ∈ Br . As dϕ is P-equivariant with range
R we have dϕ(x + h)= dϕ(y + h). In particular,

∫ x+h
x dϕ =

∫ y+h
y dϕ (we can integrate

along a straight line). As ϕ(x + h)− ϕ(x)=
∫ x+h

x dϕ the first statement holds true.
Suppose that BR+r ′ [P − x] = BR+r ′ [P − y]. According to the first statement this

implies that
ϕ(B(x, r ′) ∩ P)− ϕ(x)= ϕ(B(y, r ′) ∩ P)− ϕ(y). (4.3)

Now let r be given and choose r ′ according to Hypothesis 4.1. Then, for any z ∈ Rn ,
(ϕ(B(z, r ′) ∩ P)− ϕ(z)) ∩ B(0, r)= (ϕ(B(z, r ′) ∩ P) ∩ B(ϕ(z), r))− ϕ(z)= (ϕ(P) ∩

B(ϕ(z), r))− ϕ(z). The latter is by definition Br [ϕ(P)− ϕ(z)] and so (4.3) implies that
Br [ϕ(P)− ϕ(x)] = Br [ϕ(P)− ϕ(y)]. 2

COROLLARY 4.4. Let P be a uniformly discrete set of finite local complexity. Let ϕ :

Rn
→ Rn be a differentiable function which fulfils Hypothesis 4.1. If dϕ is strongly

P-equivariant then ϕ(P) has finite local complexity.

Proof. Finite local complexity of P means that there are, for any given r ′, only finitely
many different B(0, r ′) ∩ (P − x), x ∈ P . Thus we conclude from Lemma 4.3 that there
are also only finitely many different B(0, r) ∩ (ϕ(P)− z), z ∈ ϕ(P). 2

There is no reason for ϕ(P) to have finite local complexity if we require merely weak
P-equivariance of d(ϕ − g) or dϕ.

How can we interpret (4.2)? Clearly it allows one to construct the r -patch of ϕ(P)
around ϕ(x) from the r ′-patch of P around x , but this involves the passage from ϕ(x) to x
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which is a priori not local (i.e. not determined by a patch of P). Nevertheless, if we forget
about the position of the patches in Rn and consider their translational congruence classes
we obtain from (4.2) a local map: to each translational congruence class of an r -patch
of P is associated a unique translational congruence class of an r ′-patch of ϕ(P). In one
dimension this gives a rewriting rule. In higher dimensions one obtains a local derivation
in the sense of [Ke97]. If ϕ = id + η with small ‖dη‖∞ and P is the set of vertices of a
polyhedral tiling the local map defined by (4.2) can be interpreted as a deformation of the
tiling induced by changing the length of the edges of its tiles [SW03]; see §3.1. In view of
this and the results in §2.4.3 we define the following.

Definition 4.5. Let P be a Delone set in Rn . A Delone set P ′
⊂ Rn is a deformation of P

if there exists a smooth function ϕ : Rn
→ Rn satisfying Hypothesis 4.1 and having a

strongly P-equivariant differential such that P ′
= ϕ(P).

We have a lot of freedom to choose ϕ. In fact, since the joint kernel of the maps J k
r from

§2.4.3 is

N 1
s−P (R

n, Rn)= {dη ∈ B1
s−P (R

n, Rn) | η is constant on P},

the elements of Z1
s−P (R

n, Rn)/N 1
s−P (R

n, Rn) parametrize the deformations of P (or of a
tiling T with P = T 0).

We end this section with the following important definition, which is inspired from the
above lemma.

Definition 4.6. Let P be a uniformly discrete set of finite local complexity.
(1) Let ϕ : Rn

→ Rn be a C0-function such that ϕ − g is weakly P-equivariant. We
define 8g : orb(P)→�ϕ(P),

8g(P − x) := ϕ(P)− g(x).

(2) Let ϕ : Rn
→ Rn be a differentiable function such that dϕ is strongly P-equivariant.

We define 8ϕ : orb(P)→�ϕ(P),

8ϕ(P − x) := ϕ(P)− (ϕ(x)− ϕ(0)).

That these maps are well defined is the issue of the following lemma.

LEMMA 4.7. We assume the notation and conditions of the last definition. In the first case
P − x = P implies that ϕ(P)− g(x)= ϕ(P). In the second case P − x = P implies that
ϕ(P)− ϕ(x)= ϕ(P)− ϕ(0).

Proof. Suppose that ϕ − g is strongly P-equivariant. By Lemma 4.2, for all h ∈ P ,
ϕ(−x + h)− g(−x)= ϕ(h) which implies that ϕ(P)= ϕ(P)− g(x). If ϕ − g is merely
weakly P-equivariant we can find for all ε > 0 an approximation ϕε of ϕ such that ϕε − g
is strongly P-equivariant and ‖ϕε − ϕ‖∞ < ε. The above then implies that dh(ϕ(P)−

g(x), ϕ(P)) < 2ε.
Now suppose that dϕ is strongly P-equivariant. By Lemma 4.3, for all h ∈ P , ϕ(x +

h)− ϕ(x)= ϕ(h)− ϕ(0). This implies that ϕ(P + x)= ϕ(P)+ ϕ(x)− ϕ(0) and hence
the statement. 2
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In the following we shall see that8g and8ϕ can be extended to maps between �P and
�ϕ(P), the second only in the strongly P-equivariant case. This is the case once we can
show that they are uniformly continuous, since a uniformly continuous map between (not
necessarily complete) metric spaces has a unique continuous extension to the completions.

4.1. Closed strongly P-equivariant 1-forms and deformations. We investigate more
closely P-equivariant 1-forms, that is P-equivariant differentials, and how they affect
the tiling spaces and dynamical systems. We start by the observation that a strongly
P-equivariant 1-form gives rise to a continuous map between hulls of Delone sets
preserving the canonical transversal, an observation which is slightly stronger than
Theorem 3.1.

THEOREM 4.8. Let P be a Delone set of finite local complexity. Let ϕ : Rn
→ Rn be a

C1-map which fulfils Hypothesis 4.1 and whose differential dϕ is strongly P-equivariant.
Then 8ϕ is a uniformly continuous map. It thus extends to a continuous map 8ϕ :�P →

�ϕ(P). If ϕ(0)= 0 then 8ϕ(4P )=4ϕ(P). If ϕ is surjective then 8ϕ is surjective.

Proof. Choose r > 0 and then r ′
≥ r according to Lemma 4.3. Let D(P − x, P − y) <

1/r ′. Since P has finite local complexity we can find x ′, y′
∈ B(0, 1/2r ′) such that

Br ′ [P − x − x ′
] = Br ′ [P − y − y′

]. By Lemma 4.3 we then have Br [ϕ(P)− ϕ(x +

x ′)] = Br [ϕ(P)− ϕ(y + y′)] and so D(ϕ(P)− ϕ(x + x ′), ϕ(P)− ϕ(y + y′)) < 1/r .
Since P has finite local complexity dϕ is bounded and |ϕ(x + x ′)− ϕ(x)| ≤ ‖dϕ‖∞|x ′

|.
If r is sufficiently large then D(ϕ(P)− ϕ(x + x ′), ϕ(P)− ϕ(x))≤ ‖dϕ‖∞|x ′

|. Hence the
triangle inequality gives

D(ϕ(P)− ϕ(x), ϕ(P)− ϕ(y))≤
1
r

+
‖dϕ‖∞

2r ′
+

‖dϕ‖∞

2r ′
.

As this tends to 0 for r tending to infinity, we conclude that 8ϕ is uniformly continuous.
That 8ϕ preserves the canonical transversal provided ϕ(0)= 0 follows immediately

from the construction of8ϕ . Since8ϕ(4P ) is closed and contains {ϕ(P)− ϕ(p) | p ∈ P}

we must have 8ϕ(4P )=4ϕ(P).
Finally, if ϕ is surjective then orb(P ′)=8ϕ(orb(P)), which is dense and hence implies

surjectivity of 8ϕ . 2

Note that since dϕ is strongly P-equivariant ϕ(P) has finite local complexity, but it
need not be a Delone set.

We are now interested in the converse direction: given a continuous map between hulls
of Delone sets, can we associate a strongly P-equivariant 1-form to it?

Let P, P ′ be aperiodic Delone sets of finite local complexity and 8 :�P →�P ′ a
continuous map satisfying8(P)= P ′. Since the orbits under the translation action are the
path-connected components 8 must preserve orbits. Hence for any x there exists a x ′ such
that8(P − x)= P ′

− x ′. Since P ′ is aperiodic x ′ is uniquely determined by x . Thus there
exists a family of functions ϕP−y : Rn

→ Rn , y ∈ Rn such that

8(P − y − x)= P ′
− y − ϕP−y(x), ϕP−y(0)= 0. (4.4)
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LEMMA 4.9. For all y ∈ Rn , ϕP−y : Rn
→ Rn is uniformly continuous. Furthermore, for

all x ∈ Rn , orb(P) 3 ω 7→ ϕω(x) ∈ Rn is uniformly continuous.

Proof. To show that ϕP is uniformly continuous choose 0< ε < rmin(P ′)/3, where
rmin(P ′) is the minimal distance in P ′. By the uniform continuity of 8 there exists a δ
such that, for all x0 ∈ Rn , |v|< δ implies that

D(8(P − x0), 8(P − x0 − v)) < ε. (4.5)

By the remarks at the end of §2.1 the pre-image under w 7→8(P − x0)− w of the path-
connected component of8(P − x0) in Uε(8(P − x0)) is contained in B(0, ε). Therefore,
ϕP−x0(B(0, δ))⊂ B(0, rmin(P ′)/3).

Furthermore, (4.5) implies that either |ϕP (x0 + v)− ϕP (x0)| ≤ ε or |ϕP (x0 + v)−

ϕP (x0)| ≥ rmin(P ′)− ε. But the second possibility cannot hold since |ϕP (x0 + v)−

ϕP (x0)| = |ϕP−x0(v)| ≤ rmin(P ′)/3. This proves uniform continuity of ϕP . That of ϕP−y

follows in the same way.
To show that ω 7→ ϕω(y) is uniformly continuous on the orbit of P we choose ε > 0,

which is small compared with |y|
−1. Note that Br [ω] = Br [ω

′
] implies that Br−|x |[ω − x]

= Br−|x |[ω
′
− x] provided that r > |x |. Using this property, the (uniform) continuity of

8 and boundedness of ϕω′ , we can find δ > 0 such that D(ω, ω′) < δ implies that,
for all y′

∈ B(0, |y|), D(8(ω − y′), 8(ω′
− y′)) < ε and D(8(ω)− ϕω′(y′), 8(ω′)−

ϕω′(y′)) < ε and therefore

D(8(ω)− ϕω′(y′), 8(ω)− ϕω(y
′)) < 2ε.

This implies that |ϕω(y′)− ϕω′(y′)| is either smaller than 2ε or larger than rmin(P ′)− 2ε.
From the continuity of ϕω and the condition ϕω(0)= 0 it follows therefore that |ϕω(y)−

ϕω′(y)|< 2ε (for small enough ε). 2

We now require, in addition, that 8 preserves the canonical transversal.

THEOREM 4.10. Let P, P ′ be aperiodic Delone sets of finite local complexity. Let 8 :

�P →�P ′ be a continuous map satisfying 8(4P )⊂4P ′ and 8(P)= P ′. Then there
exists a smooth function ϕ : Rn

→ Rn with strongly P-equivariant differential which
coincides with ϕP (as defined by (4.4)) on P and satisfies ϕ(P)⊂ P ′.

Proof. We can sharpen the last part of the proof of Lemma 4.9 provided w, w′
∈4P

and y = P − P . Let ε > 0, M > 0 and p, q ∈ P . By the reasoning of the proof of
Lemma 4.9 there exists R > M such that BR[P − p] = BR[P − q] implies that, for all
y ∈ BM [P − p], D(8(P − p − y), 8(P − q − y)) < ε and |ϕP−p(y)− ϕP−q(y)|< ε.
Moreover, 8(P − p − y) and 8(P − q − y) lie in 4P ′ and hence the finite local
complexity of P ′ allows us to replace D by D0 to obtain B1/ε[8(P − p − y)] =

B1/ε[8(P − q − y)]. Hence |ϕP−p(y)− ϕP−q(y)|< ε forces |ϕP−p(y)− ϕP−q(y)|
to vanish. A simple calculation shows that ϕP−p(y)= ϕP (p + y)− ϕP (p). Hence,
for all h ∈ P − P , 1hϕP : P ∩ (P − h)→ Rn is strongly P-equivariant. Applying
Lemma 2.6(3) we obtain a smooth function ϕ with strongly P-equivariant differential
which coincides with ϕP on P .
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Finally, if p ∈ P then 8(P − p) ∈4P ′ and hence 0 ∈ P ′
− ϕ(p). This shows that

ϕ(P)⊂ P ′. 2

We cannot expect that under the hypothesis of the theorem ϕ(P) is all of P ′. For
instance, if P ′ is obtained from P by adding points in a locally derivable way then ϕ = id
would be the resulting map but P would be a proper subset of P ′.

COROLLARY 4.11. Let P, P ′ be aperiodic Delone sets of finite local complexity. Let
8 :�P →�P ′ be a homeomorphism which maps 4P onto 4P ′ and P to P ′. Then the
map ϕ constructed in the theorem satisfies Hypothesis 4.1 and P ′

= ϕ(P).

Proof. Since 8 is a homeomorphism, ϕP is also a homeomorphism and its inverse ϕ−1
P

is the map constructed in (4.4) from 8−1
:�P ′ →�P ; we denote it here by ϕP ′ . By

Lemma 4.9, it is uniformly continuous and hence we can find at least one r > 0 for
which there exists r ′ > 0, for all y ∈ Rn , where ϕP ′(B(y, r))⊂ B(ϕP ′(y), r ′). Our aim
is to show that this implies that for all r > 0, there exists r ′ > 0, for all y ∈ Rn , where
ϕP ′(B(y, r))⊂ B(ϕP ′(y), r ′) and hence that ϕP satisfies (4.1). To see this, let 0 ∈ A ⊂

B(0, r) be a finite set such that B(0, 3
2r)⊂

⋃
a∈A B(a, r). Then the above implies that

ϕP ′

(
B

(
y,

3
2

r

))
⊂

⋃
a∈A

B(ϕP ′(y + a), r ′).

By Lemma 4.9 the maps y 7→ ϕP ′(y + a)− ϕP ′(y) are weakly P ′-equivariant and hence
bounded. If we denote a common bound for their norm by M then

⋃
a∈A B(ϕP ′(y +

a), r ′)⊂ B(ϕP ′(y), r ′
+ M). This shows that ϕP satisfies (4.1). Since ϕP and ϕ are

uniformly continuous (ϕ as dϕ is bounded), ϕP − ϕ is bounded and hence ϕ satisfies
Hypothesis 4.1.

We have 8(orb(P))= orb(P ′) and 8−1(4P ′)=4P . Now if y ∈ P ′ then the first
identity implies that there exists a x such that P ′

− ϕP (x)= P ′
− y, and hence ϕP (x)− y

lies in the periodicity lattice of P ′. Using ϕ(0)= 0 and continuity we can arrange for
ϕP (x)= y. Now the second identity implies that P − x ∈4P and hence x ∈ P . 2

Remark 4.12. The map ϕ constructed in Theorem 4.10 may differ substantially from ϕP

away from P , but it defines the same deformation.
A refinement of Lemma 2.6(3) allows us to construct maps which are arbitrarily

close, namely for all ε > 0 there exists a smooth function ϕ : Rn
→ Rn with strongly

P-equivariant differential such that ‖ϕP − ϕ‖∞ < ε and ϕ coincides with ϕP on P .
This can be seen as follows. Fix δ > 0. Uniform continuity of ω 7→ ϕω(x) is equivalent

to weak P-equivariance of y 7→ ϕP−y(x)=1xϕP (y) (x ∈ Rn fixed)†. Hence we can find
a partition {Pi }i of P such that for all x ∈ B(0, 3A) and p, q ∈ Pi we have |1xϕP (p)−

1xϕP (q)|< δ. Furthermore, taking if necessary a refinement of that partition, the strong
P-equivariance of 1hϕP : P ∩ (P − h)→ Rn allows us to assume that, for h ∈ P − P ,
|h| ≤ A,1hϕP takes the same value on all points of Pi . Choose pi ∈ Pi and set, for p ∈ Pi

and x ∈ intVp − p,

φ̃(x + p)= ψ(x + pi )− ψ(pi )+ ψ(p). (4.6)

† We extend the definition of 1xϕP (y)= ϕP (y + x)− ϕP (y) to x, y ∈ Rn .
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Now we proceed exactly as in the proof of Lemma 2.6(3) thereby obtaining a smooth
function ϕ = ρ ∗ φ̃ which has strongly P-equivariant differential. If we choose δ small
enough then ‖ϕ − ϕP‖∞ is smaller than any given ε. The only drawback is that ϕ − ϕP

does not vanish on P . But the restriction of ϕ − ϕP to P is strongly P-equivariant. We may
therefore use Lemma 2.6(3) to add a smooth strongly P-equivariant function to ϕ such that
the result coincides with ϕP on P . This correction is of order ε in the ‖ · ‖∞-norm and so
we are done.

4.2. Exact P-equivariant 1-forms. Exact P-equivariant 1-forms are of the form d f
where f is P-equivariant. This implies that f is bounded. Such maps are not good
candidates to compare P with f (P) as the latter could not even be uniformly discrete.
It is more fruitful to consider exact 1-forms of the form d(ϕ − id) and then compare P
with ϕ(P).

THEOREM 4.13. Let P be a Delone set of finite local complexity, ϕ : Rn
→ Rn be a

C0-function and g ∈ GL(n, R). Suppose that ϕ − g is weakly P-equivariant. Then8g is a
uniformly continuous map which satisfies 8g(ω − x)=8g(ω)− g(x). In particular, 8id
extends to a topological semi-conjugacy between (�P , Rn) and (�ϕ(P), Rn) mapping P
to P ′. If ϕ − g is even strongly P-equivariant then ϕ(P) is a Delone set.

Proof. We consider first the case that ϕ − g is P-equivariant with range R. Clearly
g(P) is a Delone set. Since ϕ(P)= g(P)+ (ϕ − g)(P) and (ϕ − g)(P) is finite by
Lemma 2.4, also ϕ(P) is a Delone set. For the second statement choose r > 0 and let
r ′

= R + r . Let D(P − x, P − y) < 1/r ′. Since P has finite local complexity we can
find x ′, y′

∈ B(0, 1/2r ′) such that Br ′ [P − x − x ′
] = Br ′ [P − y − y′

]. By Lemma 4.2 we
then have Br [ϕ(P)− g(x + x ′)] = Br [ϕ(P)− g(y + y′)] and so D(ϕ(P)− g(x + x ′),
ϕ(P)− g(y + y′)) < 1/r . If r is sufficiently large then D(ϕ(P)− g(x + x ′), ϕ(P)−

g(x))≤ |g(x ′)| ≤ ‖g‖∞/2r ′. Hence the triangle inequality gives

D(P − g(x), P − g(y))≤
1
r

+
‖g‖∞

R + r
.

Since this tends to zero when r tends to infinity we conclude that 8g is uniformly
continuous.

Now suppose that ϕ − g is merely weakly P-equivariant and hence for any ε > 0 there
exists a strongly P-equivariant C0-function ϕε such that ‖ϕ − ϕε‖∞ < ε. Now

D(8g(P − x), 8εg(P − x))≤ dH (ϕ(P), ϕε(P))≤ ε

and a further application of the triangle inequality implies that8g is uniformly continuous.
The surjectivity of g implies that the image of 8g contains the orbit of ϕ(P) and hence

that 8g is surjective. The relation 8g(ω − x)=8g(ω)− g(x) is clear for ω = P − y and
follows for general ω from the continuity of 8g . 2

We now investigate conditions which lead to statements in the converse direction:
assuming that P ′ is a deformation of P such that the dynamical systems are pointed
topological conjugate, is there a weakly P-equivariant map ϕ such that ϕ(P)= P ′? Clark
and Sadun obtained related results for substitution tilings [CS06].
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Consider two patterns P and P ′ of finite local complexity and suppose that 9 :�P →

�P ′ is a semi-conjugacy mapping P to P ′. Since it commutes with the Rn actions, the
maps constructed in Lemma 4.9 are all equal to the identity. Moreover, since 9 has to be
the continuous extension of P − x 7→ P ′

− x we must have

9 =8id.

Of course, the semi-conjugacy is not assumed to preserve the canonical transversals.
If we assume in addition that P ′ is the image of P under a C1-function ϕ satisfying
Hypothesis 4.1 and having strongly P-equivariant differential, then we obtain from
Theorem 4.8 a (in general different) map 8ϕ :�P →�P ′ which preserves the canonical
transversal but does not commute with the Rn actions. Our main question is, therefore,
under which additional conditions does uniform continuity of8id and8ϕ imply that ϕ − id
is weakly P-equivariant?

A first observation to make is that boundedness of ϕ − id is necessary, as weakly P-
equivariant functions are bounded. We call a deformation bounded if ϕ − id is bounded.
We show below that boundedness of ϕ − id is sufficient, provided P ′ is aperiodic and
uniformly discrete.

LEMMA 4.14. Let P ⊂ Rn be an aperiodic, uniformly discrete set. For all M > 0 there
exists r > 0 such that, for all h ∈ Rn, |h| ≤ M, the following holds: if Br [P] = Br [P − h]

then h = 0.

Proof. Let us suppose the contrary. Then there exist M > 0, a sequence (rn)n tending to
+∞, and points hn ∈ Rn, |hn| ≤ M such that Brn [P] = Brn [P − hn] but hn 6= 0. Since
{h ∈ Rn

: |h| ≤ M} is compact we can assume, perhaps after taking a sub-sequence,
that (hn)n converges, let us say to h. This limit satisfies h 6= 0 since Brn [P] = Brn [P − hn]

for large enough rn implies that either hn = 0 or |hn| ≥ rmin(P). It follows that (P − hn)n

converges to P − h and that P − h = P . This contradicts the assumption that P
is aperiodic. 2

THEOREM 4.15. Let P ′ be an aperiodic and uniformly discrete deformation of a Delone
set P of finite local complexity. Thus, in particular, P ′

= ϕ(P) for some smooth function
ϕ : Rn

→ Rn with strongly P-equivariant differential and satisfying Hypothesis 4.1.
Suppose that P ′ is, moreover, pointed topologically semi-conjugate to P and hence 8id
is uniformly continuous. If ϕ − id is bounded then it is weakly P-equivariant.

Proof. Without loss of generality, we may assume that ϕ(0)= 0. Then 8ϕ :�P →�P ′ ,
which is uniformly continuous by Theorem 4.8, is given by

8ϕ(P − x)=8id(P − x)+ η(x),

where η = ϕ − id. By definition of the metric, uniform continuity of 8ϕ and 8id implies
that for any ε > 0 there exists δ > 0 such that, for all x, y ∈ Rn ,

Bδ−1 [P − x] = Bδ−1 [P − y]

H⇒

{
B1/ε[8ϕ(P − x)] ∼=ε B1/ε[8ϕ(P − y)]

B1/ε[8ϕ(P − x)+ η(x)] ∼=ε B1/ε[8ϕ(P − y)+ η(y)].
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Suppose that ε−1 > 2(‖η‖∞ + 1). Let p ∈ P . Then we have, for all x ∈ Rn ,

Bδ−1 [P − x] = Bδ−1 [P − p] H⇒ there exists x ′
∈ Rn, |x ′

|< 2ε :

B 1
2 ε

−1 [8ϕ(P − p)] = B 1
2 ε

−1 [8ϕ(P − p)+ η(x)− η(p)− x ′
].

Since η is bounded we can apply Lemma 4.14 to 8ϕ(P − p) with h = η(x)− η(p)− x ′

to conclude that |η(x)− η(p)|< 2ε. By the finite local complexity of P there exists a
finite subset {p1, . . . , pk} ⊂ P such that the sets {p ∈ P | Bδ−1 [P − p] = Bδ−1 [P − pi ]}

partition P . They are clearly locally derivable from P . Hence we can apply Proposition 2.7
to obtain the statement. 2

The following example shows that the hypothesis of boundedness of ϕ − id is not
implied by the other conditions of the theorem. The Penrose tilings can be defined by
means of a substitution. This is a locally defined decomposition γ of the tiles into smaller
tiles followed by a rescaling by a factor of τ , the golden ratio. If T is a Penrose tiling
then γ (T ) and T are mutually locally derivable, since the substitution is recognizable. In
particular, T and γ (T ) are pointed topologically conjugate and so are their vertex sets T v

and γ (T )v . Now a few Penrose tilings have the property that they are invariant under the
fourth iterate of the substitution. Hence for those, γ 4(T )v = τ−4T v , and thus γ 4(T )v is a
deformation of T v given by the map ϕ = τ−4id. Clearly ϕ − id is unbounded.

4.3. Deforming back. Recall that according to Definition 4.5 a deformation of a pattern
P is determined by a function ϕ : Rn

→ Rn whose differential is strongly P-equivariant.
The deformed pattern is then ϕ(P). This does not imply that P is a deformation of
ϕ(P), i.e. that there exists a function ψ : Rn

→ Rn whose differential is strongly ϕ(P)-
equivariant such that ψ(ϕ(P))= P . For instance, ϕ(P) could be periodic whereas P was
not†. Thus deformations are not always invertible. Although this is not analysed in [CS06],
it is quite clear that, for fixed k (cf. §2.4.2), there exists a neighbourhood of the identity
shape function such that shape functions in that neighbourhood are admissible and define
deformations which can be inverted. It is not clear a priori, however, that one can obtain
a lower bound on the size of this neighbourhood which is uniform in k. We will in this
section effectively establish such a lower bound (Theorem 4.18) and thereby guarantee
that small deformations are invertible, i.e. can be deformed back.

Given a uniformly discrete set P with minimal distance between points rmin we define
AP : [rmin,∞)→ R+,

AP (r)= inf
{
|h − h′

| : h, h′
∈

⋃
x∈P

Br [P − x], h 6= h′

}
.

AP (r) is a monotonically decreasing function which is bounded from above by rmin.
Moreover, if P has finite local complexity then AP (r) is strictly positive since then⋃

x∈P Br [P − x] is a finite set.
For the following lemma and its corollary we do not require any P-equivariance

property of ϕ or dϕ. In particular, ϕ(P) will usually not have finite local complexity.

† Definition 4.5 does not allow for additional markings of the points of ϕ(P) which could render the deformation
invertible.
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LEMMA 4.16. Let P be a uniformly discrete set of finite local complexity. For all r > 0
there exists 1> ε > 0 such that, for all differentiable functions ϕ : Rn

→ Rn which satisfy
‖d(ϕ − id)‖∞ < ε, the following holds: for all x, y ∈ P

Br ′ [ϕ(P)− ϕ(x)] = Br ′ [ϕ(P)− ϕ(y)] H⇒{
Br [P − x] = Br [P − y] and

for all h ∈ Br [P − x] : ϕ(x + h)− ϕ(x)= ϕ(y + h)− ϕ(y)

where r ′
= r(1 − ε)−1.

Proof. The statement is trivial for r < rmin, the minimal distance in P , so we assume that
r ≥ rmin. Define

ε = sup
0<t<1

{2t (1 − t)−2r ≤ AP ((1 − t)−2r)}.

Suppose that ‖d(ϕ − id)‖∞ < ε. Let r ′
= r(1 − ε)−1 and Sr ′(x) := {h ∈ P − x | ϕ(x +

h)− ϕ(x) ∈ Br ′ [ϕ(P)− ϕ(x)]}. Since ϕ is bi-Lipschitz with constant λ= (1 − ε)−1

we have
B(1−ε)r ′ [P − x] ⊂ Sr ′(x)⊂ B(1−ε)−1r ′ [P − x]. (4.7)

Now let Br ′ [ϕ(P)− ϕ(x)] = Br ′ [ϕ(P)− ϕ(y)]. This implies that there exists a bijection
β : Sr ′(x)→ Sr ′(y) such that

ϕ(y + β(h))− ϕ(y)= ϕ(x + h)− ϕ(x).

It follows that β(h)− h = η(x + h)− η(x)− η(y + β(h))− η(y) with η = ϕ − id and
hence

|β(h)− h| ≤ (|h| + |β(h)|)‖d(ϕ − id)‖∞.

By the right inclusion of (4.7),

(|h| + |β(h)|)‖d(ϕ − id)‖∞ < 2(1 − ε)−1r ′ε = AP ((1 − ε)−1r ′).

Since β(h), h ∈
⋃

x∈P Br [P − x], the definition of AP implies that h = β(h) and so
Sr ′(x)= Sr ′(y). From the left inclusion of (4.7), it follows that Br [P − x] = Br [P − y]

and, since h = β(h), for all h ∈ Br [P − x], ϕ(x + h)− ϕ(x)= ϕ(y + h)− ϕ(y). 2

COROLLARY 4.17. Let P be a Delone set of finite local complexity. There exists 1> ε > 0
such that, for all differentiable functions ϕ : Rn

→ Rn which satisfy ‖d(ϕ − id)‖∞ < ε, the
following holds: for all r > 0 there exists r ′ > 0 for all x, y ∈ P

Br ′ [ϕ(P)− ϕ(x)] = Br ′ [ϕ(P)− ϕ(y)] H⇒ Br [P − x] = Br [P − y]. (4.8)

Proof. Choose δ > 0 and r0 > 0 such that, for all r ≥ r0 and x ∈ P , the following holds:

Br+δ[P − x] ⊂

⋃
h∈Br [P−x]

Br [P − x − h] + h. (4.9)

This is possible since P is relatively dense. Choose ε such that the statement of
Lemma 4.16 is satisfied with r = r0 and some r ′

= r ′

0. For x ∈ P , let

V (x) :=

⋃
h∈Br [P−x]

Br ′

0
[ϕ(P)− ϕ(x + h)] + ϕ(x + h)− ϕ(x).
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V (x) is a subset of ϕ(P)− ϕ(x). Then

B(ϕ(x + h)− ϕ(x), r ′

0) ∩ V (x)= Br ′

0
[ϕ(P)− ϕ(x + h)] + ϕ(x + h)− ϕ(x). (4.10)

Now let V (x)= V (y), x, y ∈ P . This implies, in particular, that Br ′

0
[ϕ(P)− ϕ(x)] =

Br ′

0
[ϕ(P)− ϕ(y)] from which we conclude from Lemma 4.16 that Br0 [P − x] = Br0 [P −

y] and, for all h ∈ Br0 [P − x], ϕ(x + h)− ϕ(x)= ϕ(y + h)− ϕ(y). The latter implies
with (4.10) that, for all h ∈ Br0 [P − x], Br ′

0
[ϕ(P)− ϕ(x + h)] = Br ′

0
[ϕ(P)− ϕ(y + h)]

and hence by Lemma 4.16 that, for all h ∈ Br0 [P − x], Br0 [P − x − h] = Br0 [P − y −

h] holds and, for all h′
∈ Br0 [P − x − h], ϕ(x + h + h′)− ϕ(x + h)= ϕ(y + h + h′)−

ϕ(y + h). In particular, we find that, for all h′′
∈ Br0 [P − x − h] + h,

ϕ(x + h′′)− ϕ(x) = ϕ(x + h + (h′′
− h))− ϕ(x + h)+ ϕ(x + h)− ϕ(x)

= ϕ(y + h + (h′′
− h))− ϕ(y + h)+ ϕ(y + h)− ϕ(y)

= ϕ(y + h′′)− ϕ(y),

as h′′
− h ∈ Br0 [P − x − h]. Thus V (x)= V (y), x, y ∈ P implies that Br1 [P − x] =

Br1 [P − y] and, for all h ∈ Br1 [P − x], ϕ(x + h)− ϕ(x)= ϕ(y + h)− ϕ(y) where r1 =

r0 + δ. Since V (x) is finite there exists an r ′

1 such that V (x)⊂ B(0, r ′

1). It follows that,
for x, y ∈ P , Br ′

1
[ϕ(P)− ϕ(x)] = Br ′

1
[ϕ(P)− ϕ(y)] implies that V (x)= V (y). We have

thus proven that the statement of Lemma 4.16 holds with the same ε but r = r1 and r ′
= r ′

1.
Iterating this argument yields the statement of the corollary. 2

Note that in the statement of the corollary the points x and y were taken from P and
so the corollary does not imply that dϕ−1 is strongly ϕ(P)-equivariant†. To obtain the
statement for arbitrary x, y ∈ Rn we need to require that dϕ is strongly P-equivariant.

THEOREM 4.18. Let P be a Delone set of finite local complexity. There exists 1>
ε > 0 such that, for all differentiable functions ϕ : Rn

→ Rn whose differential satisfies
‖d(ϕ − id)‖∞ < ε and is strongly P-equivariant the following holds: for all r > 0 there
exists r ′ > 0 for all x, y ∈ Rn

Br ′ [ϕ(P)− ϕ(x)] = Br ′ [ϕ(P)− ϕ(y)] H⇒ Br [P − x] = Br [P − y]. (4.11)

Proof. Given P and ε according to Corollary 4.17 let ϕ : Rn
→ Rn be a C1-function

whose differential dϕ is P-equivariant with range R and satisfies ‖d(ϕ − id)‖∞ < ε. Let
r ≥ max{λrmax, R} where rmax = inf{r | for all x ∈ Rn

: Br [P − x] 6= ∅}, λ= (1 − ε)−1.
Let r ′

= r ′(r + λrmax) according to Corollary 4.17.
Suppose that Br ′+λrmax [ϕ(P)− ϕ(x)] = Br ′+λrmax [ϕ(P)− ϕ(y)]. Choose h ∈ ϕ(P)−

ϕ(x) such that |h| ≤ λrmax. Let x ′
= ϕ−1(ϕ(x)+ h) and y′

= ϕ−1(ϕ(y)+ h). Then ϕ(x ′),
ϕ(y′) ∈ ϕ(P) and Br ′ [ϕ(P)− ϕ(x ′)] = Br ′ [ϕ(P)− ϕ(y′)]. From Corollary 4.17 we
conclude that Br+λrmax [P − x ′

] = Br+λrmax [P − y′
]. Since dϕ is P-equivariant with

range r the latter implies that ϕ(x)− ϕ(x ′)= ϕ(y′
+ x − x ′)− ϕ(y′) which, in turn, is

equivalent to ϕ(y)= ϕ(y′
+ x − x ′). Since ϕ is invertible we get y − y′

= x − x ′ and
hence Br [P − x] = Br [P − y]. 2

† The argument breaks down if one allows arbitrary x ∈ Rn , as replacing in the definition of AP the union over
x ∈ P by a union over x ∈ Rn would yield AP (s)= 0.
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COROLLARY 4.19. Let P be a Delone set of finite local complexity. There exists
1> ε > 0 such that for all differentiable functions ϕ : Rn

→ Rn whose differential satisfies
‖d(ϕ − id)‖∞ < ε and is strongly P-equivariant we also have that dϕ−1 is strongly
ϕ(P)-equivariant.

Proof. Given P there exists ε according to the last theorem. Suppose that
‖d(ϕ − id)‖∞ < ε and that dϕ is P-equivariant with range r . Let r ′ correspond to the
one needed in the last theorem. Let Br ′(ϕ(P)− ϕ(x))= Br ′(ϕ(P)− ϕ(y)). By the last
theorem this implies that Br (P − x)= Br [P − y]. Hence dϕ(x)= dϕ(y). Since

(dϕ−1)(ϕ(x))= (dϕ(x))−1

(the inverse in the matrix sense) we see that dϕ−1 is P-equivariant with range r ′. 2

We can now answer the question as to what it means if two closed forms differ by an
exact form, at least for forms which are close to did.

COROLLARY 4.20. Let P be a Delone set of finite local complexity. There exists
1> ε > 0 such that if dϕ and dψ are strongly P-equivariant, ‖d(ϕ − id)‖∞ < ε,
and furthermore if ϕ − ψ is weakly P-equivariant (or even strongly P-equivariant)
then (ψ − ϕ) ◦ ϕ−1 is weakly ϕ(P)-equivariant (or even strongly ϕ(P)-equivariant).
In particular, ψ ◦ ϕ−1 induces a topological semi-conjugacy between (�ϕ(P), Rn) and
(�ψ(P), Rn) (or even ψ(P) is locally derivable from ϕ(P)).

Proof. Suppose that ϕ − ψ is P-equivariant with range r . By Theorem 4.18 we
find r ′ such that Br ′ [ϕ(P)− x] = Br ′ [ϕ(P)− y] implies that Br [P − ϕ−1(x)] = Br [P −

ϕ−1(x)]. Since η(x)= (ϕ − ψ)(ϕ−1(x)) the latter implies that η(x)= η(y). Hence η is
P-equivariant with range r ′ and so the result follows directly from Lemma 4.2 (the ϕ, g
and P there correspond to id − η, id and ϕ(P) here). 2

4.4. Locally deriving back. When are ϕ(P) and P mutually locally derivable? Suppose
that ϕ − id is strongly P-equivariant so that, in particular, ϕ(P) is locally derivable from P .
The last corollary gives an answer to the question of under which condition can P be locally
derived back from ϕ(P), namely this is the case if ‖d(ϕ − id)‖∞ < ε for some ε whose
size could be estimated using the details of Corollary 4.17.

4.5. Cohomological interpretation. We interpret our results in cohomological terms.
Let B‖·‖∞

(α, ε) be the open ε-ball around α ∈ Z1
s−P (R

n, Rn) with respect to the
‖ · ‖∞-norm. A good measure for the size of the deformation defined by ϕ is given
by inf{‖dϕ + dη‖∞ : dη ∈ N 1

s−P (R
n, Rn)}. It is scale invariant and corresponds to the

maximal relative change of distance between points resulting from the deformation.
Theorem 4.8 and Corollaries 4.19 and 4.20 allow for the following interpretation.

For all Delone sets of finite local complexity there exists an ε such that the elements
of Z1

s−P (R
n, Rn) ∩ B‖·‖∞

(did, ε) define invertible deformations of P . If, moreover, two
such elements differ by an element of B1

w−P (R
n, Rn) (or even B1

s−P (R
n, Rn)) then they

define pointed topological conjugate (or even mutually locally derivable) deformations.
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Theorems 4.13 and 4.15 say that the elements near the class of did in the mixed
quotient Z1

s−P (R
n, Rn)/B1

w−P (R
n, Rn) ∩ Z1

s−P (R
n, Rn) parametrize small deformations

modulo bounded deformations which are in the same pointed conjugacy class. Here we
say that a deformation defined by a map ϕ is bounded if ϕ − id is bounded, a condition
which implies that the deformation is homotopic to the original pattern in the Hausdorff
metric. Note that a bounded deformation has finite size but the converse need not be true.

On the level of pattern spaces and their associated dynamical systems the following
picture has emerged (Theorem 4.10). An element dϕ near did of Z1

s−P (R
n, Rn) defines

a homeomorphism from the hull of P to that of the deformation it defines which
restricts to a homeomorphism between the canonical transversals and maps P to its
deformation. If d(ϕ − id) lies even in B1

w−P (R
n, Rn) ∩ Z1

s−P (R
n, Rn) then it defines a

second homeomorphism, this time a pointed conjugacy between the continuous dynamical
systems. The two homeomorphisms need not coincide.
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