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Submesoscale surface fronts and filaments:
secondary circulation, buoyancy flux,

and frontogenesis
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Problems are posed and solved for upper-ocean submesoscale density fronts and
filaments in the presence of surface wind stress and the associated boundary-layer
turbulent mixing, their associated geostrophic and secondary circulations and
their instantaneous buoyancy fluxes and frontogenetic evolutionary tendencies
in both velocity and buoyancy gradients. The analysis is diagnostic rather than
prognostic, and it is based on a momentum-balanced approximation that assumes
the ageostrophic acceleration is negligible, although the Rossby number is finite and
ageostrophic advection is included, justified by the quasi-steady, coherent-structure
flow configurations of fronts and filaments. Across a wide range of wind and
buoyancy-gradient parameters, the ageostrophic secondary circulation for a front is
a single overturning cell with downwelling on the dense side, hence with a positive
(restratifying) vertical buoyancy flux. For a dense filament the circulation is a double
cell with central downwelling and again positive vertical buoyancy flux. The primary
explanation for these secondary-circulation cells is a ‘turbulent thermal wind’ linear
momentum balance. These circulation patterns, and their associated frontogenetic
tendencies in both the velocity and buoyancy gradients, are qualitatively similar to
those due to the ‘classical’ mechanism of strain-induced frontogenesis. For linear
solutions, the secondary circulation and frontogenesis are essentially independent
of wind direction, but in nonlinear solutions ageostrophic advection provides a
strong intensification of the peak vertical velocity, while generally preserving the
ageostrophic circulation pattern, when the Rossby number is order one and the wind
orientation relative to the frontal axis is favourable. At large Rossby number the
solution procedure fails to converge, with an implication of a failure of existence of
wholly balanced circulations.

Key words: ocean processes, rotating flows, stratified flows

1. Introduction
In observations and numerical simulations, the strongest submesoscale currents in

the upper ocean are often horizontal jets, fronts, filaments and vortices (McWilliams
2016). These currents are approximately in geostrophic, hydrostatic balance with the
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392 J. C. McWilliams

sea level, pressure and buoyancy fields. All of these flow configurations are ‘coherent
structures’ that are in dynamically preferred states – i.e. attractors with respect to the
nonlinear advective dynamics – with a relatively slow evolution rate t−1

cs compared
to a canonical turbulent decorrelation eddy-turnover rate for a more disordered flow
configuration with comparable scales, i.e. t−1

eddy = Vg/`, where ` is the cross-flow
horizontal length scale and Vg is the geostrophic velocity. For example, in a vortex
` is the radial scale and Vg is the azimuthal velocity, and in a front or filament `
is the cross-axis scale and Vg is the along-axis velocity. At the submesoscale, the
Rossby number (Ro= Vg/f `, where f is the local Coriolis frequency) is usually not
small, but neither is it so large as to make rotational effects unimportant.

Associated with the geostrophic currents are surface boundary-layer turbulence
and other ageostrophic secondary circulations. Often the horizontal buoyancy and
velocity gradients sharpen in frontogenesis. Here the analysis perspective is that these
nearly geostrophic currents and their evolution are governed by a complete circulation
dynamics (e.g. in a general circulation model) that is simply accepted as having acted
to generate the coherent structures, but it is useful to be able to diagnose and interpret
the associated vertical velocity w (the secondary circulation in the plane perpendicular
to the primary geostrophic flow), the advective buoyancy flux and the frontogenetic
tendency through simplified diagnostic equations. This instantaneous diagnostic
approach is abbreviated as SCFT (secondary circulation and frontogenetic tendency).

As the SCFT theoretical framework in this paper, a momentum-balance approxi-
mation is made based on the neglect of ageostrophic acceleration. The phenomenol-
ogical targets here are submesoscale buoyancy fronts and filaments that lie substantially
within the surface boundary layer. A further approximation is made of along-front
symmetry (e.g. b(x, z), where b=−gρ/ρ0 is the buoyancy, g is gravity, ρ is density, x
is the cross-axis coordinate and z is the vertical coordinate). These two approximations
preclude frontal instabilities and unbalanced dynamics (e.g. gravity waves and forward
energy cascade) that can become important in more complete solutions.

The starting dynamical framework is the so-called turbulent thermal wind (TTW)
balance, which is a quasi-steady horizontal momentum balance that combines Coriolis,
pressure gradient and vertical momentum mixing forces; alternatively expressed, it is
a synthesis of geostrophic, hydrostatic and Ekman-layer dynamics. The basic idea of a
secondary circulation associated with mixing in the presence of geostrophic circulation
has numerous precursors to the TTW model as formulated here (e.g. Garrett &
Loder 1981; Flierl & Mied 1985; Thompson 2000; Mahadevan & Tandon 2006;
Nagai, Tandon & Rudnick 2006; Cronin & Kessler 2009; Ponte et al. 2013; Gula,
Molemaker & McWilliams 2014; McWilliams et al. 2015; Wenegrat & McPhadden
2016a,b).

Going beyond the basic TTW balance, the influences of density stratification
and advective nonlinearity are examined in the SCFT framework. The balanced
diagnostic framework is specified for general three-dimensional (3-D) buoyancy b
and boundary-layer mixing fields in §§ 2 and 3 the framework is specialized to 2-D
configurations for upper-ocean fronts and filaments, which are the particular SCFT
problems solved in this paper. Linear TTW SCFT solutions are analysed in § 4 and for
comparison comparable solutions are presented in § 5 for the more familiar situation
of strain-induced frontogenesis (Hoskins 1982). Nonlinear TTW SCFT solutions with
ageostrophic advection are in § 6 and the conclusions are in § 7.

2. Dynamical model
The dynamical starting point is the hydrostatic, incompressible primitive equations

(PE) with parameterized surface boundary-layer mixing using the K-profile
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Submesoscale surface fronts and filaments 393

parameterization (KPP; Large, McWilliams & Doney 1994; McWilliams, Huckle
& Shchepetkin 2009a). To allow SCFT comparisons with other effects, an externally
imposed barotropic deformation flow aligned with the along-front axis of the
geostrophic flow is included. The SCFT model could readily be extended to include
the Coriolis frequency gradient β, Wave-averaged Effects of surface gravity waves on
the Currents (WEC; Craik & Leibovich 1976; McWilliams, Restrepo & Lane 2004),
air–sea coupling expressed through surface wind stress feedbacks and parameterized
3-D frontal instabilities expressed through horizontal eddy diffusion or eddy-induced
advection; these generalizations will not be pursued here. Deformation flow is
the classical explanation of frontogenesis in the atmospheric literature (Bergeron
1928; Hoskins 1982), and it also is relevant to oceanic surface fronts and filaments
(McWilliams, Colas & Molemaker 2009; McWilliams, Molemaker & Olafsdottir
2009b). Assume that this deformation axis is in the ŷ direction, so that the aligned
deformation flow is confluent along this axis, viz.

ud =−∂yψd =−αx, vd = ∂xψd = αy, ψd = αxy, α > 0. (2.1a−c)

This flow has no horizontal divergence, vertical vorticity or vertical velocity. Its
spatially uniform horizontal strain rate is 2α. The governing equations are written in
deformation coordinates defined by

X = xeβ̃, Y = ye−β̃, Z = z, T = t, (2.2a−d)

where β̃(t)=
∫ t

0 α(t
′) dt′. The transformed coordinates provide a cogent reference frame

for deformation-induced frontogenetic evolution (McWilliams et al. 2009b). Here, the
diagnostic relations will be evaluated instantaneously at t= 0 when the ∇ and D/Dt
derivatives can be expressed equivalently in either coordinate system (because β̃ =
0); hence, the SCFT relations will be expressed with the usual Cartesian notation.
Care must be taken with diagnostic relations in the transformed coordinates, and the
necessary supporting results are derived in appendix B.

A background resting, stratified state in buoyancy and hydrostatic pressure is
indicated by an overbar, which in the problems addressed below can be identified
both with a horizontal domain average with the absence of a submesoscale structure
in b. Thus, ∂zφ = b, where φ = p/ρ0 is the normalized pressure. The buoyancy and
pressure anomalies are indicated by primes, so the total buoyancy field is

b= b+ b′. (2.3)

The mean stratification frequency is defined by N2(z) = ∂zb. There is no current
associated with this background state.

The analysis perspective is that the coherent flow structures are identified primarily
in the buoyancy field b together with the associated hydrostatic dynamic pressure, φ=
p/ρ0, and sea level anomaly η. For idealized flows b will be specified analytically, and
from numerical simulations or measurements b will be educed with whatever filtering
is needed to remove high-frequency fluctuations such as internal gravity waves. The
dynamical maintenance of ud and b is not addressed in this analysis; they merely are
assumed as existing and unchanging on the space and time scales relevant to the local
flow structures of interest.

For a local buoyancy anomaly b′, the associated geostrophic horizontal flow for
constant Coriolis frequency f0 is

ug =−
1
f0
∂yφ
′
=−∂yψg, vg =

1
f0
∂xφ
′
= ∂xψg, (2.4a,b)
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394 J. C. McWilliams

and φ′ is the hydrostatic companion of b′, viz.

∂zφ
′
= b′, (2.5)

with φ′(0) ≈ gη at the mean level of the upper surface, z = 0, and η the surface
elevation anomaly. The geostrophic streamfunction is ψg = φ

′/f0, which also implies
that b′ = f0∂zψg.

The 3-D PE system for the local flow anomaly, u3 = (u, w), relative to ud is the
following:

D[u] − f (y)v =−∂xφ
′
+ αu+ ∂z[νv∂zu],

D[v] + f (y)u=−∂yφ
′
− αv + ∂z[νv∂zv],

∂zφ
′
= b′,

D[b′] +N2w= ∂z[κv∂zb]′,
∇ · u+ ∂zw= 0.

 (2.6)

Vectors in bold face are 2-D horizontal except when denoted by a subscript 3 for three
dimensions. In a β-plane approximation, f (y)= f0 + βy. The total horizontal velocity
is

u= ug + ua, (2.7)
where the subscript a denotes the ageostrophic component. The substantial derivative
is

D= ∂T + ueβ̃∂X + ve−β̃∂Y +w∂z; (2.8)

as noted above, it is equivalent to the usual Cartesian expression when t= 0 and β̃= 0.
The boundary-layer turbulent vertical mixing coefficients νv and κv have a specified
spatial distribution (e.g. from the KPP scheme).

The surface boundary conditions at z= 0 are

w(0)= 0, νv∂zu(0)= τ/ρ0, [κv∂zb]′(0)=B′. (2.9a−c)

A rigid-lid condition is assumed for the diagnosis because the surface w is expected to
be small compared to interior w for the submesoscale structures that will be analysed.
A further diagnosis of the associated sea level anomaly, η′ = φ′(0)/g, can be made,
and in a time sequence a diagnosis of the associated surface vertical velocity, w(0)=
Dη′/Dt, can be made post hoc. Neglecting the contribution of the surface current,

τ ≈ ρaCD|Uatm|Uatm (2.10)

is the surface wind stress, where Uatm is the near-surface horizontal wind velocity,
ρa is atmospheric surface density and CD is the drag coefficient. The surface
buoyancy flux anomaly is B′ (note it is not related to maintenance of the background
stratification b(z)). In this paper the focus is on local, upper-oceanic density anomalies
and their geostrophic flows that are assumed to vanish in the far field – both in the
cross-flow direction (i.e. as |x|→∞) and with depth (i.e. as z→−∞ or at z=−H)
– and to be periodic or invariant in the along-flow direction ŷ.

This equation set (2.6) and its boundary conditions are commonly the basis for
oceanic circulation numerical models. Their general solutions can exhibit great
complexity. The SCFT focus will be on particular coherent flow configurations with
weak or simple geostrophic advective tendencies because of an aligned or nearly
aligned density gradient and geostrophic velocity configuration; e.g. the primary
examples below are 2-D fronts or filaments with no geostrophic advective tendency.
With a momentum-balanced dynamical approximation for the fluctuations around
these basic configurations, diagnostic relations are developed in §§ 2.1–2.2 for the
ageostrophic secondary circulation and frontogenetic tendencies (SCFT).
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Submesoscale surface fronts and filaments 395

2.1. Balanced secondary circulation
To set-up the diagnostic balanced model for ua3 = (ua, w) given (b, ug, τ , B′, νv, κv),
the PE system (2.6) is approximated by neglecting ageostrophic acceleration ∂tua in
the momentum equations. Many previous proposals for momentum-balanced models
have been made (e.g. McWilliams 2003) that suppress inertia–gravity wave behaviour
and that have useful higher-order accuracy in Ro compared to the leading-order
asymptotic model, quasigeostrophy. Often the alternatives do not give greatly different
solutions. In particular, different approximations have been made about which
ageostrophic advective terms to include beyond the leading-order geostrophic ones.
The approach taken here is the maximalistic approximation of including complete
advection in buoyancy and momentum within the hydrostatic constraint. Another
distinction is whether the neglected acceleration is ageostrophic (∂tua), as here, or
horizontally divergent (∂tuχ , where uχ = ∇χ ); because vertical momentum mixing
mixes rotational and divergent components of u, the former choice is what allows
the SCFT model here to be wholly diagnostic. A further simplifying approximation,
suitable for submesoscale structures, is an f -plane approximation; i.e. β = 0. This
simplification is not essential for the resulting structure of the diagnostic model.

With the replacement of the pressure gradient force by integration of the hydrostatic
balance for b′, the SCFT balanced model is

Dg[ug] − f0(vg + va)+ ∂x

∫ z

b′ dz− ∂z[νv∂zu] =Ru,

Dg[vg] + f0(ug + ua)+ ∂y

∫ z

b′ dz− ∂z[νv∂zv] =Rv,

Dg[b′] +N2w=Rb,

∇ · ua + ∂zw= 0.


(2.11)

The geostrophic substantial derivative is Dg = ∂t + J[ψg, ], with J the horizontal
Jacobian operator, J[p, q] = ∂xp∂yq − ∂yp∂xq. The left-hand-side terms in (2.11) are
those retained in a quasigeostrophic plus Ekman-layer approximation (with vanishing
∇φ′ at depth), and the right-hand side R terms collect the residuals of the terms in
(2.6) not otherwise written explicitly here; they are defined by

Ru
=N u

+ αu, Rv
=N v

− αv, Rb
= ∂z[κv∂zb]′ +N b, (2.12a−c)

with the ageostrophic advective nonlinear terms N defined by

N u
=−(ua3 · ∇3)u− (ug · ∇)ua, N b

=−(ua3 · ∇3)b′. (2.13a,b)

As with (2.6) this system is to be understood as written in deformation coordinates
(2.2) but evaluated at t= 0 where the metric factors exp[±β̃] in the spatial derivatives
are equal to one; this has consequences for further derived relations below.

This balanced dynamical system can, in a familiar way, be separated into an
independent prognostic equation for the evolution of its geostrophic streamfunction
ψg – a generalization of the quasigeostrophic potential vorticity equation with
additional right-hand side forcing terms, designated as the balanced potential vorticity
equation (BVPE) – and an independent diagnostic equation for its ageostrophic
velocity or secondary circulation – the Omega equation ΩE. These two equations,
respectively, are defined by the operations BPVE = curlz [horizontal momentum
equations] + f0∂zN−2 [buoyancy equation] and ΩE= f0∂z curlz [horizontal momentum
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396 J. C. McWilliams

equations] −∇2 [buoyancy equation]. The formulas for BPVE and ΩE are given in
appendix A for completeness. The ΩE operations lead to the cancellation in the ∂tug

and ∂tb′ terms from (2.11), showing that ΩE is the consistency condition that assures
the equivalence of the ψg and b′ tendencies in the balanced model. It also may be
used as a substitute for the buoyancy equation in (2.11) in comprising a complete
dynamical system for determining u3 from b.

The ΩE is central to the SCFT diagnostic approach taken here. However, because
of the vertical mixing and ageostrophic advection, this leads here to a generalized
3-D nonlinear Sawyer–Eliassen equation (Eliassen 1962) for (ua, w) that is fourth
order in ∂z and second order in ∇ with spatially varying coefficients; this can be a
difficult operator to invert. A diagnostic Sawyer–Eliassen equation for the secondary
circulation in a front or parallel flow or vortex has a long history, in particular in
situations of quasigeostrophic or geostrophic momentum balance approximations with
specified right-hand side forcings from the geostrophic flow, diabatic heating or eddy
momentum flux (e.g. Hoskins & Bretherton 1972).

The present generalization to fully 3-D flows with vertical mixing and nonlinear
functional dependency on the ageostrophic flow leads to the alternative SCFT
formulation solved here. Because the generalized ΩE is difficult to solve directly, an
iterative approach is taken. Furthermore the balanced system (2.11)–(2.13) is split into
two subsystems that are each readily solvable at each iteration step. The associated
ageostrophic velocity decomposition is designated by

ua = uT + uO, w=wT +wO, (2.14a,b)

with the subscript T denoting the TTW component and O the ΩE component.
The balanced dynamical system is a generalization of conservative geostrophic,

hydrostatic dynamics with higher-order validity in Ro and parameterized turbulent
vertical mixing. An iterative approach to solving its equations, starting with a
geostrophic first evaluation, is likely to succeed if the converged answer is similar
in some sense to this first approximation even when Ro is not small (except where
balanced solutions do not exist, as can be expected for large Ro; see the discussion
at the end of § 2). For upper-ocean submesoscale flow structures that partly occupy
the turbulent surface boundary layer, the starting dynamical approximation in the
iteration needs to be generalized to include vertical momentum mixing (i.e. TTW).
This is the rationale for organizing the iterative solution procedure for (2.11)–(2.13)
into the two subsystems defined below by utilizing the flow decomposition (2.14).
This partitioned subsystems approach to solving (2.11)–(2.13) is not a unique choice,
and other approaches may also be efficacious.

The first subsystem is designated TTW. It is based on the TTW approximation to
the left-hand side of the horizontal momentum equation in (2.11). After subrtacting out
geostrophic balance, the TTW subsystem solves the following equations for (uT,wT):

−∂z[νv∂zuT] − f0vT = ∂z[νv∂zug] + Ru
T,

−∂z[νv∂zvT] + f0uT = ∂z[νv∂zvg] + RvT,
∇ · uT + ∂zwT = 0,

wT = 0 and νv∂zuT =
1
ρ0

τ − νv∂zug +QT at z= 0,

∂zwT and uT→ 0 as z→−∞.


(2.15)
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This is solved in an iterative sequence, n= 1, 2, . . . , for (uT,wT)
n+1, where the right-

hand side terms are evaluated with total (u,w)n and starting fields of (u,w)0= (ug, 0);
their definitions are

Ru
T = ∂z[νv∂zuO] + ∂xµg +N u

T + αu,
Rv

T = ∂z[νv∂zvO] + ∂yµg +N v
T − αv,

QT =−νv∂zuO(0).

 (2.16)

The field µg is the velocity potential for the divergent component of the geostrophic
momentum advection in (2.11); it and the ageostrophic advection term N u

T are defined
in (2.18) and (2.19).

The TTW subsystem (2.15)–(2.16) does not contain all the terms in the horizontal
momentum equations in (2.11); in particular, it lacks the geostrophic tendency terms
∂t∇ψ , and it may be incomplete in its advection terms; this incompleteness will be
corrected in the ΩE subsystem (2.20)–(2.21) below.

With Ru
T = QT = 0, (2.15) is exactly the simple turbulent thermal wind balance

discussed in § 1, and the vertically interiorward values of wT can be identified with
Ekman pumping. The technical advantage of this TTW subsystem is that it fully
contains all the vertical momentum mixing terms and thus allows the associated
ΩE subsystem (2.20) to be posed as a second-order 3-D elliptic partial differential
equation (PDE) problem. The TTW subsystem can be solved as a 1-D linear problem
for uT independently at each (x, y), analogous to solving the Ekman-layer problem
with variable νv(z) and specified right-hand side forces. Then wT is solved from the
resulting 3-D uT field by a simple vertical integration downward from the boundary
condition at z= 0.

For the system (2.11), there is a constraint on the partition of various terms
in the horizontal momentum equations between the TTW and ΩE subsystems. It
arises from the fact that TTW solves the horizontal momentum equations, but ΩE
only includes information about their curl, hence not about their divergence. In the
particular partition defined here this constraint is only relevant for the advection terms.
Consider a Helmholtz decomposition of the horizontal vector N u into its rotational
and divergent components,

N u
=N u

div +N u
rot =∇µ+ ẑ×∇λ,

∇
2µ=∇ ·N u, ∇2λ= curlz

[N u
].

}
(2.17)

All of µ must stay in the right-hand side of TTW as µT with µO = 0, while λ can
either partly stay as λT or be assigned to ΩE as λO, as long as λ= λT + λO. (Because
∇

2λg enters explicitly into ΩE, λg itself does not need to be solved for.) For the
SCFT applications in this paper, the choice is made separately (i) for the geostrophic
advection,

∇
2µg = 2J[∂xψg, ∂yψg], ∇

2λg =−J[ψg,∇
2ψg], (2.18a,b)

which are assigned to TTW and ΩE, respectively, so that they occupy their usual
positions in quasigeostrophic theory, and (ii) for the ageostrophic advection, which is
wholly assigned to µT and λT ; i.e. µO = λO = 0, and

N u
T =N u, (2.19)

where the right-hand side is specified in (2.13). For SCFT problems with additional
dynamical effects represented in Ru, a similar constraint must be respected. For 2-D
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fronts and filaments, the geostrophic momentum advection is zero, µg = λg =N u
O = 0

(§ 3).
The ΩE subsystem is derived by the previously indicated operation on (2.11),

whose result is in appendix A, and by subtracting the terms already contained within
the TTW subsystem. It solves the following equations for (uO, wO)

n+1 after the
solution of the TTW subsystem at n+ 1:

[ f 2
0 ∂

2
z +N2(z)∇2

]wO =−2f0∇ · J[∇ψg, ∂zψg] −N2(z)∇2wT,

+α(∂xxb′ − ∂yyb′)+NΩ
O +∇

2∂z[κv∂zb]′,
∇ · uO + ∂zwO = 0,
wO = 0 at z= 0,

wO→−wT as z→−∞ or at z=−H,
wO→ 0 in horizontal far field or is periodic,


(2.20)

where

N u
O = ẑ×∇λg,

N b
O =−(ua3 · ∇3)b′,

NΩ
O =−f0∂z curlz

[N u
O] + ∇

2N b
O.

 (2.21)

The right-hand side terms are evaluated using (uT, wT)
n+1 and (uO, wO)

n. The
geostrophic acceleration from momentum has been cancelled by the buoyancy
tendency, the geostrophic momentum advection has been combined with the
geostrophic buoyancy advection to form the first right-hand side term and the term
f 2
0 ∂

2
z wT has been cancelled as part of the subtracted TTW subsystem balance. The

derivation of the right-hand side α term is in appendix B. This subsystem is a 3-D
linear, second-order elliptic problem for wO with independent 2-D Poisson equation
problems for uO = ∇χO and ∇2χO = −∂zwO at each z. The left-hand side operator
inversion will be well behaved as long as N2 > 0. With NΩ

= 0, it is equivalent to
the quasigeostrophic ΩE; however, notice that even in this simple quasigeostrophic
case wO imposes a correction on wT that expresses the suppressive effect on vertical
motion of the stable stratification N2 in the oceanic interior. By comparison with
(A 3)–(A 4), the composition of (2.20)–(2.21) can be recognized after the subtraction
of the TTW subsystem balances.

A flow chart of the solution procedure is thus the following: given b, (νv, κv),
and (τ , B), ug is obtained from (2.4), then in an iterative sequence, (ua, w) are
obtained from the TTW subsystem for (uT, wT) and the ΩE subsystem for (uO, wO).
With a convergence of the iteration sequences, this yields a complete solution of the
balanced system (2.11). The experience in obtaining the SCFT solutions in this paper
is that convergence is readily achieved in most situations, barring excessively large
Rog values; near the convergence limit small values of γ in (2.24) can be helpful.

The general R formulations in (2.12)–(2.13), (2.16) and (2.21) are seemingly
complicated, but the explanatory utility of a SCFT analysis will be greatest in
particular idealized situations where the R forms are simpler (e.g. for 2-D b(x, z)
in § 3). As with most balanced models, there is no guarantee of solution existence
for finite Ro; in particular, when the geostrophic advective tendencies are zero for a
coherent structure, finite Ro is a measure of the magnitude of ageostrophic advection
(§ 6).

In more general evolutionary dynamics, e.g. the full PE (2.6), a failure of
balance would manifest itself with an outbreak of faster oscillations and/or smaller
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spatial scales. Non-existence of a balanced solution would be manifested here as
non-convergence of the TTW + ΩE iteration cycle, although non-convergence does
not necessarily imply non-existence. In this paper the limits of convergence will be
approached but not probed assiduously. In some approximate balanced models, the
solvability conditions can be identified analytically (e.g. McWilliams et al. 1998),
but that is not readily accomplished in the present situation with vertical mixing.
Furthermore, experience with circulation models (e.g. Gula et al. 2014; Sullivan &
McWilliams 2016; Suzuki et al. 2016) indicates that often, even at quite large Ro,
the simulated secondary circulations and frontogenesis in fronts and filaments are
qualitatively similar to the solutions shown below, suggesting that their dynamics can
remain close to, even if not exactly, balanced. The present paper provides an analytic
basis for the balanced SCFT when Ro∼ 1, but as yet there is no such basis for the
phenomenologically similar behaviours at Ro� 1.

Finally, it should be understood that these diagnostic solutions for u3, given b,
are not steady in time. Rather, they have nonzero time derivatives that have been
minimized by the selection of appropriate ‘coherent-structure’ spatial configurations
for b and by the balance approximations in the TTW + ΩE system that both preclude
inertia–gravity wave dynamics and incorporate much of the advective tendency in
cancellation with other tendency terms. (In a weather forecasting context this would
be called an initialization procedure.) Given the SCFT solution, the tendencies for ug
and b can be evaluated in (A 1) and (2.11), as can the frontogenetic tendencies in
§ 2.2.

2.2. Frontogenetic tendency
A complementary diagnostic perspective comes from evaluating the buoyancy gradient
tendency associated with the diagnosed secondary circulation. The frontogenetic
tendency equation is formed by taking the horizontal derivative of the buoyancy
equation in (2.6) and then taking its dot product with ∇b′. Again, the derivation
is made in the deformation-following transformed coordinates, and the result is
expressed in Cartesian coordinates (appendix B):

D[ 12(∇b′)2] = −f 2
∇∂zψg · J[∇ψg, ∂zψg] −N2

∇w · ∇b′ − [∇b′ · ∇](ua3) · ∇3b

+α((∂xb′)2 − (∂yb′)2)+ [∇b′ · ∇]∂z(κv∂zb)

= T b
= T b

g + T b
adv + T b

α + T b
κv
. (2.22)

These tendency terms, respectively, are the geostrophic self-straining T b
g , two

ageostrophic horizontal strain terms associated with buoyancy advection combined
in T b

adv, external straining deformation T b
α , and boundary-layer vertical buoyancy

mixing T b
κv

. The final line indicates the notation for each of these right-hand side
terms. All of them are known from the geostrophic flow and the secondary-circulation
solution of the TTW+ΩE system in the preceding section. The interpretation is that
the right-hand side terms indicate the rate of change in (∇b)2/2 in a Lagrangian
reference frame. They have no time derivatives; i.e. their evaluation is diagnostic.
Positive right-hand side terms in (2.22) indicate a frontogenetic tendency.

In McWilliams et al. (2009b), the frontogenetic tendency effects were diagnostically
evaluated in Cartesian coordinates without explicitly implicating the external strain
α frontogenesis effect. The results there are not wrong, but this neglect of showing
the dominant frontogenetic tendency effect explicitly is regrettable in retrospect. The
derivation of this α term is in appendix B.
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An analogous diagnostic equation can be derived for the tendency in horizontal
shear variance, (∇u)2. In some cases (e.g. a dense filament; McWilliams et al. 2015),
this perspective is more informative about the subsequent frontogenetic evolution than
is the buoyancy tendency (2.22). By operating on the horizontal momentum equation
j in (2.6) with (∂iu j)∂i, the following frontogenetic tendency relation is obtained:

D[ 12(∂iu j)(∂iu j)] = −(∂iu j)(∂i∂jφ
′)− (∂iu j)(∂iuk)(∂ku j)

− (∂iu j)(∂iw)(∂zu j)+ 2α((∂xu)2 − (∂yv)
2)

+ (∂iu j)∂i∂z[νv∂zu j
]

= T u
= T u

φ + T u
adv + T u

α + T u
νv
. (2.23)

A horizontal index notation (i, j, k= 1, 2) is used with repetition implying summation.
The notation ∂i is a shorthand for the partial derivative with respect to xi, and uk is the
kth component of u. The tendency terms are due to, respectively, pressure gradient,
horizontal and vertical advection, external deformation, and boundary-layer vertical
momentum mixing. The derivation of T u

α is in appendix B. No approximation to (2.6)
is made here other than β = 0; i.e. the left-hand side of (2.23) formally includes the
total acceleration. Even in 3-D flows, there is no contribution to T u

adv and T u
φ from

wholly ug terms.

2.3. Numerical methods
A numerical solution method is developed to solve the TTW + ΩE subsystems
iteratively (§ 2.1) and then to evaluate the diagnostic frontogenetic tendencies (§ 2.2)
and buoyancy fluxes (§ 3). It is based on a uniform spatial grid in x and y and a
stretched, staggered grid in z, with (u, v, b) at cell centres and (w, N2) at cell edges
and finer resolution near the surface. The differential operators are discretized with
second-order accuracy. The elliptic operators are solved by matrix inversion. Iteration
convergence is accelerated by relaxation, e.g.

γwn+1
+ (1− γ )wn

−→ wn+1 (2.24)

for γ 6 1, after each solution cycle in the TTW and ΩE subsystems.
The fields b(x3), νv(x3) and κv(x3) are specified analytically and particular numerical

parameters are listed in § 3.2.

3. Two-dimensional fronts and filaments with surface wind stress
The particular idealized situations of interest here are submesoscale fronts and

filaments in the upper ocean that are uniform in y. Surface wind stress is included,
hence there is a vertical mixing in the turbulent boundary layer above z=−h(x).

3.1. Two-dimensional SCFT equations
For this problem the TTW +ΩE system (2.15)–(2.21) in § 2.1 is greatly simplified.
The along-axis derivative is zero, ∂y = 0. The only geostrophic flow is vg = ∂xψg and
the vertical vorticity is ζ = ∂xvT . There is no geostrophic advection; thus, µg = λg =

J[ψg,b′]=0. Ageostrophic advection is only in the cross-axis plane: D= ∂t+u∂x+w∂z.
With these simplifications the 2-D forms of the TTW, ΩE, T b and T u equations are
listed in appendix C.

Because the frontal spatial scale is small, the wind stress τ is assumed to be
spatially uniform. The focus is on the interplay among wind stress, the boundary-layer
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vertical mixing, and the submesoscale structure in b(x, z). Thus, any consideration
of surface buoyancy flux forcing effects is deferred: B′ is set to zero, and κv(x, z)≈
νv(x, z), as in the KPP scheme. However, oceanic circulation models (Gula et al.
2014) and large eddy simulations with resolved boundary-layer turbulence (Sullivan
& McWilliams 2016) show similar SCFT behaviours with convective B′ for the
essential reason that the turbulence, no matter how it is generated, causes vertical
momentum mixing which in turn causes a frontogenetic secondary circulation for a
front or filament. Nagai et al. (2006) analyses frontal secondary circulations when
κv 6= νv.

The bottom of the domain is at z=−H, which is much deeper than the boundary-
layer depth at z=−h(x).

3.2. Analytic formulas for b′, νv and κv
The buoyancy field for a straight (2-D), upper-ocean front or filament is idealized as

b(x, z) = b0 +N2
b(z+H)

+
N2

0

2
[(1+ Γ )z− (1− Γ )(h(x)+ λ−1 log cosh[λ(z− η+ h(x))])]. (3.1)

The square of the buoyancy frequency for the interior stratification is N2
0 , and

N2
0 is a weak background minimum stratification (0 < N2

b � N2
0 ) that assures that

∂zb is positive everywhere. The fractional reduction of the surface boundary-layer
stratification (relative to the interior N2

0 ) is Γ (i.e. 0 6 Γ � 1). The vertical scale of
the transition between these two regimes λ−1 occurs around the base of the boundary
layer at z = −h(x). The upper free surface is at z = η(x), with η� h. The surface
elevation is evaluated by vertical integration of hydrostatic balance, ∂zφ = b, upward
from z = −H where ∂xφ

′
= ∂xb′ = 0 to reach the surface boundary condition of

a constant (atmospheric) value of φ at z = η(x); equivalently, φ′(x, 0) ≈ gη(x) by
linearizing this surface pressure condition about z= 0.

The distinction between a front or filament is determined by the choice of h(x),
i.e. a step in the former case and a localized extremum in the latter. For a front the
choice is

hfr(x)= h0 −
δh
2

erf
[x
`

]
, (3.2)

with x= 0 the centre of the front, ` the half-width, h0 the central depth and δh the
depth change across the front. For δh> 0, the deep side of the frontal mixed layer is
x< 0 (west), which therefore is also the dense side in (3.1). The relation between the
surface buoyancy horizontal change across the front δbs and δh from (3.1) is

δbs ≈−(1− Γ )N2
0δh. (3.3)

In the far fields at depth and on either side, hfr goes to h0 ± (δh)/2 and b(z) goes
to two different horizontally uniform stratification profiles. With f0 > 0 the associated
geostrophic velocity vg is a northward surface jet around the front centre, mostly
confined to the weakly stratified upper layer, with equal cyclonic and anti-cyclonic
vorticity extrema on the west (dense) and east (light) sides, respectively. An analogous
dense surface filament has

hdf (x)= h0 + δh exp
[
−

(x
`

)2
]
. (3.4)

Its surface buoyancy anomaly δbs is again given by (3.3), and its vg(x, z) is a double
jet, with vg > 0 on the east side and a dominant cyclonic ζg = ∂xvg > 0 in the centre
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with weaker negative lobes on the sides. A light surface filament would occur for (3.4)
with δh<0; it has a weaker strain-induced frontogenesis rate (McWilliams et al. 2009)
and is thought to be rarer and/or weaker in nature and simulations; so the focus will
be on dense filaments.

In association with the particular h(x) shape functions in (3.2) and (3.4), the
maximum values at the surface for the geostrophic along-axis velocity and vorticity
are

Vg ≈Cv

h0δbs

f0`
and max

[
ζg

f0

]
≈Cζ

h0δbs

( f0`)2
, (3.5a,b)

with geometric shape coefficients Cv = 0.5 and 1.0 and Cζ = 0.5 and 2.4, respectively,
for the analytic formulas (3.2) and (3.4) for the front and dense filament. From these
relations and (3.3), the strength of a submesoscale flow and its geostrophic Rossby
number, Rog= ζg/f0, increase with the following influences: a stronger surface density
anomaly δbs (which in turn increases with stronger interior stratification N0 and
boundary-layer depth anomaly δh); lower latitude f0; deeper boundary-layer depth
h0; and smaller horizontal width ` (i.e. deeper within the submesoscale range). In
particular, if such flow structures are formed by frontogenetic processes that decrease
` while holding these other quantities approximately constant, then vg and Rog will
increase as the frontogenesis proceeds.

The variation in h(x) implies a variation in the vertical mixing if h is interpreted
as the boundary-layer depth. A KPP prescription (Large et al. 1994) for the vertical
eddy viscosity in a wind-driven boundary layer is

νv(x, z)= ku∗h(x)G(σ )+ νv0, σ =−
z
h
,

G =
(σ + σ0)(1− σ)2

(1+ σ0)2
if σ 6 1,

G = 0 if σ > 1.

 (3.6)

The von Kármán constant is k = 0.4; u∗ =
√
|τ |/ρ0 is the oceanic wind-friction

velocity; σ is a normalized depth coordinate, and σ0= 0.005 is a velocity logarithmic
singularity regularization constant as σ → 0; and νv0 is a small interior background
eddy viscosity. In the absence of surface buoyancy flux (B′ = 0), κv ≈ νv in the
boundary layer, but usually κv0 6 νv0 in the interior. This is a reduced version of
KPP by including only its dependencies on b and the surface wind stress. A more
complete version would depend also on u, but that would complicate the analysis
here; furthermore, as yet not much is known about how vertical mixing might change
inside a submesoscale flow structure.

For purposes of illustration a standard set of parameter values is used:

f0 = 0.78× 10−4 s−1, h0 = 60 m, δh= 15 m, N2
0 = 3.4× 10−5 s−2,

N2
b = 1.0× 10−7 s−2, b0 = 6.4× 10−3 m s−2, Γ = 0.025, λ−1

= 3 m,
νv0 = 1.0× 10−4 m2 s−1, u∗ = 0.01 m s−1, σ0 = 5× 10−3, H = 250 m.

 (3.7)

Most of these parameters are defined in the formulas (3.1), (3.2), (3.4) and (3.6). This
u∗ value corresponds to an atmospheric surface wind speed of Uatm= 8.2 m s−1 under
neutral stratification conditions in (2.10); its direction is θτ , with the convention that
it increases counter-clockwise from an origin in the east direction. To have roughly
comparable δbs, maximum vg, and maximum ζg values, widths of `= 1.5 km for the
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FIGURE 1. Idealized shapes for a 2-D front (a,c,e) and dense filament (b,d, f ) with (3.1),
(3.2), (3.4) and (3.7): b(x, z) (a,b), vg(x, z) (c,d) and νv(x, z) (e, f ). The boundary-layer
depth z=−h(x) is indicated by the thick black line. Only a portion of the full domain
is plotted. The δbs values here correspond to a surface temperature difference of 0.25 ◦C
with a thermal expansion coefficient of α∗ ≈ 2× 10−4 K−1.

front and ` = 3 km for the dense filament are chosen. The corresponding buoyancy,
geostrophic velocity and eddy viscosity fields are shown in figure 1. These parameter
values represent a mid-sized submesoscale surface front or filament, rather than, e.g. a
mesoscale flow structure with a larger ` and a deeper reach below the surface layer.
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FIGURE 2. Vertical profiles of horizontal velocity in the far-field Ekman layer u∞(z) for
a dense filament with θτ = 0 (i.e. eastward wind). The solid line is u∞(z), and v∞(z) is
dotted. The velocity shear is high at the top and bottom of the layer where νv(z) is small.

For the solutions reported in this paper, the discrete calculations are made with a
horizontal grid size of dx= 0.24 km and a stretched vertical grid with dz= 2 m near
the surface. This seems adequate to resolve the solution structure except perhaps for
strong nonlinearity near the limit of TTW+ΩE system convergence when some flow
structures become horizontally narrow (§ 6).

3.3. Buoyancy flux
Another diagnostic for the solutions below is the integrated buoyancy flux. For a 2-D
b(x, z), vertical and horizontal fluxes are defined by

BFv(z)=
∫ Lx/2

−Lx/2
w′b′ dx, BFh(x)=

∫ 0

−H
ub′ dz, (3.8a,b)

where the prime denotes the deviation from the average value in the x far field.
Because w= 0 in almost all the SCFT solutions below, w′ is usually the total vertical
velocity. (An exception is for a front when Uatm is very large, discussed at the end of
§ 4.2; BFv is not analysed in this case.) The total u is retained in BFh because u is
typically non-zero when u∗ 6= 0, and the far-field velocity in x is the Ekman current.
The horizontal domain width Lx is chosen to be much larger than `.

4. Linear TTW solutions
In this section consider the 2-D problems in the TTW+ΩE system posed in §§ 2.1

and 3 with N u
=N b

= 0.

4.1. Far-field velocity
The TTW subsystem solution in the far field where ∂xb vanishes is simply an Ekman-
layer velocity profile u∞(z) (e.g. figure 2), and ΩE adds no correction. Because it is
independent of x, it has no associated w or BFv, and it is uninfluenced by advection
even when N u,N b

6=0. It has the expected attributes known from constant-ν solutions:
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FIGURE 3. Linear TTW vertical velocity decomposition in the downwelling branch located
at the centre of a dense filament (x= 0) with the same parameters as in figure 4, where
w(x, z) is shown. Here w = wT + wO with w solid, wT dashed and wO dotted. In this
solution the Ekman pumping is zero, wek = 0.

the surface current is rotated anti-cyclonically (clockwise for f > 0) from the surface
stress, and with depth it rotates further in this direction while decreasing in amplitude.
Its depth-integrated ageostrophic horizontal transport is

TT =

∫ 0

−∞

uT(z′) dz′ = ẑ×
τ

fρ0
. (4.1)

With the variable eddy viscosity νv profile in (3.6), these same attributes still occur,
but the profile shape is altered with increased vertical shear at the top and bottom
of the [−h, 0] layer where νv becomes small. The anti-cyclonic rotation angle at the
surface is smaller, and u ≈ 0 for z 6 −h. A scaling estimate for the Ekman current
based on (4.1) is

Vek =
u2
∗

f0h0
, (4.2)

which is representative of the mid-layer speed, with the surface value approximately
twice larger. With changing wind direction θτ , the u∞(z) profile is unchanged except
for a rotation with θτ .

4.2. Secondary circulation
The velocity decomposition (2.14) represents the primary TTW solution (uT, wT)
due to the wind stress, buoyancy gradient and vertical momentum mixing. The ΩE
correction (uO, wO) is due to the stratification and vertical buoyancy mixing, with
an iteration between them for dynamical consistency. Figure 3 shows that overall w
is close to wT in this linear dense filament solution, but the wO correction is not
trivial, especially near the bottom of the surface layer where the stratification begins
to increase. At depth, the cancellation between wT and wO is complete, and w is zero
below. (In figure 3 this cancellation is only slightly evident because all w components
are vanishing near the bottom of the surface layer, but in § 6 ageostrophic advection
causes wT =−wO 6= 0 to extend to the bottom of the domain.)

A vertical integral of the momentum equations in (2.15) with N u
T = 0 shows that the

ageostrophic transport relation (2.15) for TT is unaltered by the presence of b(x, z) and
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νv(x, z), so there can be no Ekman pumping even in the near field of the submesoscale
structure, i.e. wek≈ ∂xTx

T = 0 (neglecting a small contribution from u(x,−h)∂xh because
u(x,−h) is small). This restricts the vertical velocity to the surface layer in this linear
TTW case.

The associated ageostrophic secondary circulation for a dense filament is shown in
figure 4. The horizontal components are defined by

u′a(x, z)= u(x, z)− ug(x, z)− u∞(z), (4.3)

where the prime again denotes a departure from the far-field average. The circulation
in the (x, z) plane consists of two counter-rotating cells. Because the velocity is 2-D
incompressible, this circulation can be expressed with an overturning streamfunction
Φ(x, z) defined by

u′a = ∂zΦ and w=−∂xΦ. (4.4a,b)

The total circulation is (u′a, w)(x, z) plus the far field u∞(z) (figure 2). The central
downwelling jet is stronger than the peripheral upwelling flows. In the along-front
direction, v′a(x, z) mirrors u′a(x, z) in its spatial pattern; relative to vg(x, z) (figure 1d),
it reduces the geostrophic shear by weakening v in the upper part of the boundary
layer and strengthening it in the lower part. It also reduces the vertical vorticity in
the filament; the peak value for ζg/f is 1.33 and the reduced peak for ζ/f is 0.99
(not shown). Note that these normalized values comprise a Ro, and the values are not
small here, as for many submesoscale flows.

This orientation relationship between u′a(z) and ug(z) holds at each horizontal
location in the TTW subsystem with only modest adjustments from the ΩE subsystem,
and it is nearly independent of τ when ∇b is as relatively large as it is here (but
see figures 6 and 7 below). Figure 5 shows these velocity profiles in the centre of
the northward along-front jet. The surface ageostrophic flow is rotated cyclonically
by an obtuse angle relative to the surface geostrophic shear and it reverses in the
lower part of the boundary layer.

In the TTW+ΩE system there are two external drivers to the circulation, τ and ∇b.
To assess their relative importance in figures 4 and 8, artificial alternative solutions are
obtained by setting τ = 0, while retaining νv, κv as before. The results (not shown)
are TTW circulations that are visually nearly indistinguishable from ones with τ 6= 0,
except that now u∞= 0. This is consistent with the fact that the secondary circulation
is nearly independent of θτ for the parameter values (3.7).

A scaling estimate for the TTW secondary circulation comes from a primary
balance in the y-momentum equation in (2.15),

f0u′a ∼ ∂z(νv∂zvg)∼
νv∞ max[|∂xb|]

f0h0
and u′a ∼ ∂zΦ ∼

Φ

h0
, (4.5a,b)

where the far-field values are used for νv and h and the maximum value of ∂xb is
used for the buoyancy gradient. This leads to a scaling estimate,

Φttw =
νvmax max[|∂xb|]

f 2
0

, (4.6)

where, from (2.10) and (3.7),

νvmax = 0.061u∗h0 = 7.5× 10−5
|Uatm|h0. (4.7)
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FIGURE 4. Linear TTW secondary circulation for a dense filament with θτ = 0: (a,b)
u′a and v′a after subtracting the far field u∞(z) in figure 2 and (c,d) w and Φ. The
accompanying b, vg, νv fields are in figure 1(b,d). Again and throughout the paper, z=
−h(x) is indicated by the thick black line.

(The subscript ttw here is meant to distinguish a particular dynamical balance that is
close to simple turbulent thermal wind from the velocity decomposition (2.14), where
T denotes the solution of the TTW subsystem (2.15) that can be valid for a much
wider range of dynamical balances.) Thus, using (3.5), the TTW scaling estimates are

Φttw = 0.1
u∗Vg

f0
, Vttw = 0.1

u∗Vg

f0h0
, Wttw = 0.1

u∗Vg

f0`
. (4.8a−c)

The perturbation ageostrophic velocities u′a and v′a both scale with Vttw because of their
similarity in figure 5. These quantities are a combination of the buoyancy gradient (or
vg) and the vertical mixing strength induced by the wind stress.

A comparison can be made with an analogous scaling estimate for a field of
mixed-layer eddies generated by the surface-layer baroclinic instability of a mean
horizontal buoyancy gradient in Fox-Kemper, Ferrari & Hallberg (2008), Bachman &
Taylor (2016), viz. Φmle ∼ 0.1h2

0∂xb/f = 0.1h0Vg, which is accompanied by a vertical
restratification buoyancy flux estimate of w′b′∼Φmle∂xb= 0.1f V2

g (cf. BFv/` in (4.19)).
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FIGURE 5. Vertical profiles of u in the centre of the northward jet at x = 2 km for a
dense filament with θτ = 0 (as in figure 1b,d, f ): vg(z) is the solid line, u′a is dashed and
v′a is dotted. The TTW surface u′a(0) is rotated cyclonically relative to ug(0) by a little
more than 3π/4, reverses sign with depth and vanishes near z=−h.

 0.5

 0
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1.5
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100 102101

FIGURE 6. Ratio of the maximum absolute value of the linear TTW secondary-circulation
streamfunction Φ for a dense filament to the scaling estimate Φttw as a function of the
wind speed Uatm. The filament axis is parallel to ŷ. The black line is for cases with θτ = 0
(eastward wind), and the red points are for selected wind speed values for cases with
θτ =π/2 (northward wind).

Notice by comparing figures 2 and 5 that the magnitudes of u′a and u∞ are similar.
The ratio of their scaling estimates in (4.8) and (4.2) is

Vttw

Vek
= 0.1

Vg

u∗
, (4.9)

which is approximately one for the parameters in (3.7).
In figure 6 the aptness of this scaling estimate is demonstrated over nearly three

decades in |Uatm|. For low and intermediate winds, there is no directional dependence
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FIGURE 7. Linear TTW secondary-circulation streamfunction Φ(x, z) for a dense filament
with |Uatm| = 32.8 m s−1: θτ = 0 (a) and θτ = 0.5π (b). The b(x, z), h(x) and vg(x, z)
fields are the same as in figure 1(b,d, f ), and the νv(x, z) field has the same pattern but
an amplitude proportional to the different u∗ value (i.e. four times larger).

in Φ, as discussed above and as presumed in (4.6), while for high winds there is a
directional dependence that is evident in both figures 6 and 7; nevertheless over this
whole wind speed and direction range, Φttw is an O(1) accurate estimate for max[|Φ|].

At large Uatm, the presence of vg is less important in the secondary circulation
within the central filament region than is the variation in νv ∝ h(x) in the KPP
parameterization (3.6); i.e. this regime is one with a spatially varying Ekman layer
across the submesoscale flow structure. (The model here assumes that the filament
structure in b(x, z) survives the intense boundary-layer turbulence under a very
high wind, which it might not do.) A scaling estimate is u′a ∼ u∞(δh/h0) because
δνv/νv = δh/h0 in (3.6). Using (3.3), (3.5), and (4.2), this implies

Vδh =
u2
∗
Vg`

N2
0 h3

0
, Wδh =

u2
∗
Vg

N2
0 h2

0
, Φδh =

u2
∗
Vg`

N2
0 h2

0
. (4.10a−c)

Because of the abundance of scaling estimates in this paper, in this and most of
the further estimates below an O(1) non-dimensional coefficient, fitted to the actual
solutions, is left out for brevity; in any event its magnitude will depend on the
submesoscale functional shapes, as noted for Cv and Cζ after (3.5).

As u∗ increases for fixed Vg, the ratio of this secondary-circulation streamfunction
to the TTW one in (4.8) is

Φδh

Φttw
=

Vδh
Vttw
= 10

u∗
f0`

(
N0h0

f0`

)−2

, (4.11)

i.e. the product of a Rossby number based on u∗ and an inverse Burger number for the
surface layer h and the interior stratification N0. This reaches a value around one for
Uatm≈40 m s−1, consistent with the O(1) directional difference in figure 7 at that Uatm
value. The reason for the directional difference is that ua(z) is more surface trapped in
an Ekman layer for θτ = 0, where the Ekman transport, Ty

T < 0, is along the filament,
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FIGURE 8. Linear TTW secondary circulation for a front with θτ = 0: (a) u′z(x, z) and
v′a(x, z) (b) after subtracting the far-field averaged u(z), and w(x, z) (c) and Φ(x, z) (d).
Note that the far-field values are small but non-zero because of the modestly different
Ekman profiles u∞(z) on the two sides. The accompanying b, vg, νv fields are in
figure 1(a,c,e).

than it is for the case of θτ =π/2, where Tx
T > 0 is across the filament. The difference

of two analytic Ekman-layer solutions with different constant νv values (i.e. a larger
one in the filament centre), shows an analogous sign reversal and magnitude difference
in the associated 1Φ(z) between the two θτ values in figure 7.

For a front the linear TTW solution is very similar to that from a dense filament
except for the change of shape for b(x, z) and (νv, κv)(x, z) (figure 1a,c,e). The far-
field velocity profile is now different on both sides because h is different: the two
far-field u(z) shapes are similar to figure 2, but with the vertical scale compressed
or expanded with the different far-field h values, and the associated u magnitude is
increased or decreased accordingly to conform to the transport integral constraint (4.1).
The secondary circulation is again confined to the vicinity of the front and to within
the surface layer (figure 8). Its shape is now a single cell in Φ, with upwelling on the
light side and surface flow toward the dense side. The v′a(x, z) again acts to reduce the
geostrophic shear. The maximum value of Rog= ζg/f0 is 1.04, and again the vorticity
is reduced by TTW to a value of Ro= ζ/f0 = 0.70. The peak value of Φ is reduced
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by approximately 10 % for the front compared to the filament, but, because of shape
differences in their b(x, z), the peak downwelling value of w is reduced by about 30 %
for the front.

For the parameters (3.7), the secondary circulation for a front is again independent
of wind direction θτ . For large Uatm the vertical velocity is one-signed at the front,
with a monotonic x variation across the front in Φ(x, z) from (4.4) (not shown). Again
the sign and magnitude of w differ with θτ : w is larger and positive for a north wind
when Uatm is large, compared to smaller and negative with an east wind. The scaling
estimates (4.2), (4.8), and (4.10) remain valid for fronts as well.

4.3. Frontogenetic tendency and buoyancy flux
In the presence of the secondary circulations in the preceding section, there
are implications for further evolution of the submesoscale structure expressed
as frontogenetic tendencies in velocity and buoyancy (§ 2.2) and as vertical and
horizontal buoyancy fluxes (3.8) across the structure.

For the velocity gradient the frontogenetic tendencies are shown in figure 9. The
sum of the advective and pressure force tendencies, T u

adv φ = T u
adv + T u

φ , is clearly
positive in the upper centre of the filament, as well as on both sides of the front,
especially on the dense side. These are partly balanced by negative tendencies
associated with the vertical mixing, T u

νv
. The sum of these, T u, is also positive in

the upper centre of the dense filament and the upper dense side of the front, but
negative on the upper light side. Thus, there is an important positive frontogenetic
tendency near the surface for both types of submesoscale flow structure, with a net
frontolytic tendency on the upper light side of the front. (It is known from time
integration that in fact the TTW secondary circulation drives a dense filament toward
a frontogenetic singularity in ζ and ∂xu (McWilliams et al. 2015).) The maxima of
T u are 0.8 and 1.8 × 10−13 s−3 for the front and filament, respectively. In all the
contributing tendencies for T u, the magnitudes are about 50 % smaller for the front
compared to the filament.

The patterns in figure 9 can be understood by identifying the dominant contributions
to T u. They are associated with the horizontal strain component ∂xu and the along-axis
velocity v that is primarily geostrophic vg; i.e.

T u
adv φ ≈−∂xu(∂xvg)

2
− f0∂xu∂xvg,

T u
νv
≈ ∂xvg∂x∂z(νv∂zvg).

}
(4.12)

Because f0 and ζg = ∂xvg are of the same order in these solutions, both terms in T u
adv

here contribute comparably. The relevant patterns of u′a and vg for the dense filament
and front are evident in figures 1, 4 and 8.

This leads to a scaling estimate for T u
adv based on the first right-hand side term in

(4.12) and Φttw in (4.8), viz.

T u
adv ttw = 0.1

u∗V3
g

f0h0`3
. (4.13)

With the parameter values in (3.7), this estimate is within an O(1) value of the
solutions for both the front and filament. It is evidently a highly nonlinear quantity,
so the actual results have numerical values that are sensitive to the specific shape
choices, though the patterns are robust. For solutions with smaller Rog values, the
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FIGURE 9. Frontogenetic velocity-gradient tendencies from (2.23). The sum of T u
adv φ =

T u
φ + T u

adv is in (a,b), T u
νv

is in (c,d) and the total T u is in (e, f ). The front and dense
filament solutions are in (a,c,e) and (b,d, f ), respectively. These are for the standard
parameters (3.7) with θτ = 0.
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FIGURE 10. Advective frontogenetic buoyancy-gradient tendency T b
adv from (2.22) for the

front (a) and dense filament (b). Because T b
κv

is small, these are approximately the total
tendency T b. These TTW solutions are for the standard parameters (3.7) with θτ = 0.

estimate should be based on the second right-hand side term in (4.12) that will be
the larger one; i.e.

T u
φ ttw = 0.1

u∗V2
g

h0`2
, (4.14)

whose ratio to (4.13) is Ro−1
g . With the same scaling for νv following (4.6),T u

νv
has the

same scaling as T u
φ . Thus, it is a parametrically robust result that the total T u has a

frontogenetic shape similar to figure 9, bottom, because of the similar scaling among
its component tendencies when Rog ∼ 1.

A similar evaluation is made for the buoyancy-gradient advective tendency T b
adv

in figure 10. For these solutions the diffusive tendency is negligible because ∂zb is
small where κv is not small. The dominant contribution is again associated with the
horizontal strain,

T b
adv ≈−∂xu(∂xb)2. (4.15)

Thus, the patterns of u′a and b′ explain the four-centred structure for the front, with
moderate frontogenesis in the upper dense side where there is surface horizontal
convergence and somewhat stronger frontolysis in the lower dense side where there
is divergence in the lower part of the boundary layer. For the dense filament, this
pattern is simply doubled, as expected from the remark that a filament is a kind of
double front in u′a and b. (This perspective is not as useful for T u, where the central
cyclonic shear in a dense filament is the single dominant influence compared to the
peripheral shears.) By the same rationale as for (4.13), the scaling estimate here is

T b
adv ttw = 0.1

f0u∗V3
g

h3
0`

, (4.16)

and it is quantitatively apt for the solutions here.
If T u

adv ttw and T b
adv ttw are normalized by the velocity- and buoyancy-gradient

variances, respectively, a frontogenetic rate is estimated as

rttw = 0.1
u∗
h0

Rog, (4.17)
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which is the same for both frontogenetic tendencies. The same normalization for T u
φ ttw

yields an estimate of
rttwφ = 0.1

u∗
h0
. (4.18)

This latter estimate can be interpreted as the inverse of a multiple of the turbulent
eddy-turnover time in a wind-driven boundary layer, where the turbulent kinetic energy
scales as u2

∗
. Notice that r does not depend on the submesoscale structural parameters

Vg and ` except through Rog.
Another comparison for rttw is with the geostrophic t−1

eddy discussed in § 1.
Their scaling ratio is 0.1 u∗/( f0h0), which for present parameters has a value of
approximately 0.2. Thus, even in coherent structures like 2-D fronts and filaments,
with no conservative evolutionary tendencies (i.e. t−1

cs is zero), the ageostrophic
advective frontogenetic rate associated with the TTW circulation is not that much
smaller than the turbulent eddy-turnover time for geostrophic advection in an
incoherently configured eddy field.

As with the secondary circulation (§ 4.2), there is little dependence of T u and T b

on the wind direction θτ as long as Φttw in (4.8) is not small compared to Φδh in
(4.10).

The buoyancy fluxes for both the front and filament are plotted in figure 11. The
vertical flux BFv is everywhere positive and peaks in the middle of the surface layer.
This is a restratification flux and represents a conversion from available potential
energy to kinetic energy. Its vertical shape is controlled mainly by w(z) because b′
varies little with z in the surface layer. It is somewhat larger for the filament than
the front, consistent with its larger w. Because it is controlled by the secondary
circulation (i.e. by w), it also does not depend on θτ for the standard parameters
(3.7). A scaling estimate based on Φttw is

BFv ttw = 0.1
u∗V2

g`

h0
, (4.19)

whose magnitude is close to the peak value in figure 11(b,d), and whose approximate
vertical buoyancy flux per unit area is w′b′ = BFv ttw/`. This restratification flux
can be interpreted by comparison with an equivalent surface heat flux per unit area,
Q= (ρ0cp/α

∗g)maxz[BFv(z)]/`≈ 200 W m−2 (where cp ≈ 4× 103 m2 s−2 K−1 is the
heat capacity of seawater and α∗≈ 2× 10−4 K−1 is the thermal expansion coefficient);
i.e. BFv is not small.

For BFh, however, there is an important dependency on wind direction, as
demonstrated by the much larger values for θτ = π/2 than for θτ = 0. The reason is
the influence of u∞(z). For all wind directions, u′a(z) reverses with depth (figure 4a)
and so has partly cancelling contributions to the integrand in BFh. The same is true
for u∞(z) for an eastward wind whose Tx

T in (4.1) is zero. However, for a northward
wind, u∞(z) is mostly eastward at all depths and Tx

T = u2
∗
/f0 > 0, so the horizontal

buoyancy flux is much larger. A scaling estimate for the TTW secondary-circulation
buoyancy flux is

BFh ttw = 0.1
u∗V2

g`

h0
, (4.20)

which is the same as in (4.19). An estimate for the horizontal Ekman buoyancy flux,
when TT in (4.1) is directed across the front or filament, is

BFh ek =
u2
∗
Vg`

h0
. (4.21)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.294


Submesoscale surface fronts and filaments 415

10 2 3

10 2 3

0–5 5

0–5 5

0

–20

 –40

–60

–80

–100

0

–20

 –40

–60

–80

–100

2

0

4

6

–2

–4

–6

 0.5

 0

 –0.5

x (km)x (km)

z 
(m

)
z 

(m
)

(a) (b)

(c) (d )

FIGURE 11. Integrated buoyancy fluxes (3.8) for the front (dashed lines) and dense
filament (solid lines) with the parameters in (3.7). Panels (a,c) and (b,d) are BFv(z) and
BFh(x), respectively. Panels (a,b) and (c,d) are for θτ = 0 and π/2, respectively. Note the
change of scale for BFh between the two wind directions.

Their ratio is formally the same as (4.9), i.e. ≈1 for the parameters in (3.7), but
the actual solutions in figure 11 indicate that the estimator BFh ttw is too large by
approximately a factor of 20 because of the sign reversal in u′a with depth, which
causes opposing fluxes across the buoyancy gradient.

The shape of BFh is controlled by the shape of u(x, z) times the surface b′(x, 0),
which is approximately the shape of b′(x, z) throughout the surface layer. For the
secondary circulation component u′a, the sense of the horizontal flux is from higher
buoyancy toward lower. For the dense filament this implies a horizontal buoyancy
convergence toward the centre, while for the front it is a flux across the front
toward the dense side. For the Ekman component, because u∞(z) is independent of
x, BFh(x) has the shape of b′(x, 0), and thus is across the buoyancy gradient; in fact,
replacing u by u∞ in the BFh integrand in (3.8), so that BFh(x) ∝ b′(x, 0), is quite
an accurate approximation for θτ = π/2. The simplest evolutionary interpretation in
this case is that the Ekman buoyancy flux implies a bulk horizontal movement of
the submesoscale b′ structure in the direction of Tx

T , which would therefore have no
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FIGURE 12. Linear strain-induced, secondary-circulation streamfunction Φ(x, z) for a
front (a) and dense filament (b). These cases have α = 10−5 s−1 but no wind stress or
vertical mixing. These can be compared to the topologically similar TTW Φ patterns in
figure 8(b,d), and figure 4(d), respectively.

reflection in w, T u or T b, all of which are nearly independent of θτ . Alternatively,
there may be vertically differential advection of b′(x, z) by (u, w), which would be
expressed in other evolutionary changes in the structure’s shape than those evident
in the BF profiles. In some circumstances with down-front wind stress, especially
with weak interior stratification N0, the horizontal buoyancy flux can advect dense
fluid over lighter fluid and induce gravitational instability; furthermore, down-front
winds can deplete the potential vorticity of the surface layer and induce centrifugal
(symmetric) instability (Thomas 2005; Taylor & Ferrari 2009).

As the wind direction varies away from θτ = 0, there will be a transition from
BFh ttw, which is essentially independent of θτ , to BFh ek with a weighting factor of
sin[θτ ].

5. Linear strain solutions
Because the historical focus on fronts and frontogenesis has largely been on

strain-induced secondary circulations (Hoskins 1982), in this section such solutions
are presented for comparison with the TTW solutions in § 4. The neglect of N is
continued, pro tem.

If τ =νv=κv=0 and α 6=0, then the TTW subsystem (2.15) has a simple solution:

uT =−

(
α

f0

)
vg + vO − (α/f0)uO

1− (α/f0)2
, vT =

vg − (α/f0)uO + (α/f0)
2vO

1− (α/f0)2
. (5.1a,b)

If α is associated with the exterior strain field in mesoscale eddies, then typically
α � f0. The solutions shown below have α = 10−5 s−1, which is a value that gives
similar SCFT magnitudes compared to the TTW solutions in § 4.

The strain-induced SCFT solutions have no far-field velocity, u∞= 0, and no angle
dependence (apart from the angle of the confluent deformation flow axis relative to the
submesoscale frontal axis, here taken to be zero by the choice of ud in (2.1)). For the
b(x, z) fields defined by (3.1) and (3.7), the secondary circulation streamfunction Φ in
(4.4) has the patterns shown in figure 12. They are remarkably similar to the front and
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dense filaments TTW Φ patterns in figure 8(b,d), and figure 4(d), respectively, viz. a
single clockwise cell for a front and a pair of counter-rotating cells for a filament.
By the choice of α here, even their magnitudes are similar. They do reach somewhat
deeper into the stratified interior here. This is because they are not constrained by the
boundary-layer confinement of νv and κv. Rather they have a penetration depth below
the weakly stratified surface layer that is controlled by the interplay between the two
left-hand side terms in the elliptic operator for the ΩE subsystem (2.20). This gives
the so-called Prandtl depth of penetration, hp = f0`/N0, which for present parameters
is about 40 m, consistent with figure 12. Thus, because of their small `, submesoscale
surface-layer fronts do not induce vertical velocities deeply into the pycnocline when
N0 is large. In these α solutions, wO is generally larger than wT (obtained by applying
the continuity equation to (5.1)) because of the α forcing term (2.21) in ΩE and the
linear or higher power α/f0 factors in (5.1).

Analogous to Φttw and the associated secondary-circulation velocities in (4.8), an
estimate for Φα comes from balancing the right-hand side α term in ΩE against the
first left-hand side term (the second one is small in the surface layer), viz.

Φα =
αVgh0

f0
, Vα =

αVg

f0
, Wα =

αVgh0

f0`
. (5.2a−c)

The ratio between the two influences on Φ is 10αh0/u∗. Both estimates are linear
in the factor Vg/f0. Compared to the TTW secondary-circulation estimate in (4.8)
and ignoring non-dimensional coefficients, α/f0 plays the role here that u∗/f0h0

or νv/f0h2
0 (a turbulent Ekman number) plays there. This comparison between

secondary-circulation rates, αh2
0/νv, was previously identified in Nagai et al. (2006),

where it was argued that vertical mixing intensifies the secondary circulation around
the Azores front.

For the strain-induced ageostrophic flow, v′a is substantially smaller than u′a for
α/f0 � 1, in contrast to the TTW solution where the two components are more
nearly equal. In partial explanation, equation (5.1) indicates that uT ∼ (α/f0)vg and
vT ∼ (α/f0)

2vg, and the scaling estimate in (5.2) implies u′a ∼ (α/f0)vg.
The frontogenetic tendencies T u and T b are mostly positive for both fronts and

dense filaments (figure 13). Only the total tendencies are shown, which in both cases
is the sum of an advective tendency (i.e. T u

adv φ in (2.23) and Tb
adv in (2.22)) and one

proportional to α (i.e. T u
α and T b

α ). The imprints of the α terms are clearly identified
from their simple functional dependencies on (∂xu)2 and (∂xb)2, respectively. However,
the magnitudes of the advective tendencies are similar and so make an appreciable
contribution as well. The velocity gradient is frontogenetically intensified on the
dense side of the front and in the centre of the filament, while the buoyancy gradient
increases in the centre of the front and on the edges of the filament. Both qualitatively,
and even quantitatively, these effects are similar to the TTW frontogenetic tendencies
in figures 9(e, f ), and 10, although there are some pattern differences as well, notably
a deeper vertical extent for strain and a clearer indication of buoyancy frontogenesis.
This similarity is to be expected from the similarity of the secondary circulations.

Frontogenetic tendency scaling estimates based on (5.2) are

T u
α =

α3V2
g

f 2
0 `

2
, T b

α =
αf 2

0 V2
g

h2
0
. (5.3a,b)
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FIGURE 13. Frontogenetic velocity-gradient tendencies from (2.23) (a,b) and buoyancy-
gradient tendencies from (2.22) (c,d). These are total tendencies due to advection and α.
The frontal and dense filament solutions are in (a,c) and (b,d) respectively. These cases
have α = 10−5 s−1 but no wind stress or vertical mixing. They can be compared to the
rather different TTW T u in figure 9(c,d), and T b in figure 10, even though the secondary-
circulation advective tendencies, T u

adv φ and T b
adv , are similar.

In the same way as § 4.3, equation (5.2) can be used to make estimates of the
advective and pressure frontogenetic tendencies associated with the strain-induced
secondary circulation:

T u
adv α =

αV3
g

f0`3
, T u

φα =
αV2

g

`2
, T b

adv α =
αfV3

g

h2
0`
, (5.4a−c)

where the subscript appendage α indicates the association with Φα. The total
frontogenetic tendencies will be due to a combination of these different contributions.

The ratio of T u
α to T u

φα is (α/f0)
2, which is typically small, and its ratio to T u

adv α

is only a factor of Ro−1
g larger. Therefore, the frontogenetic tendency for the velocity

gradient is primarily due to the strain-induced secondary circulation rather than
directly due to the straining rate directly. On the other hand, the ratio of T b

α to T b
adv α is
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FIGURE 14. Integrated buoyancy fluxes (3.8) for the front (dashed lines) and dense
filament (solid lines). Panels (a) and (b) are BFv(z) and BFh(x), respectively. These cases
have α= 10−5 s−1 but no wind stress or vertical mixing. Here BFv is quite similar to the
TTW, profile in figure 11(a), but BFh is only broadly similar to figure 11(b).

Ro−1
g , which is ≈1 here. Thus, the direct straining effect is a primary influence on the

buoyancy-gradient frontogenetic tendency, and the secondary circulation contributes
comparably only when Rog ∼ 1. This implies that strain-induced frontogenesis is
especially effective, e.g. compared to TTW, in sharpening submesoscale buoyancy
gradients.

These secondary-circulation frontogenetic tendencies can be compared with the
TTW estimates in (4.13), (4.14), and (4.16), with the same ratio of 10αh0/u∗ as seen
from (5.2) for Φα/Φttw.

When the dominant strain-induced velocity- and buoyancy-gradient frontogenetic
tendencies in (5.3)–(5.4), viz. T u

φα and T b
α , are normalized by their respective gradient

variances, the result is a frontogenetic rate estimate of

ru
α = rb

α = α, (5.5)

i.e. the external deformation rate. (The normalized rate for T u
adv α is (α/f0)

2 smaller.)
This can be compared to rttw in (4.17) or (4.18); for the parameters in (3.7) and the
value of α = 10−5 s−1 used here, rα ≈ rttw.

The associated buoyancy flux profiles are in figure 14. The vertical flux BFv(z) is
again a restratification flux (cf. figure 11b,d) with similar magnitudes to the TTW BFv,
and again the flux for the filament is stronger than the frontal flux. There are more
differences among the BFh(x) profiles, mainly because of the absence of any Ekman
u∞ influence in the strain solution. The shapes are understandable as simple products
of u′(x, 0) and b′(x, 0). For the front, u′ is an x-symmetric negative flow from the
light to the dense side near the surface, while b′ is anti-symmetric with a positive
anomaly on the light side. For the dense filament, u′ is an anti-symmetric convergent
flow, while b′ is an even-symmetric negative anomaly. Scaling estimates based on Φα

are
BFvα = BFhα = αV2

g`, (5.6)
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and the ratio with their TTW counterparts in (4.19)–(4.20) is again 10αh0/u∗. The
BFhα estimate is somewhat high because of the sign reversal with depth in u′a(z). This
is consistent with BFv values being somewhat larger than BFh ones (excluding Ekman
buoyancy flux for θτ 6= 0; § 4.3), in spite of having identical scaling estimates.

Thus, for a given frontal structure, the relative influences of TTW and strain on
the SCFT behaviour vary in magnitude with u∗/h0 and α, respectively. The solution
behaviours are generally similar between the two influences. In combined solutions
with Uatm = 8.2 m s−1 and α = 10−5 s−1 (not shown), the influences are generally
reinforcing and close to a simple superposition in the SCFT outcomes.

Finally, to summarize the explanations for the secondary-circulation shape, consider
the structural relations for the TTW and strain processes. For TTW, the horizontal
shape of u′a near the surface, denoted by Ua(x), is opposite to vg(x, 0) (§ 4.2);
i.e. Ua(x)∼−vg∼−∂xb(x, 0). (Dimensional scaling factors are ignored here.) Because
of continuity the horizontal shape of w∼W(x) in the middle of the surface layer is
W(x) ∼ ∂xUa(x) ∼ −∂xxb(x, 0). For strain, by invoking the same principal balance in
ΩE stated before (5.2) and assuming b′ does not vary much with depth across the
surface layer, W(x)∼−∂xxb(x, 0). These shape arguments are valid for both fronts and
filaments. (In the filament case, the argument is for the strong central downwelling
region, with w > 0 on the periphery for mass conservation.) Thus, the two W(x)
shapes are the same in TTW and strain-induced secondary circulations.

6. Nonlinear TTW solutions
The 2-D linear solutions of § 4 are generalized with N 6= 0. In the TTW subsystem

(2.15)–(2.16), the ratio of the ageostrophic horizontal advection in N v
T to the Coriolis

force is scale estimated as Rog, which is therefore an estimate of the importance of
nonlinearity in SCFT solutions. In §§ 4–5, N u and N b were neglected, even though
Rog ∼ 1 for the parameters in (3.7), but now this is remedied.

6.1. Secondary circulation
One effect of nonlinearity is to alter the Ekman transport relation (4.1), which
generalizes to

TT =

∫ 0

−∞

uT(z′) dz′ = ẑ×
(

τ

fρ0
−

1
f0

∫ 0

−h(x)
N u

T dz
)

(6.1)

when µg = α = 0; i.e. for a 2-D front or filament, cross-axis momentum advection
causes Ekman pumping at the base of the surface layer, with wek ≈ ∂xTx

T 6= 0. On
the other hand, as in § 5, the induced pycnocline circulation will only penetrate over
the rather small depth scale of hp for submesoscale flow structures. As in figure 3,
wT � wO in the surface layer, but with the advective contribution to (6.1), both
components extend to the bottom of the domain, with wO =−wT and w= 0 at depth.

Unlike the linear TTW solutions in § 4 (when Vδh � Vttw from (4.10)), advection
causes a significant dependence on the wind direction θτ . The reason for this is that
the dominant advection in the 2-D flows examined here is the cross-axis component,
ua∂x·, and ua has an important contribution from the far-field (Ekman) velocity, ua∞(z)
(e.g. figure 2). Figure 15 shows how the peak downwelling velocity varies with θτ for
both fronts and dense filaments. The strongest w minima occur when u′a constructively
reinforces ua∞ in the upper part of the surface layer. In a dense filament with its
approximate anti-symmetry with two signs of u′a (figure 4a), this occurs for two wind
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FIGURE 15. Spatial minima of w(x, z) for nonlinear TTW solutions for a front (a) and a
dense filament (b) with parameters (3.7) as a function of wind direction θτ . The dashed
lines correspond to the minima in the linear TTW solutions in figures 4(c) and 8(c),
respectively.

directions, approximately NE and SW, where the near-surface Ekman velocity is most
nearly across axis. In a front with only a single sign for u′a (figure 8a), the SW
direction supports this constructive reinforcement. There is also a weak enhancement
of w < 0 for a front with N to NE winds; in this case the upper-ocean TTW and
Ekman u are opposing, but still there is a modest enhancement of ∂xu< 0.

This rationalization of the θτ dependency is based on the nonlinear secondary
circulation not being too different in its spatial patterns from the linear one. This is
clearly so in the far field, where the linear and nonlinear solutions are exactly the
same. It is only approximately so in the central region. It is clear from figure 15
(cf. the dashed lines) that the nonlinear circulation can be substantially stronger
(by a factor up to 3-4 in w). The associated spatial patterns for the peak θτ values
are shown in figures 16 and 17, and they are indeed generally similar in shape to
their linear counterparts (i.e. figures 8c, and 4c, respectively). In particular, in all
cases there is a downwelling w on the dense side of a front and near the centre of
a dense filament. Besides the larger magnitudes for favourable θτ , the differences
due to advection are mainly ones of sharper gradient, smaller width and greater x
asymmetry.

For completeness, Tx′
T (x) from (6.1) is plotted for these nonlinear solutions in

figure 18. It shows a tripole pattern for the front and a dipole pattern for the dense
filament. The implied wek(x) for the front is a tripole with a downwelling centre
slightly west of the middle of the front, echoing the w pattern in figure 16 but
different from the basic linear TTW dipole pattern in figure 8. For the filament,
the implied wek is a dipole with downwelling west of the centre, as in figure 17 but
again different from the basic linear TTW tripole in figure 1. Were hp larger (i.e. with
smaller N0, bigger `, or larger f0), then these wek(x) patterns would be more evident
in the pycnocline, while they are rather faint in the present solutions. The strongest
nonlinear w(x, z) values occur in the surface layer, and they preserve the linear
TTW shapes of a dipole for the front and an almost central downwelling for the
filament. The secondary peak in min[w](θτ ) for the dense filament with θτ =−5π/8
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FIGURE 16. Nonlinear TTW secondary circulation for a front with θτ = −3π/4 and
Rog = 1.04: (a,b) u′a and v′a after subtracting the far field u∞(z) in figure 2 and (c,d)
w and Φ. This angle choice corresponds to the largest min[w] value in figure 15(a). The
accompanying b, vg, νv fields are in figure 1(a,c,e), and the corresponding linear solution
for the ageostrophic circulation is in figure 8.

has a w(x, z) pattern with a similar narrow, downwelling branch as in figure 17 but
mirror reflected to be displaced to the east of the filament centre.

A more formulaic way to understand the influence of nonlinearity is to focus on
the y-momentum equation in (2.15) and estimate the incremental cross-axis velocity
uTNL by a balance with the Coriolis force; viz. with successive approximations,

f0uTNL ≈−(u∂xv +w∂zv)≈−u∂xv ≈−u∞∂xvg. (6.2)

These several approximations are rough ones (especially the last step with u ≈ u∞),
but they preserve much of the spatial structure and order of magnitude of the more
general dynamical balances. This then is connected to the incremental effect on w by
the continuity equation in the upper part of the surface layer,

∂xuTNL =−∂zwTNL ≈
2
h

wTNL; (6.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.294


Submesoscale surface fronts and filaments 423

0

–20

–40

–60

–80

–100

0

–20

–40

–60

–80

–100
0–5 5 0–5 5

x (km) x (km)

z 
(m

)

(c) (d)

0

–20

–40

–60

–80

–100

0

–20

–40

–60

–80

–100
0–5 5 0–5 5

z 
(m

)

(a) (b)

0

–0.2

–0.4

0.2

0.4

0.6

0.8

1.0

–0.6

–0.8

–1.0

0.01

0

–0.01

–0.02

–0.03

0.02

0.03

0

–0.2

–0.4

0.2

0.4

0.6

–0.6

0.01

0

–0.01

–0.02

–0.03

–0.04

0.02

0.03

0.04

FIGURE 17. Nonlinear TTW secondary circulation for a dense filament with θτ = 3π/8
and Rog = 1.32: (a,b) u′a and v′a after subtracting the far field u∞(z) in figure 2 and (c,d)
w and Φ. This angle choice corresponds to the largest min[w] value in figure 15(b). The
accompanying b, vg, νv fields are in figure 1(b,d, f ), and the corresponding linear solution
for the ageostrophic circulation is in figure 4.

hence, the advectively generated vertical velocity in the centre of the surface layer is

wTNL ≈−
h
2

u∞∂xζg. (6.4)

From the simple shapes for the front (i.e. u∞ < 0 with θτ =−3π/4, ζg a dipole with
a positive lobe to the west, and ∂xζg with a central negative extremum) and the dense
filament (i.e. u∞> 0 for θτ = 3π/8, ζg a positive monopole, and ∂xζg a central dipole
with its negative lobe to the west side), the resulting shapes are thus explained for
wTNL(x). It has a central downwelling for the front that adds to the dipole pattern
for the linear TTW w to make an unequal dipole with strong downwelling in the
west (cf. figure 16), and it has a dipole for the filament with its downwelling lobe
to the west that adds to the central downwelling for linear TTW central w to make a
dominant downwelling centre in the west (cf. figure 17).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.294


424 J. C. McWilliams

0.5

0

 –0.5

 –1.0

1.0

0–5 5

x (km)

0.5

0

 –0.5

 –1.0

1.0

0–5 5

x (km)

(a) (b)

FIGURE 18. Ageostrophic transport anomaly Tx′
T (x) from (6.1) across a front (a) and a

dense filament (b) for θτ =−3π/4 and 3π/8, respectively.

The same formulas as in (6.2) can be used to give a scaling estimate for the
incremental secondary circulation due to nonlinearity. Here separate estimates for u
are made based on either the Ekman velocity Vek in (4.2) or the TTW circulation
anomaly Vttw in (4.8), whose inverse ratio is (4.9). The result is

ΦNL =
u∗Vg

f 2
0 `

F , VNL =
u∗Vg

f 2
0 `h0

F , WNL =
u∗Vg

f 2
0 `

2
F , (6.5a−c)

where F =max[0.1Vg, u∗]. As expected their ratio with their linear counterparts in § 4
is Rog. For the solutions with parameters (3.7), the values of the arguments in F are
approximately the same, which indicates that it is indeed the θτ values for constructive
reinforcement between u′a and u∞ that generates the large w extrema in figures 16
and 17. Furthermore, although the previous argument emphasizes the role of N v, the
contributions from N u and N b are also quantitatively important here where Rog ∼ 1.
For weaker submesoscale flows with Rog� 1, ΦNL ∝ u2

∗
Vg, which is linear in Vg. As

Rog further increases, ΦNL ∝ u∗V2
g ; i.e. it becomes quadratic in Vg.

The other diagnostic quantities of interest also vary with θτ with curves at least
broadly similar to the shape of min[w](θτ ) in figure 15, but the magnitudes of their
θτ dependencies differ; e.g. in figures 16 and 17, the nonlinear amplification of the
extrema for u′a and Φ is not as large as for w, by about 50 % and 75 %, respectively,
rather than the 200 %–300 % for w. The amplification factors for each of the fields
are similar between the front and filament. Furthermore, sharper horizontal gradients
are evident in the nonlinear solutions.

As a function of Rog, the dependencies in (6.5) have begun to make their transition
from the linear to the steeper quadratic variation with Vg by these Rog ∼ 1 solutions.
Furthermore, both of the extreme θτ cases shown here are close to the limit of
iteration convergence for the TTW + ΩE system; i.e. very small values of γ in
(2.24) and large iteration numbers are required, and convergence fails for further
increases in δh0 (i.e. in Rog). As discussed at the end of § 2.1, this is suggestive
of a breakdown of balanced solutions. As Rog approaches the convergence limit,
the diagnostic SCFT solutions do develop sharper spatial structures and rapidly
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FIGURE 19. Frontogenetic velocity gradient tendencies T u from (2.23) in nonlinear TTW
solutions for a front with θτ =−3π/4 (a) and dense filament with θτ = 3π/8 (b). These
angle choices correspond to the largest min[w] values in figure 15. They can be compared
with their linear counterparts in figure 9(e, f ).

increasing magnitudes, and, not surprisingly, a dependency develops on the discrete
grid resolution (§ 3), which is not pursued here. The magnitude increases with Rog

are possibly steeper than the quadratic dependency in the scaling estimate (6.5); the
range of successful large Rog solutions is too small to determine this here. One can at
least contemplate the possibility that balanced dynamics is approaching a finite-time
singularity (n.b. Hoskins & Bretherton (1972) and McWilliams et al. (2015) for
balanced strain-induced and TTW evolutionary frontogenesis, respectively).

6.2. Frontogenetic tendency and buoyancy flux
The frontogenetic velocity gradient tendencies T u remain similar in pattern but
amplified in magnitude and shrunk in scale due to nonlinearity for both the front
and dense filament (figure 19). The peak positive values are on the west side of the
centres. For a front, this is already the favoured location for T u > 0 in the linear
TTW solution (figure 9e, f ), and for both front and filament nonlinear TTW solutions
it is also the location of peak surface convergence above the peak downwelling flow
(figures 16 and 17). The nonlinear amplification factor for the peak values of T u is
similar to that for w. For these TTW solutions there is some but smaller nonlinear
amplification in T b (not shown).

The nonlinear TTW scaling estimate for T u is amplified compared to the linear
one (4.13) by the factor Rog, as it is for w in (6.5) as well. This implies a highly
nonlinear dependency, T u

∝ (Vg/`)
4. However, because of the substantial shape

changes between linear and nonlinear w and T u, it is implausible that a simple
magnitude scaling estimate like these will be very accurate when Rog is large.

The buoyancy flux profiles, BFv(z) and BFh(x) in (3.8), are relatively little affected
by ageostrophic advection. The profile for BFv(z) always has a convex shape as in
figure 11(b,d). Its peak amplitude increases somewhat with nonlinearity especially
for θτ values close to the ones with the largest - min[w] values, but never by more
than approximately 30 %. Thus, in spite of the large amplification in the peak value
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of w, the horizontally integrated buoyancy flux is not greatly changed. The dominant
influence on BFh(x) remains the Ekman transport dependency on θτ , with peak
positive and negative fluxes for θτ =±π/2 where the cross-front transport is largest.

As with the linear solutions, in combined nonlinear TTW and α solutions, the SCFT
behaviours are largely additive.

6.3. Inaccuracy of the ‘nonlinear Ekman-layer’ model
A widely used approximate model for the wind-driven surface boundary layer is the
so-called nonlinear Ekman layer (NLE; Stern 1965). With the assumptions that (i) the
horizontal scale of the wind stress is larger than that of the surface geostrophic current,
(ii) the vertical scale of the geostrophic flow is larger than the depth of the boundary
layer and (iii) the relevant Rossby numbers are small but finite, then the ageostrophic
horizontal transport TT and the vertical velocity at the base of the boundary layer, the
Ekman pumping wek, are given by

T(x)= ẑ×
τ

ρ0( f + ζg(x))
and wek(x)= ẑ · ∇×

τ

ρ0( f + ζg(x))
, (6.6a,b)

i.e. simple generalizations of the usual Ekman relations replacing f by f + ζg to
include some advective nonlinearity. These formulas are convenient because they do
not require solution of a differential equation in z, are independent of the vertical
mixing profile νv(x, z), and have a clear implication of a secondary circulation
generated by wind over mesoscale currents and eddies. A partial motivation is the
vector identity for horizontal momentum advection,

ζ (ẑ× u)+ 1
2∇u2

= (u · ∇)u, (6.7)

where at least part of the first left-hand side term (the vortex force) is retained in
the NLE model. Niiler (1969) made a similar Ekman pumping analysis for the Gulf
Stream with vg(x, y) by including an advective term in the y-momentum equation,
ua∂xvg, but not its vortex force companion in the x-momentum equation; as explained
in the rest of this section, this alternative avoids much of the criticism of Stern’s
proposal.

In the TTW+ΩE system, without explicitly invoking Stern’s assumptions behind
(6.6), the NLE approximation can be represented by replacing N u

a in (2.13) by

N u
a NLE =−ζg(ẑ× ua), (6.8)

and otherwise neglecting ageostrophic advection. No assumption is made a priori that
ζg is independent of z within the boundary layer but obviously such a situation is
contained within (6.8). When SCFT solutions obtained with (6.8) are compared to
the more complete solutions in the preceding part of this section, they are found to
be consistently inaccurate in representing nonlinear advective effects even in the limit
Rog→ 0.

There are several important deficiencies in (6.8), hence in (6.6). One has to do with
the neglect of N b in (2.13), but the NLE solution accuracy is not much better with or
without including this term in ΩE. Another has to do with neglecting the suppressive
effect of stratification, as expressed in wO, but again this is not the primary cause
of inaccuracy here (and will not be important when hp is large enough). Rather it
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is the false inclusion of the term N u
a NLE = vaζg, which is absent in N u

a and has a
leading-order magnitude in a Rog expansion, larger than any of the other terms in
N u

a . (In contrast, N v
a NLE=−uaζg is a correct leading-order term in the y-equation.) The

fallacy is to keep this vortex force term in the x-momentum equation while neglecting
its cancellation in the Bernoulli head, i.e. the second left-hand side term in (6.7). Thus,
there often will be no convenient alternative for representing the effect of momentum
advection in the boundary layer other than by solving a more complete system like
the TTW+ΩE one used here.

7. Summary and discussion

Submesoscale density fronts and (dense) filaments in the upper ocean are
long-lived coherent structures created by frontogenesis in association with ambient
mesoscale buoyancy gradients and currents. Once they achieve a quasi-steady
configuration (e.g. with along-axis symmetry), their further evolution, apart from
possible instabilities, is primarily through ageostrophic advection by the secondary
circulation generated by either ambient strain or turbulent vertical momentum mixing,
the latter referred to turbulent thermal wind balance.

A 3-D diagnostic framework called the TTW + ΩE system is developed for the
secondary circulation and frontogenetic tendencies based on a momentum balance
approximation that neglects ageostrophic tendencies. It is then applied to the idealized
2-D front and dense filament problems solved here.

In fronts the secondary circulation in the cross-front plane is a single overturning
cell with downwelling on the dense side and upward buoyancy flux (implying density
restratification and energy conversion from potential to kinetic). This is true for
both strain-induced and TTW circulations. The horizontal buoyancy flux is mostly
controlled by the direction of Ekman transport, and is therefore strongest for up-
and down-front winds. The TTW circulation induces a frontogenetic tendency for
velocity gradient near the surface on the dense side, while the tendency for surface
buoyancy gradient is rather weak. The strain-induced circulation induces a strong
surface frontogenetic tendency in both velocity and buoyancy on the dense side
and in the centre of the front, respectively. For linear TTW circulations, the wind
direction is inconsequential to the secondary-circulation strength except for extremely
strong winds. However, with (nonlinear) ageostrophic advection, the TTW circulation
is significantly stronger when the wind stress is in the SW direction relative to a
northward geostrophic flow, and the frontogenetic tendency for velocity gradient is
also much stronger. This wind direction causes a constructive reinforcement in the
cross-front horizontal ageostrophic velocity between the Ekman and TTW circulations.

In dense filaments the secondary circulation is a pair of overturning cells with
downwelling w in the centre for both strain-induced and TTW circulations. Again,
the vertical buoyancy flux is upward, and the horizontal buoyancy flux is dominated
by the Ekman transport. The frontogenetic tendency is positive for near-surface
velocity at the filament centre and, with a strain-induced flow, also for buoyancy at
the filament edges. Again, the linear TTW circulation is essentially independent of
wind direction, but it is significantly strengthened by ageostrophic advection when
the wind stress is in either the NE or SW directions.

In both of these flow configurations a positive frontogenetic tendency, especially
for the velocity gradient near the surface, is a robust result in the SCFT analysis.
This indicates that further evolution will contract the horizontal scale and increase
the Rossby number and vertical velocity. Thus, a flow structure that begins as
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submesoscale will evolve to be more deeply within the submesoscale range and thus
become more prone to ageostrophic dynamics, including more rapidly growing frontal
instabilities leading to further forward energy cascade to dissipation and diapycnal
mixing.

Also in both submesoscale flow configurations, the vertical buoyancy flux is
remarkably independent of wind direction and nonlinearity, while varying with the
flow parameters as estimated in (4.19). It is an upward buoyancy flux whose primary
effects are conversion of surface-layer available potential energy to submesoscale
kinetic energy and an increase in density stratification within the surface layer
(i.e. restratification flux). The horizontal buoyancy flux across the geostrophic flow by
the secondary circulation is somewhat smaller than the vertical flux, but often larger
when the Ekman transport is in that direction.

The secondary-circulation patterns are qualitatively similar between TTW solutions
and strain-induced ones. For external strain, the cause of the secondary circulation
is the confluent horizontal trajectories following the external deformation flow, and
for TTW the cause is the cyclonically rotated obtuse angle direction for the surface
ageostrophic flow in response to the vertical momentum mixing of the geostrophic
shear in the surface boundary layer. This similarity of response between the two
mechanisms continues into the nonlinear regime (not shown for α). It complicates
the causal attribution in complex simulations or measurements, where generally
both turbulent vertical mixing and mesoscale strain are present. On the other hand,
there are noticeable differences in the T b(x, z) patterns associated with TTW and
strain (cf. figures 10 and 13c,d), although both causes induce positive frontogenesis
near the surface. The scaling estimates in §§ 4 and 5, supported by the plotted T b

patterns, indicate that strain-induced frontogenesis is especially effective at sharpening
submesoscale buoyancy gradients. Both frontogenetic mechanisms are effective at
sharpening submesoscale velocity gradients in T u.

When Rog = max[ζg]/f0 approaches critical O(1) values, the iterative solution
procedure for the diagnostic secondary circulation fails to converge. This is suggestive,
but not conclusive, of a breakdown of balanced dynamics and, because of the
increasingly sharp horizontal gradient in w and ζ approaching the critical values,
of an approach to spatial singularity. Beyond balanced dynamics lie inertia–gravity
wave emissions, unbalanced frontal instabilities and turbulent forward energy cascade,
all of which occur in realistic submesoscale simulations. Even there, however, the
patterns of secondary circulation, buoyancy flux and frontogenetic tendency continue
to resemble the patterns that arise in a SCFT balanced diagnostic analysis, indicating
balanced dynamics continues to be relevant even where it is incomplete.

Beyond the present study much still needs to be learned about SCFT behaviours
for upper-oceanic submesoscale fronts and filaments. The problems solved here have
only a surface stress τ , and the inclusion of surface buoyancy flux B′ will certainly
alter the details of the boundary-layer turbulence. More fundamentally, this turbulent
mixing can be resolved in large eddy simulations rather than parameterized, as here.

Acknowledgements
This research is supported by the Office of Naval Research (grant N000141410626)

and the National Science Foundation (grant OCE-1355970).

Appendix A. Balanced potential vorticity and omega equations
These two equations are derived from the balanced model (2.11) before the velocity

decomposition (2.14) is introduced.
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The derivation path for the BVPE is defined by curlz [horizontal momentum
equations] + f0∂zN−2 [buoyancy equation]. The result is

Dg[Qg] + curlz
[∂z[νv∂zu]] = curlz

[N u
] + f0∂z

[
N b

N2

]
−α(∂xv + ∂yu)+ f0∂z

[
∂z[κv∂zb]′

N2

]
, (A 1)

where the quasigeostrophic potential vorticity is defined by

Qg =∇
2ψg + f 2

0 ∂z

[
∂zψg

N2

]
. (A 2)

The same convention of assigning left- and right-hand side terms is used here as in
(2.11). The BPVE diagnoses the ψg tendency, hence also the b′ tendency, when the
3-D elliptic operator in (A 2) is inverted.

The ΩE derivation path is f0∂z curlz [horizontal momentum equations] −∇2

[buoyancy equation], and the result is

[ f 2
0 ∂

2
z +N2(z)∇2

]w = −2f0∇ · J[∇ψg, ∂zψg]

+ f0∂z curlz
[∂z[νv∂zu]] − ∇2

[∂z[κv∂zb]′]
+NΩ

+ αf0∂z[∂xv + ∂yu] + α(∂xxb′ − ∂yyb′), (A 3)

where

NΩ
=−f0∂z curlz

[N u
] + ∇

2N b. (A 4)

The right-hand side terms with α and b′ arise through the cancelation of the
geostrophic vorticity and ∇2b′ tendency terms as explained in appendix B. This ΩE
is used as a replacement for the buoyancy equation in the SCFT system specified in
§ 2.1.

Appendix B. Derivations in deformation coordinates
As explained in § 2, the 3-D PE system (2.6) is written in deformation coordinates

(X, Y, Z, T) and evaluated instantaneously with β̃ = 0, which makes their derivatives
formally equivalent to the derivatives in physical coordinates (x, y, z, t). However,
further derived relations beyond (2.6) involving time derivatives must be done in
the transformed coordinates before the instantaneous equivalence is declared. This is
because ∂T does not commute with ∂x = eβ̃∂X and ∂y = e−β̃∂Y , although all spatial
derivatives are mutually commutative.

In the derivations of ΩE (2.20)–(2.21) and (A 3)–(A 4) from (2.11)–(2.13), it is
necessary to cancel the geostrophic acceleration ∂Tug with the buoyancy tendency term
to achieve a purely diagnostic relation. Starting from thermal wind balance expressed
in transformed coordinates,

f ∂Zvg = eβ̃∂Xb, f ∂Zug =−e−β̃∂Yb, (B 1a,b)

a time derivative is applied to obtain

f ∂ZTvg = eβ̃∂XTb+ αeβ̃∂Xb, f ∂ZTug =−e−β̃∂YTb+ αe−β̃∂Yb. (B 2a,b)
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Then the operations are applied that lead toward ΩE, and the following result is
obtained:

− f eβ̃∂ZXTvg + f e−β̃∂ZYTug =−[e2β̃∂XXTb+ e−2β̃∂YYTb] − α[e2β̃∂XXb− e−2β̃∂YYb]. (B 3)

When this result is added to ∇2 times the buoyancy equation, the terms proportional
to ∂Tb all cancel, as desired, and the second term in (B 3) is shifted over to the right-
hand side, where it appears as the final term in RΩ

O in (2.21). All other terms in
this ΩE derivation involve only spatial derivatives and thus are no different in form
between the two coordinate systems.

To form the frontogenetic tendency equation for the buoyancy gradient (2.22), the
following operation involving the buoyancy tendency is performed:

eβ̃∂Xbeβ̃∂X[∂Tb] + e−β̃∂Ybe−β̃∂Y[∂Tb]

= ∂T
1
2
[(eβ̃∂Xb)2 + (e−β̃∂Yb)2] − α[(eβ̃∂Xb)2 − (e−β̃∂Yb)2]. (B 4)

The final right-hand side term leads to the expression for T b
α in (2.22).

To form the frontogenetic tendency equation for the velocity gradient (2.23), the
following operation involving the acceleration and the right-hand side deformation
terms is performed on the horizontal momentum equations in (2.6):

eβ̃∂Xueβ̃∂X[∂Tu] + e−β̃∂Yue−β̃∂Y[∂Tu] + eβ̃∂Xveβ̃∂X[∂Tv] + e−β̃∂Yve−β̃∂Y[∂Tv]

= · · · + α[(eβ̃∂Xu)2 + (e−β̃∂Yu)2 − (eβ̃∂Xv)
2
− (e−β̃∂Yv)

2
]. (B 5)

The . . . indicate all the other terms in these equations. Regrouping gives

∂T
1
2 [(e

β̃∂Xu)2 + (e−β̃∂Yu)2 + (eβ̃∂Xv)
2
+ (e−β̃∂Yv)

2
]

−α[(eβ̃∂Xu)2 − (e−β̃∂Yu)2 + (eβ̃∂Xv)
2
− (e−β̃∂Yv)

2
]

= · · · + α[(eβ̃∂Xu)2 + (e−β̃∂Yu)2 − (eβ̃∂Xv)
2
− (e−β̃∂Yv)

2
], (B 6)

or

∂T
1
2 [(e

β̃∂Xu)2 + (e−β̃∂Yu)2 + (eβ̃∂Xv)
2
+ (e−β̃∂Yv)

2
]

= · · · + 2α[(eβ̃∂Xu)2 − (e−β̃∂Yv)
2
]. (B 7)

The right-hand side term here corresponds to T u
α in (2.23).

Appendix C. The 2-D SCFT system
With the 2-D simplifications listed in § 3.1, the TTW and ΩE subsystems in (2.15)–

(2.21) are

−∂z[νv∂zuT] − f0vT = ∂z[νv∂zuO] − (u∂x +w∂z)u+ αu,
−∂z[νv∂zvT] + f0uT = ∂z[νv∂z(vg + vO)] − (u∂x +w∂z)v − αv,

∂xuT + ∂zwT = 0,

wT = 0 and νv∂zuT =
1
ρ0

τ − νv∂z(ŷvg + uO) at z= 0,

∂zwT = uT = 0 at z=−H


(C 1)
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and

[ f 2
0 ∂

2
z +N2(z)∂2

x ]wO =−N2(z)∂2
x wT + α∂xxb′

− ∂2
x (u∂x +w∂z)b+ ∂2

x ∂z[κv∂zb]′,
∂xuO + ∂zwO = 0,
wO = 0 at z= 0,

wO =−wT at z=−H,
wO→ 0 as |x|→∞.


(C 2)

The 2-D buoyancy- and velocity-gradient frontogenetic tendency equations (2.22) and
(2.23), grouped in curly brackets by their identified contributing components, are

D[ 12(∂xb′)2] = {0}

+ {−N2(∂xw)(∂xb′)− (∂xb′)((∂xu)(∂xb′)+ (∂xw)(∂zb′))}
+ {α(∂xb′)2}
+ {(∂xb′)∂x∂z(κv∂zb)} (C 3)

and

D[ 12((∂xu)2 + (∂xv)
2)] = {−(∂xu)(∂2

xφ
′)}

+ {−(∂xu)(∂xu) · (∂xu)− (∂xw)(∂xu) · (∂zu)}
+ {2α(∂xu)2}
+ {∂xu · ∂x∂z[νv∂zu]}, (C 4)

with D= ∂t + u∂x +w∂z.
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