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We discuss the effects of temporal aggregation on the estimation of cointegrating
vectors and on testing linear restrictions on this vector+ We adopt a discrete time
approach and demonstrate, in contrast with the findings of Chambers ~2003, Econo-
metric Theory 19, 49–77!, who adopts a continuous time approach, that in some
situations, when the regressand must be aggregated, systematic sampling is pref-
erable to average sampling for estimation purposes+ Like Chambers, we show that
the best aggregation scheme for regressors, in terms of asymptotic estimation effi-
ciency, is always average sampling+ We also show that different types of aggre-
gation have no influence on the relative size of tests of linear restrictions on the
cointegration vector+

1. INTRODUCTION

Economic theories are frequently tested not with data measured at their gener-
ating time interval, but with temporally aggregated time series because most
economic time series are measured at a lower sampling frequency than eco-
nomic agents make decisions+ Temporal aggregation changes many time series
properties such as weak exogeneity or Granger causality and in some cases
deteriorates statistical inference because valuable information is lost with such
data transformation and cannot be recovered with the observable data ~see Wei,
1989;Marcellino, 1999!+ However, the estimation of cointegrating vectors does
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not fit into this pessimistic picture because an estimator of cointegrating vec-
tors constructed with temporally aggregated data is consistent ~see Granger, 1990;
Phillips, 1991a! and, when all the variables of the cointegrated system are flows,
asymptotically as efficient as the estimator based on disaggregated time series
~see Chambers, 2003!+1

There are different methodological approaches to discuss the effects of tem-
poral aggregation on cointegrated systems+ The continuous time aggregation
analysis ~see Phillips, 1991a; Comte, 1999; Chambers, 2003! assumes that the
long-run dynamics evolves in continuous time+ This assumption is not realistic
for some cointegrating relations because the continuous approach imposes that
the markets react instantaneously to a long-run disequilibrium, but in practice
many cointegrating relations, such as the purchasing power parity ~PPP! ~see
Johansen and Juselius, 1992!, correct a situation of long-run disequilibrium very
slowly as a result of information costs or barriers to trade+ Another approxima-
tion to the issue is the discrete time aggregation that considers that the long-run
dynamics are generated at equally spaced time intervals ~see Granger, 1990;
Granger and Siklos, 1995; Marcellino, 1999!+ This approach also can be con-
sidered an approximation to discuss temporal aggregation of cointegrating rela-
tions because it assumes an equally spaced time interval between shocks and
long-run reactions, and in practice the time interval between the shock and the
long-run reaction may vary along the sample period+2

The aim of this paper is an in-depth examination of the theory of the effects
that discrete time aggregation has on inference on cointegrating vectors+ We
consider the effects of different types of aggregation on the estimation of cointe-
grating relations with I~1! and I~2! variables and on hypothesis testing on cointe-
grating vectors+ As stressed by Johansen ~1994, 1995! the marginal distribution
of the estimator is not relevant for inference on cointegrating vectors+ What is
of interest is the joint distribution of the estimator and the observed informa-
tion+ We provide evidence from a simulation study to confirm this statement
for our specific aggregation scenario+More specifically, we show that the aggre-
gation scheme most able to guarantee the estimation’s precision is not neces-
sarily the best suited for testing a hypothesis on the cointegrating vector and, in
addition, although different aggregation schemes have different effects on the
estimator, they have similar effects on the test+

This paper is organized as follows+ In Section 2 we present a representation
of the cointegrated system with a varying, but equally spaced, sampling inter-
val+ The dependency of the optimal regression-type estimators and the observed
information on temporal aggregation are discussed in Section 3+ Next, we eval-
uate the finite-sample effects of temporal aggregation on the Phillips and Hansen
~1990! fully modified ordinary least squares ~FM-OLS! estimator+ Finally, Sec-
tion 5 concludes the paper+ The Appendix contains the proofs of a lemma and
theorems+

We shall use the following notation: B denotes a vector of Brownian motions,
V the long-run variance matrix, and W a vector of standardized indepen-
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dent Brownian motions; CI~d,b! stands for a cointegrated process of orders
~d,b!; @{# denotes the integer part and n weak convergence; zt represents a
k-dimensional disaggregated time series; T[ @t0m# denotes the aggregated time
unit; N [ @n0m# is the aggregated sample size, t is the disaggregated time
unit; m is a finite positive integer that determines the length of the sampling
interval; and n denotes the span of the sample measured in t-periods+ The
k-dimensional temporally aggregated time series is defined as

ZT
~ j ! [ @sm~L!#

jzmT ,

where sm~L! � 1 � L � {{{ � Lm�1 is the summation filter+ More specifically,
ZT
~0! denotes a systematically sampled time series and ZT

~1! an average sampled
time series+3 Finally, we decompose the disaggregated time series into zt �
~y t
' ,x t
'!', where yt is k0 � 1 and x t is k1 � 1 ~k0 � k1 � k! and we express the

mixed sampled time series as

ZT
~ j0 , j1! [ ~YT

~ j0 !' ,XT
~ j1!'!' � ~ @sm~L!#

j0 ymT
' , @sm~L!#

j1 xmT
' !',

where YT
~ j0 ! is temporally aggregated by scheme j0 and XT

~ j1! is temporally
aggregated by a different scheme j1 ~�j0!+

2. A REPRESENTATION OF THE COINTEGRATED SYSTEM
FOR A VARYING SAMPLING INTERVAL

In this section we present a representation of the cointegrated system where the
length of the sampling interval m is not fixed+ This representation is used to
discuss the problem of temporal aggregation that occurs when a practitioner
makes inference on cointegration with data measured at a longer sampling inter-
val than the long-run dynamics are generated+ Hence, we use the term disag-
gregated model to describe the cointegrated system measured at the frequency
where the long-run dynamics are generated, i+e+, the time interval between a
shock that alters the equilibrium and the moment the markets react to the dis-
equilibrium+ We use the triangular system representation of Phillips ~1991b! to
do so, because this model avoids having to specify the short-run dynamics and
the aggregation effect on the long-run variance can be determined exactly+

2.1. Disaggregated Model

Suppose that the long-run dynamics of a k-dimensional I~1! time series zt �
~y t
' ,x1, t
' !' were generated at time interval Dt by the process

Dx1, t � u2, t , (1)

yt � x1, t
' b1 � u1, t , (2)
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where yt is k0-dimensional, x1, t is k1-dimensional, and ut [ ~u1, t
' ,u2, t

' !' is a
stationary process that satisfies the invariance principle

n�102St�1
@nr#ut n B[V102 W (3)

for r � @0,1# as nr `, where W denotes a k-dimensional standardized Brown-
ian motion with variance matrix V [ limnr` n�1E @~S1

n uj !~S1
n uj !

' # , the long-
run variance of ut + Let us partition V according to ut :

V � �V11 V12

V21 V22
�

and define the conditional long-run variance V11+2 [ V11 � V12V22
�1V21+ We

assume that the matrix V22 is positive definite in such a way that x1, t is indi-
vidually I~1! but not CI~1,1!+ Under these assumptions, the process zt is a CI~1,1!
process with k0 cointegrating relations and k1 common stochastic trends+

Representation ~1!–~3! has been used to analyze optimal inference on cointe-
grating vectors ~see Phillips, 1991b! and to design a number of optimal
regression-type estimators+ Phillips and Hansen ~1990! and Park ~1992! pro-
pose semiparametric methods, Saikkonen ~1991! and Stock and Watson ~1993!
dynamic regression methods, and Phillips ~1991c! a frequency domain method+
A very important property of optimal estimators of cointegrating vectors is their
asymptotic mixed Gaussian distribution, meaning that a test for g restrictions
on b1 is xg

2 distributed ~Phillips, 1991b!+ However, regression-type methods
are not very well suited to model building because they impose the location
and number of unit roots on the model rather than testing them+ This has two
important consequences+ First, it is not possible to test sequentially for the num-
ber of cointegration relations, because a triangular model with k0

' cointegrating
relations is not nested into a triangular model with k0

'' ~�k0
' ! cointegrating rela-

tions ~see Johansen, 1994!+ Second, regression-type estimators impose normal-
ization restrictions on cointegrating vectors, and this may lead to inconsistent
inference if such restrictions do not hold+ In addition, these methods were orig-
inally designed to test for a single cointegrating relation ~k0 �1!, and this restricts
their applicability to very small systems+ However, even small systems can be
governed by more than one cointegrating relation, and although it is possible to
estimate more than one cointegrating relation with regression methods, the prop-
erties of the estimator and tests for the extra cointegrating relations are not
clear ~see Hargreaves, 1994!+ For all these reasons, system methods that test
for the dimension of the cointegrating space and do not impose normalization
restrictions, such as the full maximum likelihood analysis of cointegrated vec-
tor autoregression ~VAR! ~see Johansen, 1991!, are commonly used for model
building+

The aim of this paper is to study the effects of different aggregation options
on inference rather than on model building, and the triangular model is more
suitable for this purpose than other representations of the cointegrated system,
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such as the VAR model or the moving average ~MA! model, because of its
nonparameterization of the short-run dynamics+

The main focus of the paper is CI~1,1! relations, but we consider two partic-
ular cases of cointegration with I~2! variables+ To do so, let us suppose that the
long-run dynamics of a k-dimensional time series zt [ ~y t

' ,x1, t
' ,x2, t

' !' are gen-
erated by the following model:

D2x2, t � u3, t , (4)

Dx1, t � Dx2, t
' b3 � u2, t , (5)

yt � x1, t
' b1 � x2, t

' b2 � u1, t , (6)

where x2, t is k2-dimensional ~k0 � k1 � k2 � k!, ut � ~u1, t
' ,u2, t

' ,u3, t
' !' satis-

fies ~3!, and V22 and V33 are positive definite+ This is a very general model
that allows for many different cointegrating relationships+ Matrix @Ik1

,�b3 #
denotes the CI~2,1! cointegrating vectors of ~x1, t

' ,x2, t
' !' , matrix @Ik0

,�b2 #
contains CI~2,2! cointegrating vectors of ~y t

' ,x2, t
' !' when some or all the ele-

ments of b1 are zero, and matrix @Ik0
,�b1# contains the CI~1,1! cointegrating

vectors of ~y t
' ,x1, t
' !' when some or all the vectors of matrix b2 are zero+ For

the nonrestricted case, @Ik0
,�b2 # denotes the CI~2,1! cointegrating vectors of

~y t
' ,x2, t
' !' , and @Ik0

,�b1# denotes the CI~1,1! vectors of ~y t
' � x2, t

' b2 ,x1, t
' !' +

In this general setting, Stock and Watson ~1993! proposed dynamic optimal
inference methods and Kitamura ~1995! full and partial information maximum
likelihood methods+ Under the very restrictive assumption that V12 � V13 �
V23 � 0, the ordinary least squares ~OLS! estimator is optimal in the sense
that it has a mixed Gaussian distribution allowing for a standard x2 inference
~see Haldrup, 1994!+

2.2. Aggregated Model

Let us use ZT
~ j0 , j1 , j2! ~with j0, j1, j2 � $0,1%! to denote the observable vector time

series that is measured at a longer sampling interval DmT � mDt than zt + The
representation of this temporally aggregated process is given in the following
lemma+

LEMMA 2+1+ If zt is generated by (3)–(6), the observable temporally aggre-
gated time series ZT

~ j0 , j1 , j2! can be represented as

Dm
2 X2,T

~ j2 ! � U3,T
~ j2�2! , (7)

Dm X1,T
~ j1!� m j1�j2Dm X2,T

~ j2 !'b3 � U2,T
~ j1�1! , (8)

YT
~ j0 !� m j0�j1X1,T

~ j1!'b1 � m j0�j2X2,T
~ j2 !'b2 � U1,T

~ j0! , (9)
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where LmZT
~ j0 , j1 , j2! � ZT�1

~ j0 , j1 , j2! , Dm [ 1 � Lm, and UT
~ j0 , j1�1, j2�2! [ ~U1,T

~ j0 !' ,
U2,T
~ j1�1!' ,U3,T

~ j2�2!'!' satisfies the multivariate invariance principle

N�102S1
@Nr#UT

~ j0 , j1�1, j2�2!

n �
V11
~ j0 ! m j0�j1V12 m j0�j2�1V13

m j0�j1V21 m2 j1�1V22 m j1�j2�2V23

m j0�j2�1V31 m j2�j1�2V32 m2 j2�3V33

�
102

�
W1

W2

W3
� ,

where V11
~0! � m�1~V11 � L~m!! , V11

~1! � mV11, L~m! � 4pSj�1
m�1 F11~2pj0m! ,

and F11~v! is the spectral density matrix of u1, t .

Proof+ See the Appendix+

From Lemma 2+1, the number of cointegrating relations is invariant with any
of the different combinations of aggregation schemes+ However, the cointegrat-
ing spaces are not generally invariant with temporal aggregation+ More specif-
ically, when the aggregation schemes applied to the regressand and the respective
regressors are the same ~ jl � jh!, the cointegrating relations are invariant+ If
not, when some of the variables are aggregated with systematic sampling and
others with average sampling, the cointegrating space changes with m+ The
weights m jl�jh capture this change in cointegrating relations, which is exclu-
sively attributable to a change in the unit of measurement+ Ericsson, Hendry,
and Tran ~1994! analyze the effects of linear filters, zt

a � g~L!zt , on cointegrat-
ing vectors+ They show that when all the filtered time series are measured by
the same units, g~1! � I, then the filtered series zt

a and the original series zt

have the same cointegrating space+ This condition does not hold for mixed sam-
pling, because the flow variables are measured in relation to the sampling inter-
val, i+e+, that month’s income but not the stocks, i+e+, money supply+

The second main effect of temporal aggregation on the cointegrated system
is a change in the short-run dynamics+ The different effects of temporal aggre-
gation on the error terms of the cointegrated system change the short-run
dynamics and also their contribution to the long run, represented by the aggre-
gated long-run variance V~ j0 , j1�1, j3�2!+ For any possible combination of aggre-
gation schemes, the short-run dynamics will always vary+ For example, when
the aggregation schemes are the same ~ j0 � j1 � j3 � j!, the long-run variance
of U2,T

~ j�1! increases in relation to the long-run variance of U1,T
~ j ! , and the long-

run variance of U3,T
~ j�2! increases in relation to the long-run variances of the

other errors+ Note that when the regressand is systematically sampled, YT
~0! ,

the long-run variance of U1,T
~0! is an average of the disaggregated long-run vari-

ance V11 and the variance of those seasonal cycles that emerge as a result of
the aliasing effect, L~m!+ For instance, a quarterly stock variable with an impor-
tant semiannual seasonal cycle ~F11~p!! systematically sampled as a semi-
annual variable ~m � 2! will experience a substantial increase in the long-run
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variance of the semiannual systematically sampled cointegrating error U1,T
~0! +

As discussed in the next section, this type of aggregation will make the mixed
normal distribution of the estimator of the cointegrating vectors more disperse+

Let us focus on the CI~1,1! model+ The following corollary particularizes
the previous results to this situation+

COROLLARY 2+2+ If zt is generated by (1)–(3), the temporally aggregated
time series ZT

~ j0 , j1! can be represented as

Dm X1,T
~ j1! � U2,T

~ j1�1! ,

YT
~ j0!� m j0�j1X1,T

~ j1!'b1 � U1,T
~ j0! ,

where UT
~ j0 , j1�1! [ ~U1,T

~ j0 ! ,U2,T
~ j1�1! ! satisfies the multivariate invariance principle

N�102S1
@Nr#UT

~ j0 , j1�1!
n � V11

~ j0 ! m j0�j1V12

m j0�j1V21 m2 j1�1V22
�102�W1

W2
�,

where V11
~ j0! is defined as before.

Proof+ It follows from Lemma 2+1+

In this case, we can differentiate four different temporal aggregation situa-
tions+ We use the same classification as Chambers ~2003! and identify the
pure systematic sampling situation as aggregation type I ~ZT

~0!� ~YT
~0!' , X1,T

~0!'!' !,
the mixed sampled process ZT

~0,1! � ~YT
~0!' , X1,T

~1!'!' as aggregation type II, the
other mixed sampled situation ZT

~1,0! � ~YT
~1!' , X1,T

~0!'!' as aggregation type III,
and finally the pure average sampled process ~ZT

~1,1!� ~YT
~1!' , X1,T

~1!'!' ! as aggre-
gation type IV+ Table 1 shows the aggregation effect of these different aggre-
gation schemes for m � 3 on the long-run variances V11+2

~ j0! , V22
~ j1�1! , and on

Ji~m! [ m j0�j1~V11+2 � ~1 � j0!L~m!!102 ~i � I, II, III, IV!, which, as shown
in the next section, is the relative dispersion of the mixed normal distribution
across m for the different aggregation schemes+

Table 1. Temporally aggregated long-run variances of the CI~1,1! model for
m � 3

Aggregation scheme V11+2
~ j0! V22

~ j1�1! Ji~3!

I ~ j0 � 0, j1 � 0! 1
3
_ ~V11+2 � L~3!! 3V22 @V11+2 � L~3!#102

II ~ j0 � 0, j1 � 1! 1
3
_ ~V11+2 � L~3!! 27V22

1
3
_ @V11+2 � L~3!#102

III ~ j0 � 1, j1 � 0! 3V11+2 3V22 3V11+2
102

IV ~ j0 � 1, j1 � 1! 3V11+2 27V22 V11+2
102

Note: The aliasing component is L~3! � 4pF11~2p03!+

ESTIMATING CV AT DIFFERENT PERIODICITY 741

https://doi.org/10.1017/S0266466605050395 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050395


Let us consider a particular case of the I~1! cointegrated model+ Assume that
k0 � k1 � 1, u1, t � ru1, t�1 � «1, t with 6r6 � 1, «1, t is i+i+d+N~0,1!, u2, t � «2, t is
i+i+d+N~0,s 2!, and E~«1, t«2, t�j !� 0 for all j+ The systematically sampled model
is given by

Dm X1,T
~0! � U2,T

~1! ,

YT
~0!� b1 X1,T

~0! � U1,T
~0! ,

where U2,T
~1! � E2,T

~1! � sm~L!«2,mT , and U1,T
~0! � rmU1,T�1

~0! � E1,T
~0! , E1,T

~0! � @~1 �
rmLm!0~1 � rL!#«1,mT is serially uncorrelated and not correlated with E2,T

~1! for
all lags and leads+ From Pesaran and Shin ~1996! the impact of a unit shock
to the variable YT

~0! on the cointegrating relation after one T-period is given by
the autoregressive coefficient rm + Then, given 6r6 � 1, the longer the sam-
pling interval with respect to the long-run dynamics generating time interval,
the faster the adjustment of the system to a disequilibrium+ Let us consider the
two limiting aggregation cases+ In the maximum aggregation case, i+e+, when
mr `, all the adjustment takes place in one period ~limmr`r

m � 0!, whereas
for the maximum disaggregation case, when m r 0, no adjustment takes place
~limmr0r

m � 1!+ Therefore, the finer the sampling interval the closer the cointe-
grated model is to a noncointegrated system+

This example illustrates that when the long-run dynamics are measured at a
much longer sampling interval than their generating time interval, then the speed
of adjustment of the cointegrating relation should be very fast+ In practice, for
many cointegrated relations the estimated speed of adjustment with monthly or
quarterly time series is low, and this suggests that the long-run dynamics for
many cointegrated systems are not generated at a much shorter time interval+

3. ASYMPTOTIC DISTRIBUTIONS OF AGGREGATED OPTIMAL
COINTEGRATED REGRESSIONS

We will now discuss the asymptotic effects of different types of aggregation on
the estimation of b1, b2, and b3 and on the observed information+ Even though
we focus on optimal CI~1,1! regressions we also provide theoretical results for
two examples of CI~2,2! and CI~2,1! processes+

3.1. Temporally Aggregated Mixed Normal Distribution

Suppose that a k-dimensional time series zt � $~ yt ,x1, t
' !' %t�1

n , where yt is a sca-
lar time series4 and x1, t is a k1-dimensional time series, is generated by

Dx1, t � u2, t , (10)

yt � x1, t
' b1 � u1, t , (11)
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where ut � ~u1, t ,u2, t
' !' is a stationary process that satisfies ~3!+ Let Zb1

i denote
an optimal regression-type estimator of b1 using the time series ZT

~ j0 , j1! where
i � I for ZT

~0! , i � II for ZT
~0,1! , i � III for ZT

~1,0! , and i � IV for ZT
~1! + The

following theorem presents its limiting distribution+

THEOREM 3+1+ The asymptotic distribution of the optimal regression-
type estimator of b1 in model (10) and (11) with temporally aggregated time
series is

n~ Zb1
i � b1!n J

i~m!�dW1 B2
' ��B2 B2

'��1

,

where the relative dispersion across the sampling interval Ji~m! is JI~m! �
~V11+2 � L~m!!102, JII~m! � m�1~V11+2 � L~m!!102, JIII~m! � mV11+2

102 , and
JIV~m! � V11+2

102 .

Proof+ See the Appendix+

From Theorem 3+1, comparing these asymptotic distributions with the one
for an optimal estimator of the disaggregated model, V11+2

102 *dW1 B2
' ~*B2 B2

' !�1 ,
there is no loss of efficiency when the regressand and the regressor are average
sampled ~aggregation IV!, whereas there is a loss of efficiency when the regres-
sors are systematically sampled, i+e+, aggregation schemes I and III+ These results
are in keeping with those of Chambers ~2003!, who considers a similar sce-
nario where the disaggregated model is a continuous time cointegrated model+

However, in contrast with Chambers ~2003!, in case II three situations are pos-
sible depending on the relative size of the aliasing component L~m! in relation
to the conditional long-run variance V11+2+ To be more specific, when L~m! �
~m2 � 1!V11+2, which implies that 2Sj�1

m�1 F11~2pj0m!� ~m2 � 1!F11+2~0!, there
is no loss of efficiency, whereas for 2Sj�1

m�1 F11~2pj0m! � ~m2 � 1!F11+2~0!,
there is a loss of asymptotic efficiency, and when 2Sj�1

m�1 F11~2pj0m! �
~m2 � 1!F11+2~0! there is a gain in asymptotic efficiency+ In any case JII~m! �
JI~m!, and when L~m! � ~m4 � 1!V11+2, then JII~m! � JIII~m!+

To summarize, type II aggregation is always more efficient than type I aggre-
gation, and type IV aggregation is always more efficient than types I and III
aggregation+ When L~m! � ~m2 � 1!V11+2 type II is more efficient than IV
aggregation and therefore is the most efficient option+

Continuing with the example of Section 2+2 and for m � 3, a situation of no
loss of asymptotic efficiency with aggregation II occurs when r � �0+27, for
�1 � r � �0+27 there is a loss of efficiency, whereas for �0+27 � r � �1
there is a gain of efficiency+

Let us compare the relative dispersions Ji~m! with those derived with the
continuous time aggregation approach ~see Chambers, 2003!, which we denote
as JC

i + To do so, let us consider a bivariate triangular continuous time cointe-
grated model:
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dx1~t ! � u2~t ! dt, t � 0,

y~t !� b1 x1~t ! � u1~t !, t � 0,

where ~u1~t !,u2~t !!' is a stationary continuous time process with spectral
density function FC~v! with �` � v � `+ From Chambers ~2003, p+ 59!
and given that for j � 0 h~2pij ! � ~2pij !�1 , h~2pij ! � h~�2pij ! � 0 and
6h~2pij !62 � ~4p2j 2!�1 , we obtain the expressions

~JC
I !2 � V11+2 � 2pSj�0 FC,11~2pj !,

~JC
II!2 � V11+2 � 2pSj�0 FC,11~2pj !� 2pb1

2Sj�0~4p
2j 2 !�1FC,22~2pj !,

~JC
III!2 � V11+2 � 2pb1

2Sj�0~4p
2j 2 !�1FC,22~2pj !,

~JC
IV!2 � V11+2 +

There are important differences between JC
i and J i~m!+ First of all, in the con-

tinuous time setting, type II aggregation is the most inefficient option for any
FC~v!, a result that contrasts with the findings obtained in the discrete time
approach where type II aggregation may be the most efficient way to aggregate
the time series and in any case is less efficient than schemes I+ Second, the
cointegration coefficient b1 appears at the limiting distributions of the discrete
time optimal estimator derived from the continuous time cointegrated system,
a result that is in contradiction with the optimal theory of estimation of cointe-
grating vectors ~see Saikkonen, 1991; Phillips, 1991b!+ Finally, in the continu-
ous time approach, the aliasing affects the distributions through the error process
of the cointegrated relations ~2pSj�0 FC,11~2pj !!, and through the error process
of the common stochastic trends ~2pb1

2Sj�0~4p
2j 2 !�1FC,22~2pj !!, a surpris-

ing result because for both types of aggregation the process u2~t ! is at least
cumulated once *u2~t � s! ds, a transformation that eliminates the components
FC,22~2pj ! in scheme IV of continuous time aggregation for the errors of the
cointegrating relations+ Thus, the continuous time aggregation fails to explain
the discrete time aggregation results+

Theorem 3+1 has practical implications+ If we consider the common situation
where the practitioner may decide how to aggregate a stock time series, then
we have two different situations depending on whether it is the regressand or
the regressor that is temporally aggregated+ When a practitioner has to aggre-
gate a stock regressand and the regressor is a stock, the best aggregation option
depends on the sign of L~m! � ~m2 � 1!V11+2+ If this magnitude is negative,
the best option, in terms of estimation efficiency, is to use systematic sampling
~aggregation I!, whereas if it is positive, the optimal choice is average sam-
pling ~aggregation III!+ When the regressor is a flow, the best option depends
on L~m!� ~m2 � 1!V11+2, in the sense that when this parameter is positive the
stock regressand should be aggregated by average sampling ~aggregation IV!,
whereas when it is negative the regressand should be aggregated by systematic
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sampling ~aggregation II!+When a practitioner has to aggregate a stock regres-
sor, the best option, in terms of the asymptotic dispersion of the estimator, is
always to apply average sampling to the regressor because aggregations II and
IV are superior in efficiency to aggregations I and III, respectively+ Therefore,
the picture that emerges from the discrete time aggregation analysis is more
complex than the one obtained from the continuous time approach where the
best option seems to be in any situation to apply average sampling+We provide
finite-sample evidence favoring our theoretical findings in Section 4+

In practice, when deciding whether to aggregate the stock regressand by sys-
tematic or average sampling, we need to compare L~m! with ~m2 � 1!V11+2+
However, because the flow variables are observable at a longer sampling inter-
val than the stock variables, it is necessary to get V12V22

�1V21 from the observ-

able V12
~ j0 ,2!V22

~3!�1

V21
~2, j1!+ Then, from the relation

V12V22
�1V21 � �mV12

~0,2!V22
~3!�1

V21
~2,0! if j0 � 0

m�1V12
~0,2!V22

~3!�1

V21
~2,0! if j1 � 0

,

we can estimate V12V22
�1V21 and V11+2 and compare the estimations of L~m!

and ~m2 � 1!V11+2+
To summarize, when a stock regressand must be temporally aggregated

because some of the regressors are not available at the finest sampling interval,
then depending on the magnitudes L~m! and ~m2 � 1!V11+2 systematic or aver-
age sampling are the best aggregation options in terms of the dispersion of the
mixed normal distribution+ When a practitioner has to choose an aggregation
option for the stock regressor, the best choice is always to apply average
sampling+

The main results found for case CI~1,1! can be extended to models with I~2!
variables+ We do not aim to cover all possible situations of cointegration in
models with I~2! variables but to show the robustness of the aggregation theory
for some relevant examples+ First, let us assume the following disaggregated
model:

D2x2, t � u3, t , (12)

Dx1, t � u2, t , (13)

yt � x1, t
' b1 � x2, t

' b2 � u1, t , (14)

where ut � ~u1, t ,u2, t
' ,u3, t

' !' satisfies the assumptions described in Section 2
and the long-run covariances are zero V12 � V13 � V23 � 0+ For this model the
optimal estimator is the OLS estimator+ Theorem 3+2 shows the asymptotic dis-
tribution of the optimal estimator of b1 and b2 for the aggregation schemes
ZT
~0! ~aggregation I!, ZT

~0,1,1! ~aggregation II!, ZT
~1,0,0! ~aggregation III!, and ZT

~1!

~aggregation IV!+
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THEOREM 3+2+ The asymptotic distribution of the optimal regression-type
estimator of b� ~b1

' ,b2
' !' in model (12)–(14) with temporally aggregated time

series is

Diag~n, n2 !~ Zb i � b!n ~V11 � L~m!!102�dW1 B*
' ��B*B*

'��1

,

where JI~m! � ~V11 � L~m!!102, JII~m! � m�1~V11 � L~m!!102, JIII~m! �
mV11

102 , JIV~m! � V11
102 , B* � ~B2

' ,B3
' !', and B3~r! [ *0

r B3~s! ds with r, s �
@0,1# .

Proof+ See the Appendix+

From Theorem 3+2, temporal aggregation has the same effect on the separate
distribution of the estimator of b1 as on the separate distribution of the estima-
tor of b2, and this effect is exactly like that found for case CI~1,1!+

Now consider the estimation of CI~2,1! relations, which we assume are gen-
erated by the following model:

D2x2, t � u3, t , (15)

Dx1, t � Dx2, t
' b3 � u2, t , (16)

where ut � ~u2, t ,u3, t
' !' satisfies the general assumptions for the cointegrated

model with I~2! variables described in Section 2+ In this situation, the optimal
regression-type estimators of b3 are those estimators for the CI~1,1! model with
differenced variables+ The limiting distribution for the different aggregation
schemes is given in the next corollary+

COROLLARY 3+3+ The asymptotic distribution of the optimal regression-
type estimator of b3 in model (15) and (16) with temporally aggregated time
series is

n~ Zb3
i � b3 !n V22+3

102 �dW2 B3
' ��B3 B3

'��1

,

where JI~m! � V22+3
102 , JII~m! � m�1V22+3

102 , JIII~m! � mV22+3
102 , and JIV~m! �

V22+3
102 .

In this case, as a result of the absence of the aliasing effect because the errors
are average and double-average sampled, we find slightly different results+ Now,
for pure aggregation schemes I and IV the limiting distribution remains invari-
ant despite the sampling interval, whereas in the case of mixed sampling the
dispersion is reduced with m for aggregation II, and it increases with m for
aggregation III+

Now, when a practitioner has to aggregate a stock regressand, the best option
is always to apply systematic sampling+ This is slightly different from case
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CI~1,1! where in some situations the best way to aggregate the regressand was
average sampling when the regressor was a flow+When it is the stock regressor
that needs to be aggregated, the practitioner has to apply average sampling in
all cases, in keeping with case CI~1,1!+

The limiting properties of the optimal estimator of b1 are derived under the
assumption that the long-run variance V must be consistently estimated, and
there may be a loss of valuable information when this matrix is estimated with
temporally aggregated time series+ Consequently, the aggregation effects on the
estimation of V may alter the preceding conclusions reached on the best aggre-
gation option for the estimation of long-run relations in finite samples+ How-
ever, the Monte Carlo evidence provided in Section 4 shows that the estimation
of V does not make any significant difference to the order in which the types
of aggregation are ranked+

3.2. Temporally Aggregated Observed Information

When the purpose of the analysis is to test a hypothesis on the cointegrating
vectors, such as the PPP theory or permanent income hypothesis, the aggrega-
tion effect on the marginal distribution of the estimator provides us with half
the story, because for nonstationary cointegrating regressions, the observed infor-
mation Jn~b1! [ �]2 log L~b1!0]b1]b1 where log L~b1! is the log likelihood
function, and not the variance of Zb1 ~V~ Zb1!!, is used as the normalizing matrix
of the x2-distributed Wald test ~see Johansen, 1995!:

W � ~ Zb1 � b1!
'Jn~b1!~ Zb1 � b1!

'+

This situation is different from a stationary regression where V~ Zb1!
�1 � Jn~b1!,

and the marginal distribution of the estimator is sufficient to discuss the aggre-
gation effect+ However, the observed information in a cointegrated model is
different from the inverse of the variance of the estimator, and the aggregation
effect must be considered on both the estimator and the information+ This task
is straightforward when we only consider the asymptotic properties, because
the x2 distribution of the Wald test implies that the aggregation effect on the
observed information should neutralize the aggregation effect on the estima-
tor+ Thus, an increase in the dispersion of the asymptotic distribution of the
estimator due to aggregation should be counterbalanced by a reduction in the
dispersion of the distribution of the information+ For example, for L~m! �
~m2 � 1!V11+2, the asymptotic dispersion of the observed information increases
for cases I and III, whereas it is invariant for cases II and IV+ Therefore, in
asymptotic terms it is not relevant which type of aggregation we select to test
restrictions on b1+

However, this asymptotic result may be different when we consider the more
realistic finite-sample framework+ In such a setting, as shown by Johansen
~2002!, the distribution of the test is slightly different from the x2 distribu-
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tion, depending not only on the number of observations but also on the par-
ameters of the model+ As shown in Section 2, different combinations of
aggregation schemes have different effects on the short-run dynamics, and there-
fore in finite samples one aggregation scheme may be clearly superior to another
for hypothesis testing+ Moreover, the faster convergence of the observed infor-
mation n�2Jn

i~b1! than the estimator n~ Zb1
i � b1! may contribute to the fact

that the aggregation effect on Jn~b1! has a bigger influence on the finite-
sample properties of the test than the aggregation effect on n~ Zb1

i � b1!+ How-
ever, the Monte Carlo experiment in Section 4 shows that, for the selected
model, all the aggregation options have similar effects on the size of the test+

4. MONTE CARLO EXPERIMENT

4.1. Design of the Experiment

In this section we study the finite-sample aggregation effect on the FM-OLS+5

We do so using a very simple data generation process ~DGP! used in many
simulation studies ~see, among others, Gonzalo, 1994!:

Dxt � u2, t ,

yt � xt � u1, t , t � 1, + + + , n,

where u1, t � ru1, t�1 � «1, t , u2, t � «2, t , and

~«1, t ,«2, t !
' ; i+i+d+N��0

0�,� 1 0+5

0+5 1 �� +
The length of the sampling interval was fixed as m � 3+ The relevant mag-

nitudes for the aggregation effect are the aliasing component, L~3!, and the
conditional long-run variance of the cointegrating errors, V11+2+ This very sim-
ple model allows us to control these magnitudes through parameter r+ More
specifically, we consider three sizes for the aliasing effect, so that for r� �0+5
the aliasing component is very big in comparison with 8V11+2 ~L~3!� 4+54 and
8V11+2 � 2+64!; for r� 0 the aliasing component is slightly smaller than 8V11+2

~L~3! � 4 and 8V11+2 � 6!, and for r � 0+5 the aliasing component is much
bigger than 8V11+2 ~L~3! � 2+28 and 8V11+2 � 24!+

The experiment is performed with two spans, n � 120 and n � 360+We only
present the results for the shorter span, n � 120, to compare the different aggre-
gation effects on the estimator and test ~see Table 2! because a comparison of
the aggregation schemes is not ~qualitatively! affected by the size of the span+
As a measure of the aggregation effect on the precision of the estimator, we
provide the ratio of the mean square error ~MSE! of the aggregated estimator
in relation to the disaggregated estimator, denoted M~i! where i � $I, II, III, IV%
is an aggregation scheme+ As a measure of the aggregation effect on the test,
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we compute the variation of the size of the test for H0 : b� 1 based on the 5%
level, denoted S~i! with i � $I, II, III, IV%+ That is, S~i! stands for the differ-
ence between the size of the test in the aggregated models and the size in the
disaggregated model+ Three thousand replications of the experiment are used to
obtain Monte Carlo estimations of the MSE and 10,000 for the size of the test+
We also compare the aggregation effect with the span effect+ To do so, with the
disaggregated model we compute the variation in the MSE ~M~n!! and size ~S~n!!
for a small sample n � 120 and a big sample n � 360+ To avoid the influence of
initial conditions, a constant is estimated together with the cointegrating coef-
ficient and the first 50 observations are discarded+6

4.2. Results

Table 2 shows the variation in the MSE and the size of the test when different
types of aggregation are applied to the DGP described previously for n � 120+
When 8V11+2 � L~3!, the best aggregation scheme, in terms of the precision of
the estimator, is aggregation type II, with a lower MSE than the disaggregated
estimator+ The second best aggregation option is aggregation type IV+With this
data transformation, the MSE hardly varies in comparison with the disaggre-
gated estimator+ Much less precise estimations of the cointegrated vector are
obtained when the regressor is systematically sampled, with aggregation III being
the worst option and there being a tremendous relative increase in the disper-
sion of the estimator+ The performance of the estimator, when both variables
are systematically sampled ~i � I!, is largely dependent on the relative size of
the aliasing component, with the result that when the aliasing component is
smaller than the long-run conditional variance, the precision of the estimator is
closer to the precision of the estimator with aggregation IV+

If we look at the aggregation effect on the test, we find a different story+ In
this case, all the aggregation schemes increase the distortion of the test by
approximately 3 to 5 points+ The main difference, when compared with the aggre-
gation effect on the precision of the estimator, is that now the different types of
aggregation all share a very similar effect+ The few differences that can be

Table 2. Comparison of the different temporal aggregation effects

r M~I! S~I! M~II! S~II! M~III! S~III! M~IV! S~IV!

�0+5 9+8 4+9 1+4 4+9 22+9 4+4 1+1 3+5
0 4+1 4+8 0+6 4+8 14+2 4+9 1+2 4+9
0+5 1+6 4+5 0+2 4+5 11+3 3+1 1+3 4+0

Note: See Table 1 for the definition of the aggregation schemes i � $I, II, III, IV%+ Here n � 120, M~i! stands for
the relative MSE of the aggregated cointegration estimator in relation to the disaggregated one, and S~i! stands
for the variation in the size of the test of the hypothesis H0 : b � 1 in the aggregated and the disaggregated
models+
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observed reveal that the aggregation effect on the test cannot be explained by
the aggregation effect on the estimator+ The most significant example is the
case r� 0+5, where the least distorted test is obtained with aggregation III, the
worst aggregation option in terms of the MSE+ However, we cannot infer from
this that the worst aggregation for estimation purposes is the best one for test-
ing, because if we look at case III for r� �0+5, where there is the biggest loss
in estimator precision ~22+9!, it is not the one with the least size distortion+

It is interesting to compare the aggregation effect with the effect of the span
on the estimator and the test+ In Table 3 we present the variation in the MSE
and size when the sample is reduced from 360 to 120 observations, either by
reducing the span by 3 ~M~n! and S~n!!, or by temporal aggregation ~M~i! and
S~i!, i � $I, II, III, IV%!+ If we examine the effects on the precision of the esti-
mators, the reduction of the span has similar repercussions to the worst aggre-
gation schemes ~I, III!, a situation similar to that one expects to find with a
stationary regression+ However, the reduction of the span clearly has worse con-
sequences than aggregation schemes II and IV, which shows that the aggrega-
tion effect on the estimation of cointegrating regressions is not as important as
the aggregation effect on stationary regressions+

Focusing on the test, reducing the span has a slightly bigger impact on size
than aggregation+ However, once again the few exceptions that can be observed
show how the effects on the test are different than on the estimator+ For exam-
ple, when r � 0, the size distortion of aggregation II is practically the same
~2+2! as the distortion caused by the reduction of the span ~2+1!+ However, for
this case, if we consider the effect on the precision of the estimator, the reduc-
tion of the span affects the quality of the estimation far more than aggregation
with scheme II+

To summarize the Monte Carlo results, different aggregation schemes have
very different effects on the precision of the estimator, thus confirming the
asymptotic theory derived in the paper+ More specifically, when the regressor
is average sampled, the precision is not affected or even improved by temporal
aggregation, whereas when the regressor is systematically sampled the estima-
tor is clearly less precise, especially when the regressand is average sampled+

Table 3. Comparison between the span effect and the temporal aggregation
effect

r M~n! S~n! M~I! S~I! M~II! S~II! M~III! S~III! M~IV! S~IV!

�0+5 9+8 2+3 9+6 1+4 1+2 1+4 21+6 1+3 1+0 0+8
0 9+8 2+1 3+4 1+4 0+6 2+2 15+3 1+5 1+0 1+7
0+5 9+6 2+4 1+5 1+1 0+2 1+5 10+2 1+7 1+1 0+6

Note: See Table 2 for the definition of M~i! and S~i! i � $I, II, III, IV%+ Here n � 360, M~n! stands for the relative
MSE of the cointegration estimator with n � 120 in relation to the estimator for n � 360, and S~n! is the variation
in the size of the test of the hypothesis H0 : b � 1 between n � 120 and n � 360+
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The aggregation effects on the test are very different from the effects on the
estimator+ In this case, there are no significant differences among the different
aggregation options+ Finally, we found that reducing the span has a similar effect
on precision to those aggregation schemes where the regressor is systemati-
cally sampled ~I, III! and a much greater effect than those aggregations where
the regressor is average sampled ~II, IV!+ Also, a reduction in the span has a
slightly greater effect on size than the temporal aggregation of the variables+

5. CONCLUSIONS

We have discussed the effects of different types of discrete time aggregation on
the regression-type optimal inference on cointegrating vectors and have shown
how different types of aggregation have different effects on the limiting prop-
erties and finite-sample properties of optimal estimators but similar effects on
the hypothesis test+ The theoretical aggregation results have potential empirical
implications, because in many situations, a practitioner decides how to tempo-
rally aggregate certain variables before making inferences on the cointegrating
vectors, because stock variables such as exchange rates, interest rates, or the
money supply can be temporally aggregated either by systematic sampling or
by average sampling+ As for the practical implications of our study, if a stock
regressand must be temporally aggregated, because some of the regressors are
not available at the finest sampling interval, then when L~m! � ~m2 � 1!V11+2

the best aggregation scheme is systematic sampling whereas otherwise average
sampling is the best option in terms of estimation precision+ When a practi-
tioner has to choose an aggregation option for the regressor, the best choice is
always to apply average sampling+ These results only partially corroborate those
of Chambers ~2003!, where the main recommendation was always to use aver-
age sampling+ From our conclusions it seems that, as long as the aliasing effect
is not very important, it is a very bad idea to apply average sampling to a regres-
sand when the regressor is a stock, because this combination of aggregations
leads to the highest increase in the noise-to-signal ratio+ These differences are
discussed theoretically and illustrated with a Monte Carlo study where aggre-
gation type II outperforms aggregation type IV for the situation predicted by
the discrete time aggregation theory+

It is a very different story when a practitioner plans to test a long-term theory,
rather than just estimating a long-run relation+ In this case the different aggre-
gation options have a very similar effect on the test, and none of them, what-
ever the situation, leads to a least size-distorted test+

We have also compared the effect of the span with the effect of temporal
aggregation, and the main conclusion is that the span has a greater effect on
inference than temporal aggregation+ To be more precise, the span has a much
greater impact on the estimator than the best aggregation schemes, II and IV,
and a slightly bigger effect on the test than any of the aggregation schemes+
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As a further research issue it would be interesting to analyze which aggrega-
tion option is best suited for other purposes such as prediction, because in this
case the relevant aggregation effects are not those on the cointegrating vector
but on the adjusting vector ~see Johansen, 1994!+

NOTES

1+ The invariance of cointegrating vectors with the sampling interval holds whenever the sea-
sonal unit roots do not alias into the zero frequency ~see Granger and Siklos, 1995!+

Chambers ~2003! shows that when both the regressand and the regressor are temporally aggre-
gated by average sampling there is no loss of asymptotic efficiency for the estimation of the cointe-
grating vectors+

2+ A recently developed approach, the random time aggregation ~see Jordà, 1999!, allows the
dynamics to be generated at random time intervals+

3+ Systematic sampling is typically applied to stock variables such as prices or population, and
average sampling is applied to flow variables such as consumption or income and to stock vari-
ables also+

4+ Further research needs to be done for the case k0 � 1+
5+ We use the FM-OLS routine available at the COINT Gauss library, programmed by Sam

Ouliaris and Peter Phillips+ More specifically, the long-run variance is estimated with the Parzen
spectral window, AR~1! prewhitening, and automatic bandwidth selection+ We also considered the
dynamic ordinary least squares estimator, which led to qualitatively similar results that are not
reported here to save space+

6+ Additionally we considered many other values for the parameters, i+e+, different correlations
between the errors ~d� 0 and d� �0+5 instead of d� 0+5! and different values for the variance of
u2, t ~s

2 � 2!+ However, the aggregation effect does not depend on the value of these parameters,
and therefore we do not present all these results here+ Tables with the additional results are avail-
able upon request+
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APPENDIX: Proofs

Proof of Lemma 2.1.

(a) Temporally Aggregated Triangular Representation. Let us consider the rep-
resentation of the systematically sampled process ZT

~0!+ To apply systematic sampling to
equations ~4!–~6!, we need to express the model in such a way that the variables are
observable every m t-period+ This is the case of all the variables in equation ~6! but not
in ~4! or ~5! because of the presence of differenced ~Dx1, t , Dx2, t ! and double-differenced
variables D2x2, t + Because Dm � Dsm~L!, we multiply both sides of ~5! by the summation
filter and both sides of ~4! by @sm~L!# 2 to get the following representation:

Dm
2 x2, t � @sm~L!#

2u3, t , (A.1)

Dm x1, t � Dm x2, t
' b3 � sm~L!u2, t , (A.2)

yt � x1, t
' b1 � x2, t

' b2 � u1, t + (A.3)
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Now this representation of the disaggregated cointegrated model is observable at the
longer sampling interval mDt, and so we just apply systematic sampling to ~A+1!–~A+3!,
thus obtaining the representation of ZT

~0!:

Dm
2 X2,T

~0! � U3,T
~2! ,

Dm X1,T
~0! � Dm X2,T

~0!'b3 � U2,T
~1! ,

YT
~0!� X1,T

~0!'b1 � X2,T
~0!'b2 � U1,T

~0! ,

where U3,T
~2! � @sm~L!# 2u3,mT , U2,T

~1! � sm~L!u2,mT , and U1,T
~0! � u1,mT +

To obtain the representation of the pure average sampled process ZT
~1! , we just need

to apply the summation polynomial to equations ~A+1!–~A+3! and then apply systematic
sampling+ The aggregated model for mixed sampling is obtained by similar transforma-
tions to the two preceding cases+ Let us focus on equation ~A+3! and consider the cases
ZT
~0,1,0! and ZT

~1,1,0!+ For the first case, we multiply x1, t in ~A+3! by sm~L!�1sm~L!:

yt � sm~L!x1, t
' b1 sm~L!

�1 � x2, t
' b2 � u1, t

and then apply systematic sampling, thereby obtaining

YT
~0!� m�1 X1,T

~1!'b1 � X2,T
~0!'b2 � U1,T

~0! +

For the case ZT
~1,1,0! , we apply the summation polynomial to both sides of ~A+3!:

sm~L!yt � sm~L!x1, t
' b1 � sm~L!x2, t

' b2 � sm~L!u1, t

and then, through sampling, obtain

YT
~1!� X1,T

~1!'b1 � mX2,T
~0!'b2 � U1,T

~1! +

The remaining cases are obtained in a similar way+

(b) Temporally Aggregated Multivariate Invariance Principle. Given the fact
that m is finite, the application of any of the temporal aggregation schemes as a linear
filter does not alter the multivariate invariance principle, but rather the variance of the
Brownian motion, the long-run variance of ut + Consequently, we derive the aggregation
effects on the long-run variance, and for this purpose we determine the effects of the
different aggregation filters on the covariance function+

Let G~k! [ E~ut ut�k
' ! denote the covariance function of the stationary process ut +

The effect of systematic sampling on the covariance function is

G~0! ~k! [ E~UT
~0!UT�k

~0!' !� E~umT umT�mk
' !� E~ut ut�mk

' !� G~mk!+ (A.4)

Any combination of aggregation schemes implies the application of a specific lag poly-
nomial to the covariance function before applying systematic sampling+ Thus, the effect
of the lag operator on the displacement k of the covariance function ~see other examples
from literature on temporal aggregation such as Telser, 1967; Stram and Wei, 1986! is
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E~~L jut !ut�k
' !! � E~ut�j ut�k

' !� E~ut ut�k�j
' !� G~k � j !, (A.5)

E~ut ~L
jut�k
' !! � E~ut ut�k�j

' !� G~k � j !+ (A.6)

From ~A+4!–~A+6! it is straightforward to determine the effect of the different combi-
nations of aggregations on the covariance matrix function+ All possible combinations
are given by

G~0! ~k! � G~mk!; G~0,1! ~k!� (
g�0

m�1

G~mk � g!;

G~0,2! ~k!� (
g�0

m�1

(
h�0

m�1

G~mk � g � h!,

G~0,3! ~k! � (
g�0

m�1

(
h�0

m�1

(
i�0

m�1

G~mk � g � h � i !;

G~1! ~k!� (
g�0

m�1

(
h�0

m�1

G~mk � g � h!,

G~1,2! ~k! � (
g�0

m�1

(
h�0

m�1

(
i�0

m�1

G~mk � g � h � i !;

G~1,3! ~k!� (
g�0

m�1

(
h�0

m�1

(
i�0

m�1

(
j�0

m�1

G~mk � g � h � i � j !,

G~2! ~k! � (
g�0

m�1

(
h�0

m�1

(
i�0

m�1

(
j�0

m�1

G~mk � g � h � i � j !;

G~2,3! ~k!� (
g�0

m�1

(
h�0

m�1

(
i�0

m�1

(
j�0

m�1

(
k�0

m�1

G~mk � g � h � i � j � k!,

G~3! ~k! � (
g�0

m�1

(
h�0

m�1

(
i�0

m�1

(
j�0

m�1

(
k�0

m�1

(
l�0

m�1

G~mk � g � h � i � j � k � l !+

Thus, the temporally aggregated long-run variances are obtained from the definition of
long-run variance:

V~l, j ! � (
i��`

`

G~l, j ! ~k!

in such a way that, with the exception of V~0! , they are

V~l, j ! � ml�j�1V+

For the systematically sampled long-run variance V~0!, we use the result reached by Niemi
~1984!, who obtains F ~0!~v!, the spectrum of a systematically sampled process, and the
fact that V~0! � 2pF ~0!~0!, getting

V~0! � m�1~V� 2pSj�1
m�1 F~2pj0m!!+ �
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Proof of Theorem 3.1. To obtain the asymptotic distribution of the different combi-
nations of aggregations, we replace the expressions for the temporally aggregated long-
run variances presented in Lemma 2+1 in the formulation of the mixed normal distribution
of Theorem 1 of Phillips ~1991b, p+ 299!, so that, after some manipulation of the sam-
pling interval, we get

n

m
~ Zb1

I � b1!n m�1~V11+2 � L~m!!102�dW1 B2
' ��B2 B2

'��1

,

n

m
~ Zb1

II � b1!n m�2~V11+2 � L~m!!102�dW1 B2
' ��B2 B2

'��1

,

n

m
~ Zb1

III � b1!n V11+2
102 �dW1 B2

' ��B2 B2
'��1

,

n

m
~ Zb1

IV � b1!n m�1V11+2
102 �dW1 B2

' ��B2 B2
'��1

+

These expressions cannot be compared with the disaggregated mixed normal distribu-
tion because they are normalized by a different sample size+ So, to get comparable dis-
tributions, we must obtain the expression for the distribution where the span normalizes
the estimator bias:

n~ Zb1
I � b1!n ~V11+2 � L~m!!102�dW1 B2

' ��B2 B2
'��1

,

n~ Zb1
II � b1!n m�1~V11+2 � L~m!!102�dW1 B2

' ��B2 B2
'��1

,

n~ Zb1
III � b1!n mV11+2

102 �dW1 B2
' ��B2 B2

'��1

,

n~ Zb1
IV � b1!n V11+2

102 �dW1 B2
' ��B2 B2

'��1

+ �

Proof of Theorem 3.2. The proof of this theorem is very similar to the preceding
one, and therefore we have not presented the details+ It is only necessary to replace the
expressions for the different long-run variances cited in Lemma 2+2 in Haldrup’s Theo-
rem 2 ~Haldrup, 1994, p+ 163!+ �
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