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Abstract

A large body of work has been dedicated to termination analysis of logic programs but

relatively little has been done to analyze non-termination. In our opinion, explaining non-

termination is a much more important task because it can dramatically improve a user’s ability

to effectively debug large, complex logic programs without having to abide by punishing

syntactic restrictions. Non-termination analysis examines program execution history when the

program is suspected to not terminate and informs the programmer about the exact reasons

for this behavior. In Liang and Kifer (2013), we studied the problem of non-termination

in tabled logic engines with subgoal abstraction, such as XSB, and proposed a suite of

algorithms for non-termination analysis, called Terminyzer. These algorithms analyze forest

logging traces and output sequences of tabled subgoal calls that are the likely causes of

non-terminating cycles. However, this feedback was hard to use in practice: the same subgoal

could occur in multiple rule heads and in even more places in rule bodies, so Terminyzer

left too much tedious, sometimes combinatorially large amount of work for the user to do

manually.

Here we propose a new suite of algorithms, Terminyzer+, which closes this usability gap.

Terminyzer+ can detect not only sequences of subgoals that cause non-termination, but,

importantly, the exact rules where they occur and the rule sequences that get fired in a cyclic

manner, thus causing non-termination. This makes Terminyzer+ suitable as a back-end for

user-friendly graphical interfaces on top of Terminyzer+, which can greatly simplify the

debugging process. Terminyzer+ back-ends exist for the SILK system as well as for the

open-source Flora-2 system. A graphical interface has been developed for SILK and is

currently underway for Flora-2 . We also report experimental studies, which confirm the

effectiveness of Terminyzer+ on a host of large real-world knowledge bases. All tests used in

this paper are available online.1

In addition, we make a step towards automatic remediation of non-terminating programs

by proposing an algorithm that heuristically fixes some causes of misbehavior. Furthermore,

unlike Terminyzer, Terminyzer+ does not require the underlying logic engine to support

subgoal abstraction, although it can make use of it.

KEYWORDS: terminyzer, termination and non-termination analysis, logic programming.

1 http://rulebench.projects.semwebcentral.org/terminyzer+

https://doi.org/10.1017/S1471068413000446 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000446


706 S. Liang and M. Kifer

1 Introduction

The problem of run-away computations in logic programs is much more serious than

in procedural programming because of the declarative nature of the logic languages

and the large gap between the declarative semantics and the actual evaluation

strategy. This problem is even more vexing in high-level logic languages such as

Flora-2 and SILK,2 which position themselves as tools for developing complex

knowledge bases by knowledge engineers who are not programmers. This type of

users cannot be expected to debug the procedural aspects of the rule bases that they

create and thus they require special support. Non-termination has been flagged as

a key issue standing on the way of creation of complex biological knowledge base

in the SILK project, where the use of function symbols is more common due to the

higher-order features of HiLog (Chen et al. 1993) and F-logic (Kifer et al. 1995),

and due to the proliferation of Skolemized head-existentials that are passed down

to the engine by the knowledge acquisition system.
The first source of non-termination is the use of recursion, which plagues Prolog

under the standard evaluation strategy. This can be illustrated by the following
simple example:

p(X) :- p(X).

?- p(a).

The prevalent way to address this problem is to use tabling, which is also known

under the more technical term of SLG-resolution. Tabling was pioneered by the XSB

system (Swift and Warren 2012) and is now supported by a number of other systems,

such as Yap (Costa et al. 2012), B-Prolog (Zhou 2012), and Ciao (Hermenegildo

et al. 2012). In the above example, tabling a predicate, p/1, will cause the evaluation

to terminate.
The second reason for non-termination, even under SLG, is the pattern of

increasingly deep nested calls generated during the evaluation, as in the following
example:

p(X) :- p(f(X)).

?- p(a).

Here query evaluation will successively call p(a), p(f(a)), p(f(f(a))), and so

on. Since neither call subsumes the other, tabling will not help terminate the

evaluation process. However, a surprisingly simple technique known as subgoal

abstraction, also pioneered by XSB, takes care of this problem. The idea is to

modify the calls by “abstracting” deeply nested subterms and replacing them with

new variables. For instance, in the above example, we could abstract calls once

the depth limit of 4 has been reached. As a result, p(f(f(f(f(a))))) and all the

subsequent calls would be abstracted to p(f(f(f(X)))), X=f(a). Tabling enhanced

with subgoal abstraction is able to completely evaluate all queries that have finite

number of answers.

2 flora.sourceforge.net, silk.semwebcentral.org
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The remaining major source of non-termination is when the number of answers
to a query or its subqueries is infinite, such as for the query ?- p(X) and the rules

p(a).

p(f(X)) :- p(X).

This query has an infinite number of answers: p(a), p(f(a)), p(f(f(a))), ....

Clearly, such queries cannot be evaluated completely, but if the program is what

the user intended, the user could ask the system to stop after getting the required

number of answers. However, in our experience, the user usually does not intend

to construct infinite predicates. Finding out how the infinite number of answers

came about and fixing the problem is difficult even for an experienced programmer

and even for programs that have just a few dozens of rules. For knowledge bases

that have thousands of rules, like the ones we have been dealing with in the SILK

project, diagnosing this problem is an onerous and frustrating job. In the absence of

subgoal abstraction, this difficulty also exists for the aforesaid problem of detecting

sequences of subgoals of increasing depth.

We remind that neither the problem of program termination nor that of whether

the number of answers is finite is decidable (Schreye and Decorte 1994; Sipser

1996), so no algorithm can prove termination or non-termination in general.

Sufficient conditions for termination of logic programs have been proposed in

the literature (Bol et al. 1991; Schreye and Decorte 1994; Verbaeten et al. 2001;

Lindenstrauss et al. 2004; Bruynooghe et al. 2007; Nguyen and De Schreye 2007;

Nguyen et al. 2008; Schneider-kamp et al. 2010), but most deal with Prolog or

Prolog-like evaluation strategies. Although many of these results are very deep,

their practical impact is limited because they provide only sufficient conditions

for termination. The precise classes of programs for which these algorithms work

are typically inexpressive and usually not investigated at all (see Appendix B for a

discussion). Moreover, neither tabling nor subgoal abstraction are taken into account

by these works, so they have limited use for advanced logic engines like XSB and

its derivatives, Flora-2 and SILK. In a recent work, (Liang and Kifer 2013) took

a different approach and developed techniques to enable users to analyze the causes

of non-termination. We proposed a suite of algorithms, called the non-termination

analyzer or Terminyzer, which was able to detect sequences of tabled subgoal calls

and functor applications that are the potential causes of non-termination. These

algorithms analyze forest logging traces (see Section 2 for the details about forest

logging) and output sequences of tabled subgoal calls that form non-terminating

call-cycles. Unfortunately, in many cases this feedback was hard to use in practice,

as it was fairly imprecise. The same subgoal could occur in multiple rule heads and

in even more places in rule bodies, so Terminyzer left too much tedious, sometimes

combinatorially large amount of manual work for the user to do.

Here we propose a new suite of algorithms, called Terminyzer+, which closes this

usability gap. Terminyzer+ can detect not only sequences of subgoals that cause

non-termination, but, importantly, the exact rules where these calls occur and the

rule sequences that are fired in a cyclic manner, which lead to non-termination. This

makes Terminyzer+ amenable to serving as a back-end for user-friendly graphical
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interfaces, which can greatly simplify the debugging process. Such an interface was

constructed for the SILK project and is currently underway for the open-source

Flora-2 system.

The key idea that makes Terminyzer+ possible is a program transformation that

assigns a unique rule id to each rule and modifies the rules in such a way that

the identifying information is preserved in the log forest trace. The transformation

increases the size of each subgoal slightly, by adding an additional argument. The

analysis that was originally performed by Terminyzer has been made much more

precise so it can track the exact rule applications that cause non-termination. This

is a major advance over the original system, as it closes the aforesaid usability gap.

Furthermore, our new algorithms do not depend on subgoal abstraction, although

they can take subgoal abstraction into account, if the underlying engine supports

it. Finally, we make a step towards automatic remediation of non-terminating

programs by proposing an algorithm that heuristically fixes some of the faulty

programs.

The rest of this paper is organized as follows. Section 2 provides the necessary

background. Section 3 presents the transformation that adds a unique id to each rule.

Section 4 describes Terminyzer+ for tabled logic engines with subgoal abstraction.

Section 5 presents auto-repair techniques for certain non-terminating behaviors.

Section 6 extends Terminyzer+ to tabled logic engines that do not support subgoal

abstraction, and Section 7 concludes the main part of the paper. In addition, the

appendices supply further information on experimental studies, the related work,

tabling and forest logging, unfinished call and answer flow analysis, and proofs of

theorems.

2 Preliminaries

Tabling. The limitations of Prolog’s standard SLD resolution-based evaluation

strategy are well-known: it is incomplete and can go into an infinite loop even

for simple Datalog rule sets. To address this problem, SLG resolution (also known

as “tabling”) was developed over 20 years ago and (Swift and Warren 2012) provides

the most recent insight into this mechanism. In tabled evaluation, calls to tabled

predicates are cached in a table for subsequent calls. It has been proven that tabled

evaluation terminates for any program with the bounded term depth property, i.e.,

when all terms that are ever generated in the course of SLG resolution, including

all subgoals and answers, have an upper bound on their depth (Swift and Warren

2012). To simplify the discussion, we assume all predicates are tabled in the rest of

this paper.

Forest logging. Compared to Prolog systems, logic engines that support tabling are

much more involved. They suspend and resume computation paths, delay negated

subgoals that are involved in loops through negation, simplify these subgoals once

their truth values become known, and manage the table accordingly. For debugging

and performance optimization, programmers may need to inspect table operations

during evaluation. To this end, XSB has recently provided a new facility, called forest
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logging (logforest), which makes the table events available to the programmer.3

These events include:

• Call to a tabled predicate. If a subgoal parent calls another subgoal child , i.e.,

the evaluation of parent fires a rule that issues child , a Prolog fact of the form

tc(child , parent , status , timestamp) is logged. Here timestamp is the timestamp

of the event representing its sequence order and status is the current status of

child . It can take the following values:

— new if child is a newly issued subgoal;

— cmp if the evaluation of child has been completed; and

— incmp if child is not a new subgoal, but is yet to be completely evaluated.

If the subgoal is negative, a similar fact nc(child , parent , status , timestamp) is

logged. If child is the first tabled subgoal in an evaluation, parent is root.

• Derivation of a new answer. When a new answer, ansr , is derived for sub and

added to the table, the fact na(ansr , sub, timestamp) is added to the log. When a

new conditional answer ansr :- delayed literals is derived for sub and added

to the table, a log record of the form nda(ansr , sub, delayed literals , timestamp)

is recorded. Here ansr is the answer substitution and delayed literals are the

delayed literals whose truth value is yet to be determined (this usually occurs

due to recursive loops through negation).

• Return of an answer to a consumer. If an answer, ansr , is returned to a con-

sumer, child , which was called by parent , the fact ar(ansr , child , parent , timestamp)

is added to the log. If the answer is conditional, dar(ansr , child , parent , timestamp)

is recorded.

• Subgoal completion. When all mutually recursive subgoals in a set, S , are

completed, logforest records cmp(sub, sccnum , timestamp) for each sub ∈ S ,

where sccnum is an ordinal that identifies S .

• Other events. Logforest also records delays of negative literals, table abolishes,

and errors. These events are not needed for our purposes and are omitted.

More details and examples of tabling and forest logging are given in Appendix C.

3 Adding Ids to rules

The key enabling idea in Terminyzer+ is a transformation that adds unique ids to

rules in such a way that this information is preserved in the forest logging trace.

For our purposes, we want each subgoal call in the trace to “remember” the rule

from which this call was issued. Although this information is not available in the

original program, one can instrument any logic program so that each subgoal call

would be stamped with the id of its host rule, i.e., rule from whose body the call was

issued.

3 Although currently XSB is the only system supporting forest logging, all tabling engins have the
requisite information internally and could expose it to the user to take advantage o the advanced
debugging facilities, such as Terminyzer+, that are enabled by this feature.
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The transformation processes the original program rule by rule and assigns a new

id to each newly encountered rule. In each such rule, each tabled predicate, p/N ,

is augmented with one more argument, so that p/N is replaced with p/(N + 1 ) as

follows:

while unprocessed rules remain do

Get the next program rule R: h(t1 , ..., tk ) :- body .;

Generate a new rule id, id(R);

if h/k is tabled then Change the head literal to h(t1 , ..., tk ,Newvar);

else Leave the head literal unchanged;

Replace each tabled subgoal, p(s1 , ..., sm ), in body with p(s1 , ..., sm , id (R));

end
Algorithm 1: Program Transformation: Adding Rule Ids

Queries are modified as follows: if the query predicate is not tabled, the query

is not changed. If that predicate is tabled, an additional (last) argument is added,

which contains a new variable.
It is easy to see that the new program is equivalent to the original one in the sense

that non-tabled queries to both programs have the same answers and the answers
to the tabled predicates are the same if the last component in each answer tuple is
chopped off.4 However, now each subgoal call recorded in the log will be labeled
with the id of the rule from which this call was issued. For instance, the query ?-
r(a) and the rule

r(X) :- p(X), s(X,Y), q(Y).

get transformed into the following, assuming that the assigned rule id is 123, that
r/1 , p/1 , and q/1 are tabled, and that s/2 is not:

r(X,_) :- p(X,123), s(X,Y), q(Y,123).

?- r(a,_).

The above transformation has been implemented for Flora-2 and SILK, al-

though the form of the last argument there is made more complex to provide

additional support for truth maintenance.

4 Terminyzer+ for tabled logic engines with subgoal abstraction

This section extends the call sequence analysis and answer flow analysis approaches

in (Liang and Kifer 2013) for tabled logic engines that support subgoal abstraction.

The analysis assumes that execution is stopped after a time limit set by the user

or after the evaluation starts producing answers that exceed certain size limits (e.g.,

term depth), and then analyzing the logs. Our examples assume that the system

stops when it generates query answers of depth greater than 10.

4 We assume that the programs have no aggregate functions such as count, which are sensitive to
duplicate answers.
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We should stress that due to the undecidability results mentioned in the intro-

duction, no algorithm can detect non-termination in all cases unless infinite logs are

available. Pragmatically, this means that, in working with Terminyzer+, one must

assume that the available logs are “long enough.”

4.1 Call sequence analysis

Recall that, with subgoal abstraction, the only way for tabled query evaluation

to not terminate is when the query or its subgoals have infinitely many answers.

Call sequence analysis, in this case, finds the exact sequence of subgoal calls to

tabled predicates and, for each subgoal, its host rule’s id. Moreover, it identifies the

potential sets of recursive predicates and rules that are causing non-termination.
As discussed in Section 2, when a tabled subgoal sub has been completely evaluated

and all its answers have been recorded in the table, logforest records a log entry of
the form cmp(sub, sccnum , timestamp). We say that such calls are finished. Otherwise,
the call is unfinished and can be found via the following rule:

unfinished(Child,Parent,Timestamp) :-

(tc(Child,Parent,Stage,Timestamp); nc(Child,Parent,Stage,Timestamp)),

(Stage == new ; Stage == incmp),

not_exists(cmp(Child,SCCNum,Timestamp1)).

Here not exists is the XSB well-founded negation operator, which, in this case,

existentially quantifies SCCNum and Timestamp1.

The fact unfinished (child , parent , timestamp) says that unfinished subgoal child is

called by parent and the event timestamp is timestamp. Since parent is waiting for

the answers from child, parent is a child of another unfinished subgoal. The initial

subgoal, root, has no parent.

Theorem 1 (Soundness of the call sequence analysis)

Consider a query to a program all of whose predicates are tabled, and assume that

the system supports subgoal abstraction. If there are unfinished calls in the complete

infinite forest logging trace, then

i. the sequence of unfinished calls, sorted by their timestamps, is the exact

sequence of unfinished calls that caused non-termination, and

ii. the ids of the rules that issued each of these unfinished calls appear in the last

arguments of these calls. �

The proof of Theorem 1 is given in Appendix F. Clearly, however, one cannot

obtain the complete infinite trace for a non-terminating evaluation. In practice,

one would let the program execute long enough until it starts producing answers

exceeding some size limits and then analyze the available portion of the log.

We now turn to developing a more precise machinery for this task.

The unfinished-call child-parent graph (CPG) for a forest logging trace is a

directed graph Guc = (N,E) whose nodes are N = {child | unfinished (child , parent ,

timestamp)} ∪{root}. Subgoals that are variants of each other (i.e., identical up

to the variable renaming) are treated as the same subgoal. Each sub ∈ N is

labeled with the timestamp of the first call to sub; it is written as sub.timestamp.
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The timestamp of the initial subgoal root , root .timestamp, is -1. A directed edge

(sub1 , sub2 ) is in E if and only if sub1 is an unfinished parent-subgoal of sub2 ,

i.e., unfinished (sub2 , sub1 , timestamp) is true. The edge that corresponds to the fact

unfinished (sub2 , sub1 , timestamp) is labeled with the timestamp of this fact and is

denoted (sub1 , sub2 ).timestamp. The timestamps of nodes and edges preserve the

temporal order of their creation in the forest logging trace.

An unfinished-call path is a path with no repeated edges in Guc; it is called an

unfinished-call loop if it is a cycle. An unfinished-call path of the form [sub, sub]

means that there is an edge (sub, sub) ∈ E and it is also an unfinished-call loop.

Loops that represent the same cycles in CPG are considered to be the same and we

keep only one representative for each set of such loops. For instance, [a , b, c, a] and

[b, c, a , b] are the same loop while [a , b, c, a] and [a , c, b, a] are not. Unfinished-call

loops contain recursive subgoals that are potential causes of non-termination.

Example 1
Consider the non-terminating query ?- r(X) and the rules, below, where @!sym
indicates the id of the corresponding rule:

@!r1 p(a). @!r5 r(X) :- r(X).

@!r2 p(f(X)) :- q(X). @!r6 r(X) :- p(X), s(X).

@!r3 q(b). @!r7 s(f(b)).

@!r4 q(g(X)) :- p(X).

The evaluation produces logs containing these unfinished calls:

unfinished(r(_h9900,_h9908), root, 0)

unfinished(r(_h9870,r5), r(_h9870,_h9889), 8)

unfinished(r(_h9840,r5), r(_h9840,r5), 11)

unfinished(p(_h9810,r6), r(_h9810,r5), 12)

unfinished(q(_h9780,r2), p(_h9780,r6), 16)

unfinished(p(_h9750,r4), q(_h9750,r2), 20)

unfinished(q(_h9720,r2), p(_h9720,r4), 24)

This is the exact sequence of calls causing non-termination. There are 6 unfinished

subgoals as shown in Figure 1(A), where each subgoal’s timestamp and the host

rule’s id are also given. The unfinished-call CPG has 7 edges, shown in Figure 1(B),

where timestamps are used to represent nodes instead of actual subgoals and each

edge is labeled with its timestamp. There are 2 unfinished-call loops: [8, 8] and [16,

20, 16]. �

Theorem 2 (Completeness of the call sequence analysis)

Consider a query and a program all of whose predicates are tabled and assume that

the system supports subgoal abstraction. If the evaluation does not terminate, then

i. there is at least one unfinished-call loop in the unfinished-call CPG constructed

for the complete infinite forest logging trace, and the loop’s subgoals are

responsible for the generation of infinite number of answers, and

ii. the last arguments of these subgoals specify the rule ids from whose bodies

these subgoals were called. �
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Fig. 1. Unfinished-Call CPG of Example 1

Theorem 2 is proved in Appendix F, while the algorithms for constructing the

unfinished-call CPG and for computing unfinished-call paths and loops are found

in Appendix D. Since complete infinite traces for non-terminating computations

cannot be had, in practice one would let the program execute long enough until it

starts producing answers exceeding some size limits, and then analyze the available

portion of the log. Clearly, this opens up the possibility for false negatives, i.e.,

for blaming sequences of calls that in actuality do terminate after a long time.

However, even in this case, such sequences are possible computational bottlenecks

and identifying them is useful in its own right.

Identification of the exact rules that cause infinite computations in Theorems 1

and 2 (and later in Theorems 3 and 4) is a major advance in Terminyzer+ over the

original Terminyzer (Liang and Kifer 2013), as the subgoals in the various loops

found by our algorithms can come from multiple rules. Practically speaking, this

means that Terminyzer+ obviates potentially combinatorially large amount of work

that the user would otherwise have to do manually. Rule ids can also be gainfully

exploited by graphical tools, such as the one built for SILK.

4.2 Answer flow analysis

Call sequence analysis finds the exact sequences of subgoal calls and the corre-

sponding host rules that are involved in a non-terminating computation. These

subgoals are marked as incomplete in the trace because they are waiting for answers

for themselves or their children. However, many of these subgoals do not actually

produce an infinite number of answers and they are not true reasons for non-

termination. A much more useful outcome of the call sequence analysis are the sets

of recursive predicates that form the unfinished-call loops and cause generation of

infinitely many answers. Unfortunately, the number of such loops in an unfinished-

call CPG can be exponential and, moreover, not all of these loops may be the

reason for non-termination. For instance, Figure 1 has two unfinished-call loops, but

only [16, 20, 16] is at fault. This problem is dealt with using answer flow analysis,

described below.

We say that an unfinished-call loop is a culprit if it is a cause for non-termination.

Answer flow analysis looks for the log entries that specify the answers being returned
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to parents (the ar-facts and dar-facts) at the end of the logforest trace and

produces child-parent relationships among unfinished subgoals. These child-parent

relationships help to identify precisely which unfinished-call loops are culprits, so

we could track how answers percolate through the unfinished subgoals.

When there are infinitely many answers, each new answer, ansr , to an unfinished

subgoal, sub, is returned to the parents of sub and these parents use ansr to derive

their own answers. The newly derived answers for the parents of sub are returned to

the parents of the parents, and this gives rise to an endless process in which subgoals

continue to receive, derive, and return answers. An answer-flow child-parent sequence

is the sequence of child-parent pairs found in all the log entries for answers returned

to parents; it captures the child-parent relationships in the above endless process.

The pairs of an answer-flow child-parent sequence are sorted by their creation order

(timestamp). A child might continue returning multiple answers to a certain parent

before the parent starts deriving its own answers. In this case, only one child-parent

pair is recorded for all such answer returns, since all these pairs are identical.

An answer-flow child-parent sequence, cps , contains a child-parent pattern, cpp,

if cpp is a finite subsequence of cps such that cps = prefix • cppα, where • is the

sequence concatenation operator, α > 1 is a positive integer or ω (the first infinite

ordinal), and cppα represents the concatenation of α cpp’s. We call cppα the cpp-

suffix of cps . For instance, [(c2 , p2 ), (c3 , p3 )] is a child-parent pattern of length

two in [(c1 , p1 ), (c2 , p2 ), (c3 , p3 ), (c2 , p2 ), (c3 , p3 )], and its [(c2 , p2 ), (c3 , p3 )]-suffix is

[(c2 , p2 ), (c3 , p3 ), (c2 , p2 ), (c3 , p3 )]. The optimal child-parent pattern in a child-parent

sequence cps is the shortest child-parent pattern, cpp, such that the cpp-suffix is the

longest in cps (longest by containment among all suffixes of child-parent patterns

in cps). For an infinite trace, its child-parent sequence cps and the cpp-suffixes

of any of its child-parent patterns are infinite, but all child-parent patterns have

finite lengths. Since there can be only a finite number of unfinished subgoals due

to subgoal abstraction, the answer-flow child-parent sequence of a non-terminating

trace must have an optimal child-parent pattern (Theorem 3 below).

Let cppopt be the optimal child-parent pattern for the forest logging trace in

question. We use optimal cpp(child , parent) to denote the fact that (child , parent) is

in cppopt . As in the call sequence analysis, child-parent relationships in cppopt are

modeled as a graph. An answer-flow CPG for a forest logging trace is a directed

graph Gaf = (N,E), defined as follows. N is the set of children and parent-subgoals

in cppopt , i.e., N = {sub | (sub, ...) ∈ cppopt or (..., sub) ∈ cppopt }. Edges in Gaf are

the child-parent pairs in cppopt , i.e., E = {(child , parent) | (child , parent) ∈ cppopt}. A

path in Gaf is called an answer-flow path; such a path is called an answer-flow loop

if it is a cycle. Two answer-flow loops that consist of the same nodes and edges

are considered to be the same and we will keep only one representative loop in

such a case. We will see that non-termination implies the existence of an optimal

child-parent pattern (Theorem 3).

Theorem 3 (Completeness of the answer flow analysis)

Consider a query to a program all of whose predicates are tabled and let the inference

engine support subgoal abstraction. If the query evaluation does not terminate, then:
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i. there is an optimal child-parent pattern in its complete infinite trace,

ii. Gaf = (N,E) contains at least one answer-flow loop,

iii. every sub ∈ N appears in at least one answer-flow loop, and

iv. each edge (sub1 , sub2 ) ∈ E, where sub1 is of the form predicate(..., ruleid ), tells us

that sub2 calls sub1 from the body of a rule with the id ruleid . �

Theorem 4 (Soundness of the answer flow analysis)

Consider a query to a program all of whose predicates are tabled. If the complete

infinite trace of that query has an optimal child-parent pattern then the query

evaluation does not terminate. �

The proof of Theorem 3 is found in Appendix F. Theorem 4 follows directly from

the definitions, since the optimal child-parent pattern captures the information flow

among unfinished subgoals in a non-terminating computation. These theorems tell us

that the subgoals contained in the optimal child-parent pattern of a non-terminating

trace, i.e., the nodes of the pattern’s answer-flow CPG, are exactly the subgoals for

which infinitely many answers keep being derived. We call these subgoals the culprit

unfinished subgoals.

The algorithms for computing the artifacts involved in answer flow analysis,

including the optimal child-parent patterns, are provided in Appendix E.

In call sequence analysis, an unfinished-call CPG is constructed and the suspected

unfinished-call loops are flagged. Similarly, in answer-flow analysis, one builds

answer-flow CPG and computes culprit loops, which shed light on how answers flow

among culprit subgoals. The following Theorem 5 connects these two approaches.

Its proof can be found in Appendix F.

Theorem 5 (Relationship between unfinished-call CPGs and answer-flow CPGs)

Let Guc = (Nuc ,Euc) be the unfinished-call CPG and let Gaf = (Naf ,Eaf ) be the

answer-flow CPG for a non-terminating forest logging trace. Then Naf ⊂ Nuc , and

for every edge (child , parent) ∈ Eaf there is an edge (parent , child ) ∈ Euc . Further-

more, every answer-flow loop is a culprit unfinished-call loop. �

Theorem 6 (No false-positives for finite traces)

If the evaluation of a query, Q, terminates, then both the unfinished-call CPG and

the answer-flow CPG for Q’s forest logging trace are empty. �

Theorem 6, proved in Appendix F, assures that neither the unfinished call nor

the answer flow analysis yield false-positive results for finite traces. Of course, for

infinite traces, false-positives are possible, as one can inspect only a finite prefix in

such cases.

5 Auto-repair of rules

Sometimes query evaluation does not terminate not because the query has infinitely

many answers but because one of its subgoals does. In such cases, the query may

terminate if a different evaluation order for its subgoals is used. This section describes

a heuristic for fixing certain non-termination queries by delaying the evaluation of

culprit subgoals.
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Suppose that Guc = (Nuc ,Euc) is the unfinished-call CPG of a non-terminating

evaluation. For each (parent , child ) ∈ Euc , we know that the call to child from parent

has not been completed. Moreover, we know:

• the host rule for this call, and

• the common set of the unbound arguments of parent and child , which are

also the arguments whose bindings are to be derived.

To reduce the possibility that parent gets an infinite number of bindings from child

and thus diminish the possibility of non-termination caused by that call to child,

we can delay the evaluation of child in the host rule until the aforesaid unbound

arguments get bound. If later in the evaluation it is established that the arguments

cannot be bound, the delay of child ceases and the subgoal is executed. Similar

evaluation delays can be applied to all unfinished calls in Euc .

Flora-2 and SILK support delay quantifiers of the form wish(cond ) and

must(cond ), where cond is an and/or combination of ground(variables) and nonvar

(variables). This is similar to the when/2 predicate found in many prologs with the

difference being that the delayed subgoal is eventually tried even if the binding

conditions are not met. A delayed literal is of the form delay-quantifier^goal. When

such a literal is to be executed, the attached delay-quantifier is checked. If the

quantifier’s condition is satisfied, goal is executed immediately. Otherwise, the literal

is delayed until such time that the condition is satisfied. If the condition is eventually

satisfied, goal is called. If the engine determines that satisfying the quantifier’s

condition is impossible, goal is called anyway (in case of the wish quantifier) or an

error is issued (in case of the must quantifier).

Example 2
Consider the program of Example 1. Our auto-repair heuristic will delay the
unfinished subgoals by modifying the program as follows:

@!r1 p(a). @!r5 r(X) :- wish(ground(X))^r(X).

@!r2 p(f(X)) :- wish(ground(X))^q(X). @!r6 r(X) :- wish(ground(X))^p(X), s(X).

@!r3 q(b). @!r7 s(f(b)).

@!r4 q(g(X)) :- wish(ground(X))^p(X). ?- wish(ground(X))^r(X).

The modified program successfully terminates with an answer X = f(b). �

It should be clear, however, that the above is only a heuristic and no automatic

fool-proof auto-repair technique is possible, in general. Since Terminyzer+ serves

as a debugging tool, the user needs to tell the system whether it should attempt a

repair upon detecting non-termination. A graphical interface can help to ease this

process.

6 Terminyzer+ for tabled logic engines without subgoal abstraction

We now turn to non-termination analysis that does not rely on subgoal abstraction.

As discussed in Section 1, non-termination may then also be caused by generation

of infinitely many subgoals. In this case, Terminyzer+ analyzes the sequence of

unfinished subgoals and reports the predicates and their respective rule ids that
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form increasingly deep nested subgoals. As before, we assume that users stop the

execution after a time limit or when subgoals or answers become too large.

For an unfinished subgoal, its simplified version is constructed out of the subgoal’s

predicate and the rule id as predicate(ruleid ). For instance, p(f2 (f1 (a)), r3 ) is

simplified to p(r3 ). The simplified unfinished subgoal sequence is the sequence of

simplified unfinished subgoals sorted by the order of their first appearance in

the trace. When non-termination is due of an infinite number of subgoals, these

subgoals must have increasingly deeply nested terms. Since a finite program has

only a finite number of predicates and functors, there must be repetitions in the

aforesaid sequence of simplified unfinished subgoals.

Similarly to the idea of optimal child-parent pattern in Section 4.2, the optimal

subgoal pattern of a simplified unfinished subgoal sequence can be computed. This

pattern will show which subgoals in which rules recursively call one another and

create increasingly deeper and deeper terms.

Example 3
The evaluation of the query ?- r(a) given the program

@!r1 p(a). @!r4 r(X) :- r(X).

@!r2 p(X) :- q(f1(X)). @!r5 r(X) :- p(X), s(X).

@!r3 q(X) :- p(f2(X)). @!r6 s(a).

produces a simplified unfinished subgoal sequence with the prefix [root, r( h46),

r(r4), r(r4), p(r5), q(r2), p(r3), q(r2), p(r3)]. The optimal subgoal pat-

tern here is [q(r2), p(r3)], which means that the predicates q in rule r2 and p in

rule r3 are the ones causing the generation of increasingly deep subgoals. �

Theorem 7 (Soundness and completeness)

Consider a query to a tabled program and assume that the engine does not perform

subgoal abstraction. The forest logging trace has an optimal subgoal pattern if and

only if the computation is non-terminating due to infinitely many subgoals. �

The proof of Theorem 7 is in Appendix F. Once the optimal subgoal pattern is

computed, the user can easily find the subgoals and the rules that are likely causes of

non-termination. Note that without subgoal abstraction, the auto-repair technique

presented in Section 5 does not apply since no subgoal reordering can cause the

query to terminate.

7 Conclusion

Terminyzer+ extends our previous non-termination analyzer, Terminyzer (Liang

and Kifer 2013), in several ways to make it practically useful for debugging large

programs. First, Terminyzer+ gives more precise explanations by including the

ids of the rules from which the unfinished subgoals were called. This is hugely

important even for medium-size rule sets because the subgoals in the loops found

by the Terminyzer’s algorithms can match multiple rules, which may result in

a combinatorially large number of alternatives to be sifted through manually.

Terminyzer+ obviates that work. Rule ids can also be gainfully employed by
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graphical interfaces suitable for knowledge engineers who are not programmer.

Second, a new analysis provided by Terminyzer+ facilitated a heuristic for fixing

non-terminating queries. Third, the use of rule ids made it possible to extend

the analysis to systems that do not support subgoal abstraction. The usability of

Terminyzer+ was confirmed by multiple experiments, which include two very large

real-life programs.
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and Puebla, G. 2012. An overview of Ciao and its design philosophy. Theory and Practice

of Logic Programming 12, 1-2, 219–252.

Kifer, M., Lausen, G. and Wu, J. 1995. Logical foundations of object-oriented and frame-

based languages. Journal of ACM 42, 741–843.

Liang, S. and Kifer, M. 2013. Terminyzer: An automatic non-termination analyzer for large

logic programs. In Practical Aspects of Declarative Languages. Springer-Verlag, Berlin,

Heidelberg, New York.

Lindenstrauss, N., Sagiv, Y. and Serebrenik, A. 2004. Proving termination for logic

programs by the query-mapping pairs approach. In Program Developments in Computational

Logic, Springer-Verlag LNCS, Berlin, Heidelberg, 453–498.

Nguyen, M. T. and De Schreye, D. 2007. Polytool: Proving termination automatically

based on polynomial interpretations. In Logic-Based Program Synthesis and Transformation,

Springer-Verlag, Berlin, Heidelberg, 210–218.

Nguyen, M. T., Giesl, J., Schneider-Kamp, P. and De Schreye, D. 2008. Termination

analysis of logic programs based on dependency graphs. In Logic-Based Program Synthesis

and Transformation, Springer-Verlag, Berlin, Heidelberg, 8–22.
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