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In this paper, we present a pricing model for vulnerable options in discrete time. A General-
ized Autoregressive Conditional Heteroscedasticity process is used to describe the variance
of the underlying asset, which is correlated with the returns of the asset. As for counter-
party default risk, we study it in a reduced form model and the proposed model allows for
the correlation between the intensity of default and the variance of the underlying asset.
In this framework, we derive a closed-form solution for vulnerable options and investigate
quantitative impacts of counterparty default risk on option prices.
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1. INTRODUCTION

In this paper, we investigate the pricing issue of vulnerable options under a discrete-time
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. Vulnerable
options refer to European options with counterparty default risk, and counterparty default
risk refers to the risk in a financial contract that one counterparty defaults prior to matu-
rity and fails to make the payments in accordance with agreed terms. Vulnerable options
are usually traded in the over-the-counter (OTC) markets, and OTC contracts are indeed
exposed to counterparty default risk, since there are no marking to market and delivery
guaranty mechanisms. To protect counterparties from each other’s default, the clearing
counterparty (CCP) (CCP is a process by which financial transactions are cleared by a sin-
gle central counterparty.) was introduced as a new regulatory approach to financial stability
(see, e.g., Duffie and Zhu [12]). The main goal of introducing CCP is to prevent counterpar-
ties from each other’s default and a large number of the OTC markets has moved toward
the CCP. However, the OTC derivatives remain a significant part of the world of global
finance. (The statistics in the ISDA survey “OTC Derivatives Market Analysis, Year-End
2012,” published in June 2013, show that the notional outstanding of OTC derivatives
approximated US$632.6 trillion on December 31, 2012.) Additionally, counterparty default
risk has received much more attention due to the 2007–2008 financial crisis, and has been
one of the risks facing all the participants in the OTC markets. The most cited example
is the largest insurance company in the world, American International Group (AIG). AIG
provided insurance against bond defaults by selling credit default swaps (CDS). CDS are
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frequently traded in the OTC markets and are priced by taking into account the possible
defaults of the seller of the contract. For instance, Arora, Gandhi, and Longstaff [2] show
that default risk is priced in the CDS markets by examining an extensive data set of CDS
transaction prices. Since counterparty default risk indeed exists, taking counterparty default
risk into account is necessary when valuing OTC contracts.

There are two methods to capture credit default risk, structural models and reduced
form models. Structural models spring from the pioneering work by Black and Scholes
[5] and Merton [25], in which a default happens if the value of a firm’s assets is lower
than debt obligations at maturity. In the structural models, credit events are triggered
by the movements of the firm’s value relative to some credit-event-triggering threshold
(or barrier). Structural approaches have been adopted to study corporate bonds in the
literature, including Black and Cox [4], Leland [23], Leland and Toft [24] and Anderson and
Sundaresan [1], and vulnerable options, for instance, Johnson and Stulz [19], Klein [21], Cao
and Wei [7], and Tian et al. [27]. Based on the first work on vulnerable options by Johnson
and Stulz [19], Klein [21] presents an improved method of pricing vulnerable Black–Scholes
options and derives an analytical pricing formula of the options with correlated credit risk.
Cao and Wei [7] investigate the case where the counterparty has two types of liabilities:
a corporate bond and a short position in a call option. In a recent work, Tian et al. [27]
incorporate jump processes to describe the dynamics of asset prices and investigate the
impact of jump risk on vulnerable option prices. Wang [29] investigates the differences in
the prices of vulnerable options with different counterparties. Without examining underlying
causalities of default, reduced form models assume Poisson-type arrivals of defaults, with
an intensity of default governed by exogenous state variables. Examples of reduced form
models include Artzner and Delbaen [3], Jarrow, Lando, and Turnbull [17], Lando [22], and
Duffie and Singleton [11]. Adopting reduced form models of credit risk, Hull and White
[16], Jarrow and Turnbull [18] and Fard [13] also consider the pricing of vulnerable options.
Hull and White [16] consider derivative securities with default risk using the reduced form
models, by assuming the holder of a security could only recover a proportion of its no-
default value in the event of a default by the counterparty. Fard [13] describes the dynamics
of the underlying asset using a kernel-biased completely random jump-diffusion process,
and adopts a mean-reverting Ornstein-Uhlenbeck process to capture the default intensity.
Based on the Esscher transform, the author determines an equivalent martingale measure
(EMM) and obtains a closed-form price for vulnerable options.

This paper attempts to evaluate vulnerable options in a discrete-time framework, by
considering credit default risk in a reduced form model and adopting a GRACH process to
describe the variance of the underlying asset. GARCH processes are applied to take into
account the volatility clustering phenomenon by Bollerslev [6] and are used to describe the
dynamics of the underlying asset for valuing options (see, e.g., Duan [10], Heston and Nandi
[14], and Christoffersen et al. [9]). Following Heston and Nandi [14], we use a particular
GARCH process to describe the variance process. In contrast to earlier studies, this paper
has four main characteristics. First, this paper is the first one to consider vulnerable options
in a GARCH reduced form model and the possible default before maturity is considered.
Second, the proposed model captures stochastic nature of volatility. There are few papers
focusing on stochastic volatility when pricing vulnerable options. To our best knowledge,
Wang and Wang [28] and Yang, Lee, and Kim [30] are the only exceptions, where the
authors adopt different kinds of continuous-time stochastic volatility models. Third, the
proposed model captures stochastic nature of correlation between returns and volatility for
the underlying asset and allows for the correlation between the intensity of default and the
variance of the underlying asset. Lastly, the closed-form solution for vulnerable options is
also derived.

https://doi.org/10.1017/S0269964816000292 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000292


102 X. Wang

The remainder of this paper is organized as follows. In Section 2, the proposed frame-
work is presented and we derive an explicit pricing formula of vulnerable European options.
Section 3 presents numerical results to illustrate vulnerable option prices. Finally, concluding
remarks are contained in Section 4. The detailed proofs are shown in the appendix.

2. THE MODEL

In this section, we present the pricing framework and derive a closed-form solution for
vulnerable European options. Our formulation incorporates time-varying variance for the
underlying asset described by GARCH processes and captures counterparty credit risk in
a reduced form model. Additionally, the proposed model allows for the correlation between
the variance of the underlying asset and the default intensity.

Assume that the uncertainty of the economy is described by a probability space
(Ω,F , P ), equipped with an information flow {Ft}t≥0, where P is a real-world probability
measure. Suppose that the underlying asset price satisfies the following process under P ,⎧⎨

⎩
ln S(t + 1) = lnS(t) + r +

(
ls − 1

2

)
hs(t + 1) +

√
hs(t + 1)Zs(t + 1),

hs(t + 1) = ws + bshs(t) + as

(
Zs(t) − cs

√
hs(t)

)2

,
(2.1)

where S(t) represents the value of the underlying asset at the close of day t, r is the
interest rate, and ls denotes the market price of risk, with expected returns being r +
lshs(t + 1) during the interval of time [t, t + 1]. Shocks to the returns are generated by a
standard normal variable Zs(t + 1), and the conditional variance hs(t + 1) is known at the
end of day t. The term −(1/2)hs(t + 1) is a convexity adjustment introduced such that the
conditional expectation of returns becomes

E
P
t

[
S(t + 1)

S(t)

]
= er+lshs(t+1).

This class of GARCH processes are proposed by Heston and Nandi [14] and are station-
ary with finite mean and variance if bs + asc

2
s < 1 (see Heston and Nandi [14] for detail).

This process allows for the correlation between the returns and variance, that is,

Covt−1(hs(t + 1), ln S(t)) = −2ascshs(t).

Positive values for as and cs imply a negative correlation between returns and variance. In
addition, GARCH models have an obvious advantage that volatility or variance is observable
from the history of asset prices, compared with the continuous-time stochastic volatility
models. To be specific, due to the dynamics of the underlying asset in (2.1), we can observe
disturbance processes Zm(t) from the market price of the underlying asset,

Zs(t) =
ln{[S(t)]/[S(t − 1)]} − r − (ls − [1/2])hs(t)√

hs(t)
,

which results in an observable conditional variance hs(t + 1) as follows:

hs(t + 1) = ws + bshs(t) + as

(
Zs(t) − cs

√
hs(t)

)2

= ws + bshs(t) + as

(
ln{[S(t)]/[S(t − 1)]} − r − (ls − [1/2])hs(t)√

hs(t)
− cs

√
hs(t)

)2

.
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The above model can capture the time-varying variance and correlation between the
returns and the variance of the underlying asset. To derive option prices, we now determine
an EMM. First, define the following conditional Radon-Nikodym derivative:

L(t + 1) :=
dQ

dP

∣∣∣
Ft

=
exp

{
θs

√
hs(t + 1)Zs(t + 1)

}
E

P
t

[
exp

{
θs

√
hs(t + 1)Zs(t + 1)

}] , (2.2)

where θs is a constant. The form of the above Radon–Nikodym derivative is motivated by
the affine structure of the pricing kernel (see, e.g., Christoffersen, Jacobs, and Ornthanalai
[8]). To determine an EMM Q, the martingale condition should hold. The following result
gives a necessary and sufficient condition.

Proposition 2.1: The martingale condition holds if and only if

θs = −ls.

Moreover, Zs(t) + ls
√

hs(t) is a standard normal variable under Q.

Based on the above condition ensuring that Q is an EMM, the risk-neutral dynamics
of the underlying asset is given as follows.

Proposition 2.2: The underlying asset price S(t) satisfies the following processes under Q,⎧⎪⎨
⎪⎩

ln S(t + 1) = lnS(t) + r − 1
2
hs(t + 1) +

√
hs(t + 1)Z∗

s (t + 1),

hs(t + 1) = ws + bshs(t) + as

(
Z∗

s (t) − (cs + ls)
√

hs(t)
)2

,

(2.3)

where Z∗
s (t + 1) := Zs(t + 1) + ls

√
hs(t + 1) is a standard normal variable under Q.

A direct application of Proposition 1 in Heston and Nandi [14] helps us obtain Propo-
sitions 2.1 and 2.2. (The detailed proofs are available from the author upon request.) To
price vulnerable options, we describe counterparty default risk and investigate the payoff of
vulnerable options in the following subsections.

2.1. Counterparty Default Risk

In this subsection, we consider counterparty default risk in a reduced form model, where
the default event is governed by a specified intensity process. We model the random time of
default τ as the first jump time of a doubly stochastic Poisson process (Cox process) with
intensity λ(t), which is the conditional mean arrival rate of default measured in events per
day. Suppose that the default intensity is governed by the following process under Q:

λ(t + 1) = wλ + bλλ(t) + aλ

(
Zλ(t)

)2

, (2.4)

where wλ > 0, bλ ≥ 0, aλ ≥ 0, and Zλ(t) is a standard normal variable, capturing a time-
varying intensity. The intensity process is wide-sense stationary if and only if aλ + bλ < 1
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(see Bollerslev [6] for more detail). Note that λ(t + 1) is the mean arrival rate of default in
(t, t + 1] given survival up to time t, we have that

Q(τ > t + 1|Ft) = EQ
t

[
e−λ(t+1)

]
= e−λ(t+1). (2.5)

Additionally, we assume that Z∗
s (t + 1) and Zλ(t + 1) have a correlation coefficient ρ.

From the dynamics of the underlying asset in (2.3) and the intensity process in (2.4), one
gets that the covariance of the variance of the underlying asset with the default intensity is
given by

Covt−1

(
hs(t + 1), λ(t + 1)

)

= Covt−1

(
ws + bshs(t) + as

(
Z∗

s (t) − (cs + ls)
√

hs(t)
)2

, wλ + bλλ(t) + aλ

(
Zλ(t)

)2
)

= Covt−1

(
as

(
Z∗

s (t) − (cs + ls)
√

hs(t)
)2

, aλ

(
Zλ(t)

)2
)

= asaλCovt−1

((
Z∗

s (t) − (cs + ls)
√

hs(t)
)2

,
(
Zλ(t)

)2
)

= asaλCovt−1

((
Z∗

s (t)
)2

− 2(cs + ls)
√

hs(t)Z∗
s (t),

(
Zλ(t)

)2
)

= 2asaλρ2,

where we have used the fact that hs(t) and λ(t) are known at time t − 1. We observe that
our specification captures positive correlation between the variance of the underlying asset
and the default intensity with positive values of as and aλ and a non-zero ρ. Intuitively,
the variance of the underlying asset and the default intensity are both positively correlated
with market risk.

2.2. Vulnerable Option Prices

Based on the framework described above, we derive an explicit formula of vulnerable call
options in this subsection. To this end, we first focus on the payoff of vulnerable call options.
Due to the possibility that the counterparty defaults, the payoff of vulnerable options
depends on whether default events occur or not during the lifetime of the options. Con-
sequently, the payoff of vulnerable options consists of two parts. If there is no default
event before the maturity T , the payoff of vulnerable options is equal to the payoff on
a vanilla European call option. Mathematically, this part of the payoff can be expressed
as I(τ > T )(S(T ) − K)+, where τ denotes the default time and I(τ > T ) indicates the
case when no default events occur before the maturity T . If default events occur during
the lifetime of the options, only a proportion of its market value can be recovered. In
this case, the payoff of vulnerable options equals αE

Q[e−r(T−τ)(S(T ) − K)+|Fτ ], where
E

Q[e−r(T−τ)(S(T ) − K)+|Fτ ] represents the value of vulnerable call options at time τ
and α is the recover rate. Therefore, the value of a vulnerable call option, C∗, can be
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represented by,

C∗ = e−rT
E

Q
[
I(τ > T )(S(T ) − K)+

]
+ E

Q
[
I(0 ≤ τ ≤ T )α e−rτ

E
Q
[
e−r(T−τ)(S(T ) − K)+|Fτ

]]
= e−rT

E
Q
[
I(τ > T )(S(T ) − K)+

]
+ α e−rT

E
Q
[
I(0 ≤ τ ≤ T )(S(T ) − K)+

]
,

where the expectation is taken under the EMM Q. Note that I(0 ≤ τ ≤ T ) = 1− I(τ > T ),
we can rewrite C∗ as follows:

C∗ = e−rT
E

Q
[
I(τ > T )(S(T ) − K)+

]
+ α e−rT

E
Q
[
I(0 ≤ τ ≤ T )(S(T ) − K)+

]
= (1 − α)e−rT

E
Q
[
I(τ > T )(S(T ) − K)+

]
+ α e−rT

E
Q
[
(S(T ) − K)+

]
:= (1 − α)e−rT

(
I1 − KI2

)
+ α e−rT

(
I3 − KI4

)
, (2.6)

where I1–I4 are given by

I1 = E
Q
[
S(T )I(τ > T, S(T ) ≥ K)

]
, (2.7)

I2 = E
Q
[
I(τ > T, S(T ) ≥ K)

]
, (2.8)

I3 = E
Q
[
S(T )I(S(T ) ≥ K)

]
, (2.9)

I4 = E
Q
[
I(S(T ) ≥ K)

]
. (2.10)

The closed form solutions for I1–I4 yield an explicit formula of vulnerable option
prices C∗ in (2.6). To calculate I1–I4, now we turn to derive the closed-form solution for
the moment generating function of x(T ) := lnS(T ) and

∑T
s=1 λ(s), which is denoted by

f(0;T, φ1, φ2) as follows:

f(0;T, φ1, φ2) = E
Q
[
eφ1x(T )+φ2

∑T
s=1 λ(s)

]
.

Note that

f(0;T, iφ1, iφ2) = E
Q
[
eiφ1x(T )+iφ2

∑T
s=1 λ(s)

]

is the characteristic function of x(T ) := lnS(T ) and
∑T

s=1 λ(s). By inverting the charac-
teristic function, we can calculate probabilities and hence obtain the expressions of I1–I4

shown in Proposition 2.4. The following result gives the explicit expression of f(t;T, φ1, φ2)
defined by

f(t;T, φ1, φ2) = E
Q
t

[
eφ1x(T )+φ2

∑T
s=1 λ(s)

]
.
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Proposition 2.3: The conditional moment generating function of x(T ) and
∑T

s=1 λ(s),
with the notation x(T ) = lnS(T ), admits the following form:

f(t;T, φ1, φ2) = exp

{
φ1x(t) + φ2

t∑
s=1

λ(s) + A(t;T, φ1, φ2) + B1(t;T, φ1, φ2)hs(t + 1)

+ B2(t;T, φ1, φ2)λ(t + 1)

}
,

where A(t;T, φ1, φ2), B1(t;T, φ1, φ2) and B2(t;T, φ1, φ2) are given by

A(t; T, φ1, φ2) = φ1r + A(t + 1; T, φ1, φ2) + wsB1(t + 1; T, φ1, φ2) + wλB2(t + 1; T, φ1, φ2)

− 1

2
ln
(
1 − 2aλB2(t + 1; T, φ1, φ2)(1 − ρ2)

)

− 1

2
ln

(
1 − 2

(
asB1(t + 1; T, φ1, φ2) +

aλB2(t + 1; T, φ1, φ2)ρ
2

1 − 2aλB2(t + 1; T, φ1, φ2)(1 − ρ2)

))
,

B1(t; T, φ1, φ2) = bsB1(t + 1; T, φ1, φ2) − 1

2
φ1 + as(cs + ls)

2B1(t + 1; T, φ1, φ2)

+

(
φ1 − 2as(cs + ls)B1(t + 1; T, φ1, φ2)

)2

2
(
1 − 2

(
asB1(t + 1; T, φ1, φ2) +

aλB2(t+1;T,φ1,φ2)ρ2

1−2aλB2(t+1;T,φ1,φ2)(1−ρ2)

)) ,

B2(t; T, φ1, φ2) = bλB2(t + 1; T, φ1, φ2) + φ2,

and these coefficients can be obtained recursively using the terminal conditions,

A(T ;T, φ1, φ2) = B1(T ;T, φ1, φ2) = B2(T ;T, φ1, φ2) = 0.

Proof: See the appendix. �

It should be noted that B2(t;T, φ1, φ2) has no independence on the variable φ1 and
can be derived in a closed form, that is, B2(t;T, φ1, φ2) = (1 − bT−t

λ )/(1 − bλ)φ2. In addi-
tion, A(t;T, φ1, φ2) and B1(t;T, φ1, φ2) are defined recursively using the terminal conditions
A(T ;T, φ1, φ2) = B1(T ;T, φ1, φ2) = 0. Based on the expression of the characteristic function
f(0;T, iφ1, iφ2), we can derive the vulnerable option price in (2.6). Hence, the expressions
for A(t;T, iφ1, iφ2) and B1(t;T, iφ1, iφ2) appear in the closed form solution for vulnerable
option prices.

Proposition 2.4: The price of vulnerable options with strike price K and maturity T is
given by

C∗ = e−rT

[
(1 − α) ∗

(
Π1(0;T ) +

1
2
f(0;T, 1,−1) − KΠ2(0;T ) − 1

2
Kf(0;T, 0,−1)

)

+ α

(
Π3(0;T ) +

1
2
f(0;T, 1, 0) − KΠ4(0;T ) − 1

2
K

)]
.
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where the closed form solution for f(0;T, φ1, φ2) is derived in Proposition 2.3 and Π1(0;T ),
Π2(0;T ), Π3(0;T ), and Π4(0;T ) are given by

Π1(0;T ) =
1
π

∫ ∞

0

Re
[
e−iφ1 ln Kf(0;T, iφ1 + 1,−1)

iφ1

]
dφ1,

Π2(0;T ) =
1
π

∫ ∞

0

Re
[
e−iφ1 ln Kf(0;T, iφ1,−1)

iφ1

]
dφ1,

Π3(0;T ) =
1
π

∫ ∞

0

Re
[
e−iφ1 ln Kf(0;T, iφ1 + 1, 0)

iφ1

]
dφ1,

Π4(0;T ) =
1
π

∫ ∞

0

Re
[
e−iφ1 ln Kf(0;T, iφ1, 0)

iφ1

]
dφ1.

Proof: See the appendix. �

When α = 1 (there is no loss when default occurs), the pricing formula in Proposition 2.4
reduces to the vanilla European call option pricing formula in Heston and Nandi [14]. Based
on the explicit expression of the moment generating function, we have obtained the closed-
form solution for vulnerable options. In the next section, we present some numerical results
to illustrate vulnerable option prices.

3. NUMERICAL RESULTS

In this section, we illustrate vulnerable option prices using the derived pricing formula. In
order to observe the quantitative impact of counterparty default risk, we choose the Heston
and Nandi [14] model as a reference model. In addition, we contrast the values of vulnerable
options issued by different counterparties. To be specific, we suppose that there are three
counterparties (denoted by A, B, and C) issuing options with the same underlying asset,
and these counterparties have different default probabilities as listed in Table 1. The data
in Table 1 is from Hull [15], representing average cumulative default rates for corporate
bonds in different rating categories during years 1970–2009. To determine four parameters’
values in the dynamics of the default intensity, we choose four default probabilities during
a period of 1.0, 3.0, 5.0, and 7.0 years. By equating the default probabilities implied by the
proposed model (As shown in the previous section, the default probability in the proposed
model during years 0–T is 1 − f(0;T, 0,−1), and the closed-form solution for f(0;T, 0,−1)
is given in Proposition 2.3.) with those in Table 1, we obtain the parameter values in
the default intensity dynamics. (Since the default probabilities implied by the proposed
model are of the recursive form, it is not easy to show the uniqueness and existence of the
parameter values. We have to investigate it numerically. If the uniqueness and existence
cannot be guaranteed, we can alternatively estimate the parameters by minimizing the

Table 1. Average Cumulative Default Rates (%), 1970–2009.

Term (years) 1.0 3.0 5.0 7.0

Counterparty A 0.176 0.912 1.926 2.996
Counterparty B 1.166 5.583 10.397 14.318
Counterparty C 4.546 16.188 25.895 34.473
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distance between theoretical and empirical cumulative default rates. The author thanks the
referee for pointing out this issue.) The parameter values for three counterparties are listed
in Table 2 and the corresponding cumulative default probabilities are plotted in Figure 1,
using the derived formula of 1 − f(0;T, 0,−1).

As a reference point of the numerical results, Table 2 also summarizes a base set
of parameters for the underlying asset. We set ws = 2.101 × 10−17, as = 3.317 × 10−6,

Table 2. Parameter Values in the Base Case.

The underlying asset parameters
Initial price S(0) = 100
Market price of risk ls = 2.231
Parameters governing variance processes ws = 2.101 × 10−17 as = 3.317 × 10−6

bs = 9.012 × 10−1 cs = 1.276 × 102

Initial variance hs(0) = 0.01/365

The default intensity parameters (A)
Initial intensity λ(0) = 4.826 × 10−6

Parameters governing default intensities wλ = 1.121 × 10−8 aλ = 3.318 × 10−12

bλ = 9.994 × 10−1

The default intensity parameters (B)
Initial intensity λ(0) = 3.213 × 10−5

Parameters governing default intensities wλ = 1.542 × 10−7 aλ = 2.601 × 10−11

bλ = 9.977 × 10−1

The default intensity parameters (C)
Initial intensity λ(0) = 1.274 × 10−4

Parameters governing default intensities wλ = 8.637 × 10−7 aλ = 2.743 × 10−10

bλ = 9.949 × 10−1

Other parameters
Interest rate r = 0.05
Strike price K = 100
Maturity T = 2.0
Correlation coefficient ρ = 0.50
Recovery rate α = 0.50

Figure 1. Cumulative default probabilities for Counterparties A, B, and C.
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bs = 9.012 × 10−1, and cs = 1.276 × 102. The market price of risk is set to be ls = 2.231.
These parameters are borrowed from Christoffersen et al. [9], where the parameters are
estimated using maximum likelihood and daily total returns from July 1, 1962 to December
31, 2001 on the Standard and Poor’s 500 index. The annual initial variance is set to be 0.01,
which means the instantaneous volatility is 0.10. As a base case, we suppose the vulnerable
option is at the money and time to maturity is assumed to be 2 years. The variance of the
underlying asset and the default intensity are correlated by setting ρ = 0.5. In the follow-
ing, we investigate quantitative impacts of counterparty default risk on option prices with
alternative maturities and spot-to-strike ratios.

Figure 2 depicts the values of call options with alternative maturities and several obser-
vations are in order. First, the values of the options without counterparty default risk are the
largest and those of the options issued by Counterparty C are the smallest. Intuitively, once
default events occur, option holders will suffer from the loss, reducing option values, and
Counterparty C is mostly likely to default. Second, the default risk becomes more and more
pronounced as the life of the option rises. Third, the values of the options issued by Coun-
terparty A are very close to those without default risk, even when time to maturity increases
to 5 years, while the gaps between option prices without default risk and those issued by
Counterparty C increase quite quickly, as shown in Figure 3 more obviously. For instance,
the distance between option prices with no default risk and those issued by Counterparty

Figure 2. Option prices against time to maturity.

Figure 3. The Heston–Nandi price less than the proposed model price for call options
with alternative maturities.
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C rises from 0.2416, corresponding to maturity T = 1.0 to 3.501, corresponding to maturity
T = 5.0.

Figures 4 and 5 plot option prices varying with the spot to strike ratio. The impacts of
counterparty default risk are more pronounced for deep-in-the-money options. For instance,
the difference between the values of the options without default risk and those of the options
issued by Counterparty A is only 0.0094 with spot-to-strike ratio being 0.8, and the difference
increases slowly to 0.0841 in the case when spot-to-strike ratio is 1.20. In contrast, the
differences between the values of the options without default risk and those of the options
issued by Counterparty C are 0.1893 and 1.6912, respectively. Intuitively, once credit events
occur, deep-in-the-money option holders will suffer from more potential credit losses.

Figure 6 presents option prices against recovery rate. Recovery rate only affects the
payoff of the options when default happens, hence option prices in the Heston–Nandi model
are not affected. Increasing the recovery rate from 0.40 to 0.60, values of the options issued
by Counterparty A change from 14.33 to 14.34, while those corresponding to Counterparty C
are 13.43 and 13.75, respectively. Hence, the more likely the counterparty is to default, the
more sensitive option prices are to recovery rate.

Figure 4. Option prices against spot-to-strike ratio.

Figure 5. The Heston–Nandi price less than the proposed model price for call options
with alternative pot-to-strike ratios.
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Figure 6. Option prices against recovery rate.

4. CONCLUSION

In this paper, we contribute to the literature through investigating vulnerable options in
discrete-time models. The proposed model captures stochastic nature of variance, which is
described by a GARCH process and correlated with the returns of the asset. The reduced
form model is adopted to model counterparty default risk and the default intensity is time-
varying stochastically. In addition, the correlation between the intensity of default and
the variance of the underlying asset is allowed in the proposed model. Analytical formula
of vulnerable options is obtained and numerical results are given to illustrate vulnerable
option prices.
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APPENDIX

Proof of Proposition 2.3: Let x(t) = ln S(t). Denote by f(t; T, φ1, φ2) the conditional moment

generating function of
∑T

s=1 λ(s) and X(T ), that is,

f(t; T, φ1, φ2) = E
Q
t

[
eφ1x(T )+φ2

∑T
s=1 λ(s)

]
.

In the following, we show that the moment generating function has the log-linear form below:

f(t; T, φ1, φ2) = exp

{
φ1x(t) + φ2

t∑
s=1

λ(s) + A(t; T, φ1, φ2) + B1(t; T, φ1, φ2)hs(t + 1)

+ B2(t; T, φ1, φ2)λ(t + 1)

}
.

For convenience, we use the more parsimonious notations f(t), A(t), B1(t), and B2(t) to indicate
f(t; T, φ1, φ2), A(t; T, φ1, φ2), B1(t; T, φ1, φ2) and B2(t; T, φ1, φ2).
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At time T , x(T ) and
∑T

s=1 λ(s) are known and it holds that f(T ) = exp{φ1x(T ) +

φ2
∑T

s=1 λ(s)}, which in turn implies the following terminal conditions:

A(T ) = B1(T ) = B2(T ) = 0.

Applying the law of iterated expectations to f(t) yields that

f(t) = E
Q
t

[
eφ1x(T )+φ2

∑T
s=1 λ(s)

]
= E

Q
t

[
E

Q
t+1

[
eφ1x(T )+φ2

∑T
s=1 λ(s)

]]
= E

Q
t

[
f(t + 1)

]

= E
Q
t

[
exp

{
φ1x(t + 1) + φ2

t+1∑
s=1

λ(s) + A(t + 1) + B1(t + 1)hs(t + 2)

+ B2(t + 1)λ(t + 2)

}]
.

Substituting the dynamics of x(t + 1), hs(t + 2), and λ(t + 2), we have that

f(t) = E
Q
t

[
exp

{
φ1x(t) + φ1r − 1

2
φ1hs(t + 1) + φ1

√
hs(t + 1)Z∗

s (t + 1)

+ φ2

t+1∑
s=1

λ(s) + A(t + 1)

+ B1(t + 1)
(
ws + bshs(t + 1) + as(Z

∗
s (t + 1) − (cs + ls)

√
hs(t + 1))2

)

+ B2(t + 1)
(
wλ + bλλ(t + 1) + aλ(Zλ(t + 1))2

)}]
.

Rearranging terms implies that

f(t) = E
Q
t

[
exp

{
φ1x(t) + φ1r − 1

2
φ1hs(t + 1) + φ2

t+1∑
s=1

λ(s) + A(t + 1)

+ B1(t + 1)
(
ws + bshs(t + 1)

)
+ B2(t + 1)

(
wλ + bλλ(t + 1)

)
+ Ψ

}]

= E
Q
t

[
exp

{
φ1x(t) + φ2

t∑
s=1

λ(s) + φ1r + A(t + 1) + wsB1(t + 1) + wλB2(t + 1)

+

(
bsB1(t + 1) − 1

2
φ1

)
hs(t + 1) + (bλB2(t + 1) + φ2)λ(t + 1) + Ψ

}]

= exp

{
φ1x(t) + φ2

t∑
s=1

λ(s) + φ1r + A(t + 1) + wsB1(t + 1) + wλB2(t + 1)

+

(
bsB1(t + 1) − 1

2
φ1

)
hs(t + 1) + (bλB2(t + 1) + φ2)λ(t + 1)

}

× E
Q
t

[
exp{Ψ}

]
,

https://doi.org/10.1017/S0269964816000292 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000292


114 X. Wang

where Ψ has the following form:

Ψ = φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + λs)
√

hs(t + 1)
)2

+ aλB2(t + 1)
(
Zλ(t + 1)

)2
,

To derive E
Q
t

[
exp{Ψ}

]
, now we investigate E

Q
t

[
exp

{
aλB2(t + 1)

(
Zλ(t + 1)

)2}∣∣∣Z∗
s (t + 1)

]
. Note

that Zλ(t + 1) and Z∗
s (t + 1) are two standard normal variables with a correlation coefficient ρ,

which allows us to rewrite Zλ(t + 1) as follows:

Zλ(t + 1) = ρZ∗
s (t + 1) +

√
1 − ρ2Z,

with Z being a standard normal variable, independent of Z∗
s (t + 1). Based on the above expression,

one has that

E
Q
t

[
exp

{
aλB2(t + 1)

(
Zλ(t + 1)

)2}∣∣∣Z∗
s (t + 1)

]

= E
Q
t

[
exp

{
aλB2(t + 1)

(√
1 − ρ2Z + ρZ∗

s (t + 1)
)2
} ∣∣∣Z∗

s (t + 1)

]

= E
Q
t

⎡
⎣exp

⎧⎨
⎩aλB2(t + 1)(1 − ρ2)

(
Z +

ρ√
1 − ρ2

Z∗
s (t + 1)

)2
⎫⎬
⎭
∣∣∣Z∗

s (t + 1)

⎤
⎦

= exp

{
−1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)
+

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

(
Z∗

s (t + 1)
)2
}

,

where in the last equality we have used the fact

Eea(Z+b)2 = e−
1
2 ln(1−2a)+ ab2

1−2a ,

with Z being a standard normal variable.

In the following, we focus on E
Q
t

[
exp{Ψ}

]
, which in turn gives us the form of f(t). Note that

Z∗
s (t + 1) is a standard normal variable. We derive E

Q
t

[
exp{Ψs}

]
as follows:

E
Q
t

[
exp

{
φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + ls)
√

hs(t + 1)
)2

+ aλB2(t + 1)
(
Zλ(t + 1)

)2
}]

= E
Q
t

[
Et

[
exp

{
φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + ls)
√

hs(t + 1)
)2

+ aλB2(t + 1)
(
Zλ(t + 1)

)2}∣∣∣Z∗
s (t + 1)

]]
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= E
Q
t

[
exp

{
φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + ls)
√

hs(t + 1)
)2
}

× Et

[
exp

{
aλB2(t + 1)

(
Zλ(t + 1)

)2
} ∣∣∣Z∗

s (t + 1)

]]

= E
Q
t

[
exp

{
φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + ls)
√

hs(t + 1)
)2
}

× exp

{
−1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)
+

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

(
Z∗

s (t + 1)
)2
}]

= E
Q
t

[
exp

{
φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + ls)
√

hs(t + 1)
)2

− 1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)
+

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

(
Z∗

s (t + 1)
)2
}]

:= E
Q
t

[
exp

{
μ1

(
Z∗

s (t + 1)
)2

+ μ2Z∗
s (t + 1) + μ3

}]
,

where μ1, μ2, and μ3 are defined by

μ1 = asB1(t + 1) +
aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)
,

μ2 =
(
φ1 − 2as(cs + ls)B1(t + 1)

)√
hs(t + 1),

μ3 = as(cs + ls)
2B1(t + 1)hs(t + 1) − 1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)
.

Recall that Z∗
s (t + 1) is a standard normal variable, and one gets that

E
Q
t

[
exp

{
μ1

(
Z∗

s (t + 1)
)2

+ μ2Z∗
s (t + 1) + μ3

}]

= E
Q
t

[
exp

{
μ1

(
Z∗

s (t + 1) +
μ2

2μ1

)2
+ μ3 − μ2

2

4μ1

}]

= exp

{
μ3 − μ2

2

4μ1

}
Et

[
exp

{
μ1

(
Z∗

s (t + 1) +
μ2

2μ1

)2
}]

= exp

{
μ3 − μ2

2

4μ1

}
× exp

{
−1

2
ln(1 − 2μ1) +

μ1

1 − 2μ1

(
μ2

2μ1

)2
}

,

where in the last equality we have also used the fact

Eea(Z+b)2 = e−
1
2 ln(1−2a)+[ab2/(1−2a)],

with Z being a standard normal variable.
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Substituting the expressions of μ1, μ2, and μ3, and completing some algebra shows that

μ3 − μ2
2

4μ1
− 1

2
ln(1 − 2μ1) +

μ1

1 − 2μ1

(
μ2

2μ1

)2

= μ3 − 1

2
ln(1 − 2μ1) +

μ2
2

2(1 − 2μ1)

= as(cs + ls)
2B1(t + 1)hs(t + 1) − 1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)

− 1

2
ln
(
1 − 2

(
asB1(t + 1) +

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

))

+

(
φ1 − 2as(cs + ls)B1(t + 1)

)2

2
(
1 − 2

(
asB1(t + 1) +

aλB2(t+1)ρ2

1−2aλB2(t+1)(1−ρ2)

))hs(t + 1)

= −1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)
− 1

2
ln
(
1 − 2

(
asB1(t + 1) +

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

))

+

⎛
⎜⎝as(cs + ls)

2B1(t + 1) +

(
φ1 − 2as(cs + ls)B1(t + 1)

)2

2
(
1 − 2

(
asB1(t + 1) +

aλB2(t+1)ρ2

1−2aλB2(t+1)(1−ρ2)

))
⎞
⎟⎠ hs(t + 1).

Therefore, we have obtained that

E
Q
t

[
exp{Ψ}

]
= exp

⎧⎪⎨
⎪⎩−1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)

− 1

2
ln
(
1 − 2

(
asB1(t + 1) +

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

))

+

⎛
⎜⎝as(cs + ls)

2B1(t + 1)

+

(
φ1 − 2as(cs + ls)B1(t + 1)

)2

2
(
1 − 2

(
asB1(t + 1) +

aλB2(t+1)ρ2

1−2aλB2(t+1)(1−ρ2)

))
⎞
⎟⎠ hs(t + 1)

⎫⎪⎬
⎪⎭ .

Hence, A(t), B1(t), and B2(t) are given by

A(t) = φ1r + A(t + 1) + wsB1(t + 1) + wλB2(t + 1)

− 1

2
ln
(
1 − 2aλB2(t + 1)(1 − ρ2)

)

− 1

2
ln

(
1 − 2

(
asB1(t + 1) +

aλB2(t + 1)ρ2

1 − 2aλB2(t + 1)(1 − ρ2)

))
,

B1(t) = bsB1(t + 1) − 1

2
φ1 + as(cs + ls)

2B1(t + 1) +

(
φ1 − 2as(cs + ls)B1(t + 1)

)2

2
(
1 − 2

(
asB1(t + 1)

aλB2(t+1)ρ2

1−2aλB2(t+1)(1−ρ2)

)) ,

B2(t) = bλB2(t + 1) + φ2.
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Thus, we have proved the moment generating function has the log-linear form,

f(t; T, φ1, φ2) = exp

{
φ1x(t) + φ2

t∑
s=1

λ(s) + A(t; T, φ1, φ2) + B1(t; T, φ1, φ2)hs(t + 1)

+ B2(t; T, φ1, φ2)λ(t + 1)

}
.

These coefficients can be obtained recursively using the terminal conditions,

A(T ; T, φ1, φ2) = B1(T ; T, φ1, φ2) = B2(T ; T, φ1, φ2) = 0. �

Proof of Proposition 2.4: Recall the moment generating function of x(T ) and
∑T

s=1 λ(s) in
Proposition 2.3, with the notations x(t) = ln S(t),

f(0; T, φ1, φ2) = E
Q
[
eφ1x(T )+φ2

∑T
s=1 λ(s)

]
. (A.1)

To deal with the term I1 in (2.7), we define a new probability measure Q1 as follows:

Q1(A) :=
EQ

[
I(A)S(T )I(τ > T )

]
EQ

[
S(T )I(τ > T )

] ,

for any events A ∈ FT and I(·) is an indicator function. Based on the definition of Q1, we have
the characteristic function of x(T ) under Q1,

f1(0; T, iφ1) = EQ1
[
eiφ1X(T )

]

=
EQ

[
eiφ1X(T )S(T )I(τ > T )

]
EQ

[
S(T )I(τ > T )

]

=
EQ

[
e(iφ1+1)X(T )I(τ > T )

]
EQ

[
S(T )I(τ > T )

]

=
EQ

[
e(iφ1+1)X(T )e−

∑T
s=1 λ(s)

]
EQ

[
eX(T )−∑T

s=1 λ(s)
]

=
f(0; T, iφ1 + 1,−1)

f(0; T, 1,−1)
,

where we have used the definition of f(0; T, φ1, φ2) in (A.1).
Standard probability theory (see, e.g., Kendall and Stuart [20], and Shephard [26]) implies the

distribution function F1(x(T ); x) corresponding to the characteristic function f1(0; T, iφ1),

F1(x(T ); x) =
1

2
− 1

π

∫ ∞

0
Re
[ e−iφ1xf1(0; T, iφ1)

iφ1

]
dφ1,

where Re[ ] denotes the real part of a complex number. Hence, we have that

Q1(x(T ) ≥ ln K) = 1 − F1(x(T ); ln K)

=
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf1(0; T, iφ1)

iφ1

]
dφ1 +

1

2
.
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Recall the definition of the probability measure Q1, we have that

Q1(x(T ) ≥ ln K) =
EQ

[
I(x(T ) ≥ ln K)S(T )I(τ > T )

]
EQ

[
S(T )I(τ > T )

] ,

which in turn implies

EQ
[
I(x(T ) ≥ ln K)S(T )I(τ > T )

]
= Q1(x(T ) ≥ ln K) ∗ EQ

[
S(T )I(τ > T )

]

=

(
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf1(0; T, iφ1)

iφ1

]
dφ1 +

1

2

)
f(0; T, 1,−1)

=
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf(0; T, iφ1 + 1,−1)

iφ1

]
dφ1 +

1

2
f(0; T, 1, − 1)

:= Π1(0; T ) +
1

2
f(0; T, 1,−1),

Rewrite I1 in (2.7) and we obtain

I1 = E
Q
[
S(T )I(τ > T, S(T ) ≥ K)

]
= E

Q
[
I(S(T ) ≥ K)S(T )I(τ > T )

]
= Π1(0; T ) +

1

2
f(0; T, 1,−1),

where Π1(0; T ) = 1
π

∫∞
0 Re

[
e−iφ1 ln Kf(0;T,iφ1+1,−1)

iφ1

]
dφ1.

As for I2, we can derive it similarly. Define a new probability measure Q2 as follows:

Q2(A) :=
EQ

[
I(A)I(τ > T )

]
EQ

[
I(τ > T )

] ,

for any events A ∈ FT and I(·) is an indicator function. Analogously, the characteristic function
of x(T ) under Q2 is given by

f2(0; T, iφ1) = EQ2
[
eiφ1X(T )

]

=
EQ

[
eiφ1X(T )I(τ > T )

]
EQ

[
I(τ > T )

]

=
EQ

[
eiφ1X(T )e−

∑T
s=1 λ(s)

]
EQ

[
e−

∑T
s=1 λ(s)

]

=
f(0; T, iφ1,−1)

f(0; T, 0,−1)
.

Thanks to standard probability theory (see, e.g., Kendall and Stuart [20]), the distribution
function F2(x(T ); x) corresponding to the characteristic function f2(0; T, iφ1) is

F2(x(T ); x) =
1

2
− 1

π

∫ ∞

0
Re
[ e−iφ1xf2(0; T, iφ1)

iφ1

]
dφ1,
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where Re[ ] denotes the real part of a complex number. Hence, we have that

Q2(x(T ) ≥ ln K) = 1 − F2(x(T ); ln K)

=
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf2(0; T, iφ1)

iφ1

]
dφ1 +

1

2
.

Therefore, we obtain the explicit expression for I2 as follows:

I2 = E
Q
[
I(τ > T, S(T ) ≥ K)

]
= Q2(x(T ) ≥ ln K) ∗ Q(τ > T )

= Q2(x(T ) ≥ ln K) ∗ EQ
[
e−

∑T
s=1 λ(s)

]
= Q2(x(T ) ≥ ln K) ∗ f(0; T, 0,−1)

:= Π2(0; T ) +
1

2
f(0; T, 0,−1),

where

Π2(0; T ) =
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf(0; T, iφ1,−1)

iφ1

]
dφ1.

To derive I3, we define a new probability measure Q3,

Q3(A) :=
EQ

[
I(A)S(T )

]
EQ

[
S(T )

] ,

and the characteristic function of x(T ) under Q3 is given by

f3(0; T, iφ1) = EQ3
[
eiφ1X(T )

]

=
EQ

[
eiφ1X(T )S(T )

]
EQ

[
S(T )

]

=
f(0; T, iφ1 + 1, 0)

f(0; T, 1, 0)
.

Similarly, one gets that

Q3(x(T ) ≥ ln K) =
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf3(0; T, iφ1)

iφ1

]
dφ1 +

1

2

and

I3 = E
Q[ST I(ST ≥ K)] = Q3(x(T ) ≥ ln K) ∗ E

Q[ST ]

= Q3(x(T ) ≥ ln K) ∗ f(0; T, 1, 0)

:= Π3(0; T ) +
1

2
f(0; T, 1, 0),

where

Π3(0; T ) =
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf(0; T, iφ1 + 1, 0)

iφ1

]
dφ1.
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Analogously, standard probability theory implies that

Π4(0; T ) := Q(x(T ) ≥ ln K)

= 1 − Q(x(T ) ≤ ln K)

=
1

π

∫ ∞

0
Re
[ e−iφ1 ln Kf(0; T, iφ1, 0)

iφ1

]
dφ1 +

1

2

:= Π4(0; T ) +
1

2
.

Therefore, the price of vulnerable options is given by

C∗ = e−rT
[
(1 − α) ∗

(
Π1(0; T ) +

1

2
f(0; T, 1,−1) − KΠ2(0; T ) − 1

2
Kf(0; T, 0,−1)

)
+ α

(
Π3(0; T ) +

1

2
f(0; T, 1, 0) − KΠ4(0; T ) − 1

2
K
)]

. �
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