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Electrohydrodynamics of viscous drops in strong
electric fields: numerical simulations

Debasish Das1,‡ and David Saintillan1,†
1Department of Mechanical and Aerospace Engineering, University of California San Diego,

9500 Gilman Drive, La Jolla, CA 92093, USA

(Received 6 December 2016; revised 2 August 2017; accepted 4 August 2017;
first published online 14 September 2017)

Weakly conducting dielectric liquid drops suspended in another dielectric liquid
and subject to an applied uniform electric field exhibit a wide range of dynamical
behaviours contingent on field strength and material properties. These phenomena
are best described by the Melcher–Taylor leaky dielectric model, which hypothesizes
charge accumulation on the drop–fluid interface and prescribes a balance between
charge relaxation, the jump in ohmic currents from the bulk and charge convection
by the interfacial fluid flow. Most previous numerical simulations based on this
model have either neglected interfacial charge convection or restricted themselves
to axisymmetric drops. In this work, we develop a three-dimensional boundary
element method for the complete leaky dielectric model to systematically study the
deformation and dynamics of liquid drops in electric fields. The inclusion of charge
convection in our simulations permits us to investigate drops in the Quincke regime,
in which experiments have demonstrated a symmetry-breaking bifurcation leading to
steady electrorotation. Our simulation results show excellent agreement with existing
experimental data and small-deformation theories.
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1. Introduction

The dynamics and deformations of immiscible liquid droplets suspended in another
fluid medium and subject to an electric field find a wide range of applications
in industrial processes, including ink-jet printing (Basaran, Gao & Bhat 2013),
electrospinning (Huang et al. 2003), oil extraction from oil–water emulsions
(Schramm 1992; Eow & Ghadiri 2002), electrospraying and atomization of liquids
(Taylor 1964, 1969; Castellanos 2014) and microfluidic devices and pumps (Laser
& Santiago 2004; Stone, Stroock & Ajdari 2004). Their study is also important in
understanding natural phenomena such as electrification of rain, bursting of rain drops
in thunderstorms and electrification of the atmosphere (Simpson 1909; Blanchard
1963). Of interest to us in this work is the case of dielectric liquids such as oils,
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which are poor conductors. Unlike aqueous electrolytes where the dynamics arises
from the action of the electric field on diffuse Debye layers, so-called leaky dielectric
liquids are typically characterized by the absence of diffuse layers; any net charge
in the system instead concentrates at interfaces between liquid phases as a result of
the mismatch in material properties. Dynamics and deformations then result from the
action of the field on this surface charge, which induces interfacial stresses and can
drive fluid flows.

We focus in this work on the simple case of an isolated leaky dielectric drop
suspended in a weakly conducting liquid subject to a uniform DC electric field. This
prototypical problem has fascinated scientists for decades. Early studies in the field
primarily focused on the specific cases of an either insulating or perfectly conducting
drop suspended in an insulating fluid medium. In these cases, the drop–fluid interface
does not experience any tangential electric stresses, and as a consequence, fluid
motions are absent and the drop can only attain a steady prolate shape as a result of
a jump in electric pressure across the interface (O’Konski & Thacher 1953; Harris
& O’Konski 1957). Oblately deformed drops were first observed in experiments by
Allan & Mason (1962), suggesting an inconsistency in the existing electrohydrostatic
models. In his pioneering work, Taylor (1966) realized that dielectric liquids, while
poor conductors, still have a weak conductivity and can therefore carry free charges
to the drop–fluid interface. The action of the electric field on these surface charges
then gives rise to tangential electric stresses that generate toroidal circulatory currents.
By incorporating this effect into a small-deformation theory, Taylor was able to
predict both prolate and oblate shapes depending on material properties, and his
results compared favourably with experiments.

The discovery of these surface charges and their role in generating fluid motions
motivated Melcher & Taylor (1969) to develop a more complete framework for
studying the electrohydrodynamics of leaky dielectric drops. The cornerstone of their
work is a surface charge conservation equation that prescribes a balance between
transient charge relaxation, the jump in ohmic currents from both bulk fluids and
charge convection along the drop surface due to the interfacial fluid flow. It is
worth noting that the Melcher–Taylor leaky dielectric model without the effect of
charge convection can be systematically derived from an electrokinetic description in
the limit of thin Debye layers and strong applied fields (Schnitzer & Yariv 2015).
Taylor’s original theory based on this model accounted for first-order deformations in
the limit of vanishing electric capillary number, CaE, denoting the ratio of electric
to capillary forces. While predicted deformation values showed good agreement with
experimental results (Torza, Cox & Mason 1971) in weak fields where deformations
are small, significant departures were observed with increasing field strength. In an
attempt to resolve this discrepancy, Ajayi (1978) calculated drop deformations to
second order in CaE, yet his results did not improve upon Taylor’s solution in the
case of oblate drops when compared with experiments. This systematic mismatch
was a consequence of the neglect of nonlinear interfacial charge convection in these
models. There have since then been numerous attempts to extend these original
predictions by considering spheroidal drops (Zabarankin 2013; Zhang, Zahn & Lin
2013), including additional effects such as transient shape deformation (Haywood,
Renksizbulut & Raithby 1991; Esmaeeli & Sharifi 2011), transient charge relaxation
(Zhang et al. 2013), fluid acceleration (Lanauze, Walker & Khair 2013), interfacial
charge convection (Feng 2002; Shkadov & Shutov 2002; He, Salipante & Vlahovska
2013; Das & Saintillan 2017; Tyatyushkin 2017) and sedimentation (Xu & Homsy
2006; Bandopadhyay et al. 2016; Yariv & Almog 2016).
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Electrohydrodynamics of viscous drops in strong electric fields 129

Various numerical schemes have also been developed over the years to address
this problem computationally. Brazier-Smith (1971), Brazier-Smith, Jennings &
Latham (1971) and Miksis (1981) used the boundary element method to solve the
electrohydrostatics problem, wherein the shape of the drop is evolved quasi-statically
so as to balance normal stresses on the interface. In a more comprehensive study,
Sherwood (1988) solved the coupled electrohydrodynamic problem assuming creeping
flow conditions, which allowed him to use the boundary element method for both
the electric and flow problems. His pioneering work was extended by Baygents,
Rivette & Stone (1998) to study axisymmetric drop pair interactions and by Lac &
Homsy (2007) to investigate a much wider range of electric and fluid parameters. The
case of conducting drops was also analysed by Dubash & Mestel (2007a,b). Very
recently, Lanauze, Walker & Khair (2015) extended these models by formulating
an axisymmetric boundary element method for the complete Melcher–Taylor leaky
dielectric model. Other methods based on finite elements (Feng & Scott 1996;
Feng 1999; Hirata et al. 2000; Supeene, Koch & Bhattacharjee 2008), level sets
(Bjorklund 2009), the immersed boundary method (Hu, Lai & Young 2015) and the
volume-of-fluid method (López-Herrera, Popinet & Herrada 2011) have also been
employed to investigate drop dynamics.

Recent experiments, however, have uncovered another dynamical regime in strong
electric fields (Krause & Chandratreya 1998; Ha & Yang 2000b; Sato et al. 2006;
Salipante & Vlahovska 2010). Upon increasing field strength, a symmetry-breaking
bifurcation has been reported in the case of weakly conducting drops, by which
the axisymmetric shape predicted by the aforementioned models becomes unstable
and gives rise to a non-axisymmetric tilted drop configuration accompanied by a
rotational flow. In yet stronger fields, chaotic dynamics has also been reported,
with unsteady stretching and tumbling of the drop (Salipante & Vlahovska 2013),
sometimes leading to breakup (Ha & Yang 2000b). This curious transition, most
recently described in the work of Salipante & Vlahovska (2010, 2013), shares
similarities with the electrorotation of weakly conducting rigid particles in strong
electric fields, which is well known since the work of Quincke (1896) and has
been explained in detail theoretically (Jones 1984; Das & Saintillan 2013). The
case of a deformable drop, however, is significantly more challenging than that of a
rigid particle, due to the deformations of the interface and to the complexity of the
interfacial flow, which does not follow rigid body dynamics. Theoretical models for
Quincke electrorotation of droplets are scarce and have all assumed a spherical shape
as well as weak (He et al. 2013) or strong (Yariv & Frankel 2016) charge convection
by the flow. Computational models are non-existent to our knowledge, as nearly all
simulation methods developed in the past have only allowed for axisymmetric shapes,
which is sufficient to describe the oblate and prolate deformations arising in weak
fields but is inadequate to capture symmetry breaking. A notable exception is the
work of López-Herrera et al. (2011), who simulated the electrohydrodynamics of
three-dimensional drops using the volume-of-fluid approach but did not address the
Quincke regime. A three-dimensional spectral boundary element method was also
recently developed to simulate vesicle dynamics in electric fields and shear flows
(Veerapaneni 2016).

In this work, we present three-dimensional boundary element simulations of the
electrohydrodynamics of a liquid droplet based on a formulation for the complete
Melcher–Taylor leaky dielectric model. This enables us to investigate dynamics both
in the axisymmetric Taylor regime of weak fields as well as in the Quincke regime
of strong fields; to our knowledge, these are the first numerical simulations to capture
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FIGURE 1. Problem definition: a liquid droplet with surface S and outward unit normal n
is suspended in an unbounded domain and placed in a uniform electric field E0 pointing
in the vertical direction. V± denote the exterior and interior domains, respectively, and
(ε±, σ±, µ±) are the corresponding dielectric permittivities, electric conductivities and
dynamic viscosities. The drop’s major and minor axis lengths are denoted by L and B,
and the major axis is tilted at an angle α with respect to the horizontal direction.

Quincke electrorotation of drops in three dimensions. Our numerical results show
excellent agreement with both existing experimental data and small-deformation
theories. Details of the boundary integral formulations for the electric and flow
problems and their numerical implementations are described in § 3 as well as in
the appendices. Simulation results and comparisons with previous experiments and
theories are discussed in § 4. We conclude by summarizing our work and discussing
possible extensions in § 5.

2. Problem definition
2.1. Governing equations

We consider an uncharged neutrally buoyant liquid droplet with undeformed radius a
occupying volume V− in an infinite fluid medium V+ and subject to a uniform electric
field E0 = E0ẑ as depicted in figure 1. The drop surface is denoted as S and has
an outward unit normal n. Let (ε±, σ±, µ±) be the dielectric permittivities, electric
conductivities and dynamic viscosities of the exterior and interior fluids, respectively.
In the Melcher–Taylor leaky dielectric model (Melcher & Taylor 1969), all charges in
the system are concentrated on the drop surface, so that the electric potential in both
fluid domains is harmonic:

∇
2ϕ±(x)= 0 for x ∈ V±. (2.1)

On the drop surface, the electric potential is continuous, as is the tangential component
of the local electric field:

Jϕ(x)K= 0 and JEt(x)K= 0 for x ∈ S, (2.2a,b)

where E±t = (I − nn) ·E± and E±=−∇ϕ±. We have introduced the notation J f (x)K≡
f+(x)− f−(x) for any field variable f (x) defined on both sides of the interface. Unlike
Et, the normal component of the electric field E±n = n · E± undergoes a jump due
to the mismatch in electrical properties between the two media (Landau, Lifshitz &
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Electrohydrodynamics of viscous drops in strong electric fields 131

Pitaevskiì 1984), which results in a surface charge distribution q(x) related to the
normal displacement field by Gauss’s law:

q(x)= JεEn(x)K for x ∈ S. (2.3)

The surface charge density q evolves due to two distinct mechanisms: ohmic currents
from the bulk and advection by the fluid flow with velocity v(x) on the drop surface.
Accordingly, it satisfies the conservation equation:

∂tq+ JσEnK+∇s · (qv)= 0 for x ∈ S, (2.4)

where ∇s ≡ (I − nn) · ∇ is the surface gradient operator. On neglecting unsteady
terms and surface charge convection, equation (2.4) reduces to the simpler boundary
condition JσEnK= 0 used in a number of previous studies (Sherwood 1988; Baygents
et al. 1998; Lac & Homsy 2007).

The fluid velocity field v±(x) and corresponding pressure field p±(x) satisfy the
Stokes equations in both fluid domains:

−µ±∇2v± +∇p± = 0 and ∇ · v± = 0 for x ∈ V±. (2.5a,b)

The velocity is continuous on the drop surface:

Jv(x)K= 0 for x ∈ S, (2.6)

and, in the absence of Marangoni effects, the jumps in electric and hydrodynamic
tractions across the interface balance interfacial tension forces:

J f EK+ J f HK= γ (∇s · n)n for x ∈ S. (2.7)

Here, γ is the constant surface tension and ∇s · n = 2κm is twice the mean surface
curvature. The jumps in tractions are expressed in terms of the Maxwell stress tensor
T E and hydrodynamic stress tensor T H as

J f EK= n · JT EK= n · Jε(EE− 1
2 E2I)K, (2.8)

J f HK= n · JT HK= n · J−pI +µ(∇v +∇vT)K. (2.9)

The jump in electric tractions can also be expressed as

J f EK= JεEnKEt +
1
2Jε(E

2
n − E2

t )Kn= qEt + JpEKn. (2.10)

The first term on the right-hand side captures the tangential electric force on the
interface arising from the action of the tangential field on the interfacial charge
distribution. The second term captures normal electric stresses and can be interpreted
as the jump in an electric pressure pE

= (ε(E2
n − E2

t ))/2 (Lac & Homsy 2007).

2.2. Non-dimensionalization
Non-dimensionalization of the governing equations yields five dimensionless groups,
three of which are ratios of material properties typically defined as:

R=
σ+

σ−
, Q=

ε−

ε+
, λ=

µ−

µ+
. (2.11a−c)
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132 D. Das and D. Saintillan

The low-drop-viscosity limit λ→ 0 describes a bubble, whereas λ→∞ describes a
rigid particle. The product RQ can also be interpreted as the ratio of the inner to outer
charge relaxation times:

RQ=
τ−

τ+
where τ± =

ε±

σ±
. (2.12)

A possible choice for the two remaining dimensionless numbers consists of the electric
capillary number CaE, denoting the ratio of electric to capillary forces, and electric
Mason number Ma, denoting the ratio of viscous to electric stresses:

CaE =
aε+E2

0

γ
, Ma=

µ+

ε+τMWE2
0
. (2.13a,b)

Here, τMW is the Maxwell–Wagner relaxation time, or characteristic time scale for
polarization of the drop surface upon application of the field (Das & Saintillan 2013):

τMW =
ε− + 2ε+

σ− + 2σ+
. (2.14)

Ma is also directly related to the ratio of the electric field magnitude E0 to the critical
electric field Ec for onset of Quincke rotation of a rigid sphere as

Ma=
ε − σ

2

(
Ec

E0

)2

, (2.15)

where

ε =
ε− − ε+

ε− + 2ε+
, σ =

σ− − σ+

σ− + 2σ+
, Ec =

√
2µ+

ε+τMW(ε − σ)
. (2.16a−c)

For a rigid sphere, Quincke rotation occurs when E0 > Ec, or Ma < (ε − σ)/2, thus
necessitating the application of a strong electric field. For the critical electric Ec to
take on a real value, the condition ε > σ , which is equivalent to RQ> 1 or τ+ > τ−,
needs to be satisfied; this generally implies that the drop is less conducting than the
suspending fluid. It is useful to note the direct correspondence between Ma and the
electric Reynolds number Re+E defined by other authors (Salipante & Vlahovska 2010;
Lanauze et al. 2015; Schnitzer & Yariv 2015):

Ma=
τ+/τMW

Re+E
where Re±E =

ε±2E2
0

σ±µ±
. (2.17)

Finally, an additional dimensionless group can also be constructed by taking the ratio
of the capillary time τγ = µ+(1 + λ)a/γ and Maxwell–Wagner relaxation time τMW
and is independent of field strength (Salipante & Vlahovska 2010):

CaMW =
τγ

τMW
=
µ+(1+ λ)a
γ τMW

= (1+ λ)CaEMa. (2.18)

For a fixed set of material properties, varying CaMW is equivalent to varying drop size
a. In the remainder of the paper, we exclusively use dimensionless variables by scaling
lengths with a, electric fields with E0 and times with τMW . In addition to R, Q and λ,
we primarily use CaE and Ma as dimensionless groups, though some of the results in
§ 4 will also be shown in terms of E0/Ec and CaMW .
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Electrohydrodynamics of viscous drops in strong electric fields 133

3. Boundary integral formulation
3.1. Electric problem

The solution of Laplace’s equation (2.1) is best formulated using boundary integral
equations (Jaswon 1963; Symm 1963; Pozrikidis 2002). Following previous studies in
the field (Sherwood 1988; Baygents et al. 1998; Lac & Homsy 2007; Lanauze et al.
2015) we represent the potential in terms of the single-layer density JEn(x)K as

ϕ(x0)=−x0 ·E0 +

∮
S
JEn(x)KG(x0; x) dS(x) for x0 ∈ V±, S. (3.1)

Here, x0 is the evaluation point for the potential and can be anywhere in space,
whereas x denotes the integration point which is located on the drop surface. The
Green’s function or fundamental solution of Laplace’s equation in an unbounded
domain is given by

G(x0; x)=
1

4πr
where r= x0 − x, r= |r|. (3.2)

Note that (3.1) is valid in both fluid phases as well as on the interface since the
Green’s function is continuous across S. The equation is weakly singular, however,
when x = x0, though the singularity can be removed analytically by introducing
plane polar coordinates in the parametric plane defining the local surface (Pozrikidis
2002). Knowledge of the single-layer potential density JEn(x)K on the interface
therefore allows one to determine the electric potential anywhere in space by simple
integration, which prompts us to seek an equation for JEn(x)K in terms of the surface
charge density q. We first take the gradient of (3.1) to obtain an integral equation for
the electric field in the fluid:

E±(x0)=E0 −

∮
S
JEn(x)K∇0G(x0; x) dS(x) for x0 ∈ V±. (3.3)

The derivative of the Green’s function undergoes a discontinuity at the interface, which
needs to be accounted for when the evaluation point is on the boundary (Pozrikidis
2011):

E±(x0)=E0 −

∮
S
JEn(x)K∇0G(x0; x) dS(x)±

1
2
JEn(x0)Kn(x0) for x0 ∈ S. (3.4)

The integral equation for the electric field is strongly singular. However, taking a dot
product on both sides with the unit normal n(x0) reduces the singularity by one order.
Averaging the normal components of the field outside and inside the drop then yields

1
2
[E+n (x0)+ E−n (x0)] = En0 −

∮
S
JEn(x)K{n(x0) · ∇0G(x0; x)} dS(x) for x0 ∈ S, (3.5)

where the weak singularity can now be removed analytically following Sellier (2006)
by subtracting JEn(x0)K from the single-layer density:

1
2
[E+n (x0)+ E−n (x0)] + JEn(x0)K

[
1
2
− L(x0)

]
= En0 −

∮
S
{JEn(x)K− JEn(x0)K}{n(x0) · ∇0G(x0; x)} dS(x) for x0 ∈ S. (3.6)
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134 D. Das and D. Saintillan

The scalar function L(x0) is a purely geometrical quantity depending on drop shape
and expressed as (Sellier 2006)

L(x0)= n(x0) ·

∮
S
{[∇G · n(x)][n(x)− n(x0)] + G(x0; x)[∇ · n](x)n(x)} dS(x). (3.7)

Gauss’s law also allows us to express E+n and E−n on each side of the interface in
terms of the jump in normal electric field,

E+n =
q−QJEnK

1−Q
, E−n =

q− JEnK
1−Q

, (3.8a,b)

which, after substitution into (3.6), provides a regular integral equation for the jump
JEnK: ∮

S
{JEn(x)K− JEn(x0)K}{n(x0) · ∇0G(x0; x)} dS(x)

+ JEn(x0)K
[

Q
Q− 1

− L(x0)

]
= En0 +

q(x0)

Q− 1
, for x0 ∈ S. (3.9)

The jump JEnK can therefore be computed from (3.9) for a given surface charge
density after discretization of the integral on a mesh, yielding a large linear system
that is solved iteratively. Further details of the numerical implementation are given in
§ 3.3 and in appendix A. Having obtained JEnK, the normal components E+n and E−n
are easily obtained using (3.8).

The tangential component of the electric field can then be evaluated using (3.4);
however, care must be taken to remove the strong singularity in the kernel. Here, we
adopt instead an indirect method in which we first compute the electric potential ϕ
using (3.1) then differentiate it numerically on the drop surface to obtain Et. Once the
normal and tangential components of the electric field are known, we can determine
the jump in the normal component of ohmic currents JσEnK as well as the jump in
electric tractions J f EK using (2.10).

3.2. Flow problem
The applied electric field induces fluid motion inside and outside the drop. The need
to solve for the fluid flow is twofold, as it affects the surface charge distribution
according to (2.4) and causes deformations of the interface, which is a material surface
advected by the flow. The flow problem is solved after application of the dynamic
boundary condition (2.7) to obtain the hydrodynamic traction jump J f HK on the drop–
fluid interface. Assuming creeping flow, we use the Stokes boundary integral equation
to represent the fluid velocity as (Rallison & Acrivos 1978; Pozrikidis 2002)

v(x0) = −
1

4πµ(1+ λ)

∮
S
J f H(x)K ·G(x0; x) dS(x)

+
κ

4π

∮
S
v(x) · T (x0; x) · n(x) dS(x), for x0 ∈ V±, S, (3.10)

where κ = (1 − λ)/(1 + λ) and G(x0; x) and T (x0; x) denote the free-space Green’s
functions for the Stokeslet and stresslet, respectively:

G(x0; x)=
I

r
+

rr
r3
, T (x0; x)= 6

rrr
r5
. (3.11a,b)
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The usual negative sign in the definition of the stresslet appears if r is defined as
x − x0. Note that κ = ±1 corresponds to the case of a bubble (λ→ 0) and solid
particle (λ→∞), respectively. The interfacial velocity appearing in the double-layer
potential is yet unknown, but an integral equation for v on the surface can be obtained
by moving the evaluation point x0 to the boundary S. In dimensionless form, it reads:

v(x0)+
λ− 1

8π

∮
S
[v(x)− v(x0)] · T (x0; x) · n(x) dS(x)

=−
1

8πMa

∮
S
J f H(x)K ·G(x0; x) dS(x), for x0 ∈ S. (3.12)

The forcing term in this equation is contained in the hydrodynamic traction jump
J f HK. After discretization of the integral, equation (3.12) yields a dense linear system
that is again solved iteratively. The weak singularity appearing in the double-layer
potential in the original equation (3.10) has been removed by using appropriate
integral identities; the weak singularity of the single-layer potential, on the other
hand, disappears after introducing plane polar coordinates (Pozrikidis 1992). It is
well known that the integral equation (3.12) admits arbitrary rigid body motions and
uniform expansion as eigensolutions, resulting in the ill conditioning of the linear
system for λ�1 or λ�1 and leading to poor convergence of the solution (Zinchenko,
Rother & Davis 1997). We employ Wielandt’s deflation technique to eliminate κ =±1
from the spectrum of the integral equation to cure the ill conditioning (Kim & Karrila
2013); see appendix B for details. Once the interfacial velocity is known, the nodes
are advected with the normal component of the fluid velocity; the heuristic mesh
relaxation algorithm of Loewenberg & Hinch (1996) is applied in the tangential
direction so as to reduce mesh distortion.

3.3. Summary of the numerical method
We solve integral equations (3.1), (3.9) and (3.12) numerically using the boundary
element method on a discrete representation of the drop surface (Pozrikidis 2002).
The initially spherical surface is first discretized by successive subdivision of an
icosahedron, by which each triangular element is subdivided into four new triangles
whose nodes are projected onto the sphere (Loewenberg & Hinch 1996). This leads
to a highly uniform triangular mesh, in which we treat each element as a six-node
curved element, thus allowing for computation of the local curvature. The results
in the Taylor regime presented below were obtained on a surface with N4 = 1280
elements and 2562 nodes, corresponding to Nd = 3 subdivisions; most simulations
in the Quincke regime, where deformations are weaker, used a mesh of N4 = 320
elements and 642 nodes obtained after Nd= 2 successive subdivisions. Typical meshes
with Nd= 3 are shown in figure 2 for different levels of deformation, and convergence
results in the Taylor regime will be presented in figure 3. The evaluation of integrals
and the calculation of geometrical properties such as the unit normal and curvature
on the discretized surface are standard and are outlined in appendix A.

The numerical algorithm during one integration step can be summarized as follows:

(i) Given an interfacial charge distribution q (which is taken to be uniformly zero at
t=0), solve for JEnK, E+n and E−n by inverting equation (3.9) numerically, together
with (3.8). Discretization of the integrals in (3.9) yields a large algebraic system
which we solve iteratively using GMRES (Saad & Schultz 1986).
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(a) (b) (c)

FIGURE 2. Discretized mesh: N4 = 1280 six-node curved elements. (a) An initially
spherical mesh at time t= 0, (b) a deformed mesh for a tilted drop in the Quincke regime
corresponding to the case of figure 6 and (c) a deformed mesh of a prolate drop in the
Taylor regime (system 3), where we applied the mesh relaxation algorithm of Loewenberg
& Hinch (1996).

(ii) Evaluate the electric potential ϕ on the drop surface using (3.1), where the single-
layer density JEnK is known.

(iii) Differentiate ϕ on the drop surface using the method outlined in appendix A to
obtain the tangential component Et =−(I − nn) · ∇ϕ of the electric field.

(iv) Calculate the jump in hydrodynamic tractions J f HK using the dynamic boundary
condition (2.7), where electric tractions and surface tension forces are known
from the solution of the electric problem and from the current geometry.

(v) Solve for the interfacial velocity v by inverting the boundary integral equation
(3.12), which again yields an algebraic system after discretization of the integrals.

(vi) Update the surface charge density q and advance the position of the surface nodes
xi by numerical integration of the charge conservation equation and kinematic
boundary condition,

∂q
∂t
=

Q+ 2
1+ 2R

(E−n − RE+n )−∇s · (qvt)+ vm · ∇sq, (3.13)

dxi

dt
= vn(xi)+ vm(xi), (3.14)

where vt= (I−nn) · v and vn= (v ·n)n are the tangential and normal components
of the fluid velocity on the interface and vm is an artificial mesh relaxation
velocity. Charge is defined at the position of the moving surface nodes, which
are evolved with the normal velocity vn only so as to reduce mesh distortion;
transport of charge by the tangential fluid velocity is instead captured by the
advective term −∇s · (qvt) in the charge transport equation. To further limit
mesh distortion, we use an artificial tangential mesh relaxation velocity vm in
(3.14), which is determined using the method of Loewenberg & Hinch (1996);
the last advective term with velocity −vm in (3.13) is added to prevent mesh
relaxation from affecting charge transport. In the results shown below, mesh
relaxation was used in the Taylor regime to capture large drop deformations; it
was abandoned in the Quincke regime where it was found to cause numerical
instabilities. Numerical integration of (3.13)–(3.14) is performed explicitly in
time using a second-order Runge–Kutta scheme.
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FIGURE 3. (Colour online) Deformation parameter D as a function of time for the
parameters of: (a) system 1a, (b) system 1b, (c) system 1c and (d) system 3. Boundary
element (BEM) results are compared to the experiments of Lanauze et al. (2015) in
the case of oblate drops, and to various small-deformation theories (SDT). The steady
deformation values predicted by the models of Taylor (1966) and Ajayi (1978) in the case
of system 1c are −0.75 and −1.40, respectively, and out of the frame of the figure. The
effect of the mesh relaxation (MR) algorithm is also shown and found to be greater when
large deformations arise (system 3).

The charge conservation equation (3.13) requires numerical evaluation of the
surface divergence and gradient appearing on the right-hand side. These quantities
are obtained by analytical differentiation based on the parametrization discussed in
appendix A; an alternate method based on finite volumes (Yon & Pozrikidis 1998) and
a semi-implicit scheme wherein the linear JσEnK and nonlinear ∇s · (qvt) terms are
treated implicitly and explicitly, respectively, were also attempted but did not produce
significant differences in the results. The numerical method was tested extensively
by first considering the case of a solid spherical particle under Quincke rotation, for
which an exact analytical solution based on spherical harmonics is available (Das &
Saintillan 2013), and by comparison with previous numerical studies of drop dynamics
in simple shear flow (Kennedy, Pozrikidis & Skalak 1994) and under electric fields
in the absence of charge convection (Lac & Homsy 2007).

4. Results and discussion

We now turn to simulation results, which we compare with existing experimental
data. Following prior studies, we characterize deviations from the spherical shape
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System ε+/ε0 ε−/ε0 σ+ σ− µ+ µ− γ a E0

(S m−1) (S m−1) (Pa s) (Pa s) (mN m−1) (mm) (kV cm−1)

1a 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5 2.0 1.6
1b 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5 2.0 2.1
1c 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5 2.0 6.1
2a 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5 0.7 0.45–2.0
2b 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5 2.1 0.26–1.2

TABLE 1. Material properties: systems 1 and 2 correspond to the experiments of Salipante
& Vlahovska (2010) and Lanauze et al. (2015), respectively. ε0 = 8.8542 × 10−12 F m−1

denotes the permittivity of vacuum.

using Taylor’s deformation parameter D, which we define as

D=
L− B
L+ B

. (4.1)

In axisymmetric configurations (Taylor regime), L and B denote the lengths of the
drop axes in directions parallel and perpendicular to the electric field, respectively, so
that the sign of D distinguishes between oblate (D < 0) and prolate (D > 0) shapes.
When electrorotation takes places (Quincke regime), L and B are defined as in figure 1
as the lengths of the longest and shortest axes of the drop, respectively, so that D> 0
at all times. We also introduce the tilt angle α as the angle between the major axis of
the drop and the plane normal to the applied field, where α= 0 in the Taylor regime
and α > 0 in the Quincke regime. The determination of these geometric quantities is
performed by fitting an ellipsoid to the drop surface using a least-squares algorithm.

4.1. Taylor regime
We first investigate drop dynamics in the Taylor regime, where the drops attain
either a steady oblate or prolate shape depending on material properties. The Taylor
regime was addressed in our recent work using both a small-deformation theory and
axisymmetric boundary element simulations (Das & Saintillan 2017), and is primarily
used here as a benchmark for our three-dimensional algorithm. Material properties
in our simulations are chosen based on the experiments of Lanauze et al. (2015) for
transient (system 1) and Salipante & Vlahovska (2010) for steady drop deformations
(system 2) and are provided in table 1; corresponding dimensionless parameters
are presented in table 2. Both of these experiments focused on oblate drops. We
also consider the case of prolate deformations using one set of parameters from the
experiments of Ha & Yang (2000a) (system 3); their study, however, did not report
all the material properties necessary to construct the five dimensional groups required
in our model, so we set the electric capillary number to CaE = 0.3 as in figure 10 of
Lac & Homsy (2007) and choose a finite value of Ma= 0.5 for the Mason number.

Figure 3(a) shows the transient deformation of an oblate drop corresponding
to system 1a for an electric field strength of E0/Ec = 0.49. Unsurprisingly, the
axisymmetric boundary element method performs best in predicting the drop
deformation when compared with experiments. Results from our three-dimensional
simulations are shown for two different mesh resolutions (Nd = 2 and 3) as a
convergence test; we find as expected that the accuracy improves with increasing Nd,
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System R Q λ CaE Ma Re+E Re−E
1a 29.0 0.57 0.074 0.49 0.65 1.22 157.35
1b 29.0 0.57 0.074 0.85 0.375 2.11 271.05
1c 29.0 0.57 0.074 7.18 0.045 17.76 2287.04
2a 36.6 0.57 1.41 0.03–0.6 0.27–5.4 0.14–2.84 1.23–24.25
2b 36.6 0.57 1.41 0.03–0.6 0.8–16 0.048–1.021 0.41–8.73
3 0.1 1.37 1 0.3 0.5 7.12 1.34

TABLE 2. Dimensionless parameters corresponding to the material properties of table 1:
systems 1, 2 and 3 correspond to the experiments of Ha & Yang (2000a), Salipante &
Vlahovska (2010) and Lanauze et al. (2015), respectively.

and the results with Nd = 3 are nearly identical to the predictions of the axisymmetric
code. The classic small-deformation theories of Taylor (1966) and Ajayi (1978) that
neglect interfacial charge convection perform rather poorly; however, inclusion of
charge convection in the theoretical model improves the results considerably (Das &
Saintillan 2017).

The case of system 1b, corresponding to a stronger applied field (E0/Ec = 0.64),
shows the same trends albeit with larger deformations in figure 3(b). While the
boundary element simulations capture the transient and steady-state accurately, the
performance of small-deformation theories is not as good as previously due to
significant deformations. The surface charge distribution and fluid velocity obtained
from the three-dimensional simulation for this case are illustrated at three different
times in figure 4. As revealed by these snapshots, the interfacial velocity, which is
directed from the poles towards the equator, causes transport of negative and positive
charges towards the equatorial circumference of the drop, thereby inducing a sharp
charge gradient across it. This gradient cannot be captured by small-deformation
theories, as these employ truncated spherical harmonic expansions to represent
variables; it is also challenging to capture numerically, especially as E0/Ec is increased
further.

This is illustrated in figure 3(c), showing the case of system 1c with an even higher
electric field of E0/Ec= 1.86. There, the charge gradient across the interface becomes
sharper and an actual discontinuity appears that triggers instabilities, leading to the
termination of the simulations. Lanauze et al. (2015) were the first to discover this
charge shock in their numerical work, and suggested that it might be an artefact of the
axisymmetric nature of their boundary element simulations, which prevents transition
to Quincke electrorotation. As we demonstrate here, the development of the charge
shock in fact can occur in the Taylor regime, where it is due to the quadrupolar
Taylor flow in the case of oblate drops that causes the sweeping of positive and
negative charges towards the equator. The strength of this flow increases with electric
field and is more pronounced for low-viscosity drops, leading to stronger shocks
in these cases. While more analysis is required to understand the detailed structure
of these shocks, we note that the Melcher–Taylor leaky dielectric model does not
account for charge diffusion, which may have a regularizing effect in experiments. As
expected, figure 3(c) shows a very poor performance of small-deformation theories in
this regime, which are slightly improved by inclusion of charge convection but are
unable to capture the charge discontinuity.

The case of prolate drop deformations corresponding to system 3 is shown in
figure 3(d), where larger deformations are observed. The steady-state-deformation
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 4. (Colour online) Time evolution profiles of the surface charge density (a–c) and
interfacial fluid velocity (d–f ) in the case of system 1b in the Taylor regime at t/τMW =

1.0, 2.5 and 4.0 (a–f ). See movie 1 in the supplementary online materials, available at
https://doi.org/10.1017/jfm.2017.560, showing the dynamics and flow field in this case.

value reported in the experiments of Ha & Yang (2000a), which did not specify the
value of Ma, is D = 0.25; the simulations of Lac & Homsy (2007) with Ma→∞
reported D = 0.22, while our simulations with Ma = 0.5 predict D = 0.27. No
experimental data exist for the transient deformation, so we use axisymmetric
simulations as the benchmark in this case. We find as expected that the three-
dimensional simulations with Nd=3 perform best, especially when the mesh relaxation
algorithm is used as deformations are significant. Unsurprisingly, the large drop
deformation is poorly captured and underpredicted by the various small-deformation
theories.

We conclude the discussion of the Taylor regime by considering steady-state drop
deformations corresponding to system 2, for which we compare our simulations with
theoretical and experimental data in figure 5. Steady deformation values are shown
for increasing values of electric capillary number CaE for two different drop sizes of
a= 0.7 mm and a= 2.1 mm. For a given value of CaE, the smaller drop experiences
a stronger electric field corresponding to a lower value of Ma when compared to the
larger drop. As a consequence, the small drop experiences stronger charge convection
on its surface, which tends to reduce deformations as previously shown by other
authors (Feng 1999; Lanauze et al. 2015). In consistency with previous results,
the axisymmetric and three-dimensional simulations perform best followed by the
small-deformation theory with convection (Das & Saintillan 2017). Since the effect
of convection is weaker in the case of the larger drop, the small-deformation theories
without convection do not deviate as much from the experimental data and simulation
results as for the smaller drop.
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SDT: Ajayi (1978)
SDT: D&S (2017)
BEM Axi.: D&S (2017)
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FIGURE 5. (Colour online) Steady drop deformation D as a function of electric capillary
number CaE for the parameters of: (a) system 2a and (b) system 2b. Boundary element
(BEM) results are compared to the experiments of Salipante & Vlahovska (2010) and to
various small-deformation theories (SDT).

System µ+ µ− γ a E0

(Pa s) (Pa s) (mN m−1) (mm) (kV cm−1)

2c 0.69 9.74 4.5 0.25, 0.75, 1.25, 1.75 0.67–5.36
2d 0.69 4.87 4.5 0.25, 0.75, 1.25, 1.75 0.67–5.36

TABLE 3. Material properties for system 2, corresponding to the experiments of Salipante
& Vlahovska (2010) with a critical electric field of Ec = 2.68 kV cm−1. The permittivity
and conductivity values for this system are given in table 1.

System R Q λ CaMW E0/Ec Re+E Re−E
2c 36.6 0.57 14.1 0.44, 1.32, 2.20, 3.08 0.25–2.0 0.32–20.38 0.27–17.34
2d 36.6 0.57 7.05 0.23, 0.69, 1.15, 1.61 0.25–2.0 0.32–20.38 0.54–34.68

TABLE 4. Dimensionless parameters corresponding to the material properties shown in
table 3 for system 2, obtained from the experiments of Salipante & Vlahovska (2010).

4.2. Quincke regime
We now turn our attention to the electrorotation of drops in the Quincke regime,
which is seen to occur when the applied field exceeds a certain critical value. For
comparison with experiments, we use the parameter values provided by Salipante &
Vlahovska (2010) but restrict ourselves to small drop sizes. We consider two different
sets of material properties which are summarized in tables 3 and 4 and correspond
to different viscosity ratios. The heuristic mesh relaxation algorithm of Loewenberg
& Hinch (1996) is not included in the simulations in the Quincke regime, as we
found that it caused numerical instabilities preventing the simulations from reaching
steady state; as deformations tend to be fairly moderate when electrorotation takes
place (D . 0.1 in the simulations shown below), we do not expect significant errors
due to mesh distortion.

A typical simulation exhibiting Quincke rotation is illustrated in figure 6 in the case
of system 2c for an initial drop radius of a= 1.25 mm and electric field E0/Ec= 1.5,
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 6. (Colour online) Time evolution profiles of the surface charge density (a–c) and
interfacial fluid velocity (d–f ) in the case of system 2c in the Quincke regime at t/τMW =

3.75, 5.25 and 10.5 (a–f ). See supplementary online materials for movie 2 showing the
dynamics and flow field in this case.

where Ec is the critical electric field for the onset of rotation of a rigid sphere
given in (2.16). The figure shows both the interfacial charge profile and interfacial
velocity field at different times during the transient. Upon application of the field,
the drop deforms towards an oblate shape similar to that found in the Taylor regime.
This configuration, however, becomes unstable and leads to the rotation of the drop
with respect to an arbitrary axis perpendicular to the field direction. As it rotates,
the drop relaxes towards a more spherical shape as we characterize in more detail
below, and ultimately reaches a steady shape with a tilt angle α with respect to the
horizontal plane. As is visible in figure 6, the charge profile is smoother than in the
Taylor regime and is no longer axisymmetric, leading to a net electrostatic dipole that
forms an angle with the field direction; the nature of the flow is also significantly
different from the classic Taylor flow and appears to be primarily rotational. The
transient dynamics is illustrated in more detail in figure 7, showing the tilt angle α
and deformation parameter D as functions of time for different electric field strengths.
Oscillations in both α and D are observed during the transient and are more significant
in stronger fields, where the drop can undergo actual tumbling before its orientation
stabilizes; similar time dynamics has also been reported in experiments (Salipante &
Vlahovska 2010) and theory (He et al. 2013). In yet stronger fields, experiments have
shown that the dynamics in some cases does not reach a steady state but instead
exhibits chaotic tumbling and stretching of the drop (Salipante & Vlahovska 2013);
this regime was not captured in our simulations, which became unstable in very
strong fields.

The transition from the Taylor regime to the Quincke regime is characterized
in more detail in figure 8 showing phase diagrams for systems 2c and 2d in the
(E0/Ec, CaMW) plane, where we recall that for fixed material properties CaMW is
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FIGURE 7. (Colour online) (a) Tilt angle α and (b) drop deformation parameter D as
functions of time t/τMW for system 2d with drop size a = 0.75 mm and CaMW = 0.69.
Stronger electric fields cause faster and more pronounced oscillations in the tilt angle and
drop deformation.

(a)

0.5

0

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5 3.0

(b)

0.5

0

1.0

1.5

2.0

2.5

0.3 0.6 0.9 1.2 1.5 1.8

Quincke regime
Taylor regime

FIGURE 8. (Colour online) Phase diagram distinguishing the axisymmetric Taylor regime
(empty symbols) from the Quincke electrorotation regime (filled symbols) for two different
viscosity ratios: (a) λ = 14.1 and (b) λ = 7.05. Different symbols are used to different
values of CaMW for consistency with the symbols used in figures 9 and 10.

a measure of drop size. The case of a very viscous drop (λ = 14.1) is shown in
figure 8(a), where the critical electric field for the transition to electrorotation is
found to be close to the value of Ec for a rigid sphere, yet decreases slightly with
increasing CaMW . A small highly viscous drop is indeed expected to behave in the
same way as a rigid particle. Increasing CaMW (or equivalently, drop size) at a fixed
value of E0/Ec leads to larger deformations in the Taylor regime, which causes an
increase in the effective dipole induced inside the drop and thus has a destabilizing
effect as demonstrated by the decrease in the critical electric field. A similar phase
diagram is obtained at the lower viscosity ratio of λ= 7.05 in figure 8(b); decreasing
λ, however, is found to slightly increase the threshold for Quincke rotation. All of
these trends are consistent with the experimental data of Salipante & Vlahovska
(2010).

The steady-state tilt angle α is shown as a function of electric field strength in
figure 9(a) for system 2c, where it is also compared with the complementary of the
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FIGURE 9. (Colour online) (a) Steady tilt angle α and (b) drop deformation parameter D
as functions of applied electric field strength E0/Ec for system 2c for different values of
CaMW . Boundary element (BEM) simulation results are compared with the experiments of
Salipante & Vlahovska (2010) and with the theoretical predictions of He et al. (2013).

angle between the steady dipole and applied electric field in the case of a rigid sphere,
which we denote by β (Salipante & Vlahovska 2010):

β =
π

2
− arctan

[(
E2

0

E2
c

− 1
)−1/2

]
. (4.2)

In the Taylor regime, the tilt angle is zero as the drop shape is axisymmetric. As
field strength increases, a supercritical pitchfork bifurcation is observed at the onset
of rotation, with a value of α that increases with E0/Ec and asymptotes towards π/2
in strong fields. Both angles α and β show similar trends as expected, especially
in the case of weakly deformed drops (CaMW = 0.44) that behave like rigid spheres.
Increasing drop size (or equivalently CaMW) causes the bifurcation to occur at lower
field strengths in agreement with the phase diagram of figure 8. These trends also
agree well with the experimental results of Salipante & Vlahovska (2010) and
theoretical predictions of He et al. (2013) at similar values of CaMW .

Corresponding values of the steady drop deformation D are shown in figure 9(b).
Increasing field strength in the Taylor regime leads to stronger deformations in
agreement with figure 5. The transition to electrorotation breaks this trend and leads
to a relaxation of the drop towards a more spherical shape. This decrease in D
with the onset of rotation can be rationalized as a result of a change in the nature
of the flow. In the Taylor regime, the axisymmetric toroidal vortex flow illustrated
in figure 4 is dominated by straining and causes the elongation of the drop in the
equatorial plane; under Quincke rotation, the flow becomes primarily rotational and
therefore has a weaker effect on drop shape. This qualitative change also has an
impact on the charge distribution, which is much smoother in the Quincke regime
than in the Taylor regime, thus reducing the effective dipole and the magnitude of
electric stresses at a given field magnitude.

In order to quantify more precisely the nature of the flow inside the drop, we
introduce a parameter ζ as

ζ =
tr(S2)− tr(W 2)

tr(S2)+ tr(W 2)
, (4.3)
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FIGURE 10. (Colour online) Parameter ζ , defined in (4.3) and calculated at the position
of the drop centroid for system 2c as a function of electric field strength for (a) λ= 14.1
and (b) λ= 7.05. Values of ζ close to 1 or −1 describe flows dominated by either strain
or rotation, respectively.

where S = ((∇v + ∇vT))/2 and W = ((∇v − ∇vT))/2 denote the rate-of-strain and
rate-of-rotation tensors, respectively, which we evaluate at the centroid of the drop.
With this definition, values of ζ close to +1 and −1 describe flows dominated by
strain and rotation, respectively. The dependence of ζ on electric field strength in the
steady state is shown in figure 10 for different values of CaMW and for two viscosity
ratios. In the Taylor regime, ζ = 1 at the centre of the drop, which is to be expected
for the axisymmetric Taylor flow. As the transition to electrorotation takes place, ζ
rapidly jumps to a value close to −1, which indicates a drastic change in the nature
of the flow. Note, however, that ζ is not strictly −1 in the Quincke regime, implying
that the flow retains a straining component; nonetheless, we find that ζ→−1 as E0/Ec
keeps increasing and the rotational component of the flow becomes more dominant.

5. Concluding remarks
In this work, we have developed a three-dimensional boundary element method

for the unsteady electrohydrodynamics of a deformable viscous drop based on
the complete Melcher–Taylor leaky dielectric model including nonlinear charge
convection. Our method extends previous numerical studies in this field (Sherwood
1988; Baygents et al. 1998; Lac & Homsy 2007; Lanauze et al. 2015), which either
were restricted to axisymmetric shapes or neglected charge convection. Our results
were first shown to reproduce the steady oblate and prolate shapes known to arise
in the Taylor regime of weak fields and compared favourably with previous models
and experiments. In stronger fields, the experimentally observed symmetry-breaking
bifurcation and transition to Quincke electrorotation was also captured for the first
time in simulations. A phase diagram for the transition between the two regimes
was constructed, and the evolution of drop shape and tilt angle with increasing field
strength was discussed and shown to agree well with experiments. Our numerical
simulations also allowed us to characterize the nature of the flow, which is not easily
visualized experimentally, and demonstrated a transition from a strain-dominated flow
in the Taylor regime to a primarily rotational flow in the Quincke regime.

Our simulations, which were limited to isolated viscous drops in moderate electric
fields, open the way for the study of more complex situations. The cases of very
strong fields and low-viscosity drops remain challenging numerically: our numerical
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method was found to become unstable in these limits, thus preventing us from
investigating the unsteady chaotic dynamics observed in the experiments of Salipante
& Vlahovska (2013). Another difficulty arising in this case is the formation of charge
shocks as shown by previous studies (Lanauze et al. 2015; Das & Saintillan 2017)
and illustrated in figure 4. The accurate treatment of these sharp charge discontinuities
should require the implementation of a shock capturing scheme for the solution of
the charge conservation equation. High-order weighted essentially non-oscillatory
(WENO) schemes (Hu & Shu 1999) within a finite-volume formulation could prove
useful towards this purpose, though their implementation on unstructured meshes is
non-trivial.

Extensions of the present work could also include the consideration of sedimentation,
which couples nonlinearly with the electrohydrodynamic problem as a result of charge
convection and was recently discussed theoretically in the limit of small deformations
and weak fields (Xu & Homsy 2006; Bandopadhyay et al. 2016; Yariv & Almog
2016). Electrohydrodynamic effects in emulsions under applied flows are also of
interest, as the applied flow also affects both the interfacial stress balance and
charge convection with interesting consequences for the rheology (Vlahovska 2011).
Experiments in shear flow have also shown an effective reduction in the viscosity of
the suspension beyond that of the suspending medium when RQ > 1 (Ha & Yang
2000c), likely by an effect similar to that known to occur with rigid spheres (Pannacci,
Lemaire & Lobry 2007). Droplet–droplet and droplet–wall interactions, either pairwise
or in collections of multiple drops, would also be interesting to analyse in the light
of recent experiments on droplet pairs (Dommersnes, Mikkelsen & Fossum 2016)
and emulsions (Ha & Yang 2000c; Varshney et al. 2012, 2016). Such interactions
also have yet to be studied numerically, which would likely require the use of an
accelerated algorithm such as the fast multipole method (Zinchenko & Davis 2000).
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Appendix A. Discrete surface parametrization
The drop surface is divided into N4 six-node curved triangular elements, allowing

for computation of local curvature. Each physical three-dimensional element is mapped
to an isosceles right triangle residing in a plane parametrized by coordinates s1 and
s2. Any point x inside the element in the physical space is represented by means of
six basis functions φi that are defined on each triangle, exact expressions for which
are provided by Pozrikidis (1992, 2002):

x=
6∑

i=1

xiφi(s1, s2). (A 1)
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Similarly, any scalar, vectorial or tensorial field f (x) can be represented as

f (x)=
6∑

i=1

fiφi(s1, s2). (A 2)

The unit tangent vectors in the directions of s1 and s2 in physical space are obtained
as

es1 =

6∑
i=1

xi
∂φi

∂s1
, es2 =

6∑
i=1

xi
∂φi

∂s2
, (A 3a,b)

from which the unit normal vector is found as

n=
1
hS

es1 × es2, (A 4)

where hS(ξ , η)= |es1 × es2 | is the surface metric. We define the metric tensor A as

Aij =
∂xk

∂si

∂xk

∂sj
, (A 5)

which allows us to find the surface divergence of any surface vector v(x) as

∇s · v = A−1
ij
∂vk

∂si

∂xk

∂sj
. (A 6)

In particular, we use (A 6) to compute both the total curvature 2κm=∇s ·n and charge
convection term ∇s · (qv). Since these terms are computed locally in each triangular
element, the value of these quantities at a global node that is shared between multiple
elements is obtained by averaging the values at the local nodes. An alternative method
of computing the surface divergence of a vector consists in using the Stokes theorem,
which yields

κm =
1

2SE

∫
SE

∇s · v dS=
1

2SE

∮
CE

b× v d`, (A 7)

where b= t× n is the outward unit normal to the edges of the triangular element and
SE and CE are the element area and contour, respectively (Pozrikidis 2011). The Stokes
theorem also forms the basis of the finite-volume method for the charge conservation
equation. We did not find any significant difference between these two methods and
the curvature is computed using (A 6) in this work.

Given the representation of (A 2), surface integrals of field variables are simply
obtained by analytical quadrature of the basis functions. The surface gradient ∇sf (x)=
(I − nn) · ∇f (x) of a field variable can also be determined by solving a 3× 3 linear
system at each quadrature point on the mesh:

∂x
∂s1
· ∇sf =

∂f
∂s1

,
∂x
∂s2
· ∇sf =

∂f
∂s2

, n · ∇sf = 0, (A 8a−c)

where the partial derivatives are calculated analytically by differentiation of (A 1) and
(A 2).
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Appendix B. Wielandt’s deflation technique

We present Wielandt’s deflation technique, which is employed for faster convergence
of the iterative GMRES solver used for solving the Stokes boundary integral equation.
The dimensionless integral equation for the interfacial velocity reads

v(x0)+
λ− 1

8π

∮
S
[v(x)− v(x0)] · T (x; x0) · n(x) dS(x)

=−
1

8πMa

∮
S
J f H(x)K ·G(x; x0) dS(x). (B 1)

Wielandt’s deflation technique consists in formulating a different boundary integral
equation in terms of an auxiliary field w, which is obtained after removal of rigid
body motion and uniform expansion solutions (Pozrikidis 1992):

w(x0)+
(λ− 1)

8π

[∮
S
[w(x)−w(x0)] · T (x; x0) · n(x) dS(x)+ 4πw′(x0)

−
4π

S
n(x0)

∮
S

w(x) · n(x) dS(x)
]
=−

1
8πMa

∮
S
J f H(x)K ·G(x; x0) dS(x), (B 2)

where w′ denotes the rigid body motion:

w′(x0)=U+Ω × (x0 − xc). (B 3)

Here, xc is the surface centroid, and U and Ω are the translational and rotational
velocities, respectively:

xc =
1
S

∮
S

x dS(x), (B 4)

U=
1
S

∮
S

w(x) dS(x), (B 5)

Ω =M−1
·

∮
S
(x− xc)×w(x) dS(x), (B 6)

where the matrix M is given by

M =
∮

S
[I|x− xc|

2
− (x− xc)(x− xc)] dS(x). (B 7)

Substituting these expressions into (B 2) yields the desired integral equation for w,
which no longer suffers from the ill conditioning of (B 1):

w(x0)+
(λ− 1)

8π

[∮
S
[w(x)−w(x0)] · T (x; x0) · n(x) dS(x)

+
4π

S

∮
S

w(x) dS(x)+ 4π

(
M−1
·

∮
S
(x− xc)×w(x) dS(x)

)
× (x0 − xc)

−
4π

S
n(x0)

∮
S

w(x) · n(x) dS(x)
]
=−

1
8πMa

∮
S
J f H(x)K ·G(x; x0) dS(x). (B 8)
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Having determined the auxiliary field w, we compute the actual interfacial velocity as

v =w+
λ− 1

2
w′. (B 9)
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