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The central task of GPS/INS integration is to effectively blend GPS and INS data together
to generate an optimal solution. The present data fusion algorithms, which are mostly based

on Kalman filtering (KF), have several limitations. One of those limitations is the stringent
requirement on precise a priori knowledge of the system models and noise properties.
Uncertainty in the covariance parameters of the process noise (Q) and the observation

errors (R) may significantly degrade the filtering performance. The conventional way of
determining Q and R relies on intensive analysis of empirical data. However, the noise levels
may change in different applications. Over the past few decades adaptive KF algorithms

have been intensively investigated with a view to reducing the influence of the Q and R
definition errors. The covariance matching method has been shown to be one of the most
promising techniques. This paper first investigates the utilization of an online stochastic
modelling algorithm with regards to its parameter estimation stability, convergence, optimal

window size, and the interaction between Q and R estimations. Then a new adaptive process
noise scaling algorithm is proposed. Without artificial or empirical parameters being used,
the proposed adaptive mechanism has demonstrated the capability of autonomously tuning

the process noise covariance to the optimal magnitude, and hence improving the overall
filtering performance.
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1. INTRODUCTION. Integrated positioning and navigation systems using
Global Positioning System (GPS) receivers and Inertial Navigation System (INS)
sensors have demonstrated great utility for real-time navigation, mobile mapping,
location based services, and many other applications. Besides providing a full
solution for position and attitude, the other benefits of integrating GPS and INS
include the long term stable positioning accuracy, the high data updating rate,
the robustness to GPS signal jitter and interference, and the continuous calibration
of INS errors. Despite various integration architectures, the central challenge of
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implementing such integrated systems is how well the GPS and INS measurement
data can be fused together to generate the optimal solution.

The Kalman filter (KF) is the most common technique for carrying out this
task. The operation of the KF relies on the proper definition of the dynamic and the
stochastic models (Brown and Hwang, 1997). The dynamic model describes the
propagation of system states over time. The stochastic model describes the stochastic
properties of the system process noise and observation errors.

The uncertainty in the covariance parameters of the process noise (Q) and the
observation errors (R) has a significant impact on Kalman filtering performance
(Grewal and Andrews, 1993; Grewal and Weil, 2001; Salychev, 2004). Q and R
influence the weight that the filter applies between the existing process information
and the latest measurements. Errors in any of them may result in the filter being
suboptimal or even cause it to diverge.

The conventional way of determining Q and R requires good a priori knowledge
of the process noise and measurement errors, which typically comes from intensive
empirical analysis. In practice, the values are generally fixed and applied during
the whole application segment. The performance of the integrated systems suffers in
two respects due to this inflexibility. First, process noise and measurement errors
are dependent on the application environment and process dynamics. For generic
applications, the settings of the stochastic parameters have to be conservative in
order to stabilise the filter for the worst case scenario, which leads to performance
degradation. Second, the so-called KF ‘‘tuning’’ process is complicated, often left to
a few ‘‘experts ’’, and thus hampers its successful application across a wider range of
fields.

Over the past few decades, adaptive KF algorithms have been intensively
investigated to reduce the influence of the Q and R definition errors. Popular
adaptive methods used in GPS/INS integration can be classified into several
groups, such as covariance scaling, multi-model adaptive estimation, and adaptive
stochastic modelling (Hide et al., 2004a). The covariance scaling method improves
the filter stability and convergent performance by introducing a multiplication
factor to the state covariance matrix. The calculation of the scaling factor
can either be fully empirical or based on certain criteria derived from filter
innovations (Hu et al., 2003; Yang, 2005; Yang and Gao, 2006; Yang and Xu,
2003). The multi-model adaptive estimation method requires a bank of simul-
taneously operating Kalman filters in which slightly different models and/or para-
meters are employed. The output of multi-model adaptive estimation is the
weighted sum of each individual filter’s output. The weighting factors can be cal-
culated using the residual probability function (Brown and Hwang, 1997; Hide
et al., 2004b). Adaptive stochastic modelling includes innovation-based adaptive
modelling (Mohamed and Schwarz, 1999) and residual-based adaptive modelling
(Wang, 2000; Wang et al., 1999). By online monitoring of the innovation and
residual covariances, the adaptive stochastic modelling algorithm estimates directly
the covariance matrices of process noise and measurement errors, and ‘‘ tunes ’’
them in real-time.

In this paper the online stochastic modelling method is investigated for GPS/
INS integration. Besides its successful implementation, one observed limitation is
that the estimation algorithm is very sensitive to coloured noises and changes in the
observed satellites. Theoretically, this sensitivity is mainly due to two reasons. First,
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the covariance estimation of the innovation and residual sequences is very noisy
due to the short data sets, the coloured noises, and the non-stationary noise property
during a short time span. On the other hand, smoothing covariance estimation by
increasing the estimation window size would degrade the dynamic response of the
adaptive mechanism, and may cause violation of the stationarity assumption.
Second, with a limited number of ‘‘rough’’ covariance observations it is difficult to
derive precise process noise and observation error estimates. Considering the large
matrix dimension of process noise when the INS Psi model is used, a full estimation
of the Q and R matrices is very challenging.

Hence, an adaptive algorithm with fewer estimable parameters is desirable. It
is well known that the innovation and residual sequences of the KF are a reliable
indicator of KF filtering performance. For an optimal filter, the innovation and
residual sequences should be white Gaussian noise sequences with zero mean (Brown
and Hwang, 1997; Mehra, 1970). By comparing the covariance estimates of
innovation and residual series with their theoretical values computed by the filter,
the status of the filter operation can be monitored. In this paper a new covariance
matching based process noise scaling algorithm is proposed. Without using artificial
or empirical parameters, the proposed adaptive mechanism has the capability of
autonomously tuning the Q matrix to the optimal magnitude. This proposed algor-
ithm has been analysed using road test data. Significant improvements on the filtering
performance have been achieved.

In Section 2, the Kalman filter and the online stochastic modelling algorithm are
introduced. Then a new covariance based process noise scaling method is derived.
The test results and analyses are presented in Section 3.

2. ADAPTIVE KALMAN FILTERING.
2.1. Conventional Kalman filter. Considering a multivariable linear discrete

system for the integrated GPS/INS system:

xk=Wkx1xkx1+wkx1 (1)

zk=Hkxk+vk (2)

where xk is (nr1) state vector,Wk is (nrn) transition matrix, zk is (rr1) observation
vector, Hk is (rrn) observation matrix. Variable wk and vk are uncorrelated white
Gaussian noise sequences with means and covariances :

E wkf g=E vkð Þ=0

E wkv
T
i

� �
=0

E wkw
T
i

� �
=

Qk
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i=k

ilk

E wkv
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i=k

ilk

(3)
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where E{.} denotes the expectation function. The Qk and Rk are the covariance
matrix of process noise and observation errors, respectively. The KF state prediction
and state covariance prediction are:

x̂x
x
k =Wkx1x̂xkx1

P̂P
x
k =Wkx1P̂Pkx1W

T
kx1+Qkx1

(4)

where x̂k denotes the KF estimated state vector ; x̂k the predicted state vector for the
next epoch; P̂k the estimated state covariance matrix; and P̂k

x the predicted state
covariance matrix. The Kalman measurement update algorithms are:

Kk=P̂P
x
k HT

k HkP̂P
x
k HT

k+Rk

� �x1

x̂xk=x̂x
x
k +Kk zkxHkx̂x

x
k

� �
P̂Pk= IxKkHkð ÞP̂P

x
k

(5)

where Kk is the Kalman gain, which defines the updating weight between new
measurements and predictions from the system dynamic model.

The innovation sequence is defined as:

dk=zkxHkx̂x
x
k (6)

and the residual sequence as:

ek=zkxHkx̂xk (7)

2.2. Online stochastic modelling. The adaptive stochastic modelling algorithm
can be derived with the covariance matching principles. Substituting the measure-
ment model (2) into (6) gives :

dk= Hkxk+vkð ÞxHkx̂x
x
k

=Hk xkxx̂x
x
k

� �
+vk

(8)

As pointed out earlier, the innovation sequences dk are white Gaussian noise
sequences with zero mean when the filter is in optimal mode. Taking variances (same
as autocorrelation here) on both sides of (8), and considering (3) and the orthogon-
ality between observation error and state estimation error:

E dkd
T
k

� �
=HkP̂P

x
k HT

k+E vkv
T
k

� �
=HkP̂P

x
k HT

k+Rk

(9)

When the innovation covariance E{dkdk
T} is available, the covariance of the obser-

vation error Rk can be estimated directly from equation (9). Calculation of the
innovation covariance E{dkdk

T} is normally carried out using a limited number of
innovation samples:

E dkd
T
k

� �
=

1

m

Xmx1

i=0

dkxid
T
kxi (10)
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wherem is the ‘estimation window size’. For (10) to be valid, the innovation sequence
has to be ergodic and stationary over the m steps.

Details of the derivation of Q can be found in Mohamed and Schwarz (1999) ;
Wang et al. (1999). Adaptive estimation of R is linked with the Q due to the fact
that the derivation is based on the Kalman filtering process. This can be seen from (9),
that in order to estimate R, the calculation of the predicted state covariance P̂k

x

has used the Q. The normal practice is to fix one, say Q as defined by the INS error
characteristics given by the manufacturers, and estimate the other one.

2.3. Scaling of process noise. To improve the robustness of the adaptive filtering
algorithm, a new process noise scaling method is proposed here.

For an optimal filter, the predicted innovation covariance should be equal to the
one directly calculated from the innovation sequence, as illustrated by (10). Any
deviation between them can be ascribed to the wrong definition of P̂k

x and/or Rk in
(9). Considering that the Kalman gain Kk is dependent on the relative magnitudes of
P̂k
x and Rk, and Rk has several other ways to be assessed for GPS/INS integration

performance, Rk is assumed to be perfectly known for adaptation purposes. So,

1

m

Xm=1

i=0

dkxid
T
kxi=Hk

~PP
x
k HT

k+Rk (11)

where P̃k
x denotes the estimation of the process noise prediction. Since attempting

to directly resolve the P̃k
x from (11) is not practical (although a partial adaptation

might be possible), to simplify, a scaling factor is defined as:

a=
trace Hk

~PP
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where the scaling factor a implies a rough ratio between the calculated innovation
covariance and the predicted one, since

P̂P
x
k =Wkx1P̂Pkx1W

T
kx1+Qkx1 (13)

By substituting (13) into (12), a can be expressed as:

a=
trace Hk Wkx1P̂Pkx1W

T
kx1+ ~QQkx1

� �
HT

k

n o
trace Hk Wkx1P̂Pkx1W

T
kx1+Qkx1

� �
HT

k

n o (14)

From (12) and (14), an intuitive adaptation rule is defined as:

Q̂Qk=Qkx1

ffiffiffi
a

p
(15)

The square root in equation (15) is used to contribute a smoothing effect, which is not
essential. Directly tuning P̂k

x based on equation (12) is not considered viable due to
the concerns of filtering smoothness and parameter consistency.

Compared with the existing covariance scaling methods, the distinct features of
this proposed algorithm are:

’ the adaptive algorithm is not applied to tuning the state covariance
matrix P̂k

x ;
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’ the factor a can be a scaling factor either larger than one or smaller than one,
which provides a full range of options to tune Q̂k. Only when the predicted
innovation covariance and the calculated innovation covariance are consistently
equal, a is then stabilised at the value of one.

The innovation covariance still needs to be estimated using equation (10). When
compared with the adaptive stochastic modelling method, the process noise scaling
method is more robust to covariance estimation bias due to fewer parameters being
involved in the tuning, and the tuning process is a smooth feedback. However, since
only the overall magnitude of Q̂k is tuned rather than individual elements, optimal
allocation of noise to each individual source cannot be achieved. This is one funda-
mental difference between the adaptive stochastic modelling methods and the
covariance scaling methods.

3. TESTING.
3.1. Test Configuration. The tests employed two sets of Leica System 530 GPS

receivers and one BEI C-MIGITS II (DQI-NP) INS unit. One of the GPS receivers
was set up as static reference, and the other one placed on top of the test vehicle
together with the INS unit. The data were recorded for post processing. The BEI’s
C-MIGITS II has its own GPS receiver (the MicroTracker) to synchronize the INS
data to GPS time. Table 1 shows the DQI-NP’s technical data for reference. The
specified parameters were used in setting up the Q estimation in the standard Kalman
filtering process. Figure 1 shows the ground track of the test vehicle.

Table 1. DQI-NP’s technical specifications.

Gyro Accelerometer

Bias 5 deg/hr 500 mg

Scale factor 500 ppm 800 ppm

Random walk/ white noise 0.035 deg/sqrt(hr) 180 mg/sqrt(hr)

151.2308 151.231 151.2312151.2314

-33.9198

-33.9196

-33.9194

-33.9192

Longitude

L
at

it
ud

e 

Figure 1. Ground track of the test vehicle.

522 WEIDONG DING AND OTHERS VOL. 60

https://doi.org/10.1017/S0373463307004316 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004316


3.2. Evaluation of adaptive stochastic modelling algorithm. The covariance of
observation error R is estimated using different window sizes, as illustrated in
Figure 2. All estimates converged to a value of about 0.05 m. The estimation oscil-
lation becomes obvious when shorter window sizes are used, such as 128. This
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Figure 2. Influence of different window sizes on R estimation.
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Figure 3. Influence of biased initial values on R estimation (Top left) SQRT of R(1,1) (Top right)

SQRT of R(2,2) (Bottom) SQRT of R(3,3).
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confirms the earlier analysis that a short window size may lead to unstable estimation.
The step jumps of the estimation are due to the switch over from the initial settings
to the online estimation.

Assuming precise a priori knowledge is not available, the initial values of R can
be defined approximately. Figure 3 shows that different initial values of Q and R have
only impacts on the transition period of the estimations. The initial deviations
are damped out quickly and the estimation converges with time. The stringent re-
quirements on precise a priori knowledge of the stochastic model have thus been
alleviated.

Since the errors are estimated by the Kalman filter in a GPS/INS integrated system,
if the whole system was perfectly modelled and the estimation was optimal and
stable, the series of state estimations should be zero-mean white noise series with the
minimum covariance. The state estimation STDs have been plotted in Figure 4
against the window sizes used for estimation. Window size zero indicates the con-
ventional KF solution. The STDs are generally smaller when the adaptive estimation
method has been used.
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Figure 4. Comparison of filtering performance with different window sizes (Top left) position

(Top right) velocity (Bottom) attitude.
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3.3. Evaluation of the proposed adaptive algorithm. Figure 5 shows the RMSs of
the adaptive Kalman filter’s states derived from the covariance matrix P̂k. Only the
RMS values of the first three diagonal elements have been shown. The trends for
the remaining states are similar. It is clear that the overall filter operation is stable and
converged. The ‘‘bump’’ at about 100 epochs is caused by the switch to the adaptive
algorithm. The window size used for the innovation covariance calculation is 64.

Figure 6 shows the histogram of the estimated scaling factor with time. As
expected, after the transition period the scaling factor quickly settles to a value of
about one.

For the optimal Kalman filter, both innovation and residual magnitudes should
be minimised. Figure 7(Left) shows that the magnitude of the innovations is
within 0.1 m. After measurement update, the magnitude of the residuals is within
0.02 m, as illustrated in Figure 7(Right). Since the necessary and sufficient condition
for the optimality of a Kalman filter is that the innovation sequence should be white,
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Figure 5. RMS of the adaptively estimated Kalman filter states.
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Figure 6. The estimated scaling factor sequence.
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the autocorrelation of the innovation sequence is plotted in Figure 8, which clearly
shows white noise features. A further check of the whiteness can be carried out using
the method introduced by Mehra (1970).

Figures 9 and 10 show two groups of accelerometer bias and gyro bias estimates
for comparison purposes. The process noise parameters used by the conventional
extended Kalman filter are calculated according to the manufacturer’s technical
specification. It can be seen that all three configurations have generated similar esti-
mates. The conventional extended Kalman filter provides the smoothest estimation.
The estimates using the process scaling method are much noisier, which may be due
to its quick response to signal changes. The estimates on the Z axis have the worst
consistency. This may be due to its weak observability, since during the ground
vehicle tests the Z axis has the least dynamics. Another reason could be that gravity
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Figure 7. (Left) Innovation sequence (Right) Residual sequence.
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uncertainties were not properly scaled. They may behave differently from the INS
noises.

4. CONCLUSION. Over the past few decades adaptive KF algorithms have
been intensively investigated with a view to reducing the influence of the uncer-
tainty of the covariance matrices of the process noise (Q) and the observation errors
(R). The covariance matching method is one of the most promising techniques.

The online adaptive stochastic modelling method provides estimates of individual
Q and R elements. However, practical implementation of an online stochastic mod-
elling algorithm faces many challenges. One critical factor influencing the stochastic
modelling accuracy is ensuring precise and smooth estimation of the innovation and
residual covariances from data sets with limited length. Furthermore, the stochastic
parameters are closely correlated with each other when using current estimation
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Figure 9. Estimates of accelerometer bias using different methods: (Top left) Standard Extended

KF (Top right) Extended KF with online stochastic modelling (bottom) Extended KF with the

proposed process scaling algorithm.
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algorithms, which make correct estimation more difficult. The online adaptive
stochastic modelling method is not scalable for the estimation of a large number of
parameters.

In this paper, a new covariance-based adaptive process noise scaling method has
been proposed and tested. This method is reliable, robust, and suitable for practical
implementations. Initial tests have demonstrated significant improvements of the
filtering performance. However, the optimal allocation of noise to each individual
source is not possible using scaling factor methods. This is a topic for further
investigation.
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Figure 10. Estimates of gyro bias using different methods: (Top left) Standard Extended KF

(Top right) Extended KF with online stochastic modelling (Bottom) Extended KF with the pro-

posed process scaling algorithm.

528 WEIDONG DING AND OTHERS VOL. 60

https://doi.org/10.1017/S0373463307004316 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004316


REFERENCES

Brown, R. G. and Hwang, P. Y. C. (1997). Introduction to Random Signals and Applied Kalman Filtering.

John Willey & Sons, New York.

Grewal, M. S. and Andrews, A. P. (1993). Kalman Filtering Theory and Practice. Prentice Hall, USA.

Grewal, M. S. andWeil, L. R. (2001).Global Positioning Systems, Inertial Navigation, and Integration. John

Wiley & Sons, USA.

Hide, C., Michaud, F. and Smith, M. (2004a). Adaptive Kalman filtering algorithms for integrating GPS

and low cost INS, IEEE Position Location and Navigation Symposium, Monterey California, 227–233.

Hide, C., Moore, T. and Smith, M. (2004b). Multiple model Kalman filtering for GPS and low-cost INS

integration, ION GNSS 17th international technical meeting of the satellite division, Long Beach

California, 1096–1103.

Hu, C., Chen, W., Chen, Y. and Liu, D. (2003). Adaptive Kalman filtering for vehicle navigation, Journal

of Global Positioning Systems, 2(1), 42–47.

Mehra, R. K. (1970). On the identification of variances and adaptive Kalman filtering. IEEE Transactions

on automatic control, AC-15(2): 175–184.

Mohamed, A. H. and Schwarz, K. P. (1999). Adaptive Kalman filtering for INS/GPS, Journal of Geodesy,

73, 193–203.

Salychev, O. S. (2004). Applied Inertial Navigation Problems and Solutions. BMSTU press, Moscow.

Wang, J. (2000). Stochastic modelling for RTK GPS/GLONASS positioning and navigation, Journal of

the US Institute of Navigation, 46(4), 297–305.

Wang, J., Stewart, M. and Tsakiri, M. (1999). Online stochastic modelling for INS/GPS integration,

ION GPS-99 proceedings, Nashville, Tennessee, 1887–1895.

Yang, Y. (2005). Comparison of adaptive factors in Kalman filters on navigation results. The Journal of

Navigation, 58, 471–478.

Yang, Y. and Gao, W. (2006). An optimal adaptive Kalman filter. Journal of Geodesy, 80(4), 177–183.

Yang, Y. and Xu, T. (2003). An adaptive Kalman filter based on sage windowing weights and variance

components. The Journal of Navigation, 56, 231–240.

NO. 3 IMPROVING ADAPTIVE KALMAN ESTIMATION 529

https://doi.org/10.1017/S0373463307004316 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004316

