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1. The result in the plane

Let Z be the set of the integers and Z2 the integer lattice in the plane. We identify Z with

Z × {0} in Z2. In this paper we first prove a discrete result.

Theorem 1.1. Let X ⊂ Z be any subset of the integers with 0 �∈ X, and start a symmetric

random walk on Z2 from the origin which terminates when it hits a point of X. Let Pk be

the probability that the walk terminates at k ∈ X. Then, for k − 1, k, k + 1 ∈ X, we have

Pk � 1
2
(Pk−1 + Pk+1).

For the higher-dimensional analogue of this see Section 4.

A (finite or infinite) sequence {ak}k∈S , where S ⊂ X is such that if two numbers

k < l belong to S then every k < s < l also belongs to S , is said to be convex if ak �
1
2
(ak−1 + ak+1) for all k for which k ± 1 ∈ S . In a standard way this implies that

ak � s

r + s
ak−r +

r

r + s
ak+s (1.1)

https://doi.org/10.1017/S0963548316000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000109


A Convexity Property of Discrete Random Walks 929

provided k − r, k + s ∈ S . With this terminology, Theorem 1.1 implies the convexity of the

hitting probabilities Pk , k ∈ S , for all S that consist of consecutive numbers in X. For

example, it immediately follows that if all the integers in the interval [k − m, k + m] lie

in X, then Pk � 1/(2m + 1) (m is an integer), as can be seen from Pk−m + · · · + Pk+m � 1

and Pk−i + Pk+i � 2Pk , i = 1, . . . , m. Another immediate consequence is that all level sets

{k Pk � α}, 0 < α < 1, intersect any interval of X in an interval, where in this context an

interval means a set of consecutive integers. Hence if X consists of m � 1 intervals, then

every level set {k Pk � α} consists of at most m intervals.

Theorem 1.1 was motivated by the paper [2] on the convexity of the density of

harmonic measures (see the discussion below). There is a vast literature on discrete

random walks; they are of primary importance, not just in probability theory but also

in combinatorics, discrete potential theory/harmonic analysis, electrical network theory

and statistical physics. In some cases the discrete models help to explain the continuous

ones, but in some other cases the continuous versions are easier to handle. This is the

situation in the present case, when there are explicit analytic formulas for continuous

harmonic measures, which are not available in the discrete setting. Therefore, we believe

that Theorem 1.1 and its higher-dimensional analogue Theorem 4.1, simple as they look,

are of interest.

The theorem is strong enough to imply a recent result on harmonic measures. Let G be

a domain in the plane such that its boundary ∂G consists of a finite number of Jordan

curves and arcs. If J ⊂ ∂G is a Jordan subarc of the boundary and z0 ∈ G is a fixed

point, then let ω(z0, J;G) be the harmonic measure of J with respect to z0: ω(z0, J;G)

is the value g(z0) of the function g that is harmonic in G, and on the boundary takes

the value 1 on J and 0 on ∂G \ J (see [1, 6, 10] for the concept of harmonic measures,

and in particular for the existence of g as a solution of a generalized Dirichlet problem).

Harmonic measures play a fundamental role in harmonic analysis. For example, they are

the representing measures for harmonic functions: if u is harmonic in G and continuous

on its closure, then the so-called Poisson representation

u(z) =

∫
∂G

u dω(z, ·, G)

holds.

An alternative definition is as follows (see [5, 6]). Start a Brownian motion B at z0 and

let Pz0
(J) be the probability that B hits the boundary ∂G of G first at a point of J . Then

ω(z0, J;G) = Pz0
(J). See [5] or [9] for more on the connection of probability theory and

harmonic analysis.

In this terminology the sequence {Pk}k∈X from Theorem 1.1 is the discrete harmonic

measure in Z2 \ X with respect to the point 0.

As an illustration of Theorem 1.1 we derive the following continuous result.

Corollary 1.2. If E ⊂ R consists of finitely many intervals and z ∈ R \ E, then the har-

monic measure ω(z, ·; C \ E) is absolutely continuous on E and its density is convex on any

subinterval of E.

https://doi.org/10.1017/S0963548316000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000109


930 G. V. Nagy and V. Totik

This easily implies its more general form when E is any compact subset of the real

line, and convexity of the density is claimed on any interval that is contained in E. In

particular, if E is compact, then the density of the equilibrium measure (see [1, 6] or

[10] for the definition) of E is convex on every subinterval of E, because the equilibrium

measure is simply ω(∞, ·; C \ E).

Corollary 1.2 was proved in the recent paper [2] using iterated balayage. Theorem 1.1,

which can be considered as its discrete version, gives another proof.

In Sections 2 and 3 we prove Theorem 1.1 and Corollary 1.2 modulo a technical

statement, the proof of which can be found in the Appendix. In Section 4 we discuss the

higher-dimensional analogue of Theorem 1.1.

2. Proof of Theorem 1.1

The proof is based on the following lemma.

Lemma 2.1. Let pk be the probability that a symmetric random walk on the integer lattice

Z2 starting from the point (0, 1) first hits the x-axis at the point x = k. Then {pk}∞
k=0 is a

convex sequence.

We prove Lemma 2.1 later in this section. First we show how Theorem 1.1 follows

from it.

Proof of Theorem 1.1. Start a random walk on Z2 from the origin, and let qk be the

probability that, after leaving the origin, the walk hits the x-axis first at the point k ∈ Z.

Then q1 = q−1 = 1
4

+ 1
2
p1, but for all other k (including k = 0) we have qk = 1

2
pk , since to

hit any k �= ±1 before first hitting any other point on the real line, the walk has to move

either to (0, 1) or to (0,−1), and the probability of first hitting k ∈ Z from there is pk .

Hence, together with the sequence p0, p1, p2, . . . , the (identical) sequences q1, q2, q3, . . . and

q−1, q−2, q−3, . . . are also convex.

Any walk (from the origin) terminating at a point of X can visit the points of Z \ X

a few times. The probability that a walk is terminated at k ∈ X having previously visited

precisely the points j1, . . . , js ∈ Z \ X in that order (where ji = ji+1 is possible if in the

meantime the walk leaves the x-axis) is clearly qj1qj2−j1 · · · qk−js ; hence

Pk =
∑

s∈N, j1 ,j2 ,...,js∈Z\X

qj1qj2−j1 · · · qk−js .

The same formula is true for Pk−1 and Pk+1 (replacing k with k ± 1), and since

k − 1 − js, k − js, k + 1 − js

are either all positive or all negative (note that k − 1, k, k + 1 ∈ X while js �∈ X), the

convexity of the sequence {qk}∞
k=1 = {qk}−1

k=−∞ gives that

qj1qj2−j1 · · · qk−js � 1

2
(qj1qj2−j1 · · · qk−1−js + qj1qj2−j1 · · · qk+1−js ).

Summing this for all s and j1, . . . , js ∈ Z \ X, we obtain the result.
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Let p̃k be the probability that a discrete random walk starting from the point (0, 2) first

hits the x-axis at the point k ∈ Z. Clearly p−k = pk , and since the walk from (0, 1) can

move to the points (0, 0), (0, 2), (−1, 1) and (1, 1), we also have

pk =
1

4
(pk−1 + pk+1 + p̃k) (2.1)

if k �= 0. For p̃k the key estimate is contained in the next statement.

Lemma 2.2. For all integers k,

p̃k � pk−1 + pk+1. (2.2)

This immediately implies Lemma 2.1.

Proof of Lemma 2.1. For k � 1 the required inequality pk � 1
2
(pk−1 + pk+1) follows from

(2.1) and (2.2).

To complete the proof of Theorem 1.1, we still need to prove Lemma 2.2.

Proof of Lemma 2.2. Let pk,l be the probability that a random walk on Z2 starting from

the point (0, 1) first hits the x-axis at the point x = k, and this hit occurs at the lth step,

and let p̃k,l be the same probability, but for a walk that starts from the point (0, 2). Since

pk =

∞∑
l=1

pk,l

and

p̃k =

∞∑
l=1

p̃k,l ,

it is enough to prove that

p̃k,l � pk−1,l + pk+1,l (2.3)

holds for all k and l.

We let Wk,l denote the set of (l − 1)-step (non-random) walks on Z2 from the point

(0, 1) to the point (k, 1) that never hit the x-axis, and we let W̃k,l be the set of (l − 1)-step

walks on Z2 from the point (0, 2) to the point (k, 1) that never hit the x-axis. Then

pk,l = |Wk,l |(1/4)l and p̃k,l = |W̃k,l |(1/4)l , so in order to prove (2.3), it is enough to show

that

|W̃k,l | � |Wk−1,l | + |Wk+1,l |. (2.4)

The existence of an injective function W̃k,l → Wk−1,l ∪ Wk+1,l obviously implies (2.4), so

we now give such a function φ.

Before proceeding, we suggest the reader think of the walks in Wk−1,l as (1, 1) → (k, 1)

walks (after a translation to the right) and of the walks in Wk+1,l as (−1, 1) → (k, 1) walks
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Figure 1. Illustration of φ, Case 1.

(after a translation to the left). From now on, we also apply this trivial redefinition of the

sets Wk−1,l and Wk+1,l . Pick an arbitrary walk W ∈ W̃k,l . If W starts with a right-step, it

seems natural to replace it with an up-step to get a walk in Wk−1,l . Similarly, if W starts

with a down-step, it seems natural to replace it with a right-step to get a walk in Wk+1,l .

We just generalize these ideas with the help of some kind of reflection. Now we present

the definition of the image of W .

Let t be the smallest natural number for which it is true that in the first t steps of

W there are more right-steps than up-steps (Case 1) or there are more down-steps than

right-steps (Case 2). (The tth step is a right-step in Case 1, and it is a down-step in Case

2.) Such a t exists, because otherwise the number of right-steps would never exceed the

number of up-steps and the number of down-steps would never exceed the number of

right-steps, contradicting the fact that W contains more down-steps than up-steps.

In Case 1, we define φ(W ) to be the walk W1 that starts from the point (1, 1), whose

steps are obtained from the steps of W by replacing the right-steps with up-steps and the

up-steps with right-steps among the first t steps, leaving the rest unchanged: see Figure

1. W1 clearly has l − 1 steps, and it ends at the required point (k, 1) because it contains

one less right-step and one more up-step than W . The same reasoning shows that W1

coincides with W after the tth step, so W1 never hits the x-axis after the tth step. By the

definition of t, for all s � t, in the first s steps of W there are at most as many down-steps

as right-steps, and thus in the first s steps of W1 there are at most as many down-steps

as up-steps, that is, W1 does not hit the x-axis in the first t steps either. This means that

W1 ∈ Wk−1,l , that is, the above definition of φ(W ) makes sense.

In Case 2, we define φ(W ) to be the walk W2 that starts from the point (−1, 1), whose

steps are obtained from the steps of W by replacing the down-steps with right-steps and

the right-steps with down-steps among the first t steps, leaving the rest unchanged: see

Figure 2. An analogous argument to that above shows that W2 ∈ Wk+1,l , that is, this

definition also makes sense.

It is easy to see that φ is injective. For example, for a walk of Wk−1,l , the unique

inverse image, if it exists, can be found by interchanging the up-steps and right-steps

until the number of up-steps exceeds the number of right-steps. The details are left to the

reader.
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Figure 2. Illustration of φ, Case 2.

Remark 1. Since φ leaves the left-steps fixed, the following strengthening of (2.4) is also

true. For all L ⊆ {1, . . . , l − 1},

|W̃L
k,l | � |WL

k−1,l | + |WL
k+1,l |, (2.5)

where

WL = {W ∈ W the sth step of W is a left-step, if and only if s ∈ L}.

The cardinalities in (2.5) can be easily calculated explicitly, using the fact that Dyck paths

are counted by the Catalan numbers. This yields a second proof of (2.5) and Lemma 2.1;

see also the paper [7]. We have opted for the combinatorial proof given above since it

does not involve any calculations.

Remark 2. Besides (2.1) we also have

p0 =
1

4
(1 + p−1 + p1 + p̃0).

Furthermore

p̃k =
∑
j

pjpk−j ,

because a path from (0, 2) to (k, 0) must pass through a point (j, 1). Hence, if

g(x) =
∑
k

pke
ikx,

then we have

g(x) =
1

4
+

1

4
(eix + e−ix)g(x) +

1

4
g2(x).

The solution of this equation is

2 − cos x ±
√

(1 − cos x)(3 − cos x),

and we need the minus sign of the square root for |g(x)| � 1 for all x. Hence

g(x) = 2 − cos x −
√

(1 − cos x)(3 − cos x).
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Now pk − (pk−1 + pk+1)/2 is the Fourier coefficient in front of cos kx in

g(x)(1 − cos x) =
5

2
− 3 cos x +

1

2
cos 2x − (1 − cos x)3/2(3 − cos x)1/2.

For k = 1, 2 these are

−3 − 2

π

∫ π

0

(1 − cos x)3/2(3 − cos x)1/2 cos x dx = −3 + 2.84883 · · · < 0

and

1

2
− 2

π

∫ π

0

(1 − cos x)3/2(3 − cos x)1/2 cos 2x dx = 0.5 − 0.546479 < 0

respectively. Thus, in view of the fact that g is even, the claim in Lemma 2.1 is equivalent

to the positivity of

γ(k) =

∫ π

0

(1 − cos x)3/2(3 − cos x)1/2 cos kx dx (2.6)

for k � 3. This is possible to prove by an asymptotic analysis, although there is no

easy way to see that the Fourier coefficients of a given function are positive. On the

contrary, the easiest way to prove the positivity of the γ(k) is via an independent proof of

Lemma 2.1, as we have just done.

3. Proof of Corollary 1.2

We may assume that z = 0. Let E ⊂ R be the union of finitely many closed intervals,

0 �∈ E, and let I ⊂ E be a subinterval of E. Now make the lattice of the walk denser:

we make the walk on the lattice (εZ) × (εZ), and let Pε(I) be the probability that this

random walk hits E first in a point of I . Under proper normalization (it is convenient to

use ε = 1/
√
n) this ε-walk tends to the standard Brownian motion B in the plane starting

at the origin as ε → 0, and Pε(I) tends to the probability that B hits E for the first time

in a point of I . Since this latter probability is ω(0, I; C \ E), we get

lim
ε→0

Pε(I) = ω(0, I; C \ E), ε = 1/
√
n, n = 1, 2, . . . . (3.1)

Such limit relations go back about a century; see the paper [4] and the references therein.

However, they are not explicitly about hitting probabilities as in our case, so we sketch a

rigorous proof of (3.1) in the Appendix.

Suppose now that I has rational endpoints and d is a rational number such that I − d

and I + d both belong to the same subinterval J = [a, b] of E. Theorem 1.1 gives the

convexity of the sequence Pε({kε}), kε ∈ J , and hence, if ε is such that both |I | and d are

integral multiples of ε, we get (cf. (1.1))

Pε(I) � 1

2
(Pε(I − d) + Pε(I + d)).

On letting ε tend to 0 (if δ and the endpoints of I are of the form p/q with the same q,

then we may set ε = 1/
√

N2q2, N = 1, 2, . . . , in (3.1) and here), we can conclude

ω(0, I; C \ E) � 1

2

(
ω(0, I − d; C \ E) + ω(0, I + d; C \ E)

)
. (3.2)
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Adding these for d = |I |, 2|I |, . . . , k|I |, where k is the largest natural number for which

I − k|I |, I + k|I | ⊆ J , we obtain

kω(0, I; C \ E) � ω(0, J; C \ E).

Now if J = [a, b] and I ⊂ [a + δ, b − δ], then (for |I | < δ/4) k � δ/2|I |, and it follows that

ω(0, I; C \ E) � 2

δ
|I |

(because ω(0, J; C \ E) � 1). This is true for intervals I with rational endpoints, and

because ω(0, I; C \ E) is monotone in I , the same inequality follows for all I . This shows

the absolute continuity of ω(0, ·; C \ E) on [a + δ, b − δ] (with respect to the Lebesgue

measure on R), and hence on all of J . Let vE(t) denote the density of ω(0, ·; C \ E) with

respect to the Lebesgue measure, and let

v∗
E(x) = lim sup

|I |→0, x∈I

ω(0, I; C \ E)

|I | .

This density vE is determined only almost everywhere, but vE(x) = v∗
E(x) at every Lebesgue

point of vE , and hence almost everywhere. Hence, v∗
E can also be considered as the density

of ω(0, ·; C \ E) with respect to the Lebesgue measure, and we shall prove the convexity

for v∗
E .

The convexity of the sequence Pε({kε}), kε ∈ J , implies more than just (3.2), namely

with the same argument with which (3.2) was deduced, it also gives the stronger inequality

(cf. (1.1))

ω(0, I; C \ E) � s

r + s
ω(0, I − r; C \ E) +

r

r + s
ω(0, I + s; C \ E) (3.3)

with positive rational r, s, |I |, so long as I, I − r, I + s belong to J . The absolute continuity

of ω(0, ·; C \ E) then gives the same for all I (which may not have rational length). Now

divide through in (3.3) by |I |, and, while keeping I above a given point x ∈ J in the sense

that x ∈ I , let |I | tend to 0 through an appropriate sequence, so that ω(0, I; C \ E)/|I |
tends to v∗

E(x). If at the same time r/(r + s) tends to some 0 < α < 1 and r tends to some

αy, then automatically s tends to (1 − α)y; it follows that

v∗
E(x) � (1 − α)v∗

E(x − αy) + αv∗
E(x + (1 − α)y).

Hence v∗
E is convex on J , and since v∗

E = vE almost everywhere, the claim has been

proved.

4. Random walks in Zd

In this section we discuss the analogue of Theorem 1.1 in Zd. A point in Zd has 2d

neighbours, so in a symmetric random walk the probability of moving from a point to

any one of its neighbours is 1/2d. We shall identify Zd−1 with the sublattice Zd−1 × {0},
that is, with the set of points in Zd for which the dth coordinate is 0. For Q ∈ Zd−1 let

Σ(Q) be the set of its 2(d − 1) neighbours in Zd−1. The analogue of Theorem 1.1 in Zd is

as follows.
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Theorem 4.1. Let d � 2, let X ⊂ Zd−1 be a subset of Zd−1 with 0 �∈ X, and start a sym-

metric random walk on Zd from the origin which terminates when it hits a point of X. Let

PQ be the probability that the walk terminates at Q ∈ X. If a point Q and all its 2(d − 1)

neighbours in Zd−1 lie in X, then

PQ � 1

2(d − 1)

∑
R∈Σ(Q)

PR.

As in Section 1, this is a consequence of the following lemma (just repeat the argument

after Lemma 2.1).

Lemma 4.2. Let pQ be the probability that a symmetric random walk on Zd starting from

the point (0, . . . , 0, 1) first hits Zd−1 at the point Q ∈ Zd−1. Then, for Q �= 0, we have

pQ � 1

2(d − 1)

∑
R∈Σ(Q)

pR.

We note that although symmetric random walks in Zd are not recurrent for d � 3, the

probability that a walk starting from the point (0, . . . , 0, 1) hits Zd−1 is still 1.

Proof. Lemma 4.2. Let p̃Q be the probability that a discrete random walk starting from

the point (0, . . . , 0, 2) first hits Zd−1 at the point Q ∈ Zd−1. With this the analogue of (2.1)

is

pQ =
1

2d

( ∑
R∈Σ(Q)

pR + p̃Q

)

for all Q �= 0. Thus, the statement is derived from the following analogue of Lemma 2.2.

For all Q ∈ Zd−1, we have

(d − 1)p̃Q �
∑

R∈Σ(Q)

pR. (4.1)

The set Σ(Q) consists of (d − 1) disjoint pairs {Qi±}, 1 � i � d − 1, where the point Qi±
has the same coordinates as Q, except that its ith coordinate is obtained from the ith

coordinate of Q by adding ±1. Therefore, (4.1) will follow from the relation

p̃Q � pQi+
+ pQi− (4.2)

that we prove for all 1 � i � d − 1. By symmetry, it is enough to consider i = 1.

As in the proof of Lemma 2.2, let pQ,s be the probability that a random walk on Zd

starting from the point (0, . . . , 0, 1) first hits Zd−1 at the point Q, and this hit occurs at

the sth step. Let p̃Q,s be the same probability for the walk that starts from the point

(0, . . . , 0, 2). Since

pQ =

∞∑
s=1

pQ,s
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and

p̃Q =

∞∑
s=1

p̃Q,s,

it is sufficient to prove that

p̃Q,s � pQ1+ ,s + pQ1− ,s (4.3)

holds for all Q and s.

Let Q = (Z1, . . . , Zd−1), so that Q1± = (Z1 ± 1, Z2, . . . , Zd−1), and we shall also use the

notation (Q, 1) for the point (Z1, . . . , Zd−1, 1) from Zd.

We let VQ,s denote the set of (s − 1)-step (non-random) walks V on Zd from the point

(0, . . . , 0, 1) to the point (Q, 1) that never hit Zd−1, and similarly let ṼQ,s be the set of such

(s − 1)-step walks on Zd from the point (0, . . . , 0, 2) to the point (Q, 1). Then

pQ,s = |VQ,s|
(

1

2d

)s

, p̃Q,l = |ṼQ,s|
(

1

2d

)s

,

and thus, in order to prove (4.3), it is enough to show that

|ṼQ,s| � |VQ1+ ,s| + |VQ1− ,s|, (4.4)

which is the analogue of (2.4).

In the proof of Lemma 2.2 we were considering right/left and up/down steps.

Instead of these we now have steps fi/bi (forwards/backwards along the xi-axis), which

increase/decrease the ith coordinate of a point by 1. Thus, a walk V in VQ,s can be

identified with a sequence τi1 , . . . , τis−1
, where ij ∈ {1, . . . , d} and each τ is either f or b. Let

S = S(V ) := {j ij ∈ {2, 3, . . . , d − 1}}

be the places where V makes a move along one of the axis x2, . . . , xd−1. If

σ = σ(V ) := {τij j ∈ S(V )}

(where we keep the original order of the τij from V ), then clearly this σ is a walk from 0

to the point (Z2, . . . , Zd−1) in the integer lattice of (x2, . . . , xd−1), xi ∈ R, which we identify

with the submanifold (0, x2, . . . , xd−1, 0), xi ∈ R, of Rd. For each such S ⊂ {1, . . . , s − 1} and

σ = {τ1, . . . , τ|S |}, let V(Q, s; S, σ) be the set of walks V from VQ,s for which S(V ) = S and

σ(V ) = σ, and Ṽ(Q, s; S, σ) will be used analogously for ṼQ,s. Then VQ,s (ṼQ,s) is a disjoint

union of the sets V(Q, s; S, σ) (Ṽ(Q, s; S, σ)) for all possible S and σ that produce a walk

from 0 to (Z2, . . . , Zd−1) in (x2, . . . , xd−1), xi ∈ Z. Hence (4.4) will follow if we prove

|Ṽ(Q, s; S, σ)| � |V(Q1+, s; S, σ)| + |V(Q1−, s; S, σ)|. (4.5)

However, in all V ∈ V(Q, s; S, σ) (V ∈ Ṽ(Q, s; S, σ)) the movements in the x2, . . . , xd−1

directions are fixed and their number is |S |, so it is clear that, with the notation from the

proof of Lemma 2.2,

|Ṽ(Q, s; S, σ)| = |W̃Z1 ,s−|S ||, |V(Q1±, s; S, σ)| = |WZ1±1,s−|S ||.

Hence (4.5) is a consequence of (2.4) with k = Z1 and l = s − |S |.
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Appendix: Proof of (3.1)

For the concepts used below on the Wiener measure and random walks, see any standard

book such as those of Billingsley [3] or Kallenberg [8].

Let W be the Wiener measure on the space C(R+) equipped with the topology of

uniform convergence on compact sets, and let B1, B2 be standard independent Brownian

motions on R+, that is, Bj : Ω → C(R+) is a random function on some probability space

(Ω,A,P) with distribution W :

P(Bj ∈ E) = W (E)

for all Borel subsets E of C(R+). Since we assumed that B1 and B2 are independent,

(B1, B2) is a Brownian motion on the plane with distribution W × W .

Let ξ1, ξ2, . . . , ζ1, ζ2, . . . be independent variables with

P(ξj = ±1/
√

2) = 1/2, P(ζj = ±1/
√

2) = 1/2,

each of mean zero and variance 1. We set

xn,k =
1√
n
(ξ1 + · · · + ξk), xn = (xn,k)

∞
k=1.

Then xn can be regarded as a symmetric random walk on Z/
√

2n whose position at time

k/n is xn,k . Let yn be similarly generated from the ζj , so that xn, yn are independent

discrete symmetric random walks on Z/
√

2n. Let

Xn(t) = xn,[nt] + (nt − [nt])(xn,[nt]+1 − xn,[nt])

=
1√
n
(ξ1 + · · · + ξ[nt]) + (nt − [nt])

ξn,[nt]+1√
n

, t ∈ R+

be the path of xn, and let the function Yn ∈ C(R+) be defined similarly for yn. Then

(xn, yn) is a discrete symmetric random walk on the lattice eiπ/4Z2/
√
n, which is the lattice

Z2/
√
n rotated by 45 degrees. The function (Xn, Yn) ∈ C(R+) × C(R+) is the path of this

discrete walk. We may assume that the underlying probability space for xn, yn, Xn, Yn is

again (Ω,A,P).

Since we have a discrete walk on the rotated lattice, we shall also need to assume that

the set 0 �∈ E consists of finitely many closed segments on the x = y line, and I ⊂ E is a

closed subsegment of E. Let, as before (3.1), P1/
√
n(I) be the probability that (xn, yn) hits

the set E first in a point of I , and let P ∗(I) be the same probability for the Brownian

motion (B1, B2). Since the latter probability is ω(0, I,C \ E), the limit (3.1) takes the form

lim
n→∞

P1/
√
n(I) = P ∗(I). (A.1)

Let us denote weak convergence by ⇒. According to Donsker’s theorem on R+ ([8,

Corollary 14.6]) we have Xn ⇒ B1, Yn ⇒ B2 as n → ∞, and since Xn, Yn are independent,

we also have (Xn, Yn) ⇒ (B1, B2) (see [3, Sec. 4, pp. 26–27]). Let E be the set of functions

f ∈ C(R+) × C(R+) for which the first intersection of its trajectory with E occurs at

a point of I , that is, f ∈ C(R+) × C(R+) belongs to E precisely if f(t) ∈ E for some

t, and f(t0) ∈ I is true for the smallest real number t0 for which f(t0) ∈ E. Since for

sufficiently large n the path of the walk (xn, yn) on the rotated lattice can intersect a
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fixed segment on the x = y line only if the walk itself hits that same segment, we obtain

P1/
√
n(I) = P((Xn, Yn) ∈ E). At the same time

P ∗(I) = W × W (E) = P((B1, B2) ∈ E).

Therefore, (A.1) follows if

P((Xn, Yn) ∈ E) → P((B1, B2) ∈ E), n → ∞

holds, which, in view of (Xn, Yn) ⇒ (B1, B2), is certainly true if the boundary ∂E of E has

zero (W × W )-measure ([3, Theorem 2.1]).

Let I be the segment [A,B], let H1 be the set of all f ∈ C(R+) × C(R+) which pass

through A or B (i.e., there is a t ∈ R+ with f(t) = A or f(t) = B), and let H2 be the set

of all f ∈ C(R+) × C(R+) which touch I , that is, there are rational 0 < p < q and a point

t0 ∈ (p, q) such that f(t0) ∈ I , but on the interval (p, q) the point f(t) is always on or

above, or always on or below I: if f(t) = (f1(t), f2(t)), then either always f1(t) � f2(t) or

always f1(t) � f2(t) on (p, q). According to which of these cases occur, we write f ∈ H+
p,q

or f ∈ H−
p,q , so

H2 = ∪p<q∈Q(H+
p,q ∪ H−

p,q)

(here Q is the set of rational numbers). It is clear that ∂E ⊂ H1 ∪ H2, and that W ×
W (H1) = 0 (the probability that a two-dimensional Brownian motion passes through a

given point different from the origin is 0). Thus, it is left to prove that both H+
p,q and H−

p,q

have zero (W × W )-measure for all p < q. But, for example,

W × W (H−
p,q) = P((B1, B2) ∈ H−

p,q),

and (B1, B2) ∈ H−
p,q means that the maximum of B1(t) − B2(t) over the interval (p, q) is

0. Since (B1 − B2)/
√

2 is again a standard Brownian motion and the maximum of a

Brownian motion on an interval has continuous distribution ([3, (10.17)]), the event

max
t∈(p,q)

(B1(t) − B2(t)) = 0

does indeed have zero probability.
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