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The Distance from a Rank n − 1 Projection
to the Nilpotent Operators on Cn

Zachary Cramer

Abstract. Building on MacDonald’s formula for the distance from a rank-one projection to the set of

nilpotents inMn(C), we prove that the distance from a rank n − 1 projection to the set of nilpotents in

Mn(C) is
1
2
sec( π

n

n−1
+2
). For each n ≥ 2, we construct examples of pairs (Q , T)whereQ is a projection

of rank n − 1 and T ∈Mn(C) is a nilpotent of minimal distance toQ. Furthermore, we prove that any

two such pairs are unitarily equivalent. We end by discussing possible extensions of these results in

the case of projections of intermediate ranks.

1 Introduction

Let H be a complex Hilbert space of (possibly infinite) dimension n, and let B(H)
denote the algebra of bounded linear operators acting onH. Consider the sets

P(H) = {P ∈ B(H) ∶ P = P2 = P∗}/{0},
N(H) = {N ∈ B(H) ∶ N j = 0 for some j ∈ N}

consisting of all non-zero orthogonal projections on H and all nilpotent operators
on H, respectively. We are interested in the problem of understanding the distance
between these two sets, measured in the usual operator norm onB(H).�is quantity
will be denoted by δn :

δn ∶= dist(P(H),N(H)) = inf {∥P − N∥ ∶ P ∈ P(H),N ∈ N(H)}.
�e problem of computing δn is by no means new to the world of operator theory. In
1972, Hedlund [3] proved that δ2 = 1/√2, and that 1/4 ≤ δn ≤ 1 for all n ≥ 3.�is lower
boundwas increased to 1/2 byHerrero [4] shortly therea�er. At that timeHerrero, also
showed that δn = 1/2 whenever n is infinite, thus reducing the problem to the case in
whichH = Cn for some n ∈ N, n ≥ 3.

Various estimates on the values of δn were obtained in the early 1980’s. One such
estimate established by Salinas [9] states that

1

2
≤ δn ≤ 1

2
+ 1 +√n − 1

2n
for all n ∈ N.
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One can note that this upper bound approaches 1/2 as n tends to infinity, and
hence Salinas’ inequality leads to an alternative proof that δℵ0 = 1/2. Herrero [5]
subsequently improved upon this upper bound for large values of n by showing that

1

2
≤ δn ≤ 1

2
+ sin( π

⌊ n+1
2
⌋)for n ≥ 2,

where ⌊⋅⌋ denotes the greatest integer function.
For many years, the bounds obtained by Salinas and Herrero remained the best

known. In 1995, however, MacDonald [6] established a new upper bound that would
improve upon these estimates for all values of n. In order to describe MacDonald’s
approach, we first make the following remarks.

(a) Any two projections inMn(C) of equal rank are unitarily equivalent, and thus
of equal distance toN(Cn). As a result, δn =min1≤r≤n νr ,n , where

νr ,n ∶= inf {∥P − N∥ ∶ P ∈ P(Cn), rank(P) = r,N ∈ N(Cn)}.
(b) Straightforward estimates show that when computing νr ,n , one need only con-

sider nilpotents of norm at most 2. From here, one may use the compactness of
the set of projections inMn(C) of rank r and the set of nilpotents inMn(C) of
norm at most 2 to show that νr ,n is achieved by some projection-nilpotent pair,
and hence so too is δn .

(c) If {e i}ni=1 denotes the standard basis for Cn , then

νr ,n =min{∥P − N∥ ∶ P ∈ P(Cn), rank(P) = r,N ∈ Tn}
where Tn is the algebra of operators that are strictly upper triangular as matrices
written with respect to {e i}ni=1.

�e reduction fromN(Cn) to Tn described in (c) may seem innocuous at first glance.
�is alternate formulation, however, allows one to make use of a theorem of Arveson
[1] that describes the distance from an operator inB(H) to a nest algebra.�e version
of this result that we require was established by Power [8] and is presented below for
the algebra Tn . Note that for vectors x , y ∈ Cn , the notation x ⊗ y∗ is used to denote
the rank-one operator z ↦ ⟨z, y⟩x acting on C

n .

�eorem 1.1 (Arveson Distance Formula). Let {e i}ni=1 denote the standard basis for
C

n . Define E0 = 0 and Ek = ∑k
i=1 e i ⊗ e∗i for each k ∈ {1, 2, . . . , n}. For any A ∈Mn(C),

dist(A,Tn) = max
1≤i≤n
∥E⊥i−1AE i∥.

Using Arveson’s formula, MacDonald successfully determined the exact value of ν1,n ,
the distance from a rank-one projection inMn(C) toN(Cn).
�eorem 1.2 [6, �eorem 1] For every positive integer n, the distance from the set of
rank-one projections inMn(C) toN(Cn) is

ν1,n = 1

2
sec ( π

n + 2).
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56 Z. Cramer

�e expression for ν1,n described above provides an upper bound on δn that is sharper
than those previously obtained by Herrero and Salinas for all n ∈ N. In addition,
MacDonald proved that this bound is in fact optimal when n = 3 [6, Corollary 4].
�ese results led to the formulation of the following conjecture.

Conjecture 1.3 (MacDonald [6]). �e closest non-zero projections to N(Cn) are of
rank 1; that is,

δn = ν1,n = 1

2
sec( π

n + 2) for all n ∈ N.

Conjecture 1.3 has since been verified for n = 4 [7,�eorem 3.4], but remains open for
all n ≥ 5.

MacDonald’s success in computing ν1,n relied heavily on the simple structure of
rank-one projections in Mn(C). Specifically, the fact that every such projection can
be written as a simple tensor P = e ⊗ e∗ for some unit vector e ∈ Cn made it feasible
to obtain closed-form expressions for the norms ∥E⊥i−1PE i∥ in terms of the entries of
P. MacDonald was then able to prove, using the Arveson Distance Formula, that the
rank-one projections of minimal distance to Tn are such that ∥E⊥i−1PE i∥ = ν1,n for all
i ∈ {1, 2, . . . , n}. An exact expression for ν1,n was then derived through algebraic and
combinatorial arguments.

Extending this approach to accommodate projections of intermediate ranks
appears to be a formidable task; when P is not expressible as a simple tensor e ⊗ e∗ ,
it becomes significantly more challenging to obtain explicit formulas for ∥E⊥i−1PE i∥.
One can note, however, that the simple structure that led to success in the rank-one
case can similarly be observed in projections I − e ⊗ e∗ of rank n − 1. It is therefore
the goal of this paper to extend MacDonald’s approach to determine the exact value
of νn−1,n .

We accomplish this goal in three stages. Motivated by the analogous result for
projections of rank 1, we show in Section 2 that any projectionQ of rank n − 1 that is of
minimal distance to Tn must be such that ∥E⊥i−1QE i∥ = νn−1,n for all i. In Section 3, we
then apply these equations to determine a list of candidates for νn−1,n via arguments
adapted from [6]. Finally, we prove that exactly one such candidate satisfies a certain
necessary norm inequality from [7], and therefore deduce that this value must
be νn−1,n .

In Section 4, we outline a construction of the pairs (Q , T) where Q ∈Mn(C) is a
projection of rank n − 1, T is an element of Tn , and ∥Q − T∥ = νn−1,n . We prove that
for each n ∈ N, any two such pairs are, in fact, unitary equivalent. Lastly, in Section
5, we propose a possible formula for νr ,n in the case of projections of arbitrary rank,
which can be seen to closely resemble numerical estimates for νr ,n when n is small.
We briefly explain how this formula could be used to answer MacDonald’s conjecture
in the affirmative.

2 Equality in Arveson’s Distance Formula

Fix an integer n ≥ 3, and let {e1 , e2 , . . . , en} denote the standard basis for Cn . Define

E0 = 0 and Ek = ∑k
i=1 e i ⊗ e∗i for each k ∈ {1, 2, . . . , n}. �roughout, Q = (q i j) will
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denote a projection in Mn(C) of rank n − 1 that is of minimal distance to Tn .
Additionally, let e ∈ Cn be a unit vector such that Q = I − e ⊗ e∗, and let P = (p i j)
denote the rank-one projection e ⊗ e∗.

�e goal of this section is to derive a sequence of equations relating the entries of
Q to the distance νn−1,n . Our strategy will be to use the algebraic relations satisfied by
the entries ofQ to derive closed-form expressions for the norms ∥E⊥i−1QE i∥. Next, we
will relate these expression to νn−1,n through the Arveson Distance Formula.

In the case of rank-one projections, MacDonald obtained closed-form expressions
for the norms in the Arveson Distance Formula by analysing the sequence of partial
traces associated with such a projection. Specifically, this sequence {a i}ni=0 is defined
by setting a0 = 0 and

ak =
k∑
i=1

p i i = k −
k∑
i=1

q i i , k ∈ {1, 2, . . . , n}.(2.1)

We can then express the entries of e in terms of {a i}ni=0 as
e = [ z1√a1 − a0 z2

√
a2 − a1 ⋯ zn

√
an − an−1]T ,

where z1 , z2 , . . . , zn are complex numbers of modulus 1.

Remark 2.1 By definingU ∈Mn(C) to be the diagonal unitaryU = diag(z1 , z2 , . . . ,
zn) and replacing Q with the unitarily equivalent projection U∗QU , we can assume
that each of the complex numbers z i is equal to 1. �at is, we can assume that q i j ≤ 0
for all distinct indices i and j. Since U commutes with each of the projections E i , the
norms ∥E⊥i−1QE i∥—and hence dist(Q ,Tn)—are preserved by this transformation.

Under the assumption of Remark 2.1, one readily obtains useful identity among
the entries of P and Q. Notably, the entries on the off-diagonals of these projections
can be described entirely by those on the diagonals:

p i j =√p i i p j j and q i j = −
√(1 − q i i)(1 − q j j) for all i ≠ j.(2.2)

One can then verify that

p i jp i k = p i i p jk and q i jq i k = −q jk(1 − q i i) for all i , j, k distinct.(2.3)

�ese identities will be used heavily throughout the proof of the following lemma,
which serves as the first step toward obtaining closed-form descriptions of the norms∥E⊥i−1QE i∥ in terms of the sequence {a i}ni=0.
Lemma 2.2 Let Q = (q i j) be a projection in Mn(C) of rank n − 1, and let {a i}ni=0
denote the non-decreasing sequence from equation (2.1). For k ∈ {1, 2, . . . , n}, define
Qk ∶= E⊥k−1QEk , and let Bk denote the restriction of Q∗kQk to the range of Ek .
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58 Z. Cramer

(i) If q i j ≤ 0 for all i ≠ j, then the entries of Bk = (b i j) are given by

b i j =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qkk − ak−1(1 − qkk) if i = j = k,
(1 − ak−1)(1 − q i i) if i = j ≠ k,
−(1 − ak−1)q i j if i , j, k are distinct,

ak−1q i j otherwise.

(ii) We have

∥Qk∥2 = Tr(Bk) +√2Tr(B2
k
) − Tr(Bk)2

2
.

Proof First, suppose that q i j ≤ 0 for all i ≠ j. Since Q is idempotent, its entries q i j
satisfy the equation q i j = ∑n

ℓ=1 q iℓqℓ j . �is equation, together with the identities from
(2.3), allows one to compute the entries of Bk directly. Indeed,

bkk = q2kk + q2k+1,k +⋯+ q2nk
= qkk − q21k − q22k −⋯− q2k−1,k
= qkk −

k−1∑
ℓ=1

(1 − qℓℓ)(1 − qkk) = qkk − ak−1(1 − qkk),
and if i ≠ k, then

b i i = q2ki + q2k+1, i +⋯+ q2ni
= q i i − q21i − q22i −⋯− q2k−1, i
= q i i − q2i i −

k−1∑
ℓ=1,ℓ≠i

(1 − qℓℓ)(1 − q i i)
= (1 − q i i)((k − 2) − k−1∑

ℓ=1

qℓℓ) = (1 − ak−1)(1 − q i i).
If i , j, and k are all distinct, then

b i j = qkiqk j + qk+1, iqk+1, j +⋯+ qniqn j
= q i j − q1iq1 j − q2iq2 j −⋯− qk−1, iqk−1, j
= q i j − q i iq i j − q jiq j j +

k−1∑
ℓ=1,ℓ≠i , j

q i j(1 − qℓℓ)

= q i j((k − 2) − k−1∑
ℓ=1

qℓℓ) = −(1 − ak−1)q i j .
Lastly, we consider entries b i j for which i < j = k or j < i = k. Since Bk = B∗k , it suffices
to establish the formula for b i j in the case that i < j = k. We have

b i k = qkiqkk + qk+1, iqk+1,k +⋯+ qniqnk
= q i k − q1iq1k − q2iq2k −⋯− qk−1, iqk−1,k
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= q i k − q i iq i k +
k−1∑

ℓ=1,ℓ≠i

q i k(1 − qℓℓ)
= q i k((k − 1) − k−1∑

ℓ=1

qℓℓ) = ak−1q i k .
We now turn our attention to the proof of (ii). Note that if P denotes the rank-one
projection I − Q, then

Qk = E⊥k−1(I − P)Ek = ek ⊗ e∗k − E⊥k−1PEk .

�us, Qk—and hence Bk—has rank at most 2. It follows that Bk has at most two
non-zero eigenvalues λ0 and λ1, which can be obtained by solving the system of
equations ⎧⎪⎪⎨⎪⎪⎩

λ0 + λ1 = Tr(Bk),
λ20 + λ21 = Tr(B2

k).
�e solutions to this system are λ = 1

2
(Tr(Bk) ±√2Tr(B2

k
) − Tr(Bk)2), and there-

fore, the result follows. ∎
�eorem 2.3 Let Q = (q i j) be a projection in Mn(C) of rank n − 1, and let {a i}ni=0
denote the non-decreasing sequence from equation (2.1). If f ∶ [0, 1] × [0, 1]→ R denotes
the function

f (x , y) =
√
x2 y2 − 4x2 y + 2xy2 + 4x2 − 2xy + y2 − 2y + 1 − xy − y + 2x + 1

2
,

then for each k ∈ {1, 2, . . . , n}, ∥E⊥k−1QEk∥2 = f (ak−1 , ak).
Proof By Remark 2.1, we can conjugate Q by a diagonal unitary if necessary and
assume that q i j ≤ 0 for all i ≠ j. Fix an integer k ∈ {1, 2, . . . , n}, defineQk ∶= E⊥k−1QEk ,
and let Bk = (b i j) denote the restriction ofQ∗kQk to the range of Ek . By Lemma 2.2(ii),

∥Qk∥2 = Tr(Bk) +√2Tr(B2
k
) − Tr(Bk)2

2
.

Using the expressions for the entries of Bk derived in Lemma 2.2(i), we find that

Tr(Bk) = k−1∑
i=1

b i i + bkk

=
k−1∑
i=1

(1 − ak−1)(1 − q i i) + qkk − ak−1(1 − qkk)
= ak−1(1 − ak−1) + qkk − ak−1(1 − qkk)
= qkk + ak−1(qkk − ak−1)
= qkk + ak−1(1 − ak).

https://doi.org/10.4153/S0008439520000211 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000211


60 Z. Cramer

Moreover, if B2
k = (c i j), then
ckk = b2kk +

k−1∑
ℓ=1

b2kℓ

= (qkk − ak−1(1 − qkk))2 + k−1∑
ℓ=1

a2k−1q
2
kℓ

= (qkk − ak−1(1 − qkk))2 + k−1∑
ℓ=1

a2k−1(1 − qkk)(1 − qℓℓ)
= (qkk − ak−1(1 − qkk))2 + a3k−1(1 − qkk),

and for i ≤ k − 1,

c i i = b2i i + b2i k +
k−1∑

ℓ=1,ℓ≠i

b2iℓ

= (1 − ak−1)2(1 − q i i)2 + a2k−1q2i k + k−1∑
ℓ=1,ℓ≠i

(1 − ak−1)2q2iℓ
= (1 − ak−1)2(1 − q i i)2 + a2k−1(1 − q i i)(1 − qkk)
+

k−1∑
ℓ=1,ℓ≠i

(1 − ak−1)2(1 − q i i)(1 − qℓℓ)
= ak−1(1 − q i i)((1 − ak−1)2 + ak−1(1 − qkk)).

�us,

Tr(B2
k) = ckk + k−1∑

ℓ=1

ak−1(1 − qℓℓ)((1 − ak−1)2 + ak−1(1 − qkk))
= (qkk − ak−1(1 − qkk))2 + a3k−1(1 − qkk)
+ a2k−1((1 − ak−1)2 + ak−1(1 − qkk)).

�ese descriptions of Tr(Bk) and Tr(B2
k) allow one to express ∥Qk∥2 as a function

of ak−1, ak , and qkk . �e desired formula for ∥Qk∥2 can now be obtained by writing
qkk = 1 − (ak − ak−1). ∎

Our first goal of this section is now complete: we have derived a closed-form
expression for each norm ∥E⊥i−1QE i∥ in terms of the sequence {a i}ni=0. In order to
show that every such norm is equal to νn−1,n , we must first investigate the properties
of the function f from�eorem 2.3.

Lemma 2.4 If f ∶ [0, 1] × [0, 1]→ R denotes the function

f (x , y) =
√
x2 y2 − 4x2 y + 2xy2 + 4x2 − 2xy + y2 − 2y + 1 − xy − y + 2x + 1

2
,

then f is increasing in x and decreasing in y. Moreover, 0 ≤ f (x , y) ≤ 1 whenever
0 ≤ x ≤ y ≤ 1.
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Proof Define g ∶ [0, 1] × [0, 1]→ R by

g(x , y) = x2 y2 − 4x2 y + 2xy2 + 4x2 − 2xy + y2 − 2y + 1,
so f (x , y) = 1

2
(√g(x , y) − xy − y + 2x + 1).We begin by proving that g(x , y) is non-

negative on its domain and zero only at (0, 1). We will therefore verify that f is well
defined on [0, 1] × [0, 1], and that the partial derivatives of f exist at all points (x , y) ≠(0, 1).

Observe that for each fixed y ∈ [0, 1], the map

x z→ g(x , y) = (2 − y)2x2 − 2y(1 − y)x + (1 − y)2
defines a convex quadratic on [0, 1]with vertex at x0 = y(1 − y)/(2 − y)2. If y ∈ [0, 1),
then

g(x0 , y) = g( y(1 − y)(2 − y)2 , y) = 4(1 − y)3(2 − y)2 > 0.
Consequently, g(x , y) > 0 for all (x , y) ∈ [0, 1] × [0, 1). Note as well that at y = 1 we
have g(x , 1) = x2. It follows that g(0, 1) = 0 and g(x , y) > 0 for all other values of(x , y) ∈ [0, 1] × [0, 1]. �us, f is well defined, and the partial derivatives

fx(x , y) = gx(x , y)
4
√
g(x , y) +

2 − y
2

, fxx(x , y) = 2(1 − y)3
(g(x , y))3/2 ,

fy(x , y) = gy(x , y)
4
√
g(x , y) −

x + 1
2

, fy y(x , y) = 2x3

(g(x , y))3/2
exist for all (x , y) ≠ (0, 1).

Our next task is to prove that f (x , y) is increasing in x. First observe that f (x , 1) =
x is clearly increasing. Furthermore, for every fixed y ∈ [0, 1), fxx(x , y) is well defined
and strictly positive for all x. Hence,

fx(x , y) = xy2 − 4xy + y2 + 4x − y
2
√
g(x , y) + 2 − y

2

is an increasing function of x. We conclude that fx(x , y) ≥ fx(0, y) = 1 − y > 0 for
every x ∈ [0, 1]. �us, f is an increasing function of x on [0, 1].

We now use a similar argument to show that f is a decreasing function of y. For
x = 0, we have that f (0, y) = 1 − y is clearly decreasing. Now given a fixed x ∈ (0, 1],
it is clear from above that fy y(x , y) is well defined and strictly positive for all y. It
follows that the partial derivative

fy(x , y) = x2 y − 2x2 + 2xy − x + y − 1
2
√
g(x , y) − x + 1

2

is an increasing function of y on [0, 1]. Hence, fy(x , y) ≤ fy(x , 1) = −x < 0 for every
y ∈ [0, 1]. �is proves that f is a decreasing function of y on [0, 1], as desired.

For the final claim, suppose that 0 ≤ x ≤ y ≤ 1. Consider the sequence{a i}3i=0 defined by a0 = 0, a1 = x, a2 = y, and a3 = 1, as well as the vector
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e = [√x
√
y − x √y]T . Note thatQ ∶= I − e ⊗ e∗ is a rank-two projection inM3(C)

with partial trace sequence given by {a i}3i=0. It then follows from�eorem 2.3 that

f (x , y) = f (a1 , a2) = ∥E⊥1 QE2∥2 ,
and hence 0 ≤ f (x , y) ≤ 1. ∎
�eorem 2.5 If Q ∈Mn(C) is a projection of rank n − 1 that is of minimal distance
to Tn , then ∥E⊥i−1QE i∥ = ∥E⊥j−1QE j∥ for all i and j.
Proof By Remark 2.1, we can assume without loss of generality that Q = (q i j)
where q i j ≤ 0 for all i ≠ j. Let {a i}ni=0 denote the non-decreasing sequence from
equation (2.1), and for each i ∈ {1, 2, . . . , n}, define Q i ∶= E⊥i−1QE i . Suppose to the
contrary that not all values of ∥Q i∥ are equal. Define

µ ∶= max
1≤i≤n
∥Q i∥,

and let j denote the largest index in {1, 2, . . . , n} such that ∥Q j∥ = µ.
First consider the case in which j = n. Let k denote the largest index in {1, 2, . . . ,

n − 1} such that ∥Qk∥ < µ. With f as in �eorem 2.3, we have that

f (ak−1 , ak) = ∥Qk∥2 < ∥Qk+1∥2 = f (ak , ak+1).
�us, if g∶ [ak−1 , ak]→ R is given by

g(x) = f (ak−1 , x) − f (x , ak+1),
then g(ak) = f (ak−1 , ak) − f (ak , ak+1) < 0, while g(ak−1) = 1 − f (ak−1 , ak+1) ≥ 0 by
Lemma 2.4. Since g is continuous on its domain, the Intermediate Value �eorem
gives rise to some a′k ∈ [ak−1 , ak] such that g(a′k) = 0. By replacing ak with a′k in
the sequence {a i}ni=0, one may equate ∥Qk∥ and ∥Qk+1∥ while leaving the remaining
norms ∥Q i∥ unchanged. Most importantly, since a′k ≤ ak , Lemma 2.4 implies that the
new common value of ∥Qk∥ and ∥Qk+1∥ is strictly less than µ.

�is argument can nowbe repeated to successively reduce the norms ∥Q i∥ for i > k
to values strictly less than µ. At the end of this process, either the new largest index j at
which themaximumnorm occurs is strictly less than n, or themaximum µ decreases.
Of course, the latter cannot happen as Q was assumed to be of minimal distance
to Tn .

�us, we can assume that the largest index j at which µ occurs is strictly less than
n. In this case, we have that

f (a j , a j+1) = ∥Q j+1∥2 < ∥Q j∥2 = f (a j−1 , a j).
As above, we may invoke the Intermediate Value �eorem to obtain a root a′j of the
continuous function

h(x) ∶= f (a j−1 , x) − f (x , a j+1)
on the interval [a j , a j+1]. By replacing a j with a′j in the sequence {a i}ni=0, one can
equate ∥Q j∥ and ∥Q j+1∥while preserving all other norms ∥Q i∥. Since a′j ≥ a j , Lemma

2.4 demonstrates that the new common value of ∥Q j∥ and ∥Q j+1∥ is strictly less
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than µ. �us, this process either decreases the largest index j at which the maximum
norm occurs, or reduces the value of µ. Since this argument can be repeated for
smaller and smaller values of j, eventually µ must decrease—a contradiction. ∎

3 Computing the Distance

We will now use the results of Section 2 to determine the precise value of νn−1,n . �e
first step in this direction is the following proposition, which applies �eorem 2.5 to
obtain a recursive description of the sequence {a i}ni=0.
Proposition 3.1 Let Q ∈Mn(C) be a projection of rank n − 1 that is of minimal
distance to Tn . If {a i}ni=0 denotes the non-decreasing sequence from equation (2.1), then

ak = −ν
4
n−1,n + 2ν2n−1,nak−1 + ν2n−1,n − ak−1

ν2n−1,nak−1 + ν2n−1,n − ak−1
for each k ∈ {1, 2, . . . , n}.
Proof Since the distance fromQ to Tn is minimal, �eorems 1.1 and 2.5 imply that∥E⊥k−1QEk∥ = νn−1,n for all k ∈ {1, 2, . . . , n}. �us, with f as in �eorem 2.3, we have
that

f (ak−1 , ak) = ∥E⊥k−1QEk∥2 = ν2n−1,n .
�e desired formula can now be obtained by solving this equation for ak . ∎

�e recursive formula for ak described in Proposition 3.1 will be the key to
computing νn−1,n . Our goal will be to use this formula and some basic properties of
the sequence {a i}ni=0 to determine a list of candidates for ν2n−1,n . A careful analysis of
these candidates will reveal that exactly one of them satisfies a certain necessary norm
inequality from [7]. �is value must therefore be ν2n−1,n .

To simplify notation, let t = ν2n−1,n and define the function ht ∶ [0, 1]→ R by

ht(x) = −t2 + 2tx + t − x
tx + t − x .(3.1)

Proposition 3.1 states that for each k ∈ {1, 2, . . . , n},
ak = −t

2 + 2tak−1 + t − ak−1
tak−1 + t − ak−1 = ht(ak−1).

Since ht(0) = (t − t2)/t = 1 − t = a1, this formula can be expressed as ak = h(k)t (0) for
all k ∈ {1, 2, . . . , n}. Upon taking into account the condition an = Tr(P) = 1, we are
interested in identifying the values of t ∈ [ 1

4
, 1] that satisfy the equation h

(n)
t (0) = 1.

Notice that each expression h
(k)
t (0) is a rational function of t. For each k ≥ 1, let

pk−1(t) and qk−1(t) denote polynomials in t such that

h
(k)
t (0) = pk−1(t)

qk−1(t) .
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It then follows that

pk(t)
qk(t) = ht(h(k)t (0)) = ht( pk−1(t)

qk−1(t) ) =
−t2qk−1(t) + 2tpk−1(t) + tqk−1(t) − pk−1(t)

tpk−1(t) + tqk−1(t) − pk−1(t) ,

and hence, we obtain the relations

pk(t) = t(1 − t)qk−1(t) + (2t − 1)pk−1(t),(3.2)

qk(t) = tqk−1(t) − (1 − t)pk−1(t).(3.3)

We can replace pk−1(t) in (3.3) using equation (3.2), thereby leading to a recurrence
expressed only in the qk(t)’s. Specifically, we have that

qk(t) = tqk−1(t) − (1 − t)pk−1(t)
= tqk−1(t) − (1 − t)[t(1 − t)qk−2(t) + (2t − 1)pk−2(t)]
= tqk−1(t) − t(1 − t)2qk−2(t) − (2t − 1)[tqk−2(t) − qk−1(t)]
= (3t − 1)qk−1(t) − t3qk−2(t)

for all integers k ≥ 2. Notice as well that since
p0(t)
q0(t) = ht(0) = 1 − t and

p1(t)
q1(t) = ht(ht(0)) = −3t2 + 4t − 1−t2 + 3t − 1 ,

we have initial terms q0(t) = 1 and q1(t) = −t2 + 3t − 1.
�e requirement that h

(n)
t (0) = 1 is equivalent to asking that pn−1(t) = qn−1(t).

Using the relations above, this equation can be restated as tqn−2(t) = pn−2(t), or
equivalently, qn−1(t) = t2qn−2(t) by (3.3). �us, we wish to determine the values of
t ∈ [ 1

4
, 1] that satisfy

qn−1(t) = t2qn−2(t),
where

q0(t) = 1, q1 = −t2 + 3t − 1, and qk(t) = (3t − 1)qk−1(t) − t3qk−2(t) for k ≥ 2.
A solution to this problem will require closed-form expressions for the polynomials
qn−1(t) and qn−2(t), which can be obtained via diagonalization arguments akin to
those in [6]. Our analysis reveals that with

y ∶=√4t − 1, λ1 ∶= 3t − 1 + (1 − t)iy
2

, and λ2 ∶= 3t − 1 − (1 − t)iy
2

,

we have

qn−1(t) = t (λn1 − λn2 ) − λ2λn1 + λ1λn2
t(1 − t)iy ,

qn−2(t) = t (λn−11 − λn−12 ) − λ2λn−11 + λ1λn−12

t(1 − t)iy .
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�ese expressions for qn−1(t) and qn−2(t) can now be used to identify the desired
values of t. Indeed, when qn−1(t) = t2qn−2(t), we have that

t (λn1 − λn2 ) − λ2λn1 + λ1λn2 = t2(t (λn−11 − λn−12 ) − λ2λn−11 + λ1λn−12 )
Ô⇒ λn1 (t − λ2) − λn2 (t − λ1) = t2(λn−11 (t − λ2) − λn−12 (t − λ1))
Ô⇒ λn−12 (t2 − λ2)(t − λ1) = λn−11 (t2 − λ1)(t − λ2),

and therefore,

( λ2
λ1
)n−1( t2 − λ2

t2 − λ1 )(
t − λ1
t − λ2 ) = 1.(3.4)

�is equation can be simplified using the following identities that relate the values of
t, λ1, and λ2. Verification of these identities is straightforward, and thus their proofs
are le� to the reader.

Lemma 3.2 If y =√4t − 1, λ1 = (3t − 1 + (1 − t)iy)/2, and λ2 = (3t − 1 − (1 −
t)iy)/2, then
(i) t − λ1 = (1 − t)( 1 − iy

2
) and t − λ2 = (1 − t) ( 1 + iy

2
);

(ii) t2 − λ1 = (1 − t)( 1 − 2t − iy
2

) and t2 − λ2 = (1 − t)( 1 − 2t + iy
2

);
(iii)

1 + iy
1 − iy =

1 − 2t + iy
2t

and
1 − iy
1 + iy =

1 − 2t − iy
2t

;

(iv)
λ2

λ1
= ( 1 + iy

1 − iy )
3

.

One can apply the identities above to simplify equation (3.4) as follows:

1 = ( λ2
λ1
)n−1( t2 − λ2

t2 − λ1 )(
t − λ1
t − λ2 )

= ( 1 + iy
1 − iy )

3(n−1)( 1 − 2t + iy
1 − 2t − iy )( 1 − iy1 + iy )

= ( 1 + iy
1 − iy )

3n−3( 1 + iy
1 − iy )

2( 1 − iy
1 + iy )

= ( 1 + iy
1 − iy )

3n−2

.

We therefore conclude that
1+i y
1−i y
= ρkm , where m ∶= 3n − 2, ρm ∶= e2πi/m , and k is an

integer.
We are now in a position to determine the possible values of t. By solving for y in

the equation above, we obtain

y = 1

i

ρkm − 1
ρkm + 1 =

1

i

ρ
k/2
m (ρk/2m − ρ−k/2m )

ρ
k/2
m (ρk/2m + ρ−k/2m )
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= ρ
k/2
m − ρ−k/2m

2i

2

ρ
k/2
m + ρ−k/2m

= sin (kπ/m)
cos (kπ/m) = tan( kπm ).

Since y =√4t − 1, we have
t = 1

4
( tan2 ( kπ

m
) + 1) = 1

4
sec2 ( kπ

3n − 2) for some k ∈ Z.
�at is, the distance νn−1,n fromQ to Tn must belong to the set { 1

2
sec ( kπ

3n−2
) ∶ k ∈ Z}.

It remains to determine which element of this set represents νn−1,n . We will
accomplish this task by appealing to the following result of MacDonald concerning a
lower bound on the distance from a projection to a nilpotent.

Proposition 3.3 [7, Lemma 3.3] If P ∈Mn(C) is a projection of rank r and N ∈
Mn(C) is nilpotent, then

∥P − N∥ ≥√ r

2n
(1 + r

n
).

In the analysis that follows, we will demonstrate that the only value in{ 1
2
sec ( kπ

3n−2
) ∶ k ∈ Z} that respects the lower bound of Proposition 3.3 for projections

of rank r = n − 1 occurs when k = n − 1. We begin with the following lemma, which
proves that MacDonald’s lower bound is indeed satisfied for this choice of k.

Lemma 3.4 For every integer n ≥ 3,
n − 1
2n
(1 + n − 1

n
) ≤ 1

4
sec2 ((n − 1)π

3n − 2 ) ≤ 1.
Proof Define αn ∶= (3n − 2)/(n − 1). By considering reciprocals, this problem is
equivalent to that of establishing the inequalities

1

4
≤ cos2 ( π

αn

) ≤ n2

2(n − 1)(2n − 1) for all n ∈ Z, n ≥ 3.
In the computations that follow, it will be helpful to view n as a continuous variable
on [3,∞).

To establish the inequality 1/4 ≤ cos2 (π/αn) , simply note that π/αn is an increas-
ing function of n tending to π/3, cos(x) is decreasing on [0, π/3], and cos(π/3) = 1/2.
�e second inequality will require a bit more work. Since (2n − 3

2
)2 ≥ 2(n − 1)(2n −

1) for all n, it suffices to prove that

cos2 ( π
αn

) ≤ n2

(2n − 3
2
)2 for n ∈ [3,∞).

Note that this inequality holds if and only if the function

f (n) ∶= 2n

4n − 3 − cos( παn

)
is non-negative on [3,∞).
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We will prove that f ′(n) < 0 for all n ∈ [3,∞), so that f is decreasing on this
interval. Since

lim
n→∞

f (n) = 0 and f (3) = 2

3
− cos(2π

7
) ≈ 0.043 > 0,

this will demonstrate that f (n) ≥ 0 for all n ≥ 3. To this end, we compute

f ′(n) = 16π sin( π
αn
)n2 − 24π sin( π

αn
)n + 9π sin( π

αn
) − 54n2 + 72n − 24

(4n − 3)2(3n − 2)2 .

Of course (4n − 3)2(3n − 2)2 ≥ 0, so the sign of f ′(n) depends only on the sign of

g(n) ∶= 16π sin ( π
αn

)n2 − 24π sin( π
αn

)n + 9π sin ( π
αn

) − 54n2 + 72n − 24.

But since π/αn ∈ [π/4, π/3] for n ≥ 3, we have that sin (π/αn) ∈ [√2/2,√3/2] for all
such n, and hence

g(n) ≤ 16π(√3
2
)n2 − 24π(√2

2
)n + 9π(√3

2
) − 54n2 + 72n − 24

= (8√3π − 54)n2 − (12√2 − 72)n + (9√3
2
− 24).

�is upper bound for g is a concave quadratic whose larger root occurs at n ≈ 1.8105.
It follows that g is negative on [3,∞), and therefore so too is f ′. ∎
Lemma 3.5 For any integer n ≥ 3, the set

{ 1
4
sec2 ( kπ

3n − 2) ∶ k ∈ Z}
contains exactly one value in [ n−1

2n
(1 + n−1

n
), 1], and it occurs when k = n − 1.

Proof Fix an integer n ≥ 3. We wish to prove thatA ∶= { cos2 ( kπ
3n−2
) ∶ k ∈ Z} con-

tains exactly one value in the interval [ 1
4
, n2

2(n−1)(2n−1)
]. Since Lemma3.4 demonstrates

that this is the case when k = n − 1, it suffices to show that no other values in A are
within distance

β(n) ∶= n2

2(n − 1)(2n − 1) − 1

4

of cos2((n − 1)π/(3n − 2)).
Note, however, that not all values of k ∈ Zneed to be considered. In particular, since

the function k ↦ cos2(kπ/(3n − 2)) is periodic, it suffices to check only its values at
the integers k ∈ {0, 1, . . . , 3n − 2}. Additionally, since

cos2 (((3n − 2) − k)π
3n − 2 ) = cos2 ( kπ

3n − 2) for all k,

we can restrict our attention to k ∈ {0, 1, 2, . . . , ⌊(3n − 2/2)⌋}.
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Although we are solely concerned with the integer values of k described above, it
will be useful to view k as a continuous real variable. With this in mind, define the
function fn ∶ [0, (3n − 2)/2]→ R by

fn(k) ∶= sin((n − k − 1)π
3n − 2 ) sin((n + k − 1)π

3n − 2 ).
It follows from the identity cos2(x) − cos2(y) = − sin(x − y) sin(x + y) that

∣ cos2 ( kπ

3n − 2) − cos2 ((n − 1)π3n − 2 )∣ < β(n)⇐⇒ ∣ fn(k)∣ < β(n).
Notice, however, that

f ′n(k) = ( −π3n − 2) sin( 2kπ

3n − 2),
so f ′n(k) < 0 on [0, (3n − 2)/2], and hence fn is decreasing on its domain. Since
fn(n − 1) = 0, it therefore suffices to prove that fn(n − 2) > β(n) and − fn(n) > β(n).
We will demonstrate that these inequalities hold via application of Taylor’s �eorem.

Consider the approximation of sin(x) by x − x3/6, its third degree MacLauren
polynomial. On [0, π/6], the error in this approximation is at most

E(x) = sin(π/6)
4!

∣x∣4 = x4

48
.

�us, since 1/n ≤ π/(3n − 2) ≤ π/6, we have
sin( π

3n − 2) ≥ sin( 1n) ≥ ( 1n − 1

6n3
− E( 1

n
))

≥ ( 1
n
− 1

6n
− 1

48n
) = 13

16n
.

It is routine to verify that sin ((2x − 1)π/(3x − 2)) is an increasing function of x on[3,∞). Consequently, this function is bounded below by sin (5π/7), its value at x = 3.
We deduce that

− fn(n) = sin( π

3n − 2) sin ((2n − 1)π3n − 2 ) ≥ 13

16n
sin (5π

7
) ≥ 13

16n
⋅ 3
4
= 39

64n
.

Lastly, one can show directly that

39

64n
> β(n) whenever n > 101 +√5521

60
≈ 2.9217,

and hence − fn(n) > β(n) for our fixed integer n ≥ 3.
A similar analysis can now be used to prove that fn(n − 2) > β(n). Indeed,

it is straightforward to verify that sin ((2n − 3)π/(3n − 2)) is bounded below by
sin (2π/3), and therefore

fn(n − 2) = sin( π

3n − 2
) sin((2n − 3)π

3n − 2
)

≥ 13

16n
sin (2π

3
) = 13

16n
⋅
√
3

2
≥ 13

16n
⋅ 3
4
= 39

64n
.

It now follows from the arguments of the previous case that fn(n − 2) > β(n). ∎
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With the above analysis complete, we can nowpresent themain result of this paper:
the distance from a projection inMn(C) of rank n − 1 to the setN(Cn) is

νn−1,n = 1

2
sec((n − 1)π

3n − 2
) .

Interestingly, this expression can be rewritten to bear an even stronger resemblance
to MacDonald’s formula in the rank-one case.

�eorem 3.6 For every integer n ≥ 2, the distance from the set of projections in
Mn(C) of rank n − 1 toN(Cn) is

νn−1,n = 1

2
sec( π

n
n−1
+ 2
).

4 Closest Projection-Nilpotent Pairs

Given a projection Q in Mn(C) of rank n − 1 that is of distance νn−1,n to Tn , the
following theorem provides ameans for determining an element T ∈ Tn that is closest
to Q. As we will see in �eorem 4.2, this element of Tn is unique to Q.

�eorem 4.1 [2, 7] Fix γ ∈ [0,∞). An operator A ∈Mn(C) is such that ∥E⊥i−1AE i∥ =
γ for all i ∈ {1, 2, . . . , n} if and only if there exist T ∈ Tn and a unitary U ∈Mn(C)
such that A− T = γU. Furthermore, if ∥E⊥i−1AE i∥ = γ and ∥E⊥i AE i∥ < γ for all i ∈{1, 2, . . . , n − 1}, then the operators T and U are unique.

With this result in hand, we are now able to describe all closest pairs (Q ,N)where
Q is a projection of rank n − 1 and N ∈ N(Cn).
�eorem 4.2 Fix a positive integer n ≥ 2. Let {a i}ni=0 be the sequence given by a0 = 0
and

ak = −ν
4
n−1,n + 2ν

2
n−1,nak−1 + ν

2
n−1,n − ak−1

ν2n−1,nak−1 + ν
2
n−1,n − ak−1

for k ≥ 1.

Let {z i}ni=1 be a sequence of complex numbers of modulus 1, define

e = [z1√a1 − a0 z2
√
a2 − a1 ⋯ zn

√
an − an−1]T ,

and let Q = I − e ⊗ e∗.

(i) Q is a projection of rank n − 1 such that dist(Q ,Tn) = νn−1,n . Moreover, every
projection of rank n − 1 that is of minimal distance to Tn is of this form.

(ii) �ere is a unique operator T ∈ Tn of minimal distance to Q, and this T is such that
Q − T = νn−1,nU for some unitary U ∈Mn(C). �us, if qk = Qek and tk = Tek
denote the columns of Q and T, respectively, then one can iteratively determine
columns tk by solving the system of linear equations
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨q1 − t1 , qk − tk⟩ = 0⟨q2 − t2 , qk − tk⟩ = 0
⋮ ⋮⟨qk−1 − tk−1 , qk − tk⟩ = 0

for k ∈ {2, 3, . . . , n}.
Proof Statement (i) follows immediately from the results of §2 and §3. For state-
ment (ii), the existence of T and U is guaranteed by �eorems 2.5 and 4.1. All that
remains to show is the uniqueness of these operators.

To accomplish this task, note that it suffices to prove uniqueness in the case that
z i = 1 for all i (i.e., when q i j ≤ 0 for all i ≠ j). For k ∈ {1, 2, . . . , n}, let Qk denote the
restriction of E⊥k−1QEk to the range of Ek , and define Bk ∶= Q∗kQk . Let Q

′
k = E⊥kQk , so

that

Qk = [ v∗k
Q′

k

],
where vk ∶= [qk1 qk2 . . . qkk]T .

We will demonstrate that ∥Q′k∥ < ∥Qk∥ for all k ∈ {1, 2, . . . , n − 1}, and therefore
obtain the uniqueness of T andU via�eorem 4.1. Observe that this inequality holds
when k = 1, as

∥Q1∥2 − ∥Q′1∥2 = q211 = νn−1,n > 0.
Suppose now that k ∈ {2, 3, . . . , n − 1} is fixed, and define B′k ∶= Q′k∗Q′k = Bk − vkv

∗
k .

One can determine the entries of B′k = (b′i j) using the formulas for the entries of Bk =(b i j) from Lemma 2.2(i). Indeed,

b′kk = bkk − q2kk
= qkk − ak−1(1 − qkk) − q2kk
= (qkk − ak−1)(1 − qkk) = (1 − ak)(1 − qkk),

and for if i < k,
b′i i = b i i − q2ki
= (1 − ak−1)(1 − q i i) − (1 − qkk)(1 − q i i)
= (qkk − ak−1)(1 − q i i) = (1 − ak)(1 − q i i).

If i , j, and k are all distinct, then

b′i j = b i j − qkiqk j
= −(1 − ak−1)q i j + q i j(1 − qkk)
= −(qkk − ak−1)q i j = −(1 − ak)q i j .

Finally, either i < j = k or j < i = k. In the case of former, we have
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b′i k = b i k − qkiqkk
= ak−1q i k − q i kqkk
= −(qkk − ak−1)q i k = −(1 − ak)q i k .

�e fact that B′k is self-adjoint implies that b′k j = −(1 − ak)qk j for all j < k as well.
�e above expressions for the entries b′i j reveal that B

′
k = (1 − ak)(I − Q̂), where

Q̂ ∈Mk(C) denotes the k-th leading principal submatrix of Q. Since Q has rank
n − 1, it follows that I − Q̂ has rank at most 1, and hence B′k has at most one non-zero
eigenvalue. Consequently,

∥B′k∥ = Tr(B′k) = k∑
ℓ=1

(1 − ak)(1 − qℓℓ) = ak(1 − ak).
Now let f ∶ [0, 1] × [0, 1]→ R denote the function from�eorem 2.3, so that ∥Qk∥2 =
f (ak−1 , ak). Suppose for the sake of contradiction that ∥Bk∥ = ∥B′k∥, and hence
f (ak−1 , ak) = ak(1 − ak). One can verify that for this equation to hold, we necessarily
have that ak = 1 or ak = ak−1.

If the former is true, then a j = 1 for all j ≥ k. In particular, an−1 = an . From
this it follows that qnn = 1 − (an − an−1) = 1, and hence ∥Qn∥ ≥ 1. �is contradicts
the minimality of dist(Q ,Tn). If instead ak = ak−1, then qkk = 1, and thus ∥Qk∥ ≥ 1.
Again we reach a contradiction. We therefore conclude that ∥B′k∥ < ∥Bk∥, hence∥Q′k∥ < ∥Qk∥. ∎

To save the reader from lengthy computations, we have included a few examples of
pairs (Q , T)whereQ ∈Mn(C) is a projection of rank n − 1,T belongs toTn , and ∥Q −
T∥ = νn−1,n .�eorem4.2 implies that if (Q′, T ′) is any other projection-nilpotent pair
such that rank(Q′) = n − 1 and ∥Q′ − T ′∥ = νn−1,n , then there is a unitaryV ∈Mn(C)
such thatQ′ = V∗QV and T ′ = V∗TV . In each case, the entries ofQ and T have been
rounded to the fi�h decimal place.

n = 3

Q =
⎡⎢⎢⎢⎢⎢⎣

0.64310 −0.31960 −0.35689
−0.31960 0.71379 −0.31960
−0.35689 −0.31960 0.64310

⎤⎥⎥⎥⎥⎥⎦
,

T =
⎡⎢⎢⎢⎢⎢⎣
0 −0.49697 −0.80194
0 0 −0.49697
0 0 0

⎤⎥⎥⎥⎥⎥⎦
;

n = 4

Q =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.72361 −0.24860 −0.24860 −0.27639
−0.24860 0.77639 −0.22361 −0.24860
−0.24860 −0.22361 0.77639 −0.24860
−0.27639 −0.24860 −0.24860 0.72361

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

T =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.34356 −0.46094 −0.65836
0 0 −0.34164 −0.46094
0 0 0 −0.34356
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
;
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n = 5

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.77471 −0.20512 −0.19907 −0.20512 −0.22528
−0.20512 0.81324 −0.18126 −0.18676 −0.20512
−0.19907 −0.18126 0.82409 −0.18126 −0.19907
−0.20512 −0.18676 −0.18126 0.81324 −0.20512
−0.22528 −0.20512 −0.19907 −0.20512 0.77472

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.26477 −0.32678 −0.41846 −0.55566
0 0 −0.26373 −0.32453 −0.41846
0 0 0 −0.26373 −0.32678
0 0 0 0 −0.26477
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is interesting to note that each projection above is symmetric about its anti-diagonal,
the diagonal from the (n, 1)−entry to the (1, n)−entry.�is symmetry is in fact, always
present in the optimal projection Q = (q i j) from �eorem 4.2 obtained by taking
z i = 1 for all i. To see this, first observe that the function ht from equation (3.1) satisfies
the identity

ht(x) + h−1t (1 − x) = 1, x ∈ [0, 1].
From here we have that a1 + an−1 = ht(0) + h−1t (1) = 1, and by induction,

ak + an−k = ht(ak−1) + h−1t (an−k+1) = ht(ak−1) + h−1t (1 − ak−1) = 1
for all k ∈ {1, 2, . . . , n}. Consequently,

qkk = 1 − (ak − ak−1)
= an−k + ak−1
= an−k + (1 − an−k+1)
= 1 − (an−k+1 − an−k) = qn−k+1,n−k+1

for all k. We now turn to the identity q i j = −√(1 − q i i)(1 − q j j) to conclude that that
q i j = qn− j+1,n−i+1 for all i and j, which is exactly the statement that Q is symmetric
about its anti-diagonal. An analogous argument using the formulas from [6] demon-
strates a similar phenomenon for optimal projections of rank 1.

5 Conclusion

�edistance νr ,n from the set of projections inMn(C) of rank r to the set of nilpotent
operators on C

n , as well as the corresponding closest projection-nilpotent pairs, are
now well understood when r = 1 or r = n − 1. Of course, it is natural to wonder about
the value of νr ,n for r strictly between 1 and n − 1.

�e difficulty in extending the above arguments to projections P of intermediate
ranks lies in deriving closed-form expressions for ∥E⊥i−1PE i∥. Computing these norms
for projections of rank r = 1 or r = n − 1 was made possible by the simple structure
afforded by such projections. In particular, we made frequent use of equations (2.2)
and (2.3) throughout the proofs of Lemma 2.2 and �eorem 2.3 to relate the off-
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diagonal entries of such projections to those on the diagonal. Analogous equations
for projections of intermediate ranks become significantly more complex.

For small values of r and n, the mathematical programming so�ware Maple was
used to construct examples of rank r projections Pr ,n inMn(C) which we believe are
of minimal distance to Tn . To ease the computations, the program was tasked with
minimizing the maximum norm ∥E⊥i−1PE i∥ over all projections P of rank r with real
entries and symmetry about the anti-diagonal. While it may not always be possible
for such conditions to be met by an optimal projection of rank r, the computations
that follow may still shed light on a potential formula for νr ,n .

�e smallest value of n for whichP(Cn) contains projections of intermediate ranks
is n = 4. In this case, the intermediate-rank projections are those of rank 2. We found
that

P2,4 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is an optimal projection of rank 2 satisfying the conditions above. It is easy to
see that ∥E⊥i−1P2,4E i∥ = 1/√2 = ν1,2 for all i ,

and hence P2,4 is a direct sum of optimal rank-one projections inM2(C).
In M5(C), the intermediate-rank projections are those of rank r = 2 or r = 3.

For such r, we obtained

P2,5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.42602 −0.07632 0.22568 0.42334 −0.09248
−0.07632 0.42127 0.23481 −0.06022 0.42334
0.22568 0.23481 0.30541 0.23481 0.22568
0.42334 −0.06022 0.23481 0.42127 −0.07632
−0.09248 0.42334 0.22568 −0.07632 0.42602

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P3,5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.58296 −0.29271 −0.10684 0.12213 0.36209
−0.29271 0.62479 −0.33169 −0.15433 0.12213
−0.10684 −0.33169 0.58448 −0.33169 −0.10684
0.12213 −0.15433 −0.33169 0.62479 −0.29271
0.36209 0.12213 −0.10684 −0.29271 0.58296

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with entries rounded to the fi�h decimal place. Again, the norms ∥E⊥i−1Pr ,nE i∥ share
a common value, with

∥E⊥i−1P2,5E i∥ ≈ 0.65270 ≈ 1

2
sec( π

5
2
+ 2
) for all i , and

∥E⊥i−1P3,5E i∥ ≈ 0.76352 ≈ 1

2
sec( π

5
3
+ 2
) for all i .

In light of these findings, as well as the distance formulas that exist for projections of
rank 1 or n − 1, we propose the following generalized distance formula for projections
of arbitrary rank.
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Conjecture 5.1 For every n ∈ N and each r ∈ {1, 2, . . . , n}, the distance from the set of
projections inMn(C) of rank r toN(Cn) is

νr ,n = 1

2
sec( π

n
r
+ 2
).

Using a random walk process implemented by the computer algebra system
PARI/GP, we estimated the values of νr ,n for all r ≤ n ≤ 10 without the additional
assumptions described above. We observed only minute differences between these
estimates and the expression from Conjecture 5.1. In many cases, these quantities
differed by no more than 1 × 10−3.

�e proposed formula from Conjecture 5.1 merits several interesting conse-
quences. First, this formula suggests that νr ,n = νkr ,kn for every positive integer k,
meaning that a closest projection of rank kr to Tkn could be obtained as a direct sum
of k closest projections of rank r to Tn . Notice as well that if the equation νr ,n = νkr ,kn
were true, it would follow that ν1,n = νr ,rn ≤ νr ,n for each n and r. �us, a proof of
Conjecture 5.1—or of the formula νr ,n = νkr ,kn—would validate Conjecture 1.3.

Acknowledgment �e author would like to thank Paul Skoufranis for many
stimulating conversations and Boyu Li for providing the PARI/GP script used to
estimate νr ,n .
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