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Abstract In this short note we present a result of Perelman with detailed proof. The result states that
if g(t) is the Kähler Ricci flow on a compact, Kähler manifold M with c1(M) > 0, the scalar curvature
and diameter of (M, g(t)) stay uniformly bounded along the flow, for t ∈ [0, ∞). We learned about this
result and its proof from Grigori Perelman when he was visiting MIT in the spring of 2003. This may
be helpful to people studying the Kähler Ricci flow.
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1. Introduction

We will consider a Kähler Ricci flow

d
dt

gij̄ = gij̄ − Rij̄ = ∂i∂j̄u (1.1)

on a compact, Kähler manifold M , with c1(M) > 0, of an arbitrary complex dimension
n. Cao proved in [1] that (1.1) has a solution for all time t. One of the most important
questions regarding the Kähler Ricci flow is whether it develops singularities at infinity,
that is whether the curvature of g(t) blows up as t → ∞. This question was only answered
in the case in which the curvature operator or bisectional curvature is non-negative
(see [2–4]). In 2003, Perelman made a surprising claim that the scalar curvature of g(t)
does not blow up as t → ∞. He also showed us a sketched proof. This result of Perelman
strengthens the belief that the Kähler Ricci flow converges to a Kähler Ricci soliton as t

tends to infinity, at least outside a subvariety of complex codimension 2.
The goal of this paper is to give a detailed proof of Perelman’s bound on a scalar

curvature and a diameter.
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Theorem 1.1 (Perelman). Let g(t) be a Kähler Ricci flow (1.1) on a compact, Kähler
manifold M of complex dimension n, with c1(M) > 0. There exists a uniform constant
C, depending only on the initial metric so that

• |R(g(t))| � C,

• diam(M, g(t)) � C,

• |u|C1 � C,

where the C1-norm is with respect to the evolving metric g(t) and u is normalized so
that (2π)−n

∫
M

e−u dVg(t) = 1.

The outline of the main steps of the proof of Theorem 1.1 is as follows.

(1) Getting a uniform lower bound on Ricci potential u(t).

(2) Bounding |∇u(t)| and a scalar curvature R(t) by C0-norm of Ricci potential u(t).
This can be achieved by considering the evolution equations for |∇u|2/(u + 2B)
and −∆u/(u + 2B), where B is a uniform constant such that u + B > 0, whose
existence is guaranteed by step (1).

(3) Step (2) tells us that
√

u + 2B is uniformly Lipschitz bounded and that it is enough
to bound diam(M, g(t)) in order to have uniform bounds on |u(t)|C1 and scalar
curvature R(t).

(4) To show that the diameters are uniformly bounded along the flow, we will argue by
contradiction. We will assume that the diameters are unbounded as we approach
infinity. Using that, we will show that the integral of the scalar curvature over
some large annulus is bounded by CV , where C is a uniform constant and V is a
volume of a slightly larger annulus than the one we started with. We can find such
an annulus at every time t in the sequence of times for which the diameters go to
infinity. By choosing similar cut-off functions as in the proof of Perelman’s non-
collapsing theorem in [7] we will show that we get a contradiction if the diameters
are unbounded as we approach infinity.

The organization of the paper is as follows. In § 2 we will give the proof of Theo-
rem 1.1. In § 3 we will discuss the convergence of the normalized Kähler Ricci flow, using
Perelman’s results.

2. The Ricci potential u(t)

In this section we will show that there is a uniform lower bound on u(x, t). We will also
show that it is enough to bound diameters of (M, g(t)) in order to have Theorem 1.1.

By taking the trace of (1.1) we get ∆u = n − R. Let φ(t) be a metric potential, that
is,

gij̄(t) = gij̄(0) + ∂i∂j̄φ.
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Then we can take u(t) = (d/dt)φ(t). Normalize so that
∫

M

e−u = (2π)n.

Define

µ(g, τ) = inf
{f |

∫
M

e−f (4πτ)−n=1}
(4πτ)−n

∫
M

e−f{2τ(R + |∇f |2) + f − 2n} dV

to be Perelman’s functional for g(t) as in [7]. Perelman has proved that µ(g, τ) is achieved.
Take f = u and τ = 1

2 . Then by monotonicity of µ(g(t)) along the Kähler Ricci flow,

A = µ(g(0), 1
2 ) � µ(g(t), 1

2 )

�
∫

M

(2π)−ne−u(R + |∇u|2 + u − 2n)

=
∫

M

(2π)−ne−u(−∆u + |∇u|2 − 2n + u)

=
∫

M

(2π)−n∆e−u − 2n + (2π)−n

∫
M

e−uu

= −2n + (2π)−n

∫
M

e−uu. (2.1)

We have just proved the following lemma.

Lemma 2.1. There is a uniform constant C1 = C1(A) such that
∫

e−uu � C1.

Define a = −(2π)−n
∫

M
ue−u dV . In the following claim we will prove a lower bound

on a.

Claim 2.2. There is a uniform constant C2 > 0 such that a � −C2.

Proof. Let u− = min{u, 0} and u+ = max{0, u}. Then we have

a = −(2π)−n

∫
M

ue−u dV = −(2π)−n

∫
M

u−e−u− dV − (2π)−n

∫
M

u+e−u+ dV

� −(2π)−n

∫
M

u+e−u+ dV � −C2

for some constant C2 � 0, since f(x) = xe−x is a bounded function for x � 0. �

Remark 2.3. It is well known that the scalar curvature is uniformly bounded from
below along the flow. We may assume that R > 0.

Function u(t) satisfies

∂i∂j̄ut = gij̄ − Rij̄ +
d
dt

∂i∂j̄ ln det(gij̄(0) + ∂i∂j̄φ)

= ∂i∂j̄(u + ∆u),
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which implies that
d
dt

u = ∆u + u + a, (2.2)

where we can choose a = −
∫

ue−u(2π)−n � C, uniformly bounded from above by the
previous lemma.

Lemma 2.4. Function u(t) is uniformly bounded from below.

Proof. If the Ricci potential u is very negative for some time t0, say u(t0) � −2(n+C1),
from (2.2), by Lemma 2.1 and Remark 2.3 we have

d
dt

u = n − R + u + a � n + C1 + u < 0, (2.3)

at t = t0, which implies that u(t) stays very negative for t � t0. If for some y0 we have
u(y0) � 0 at some time t0, u(y) � 0 for all y in some neighbourhood U of y0, at time t0.
By (2.3), u(y) � 0 continues to hold in U , for all t � t0. Then (d/dt)u � C + u implies

u(t)(z) � et−t0(C + u(t0)) � −C̃et, (2.4)

for t � t0, for all z ∈ U , where C̃ depends on t0. Then φ̇ = u yields

φ(t)(z) � φ(t0)(z) − C̃et−t0 � −C1et (2.5)

for big enough t and all z ∈ U . On the other hand,
∫

M
e−u(t) = (2π)n, which tells us that

u(t) cannot be very negative everywhere on M , that is, there is a uniform constant C2

such that u(x′
t, t) = maxM u(t) � −C2. Since φ̇(t) = u(t), from (2.2) we get

u(x′
t, t) − φ(x′

t, t) � max
M

(u(· , 0) − φ(· , 0)) + C̃t,

which implies that
d
dt

(u(t) − φ(t)) = n − R + a � C̃

by Lemma 2.1 and Remark 2.3. This implies that

max
M

φ(t) � −C3 − C̃t (2.6)

for a uniform constant C3.
By taking the trace of g(t) = g(0) + i∂∂̄φ(t) at time t = 0, we get

−∆0φ(t) = − trg(0) g(t) + n � n.

Consider a fixed metric g(0). By Green’s formula applied to φ(t) we have

φ(xt, t) =
1

Vol0(M)

∫
M

φ(y, t) dV0 − 1
Vol(M)

∫
M

∆0φ(y, t)G0(xt, y) dV0

� Vol0(M\U)
Vol0(M)

sup
M

φ(· , t) +
Vol0(U)
Vol0(M)

∫
U

φ(y, t) dV0 + C

� Vol0(M\U)
Vol0(M)

sup
M

φ(· , t) − C4et + C
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for t � t0, where φ(xt, t) = maxM φ(y, t) and G0 is Green’s function associated with
metric g(0) (recall that

∫
M

G0(xt, y) dV0(y) = const.). Since

Vol0(M\U)
Vol0(M)

< 1,

we get
max

M
φ(· , t) � −C5et + C6

for some uniform constants C5, C6. All constants C2, C3, C4, C5, C6 are independent of
t � t0 and they all depend on t0. This together with (2.6) yields a contradiction for big
values of t. Therefore, there exists a uniform lower bound on u(t), that is, there is some
constant B such that u(x, t) � B for all (x, t) ∈ M × [0,∞). �

Standard computation gives the following evolution equations for ∆u and |∇u|2:

�(∆u) =
d
dt

∆u − ∆2u = −|∇∇̄u|2 + ∆u, (2.7)

�(|∇u|2) =
d
dt

|∇u|2 − ∆|∇u|2 = −|∇∇u|2 − |∇∇̄u|2 + |∇u|2. (2.8)

Proposition 2.5. There is a uniform constant C such that

|∇u|2 � C(u + C), (2.9)

R � C(u + C). (2.10)

Proof. We will first prove an estimate (2.9) which we will need in the proof of
Lemma 3.3. By Lemma 2.4 we may assume that u(x, t) > −B. The proof resembles
the arguments in [9] and [6]. If H = |∇u|2/(u + 2B), by (2.7) and (2.8) we get

�H =
−|∇∇̄u|2 − |∇∇u|2

u + 2B
+

|∇u|2(2B − a)
(u + 2B)2

+
2 Re(∇̄u · ∇|∇u|2)

(u + 2B)2
− 2|∇u|4

(u + 2B)3
.

(2.11)

We can write

Re(2∇̄u · ∇|∇u|2)
(u + 2B)2

− 2|∇u|4
(u + 2B)3

= (2−ε)
Re(∇̄u · ∇H)

u + 2B
+ε

Re(∇̄u · ∇|∇u|2)
(u + 2B)2

−ε
|∇u|4

(u + 2B)3
(2.12)

for some small ε > 0. Since

|∇īu∇i(∇ju∇j̄u)| = |∇īu∇i∇ju∇j̄u + ∇īu∇ju∇i∇j̄u|
� |∇u|2(|∇∇u| + |∇∇̄u|),

by the Cauchy–Schwarz inequality,

ε
|∇u · ∇|∇u|2|

(u + 2B)2
� ε

|∇u|2(|∇∇u| + |∇∇̄u|)|
(u + 2B)3/2(u + 2B)1/2

� ε

2
|∇u|4

(u + 2B)3
+

ε(|∇∇u|2 + |∇∇̄u|2)
u + 2B

. (2.13)

https://doi.org/10.1017/S1474748008000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000133


580 N. Sesum and G. Tian

Choose ε small so that 2ε < 1
2 . Combining (2.11), (2.12) and (2.13) yields

�H � |∇u|2(2B − a)
(u + 2B)2

+ (2 − ε)
∇̄u · ∇H

u + 2B
− ε

2
|∇u|4

(u + 2B)3
. (2.14)

At a point at which H achieves its maximum we have that ∇H vanishes and therefore
by maximum principle, an estimate (2.14) reduces to

0 � d
dt

Hmax � |∇u|2
(u + 2B)2

(
2B − a − ε

2
|∇u|2

u + 2B

)
. (2.15)

If we assume that
|∇u|2 � u + 2B, (2.16)

then a term on the right-hand side of (2.15) becomes negative for large t, which is a
contradiction and therefore we have (2.9).

Our next goal is to prove that −∆u is bounded by C(u+C), which yields (2.10), since
∆u = n − R. Let K = −∆u/(u + 2B), where B is a uniform constant as above. Similar
computation as before gives that

�
(

− ∆u

u + 2B

)
=

|∇∇̄u|2
u + 2B

+
(−∆u)(2B − a)

(u + 2B)2
+ 2

∇̄u · ∇K

u + 2B
.

Take b > 1. Then

�
(

−∆u + b|∇u|2
u + 2B

)
=

−b|∇∇u|2 − (b − 1)|∇∇̄u|2
u + 2B

+
(−∆u + b|∇u|2)(2B − a)

(u + 2B)2

+
2∇̄u · ∇((−∆u + b|∇u|2)/(u + 2B))

u + 2B
.

Let

G =
−∆u + b|∇u|2

u + 2B

and, by the maximum principle,

d
dt

Gmax � −(b − 1)
|∇∇̄u|2
u + 2B

+
(−∆u + b|∇u|2)(2B − a)

(u + 2B)2
.

In local coordinates,

(∆u)2 =
( ∑

i

uīi

)2

� n
∑

i

u2
īi = n|∇∇̄u|2,

and therefore

d
dt

Gmax � −(b − 1)
(∆u)2

n(u + 2B)
+

(−∆u + b|∇u|2)(2B − a)
(u + 2B)2

� (−∆u)
u + 2B

{
2B − a

u + 2B
− (−∆u)

n

}
+

b|∇u|2(2B − a)
(u + 2B)2

. (2.17)
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By Lemmas 2.1 and 2.4 we may assume that (2B − a)/(u + 2B) is bounded from above
by a uniform constant. We have also proved the estimate (2.9) on |∇u|. If

−∆u � u + 2B, (2.18)

by (2.17) we would have that (d/dt)Gmax < 0 for big values of t. This would imply
−∆u(t) � C(u+2B), for some uniform constant C and all big values of t, which contra-
dicts (2.18). Therefore, there exists a uniform constant C such that (2.10) holds. �

Proposition 2.6. Let g(t) be the Kähler Ricci flow as above. There exists a positive
constant C = C(A) such that for every x ∈ M , Vol(Bg(t)(x, 1)) � C, for any metric g(t)
satisfying |R| � 1 on Bg(t)(x, 1).

Proof. Let g(t) be as before, a solution to a normalized Kähler Ricci flow equation,
and let g̃(s) be a solution to the equation (d/ds)g̃(s) = −2 Ric(g̃(s)). Reparametrization
between these two flows is given by g̃(s) = (1 − 2s)g(t(s)), where t(s) = − ln(1 − 2s).
The first flow has a solution for t ∈ [0,∞) and the second one has a maximal solution
for s ∈ [0, 1

2 ). The scalar curvature rescales as

R(g̃(s)) =
R(g(t(s)))

1 − 2s
� 1

1 − 2s
.

The following improvement of Perelman’s non-collapsing result (noticed by Perelman
himself) that requires only a scalar curvature bound can be found in [5]. The result was
communicated to Kleiner and Lott by Tian. It says that there is a universal constant
κ = κ(g̃(0)) > 0, so that for an unnormalized Ricci flow (d/ds)g̃(s) = −2 Ric(g̃(s)),
if |R(g̃(s))| � (1/r2) in a ball Bg̃(s)(p, r), then Volg̃(s) Bg̃(s)(p, r) � κr2n. The detailed
arguments of the proof can be found in [5] and [8], but for the convenience of a reader
we will include it here as well. We argue by contradiction, that is, assume there are
sequences pk ∈ M and tk → ∞ so that |R| � (C/r2

k), but Vol(Bk)r−2n
k → 0 as k → ∞,

where Bk = Btk
(pk, rk). Let τ = r2

k. Define

uk(x) = eCkφ(r−1
k dist(x, pk)) (2.19)

at tk, where φ is a smooth function on R, equal to 1 on [0, 1
2 ], decreasing on [12 , 1] and

equal to 0 on [1,∞), and ‘dist’ is a distance computed at time tk. Ck is a constant to
make u satisfy the constraint

(4π)n = e2Ckr−2n
k

∫
B(pk,rk)

φ(r−1
k dist(x, pk))2 dV

� e2Ckr−2n
k Vol(Bk).

Since r−2n
k Vol Bk → 0, this shows that Ck → +∞. Recall that Perelman’s functional

W(g, u, τ) = (4πτ)−n

∫
M

(2τ(Ru2 + 4|∇u|2) + u2 ln2 u − 2nu2) dVg.
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We compute

W(uk) = (4π)−nr−2n
k e2Ck

∫
B(pk,rk)

(4|φ′(r−1
k dist(x, pk))|2 − 2φ2 lnφ) dV

+ r2
k

∫
B(pk,rk)

Ru2(4π)−nr−n
k dV − 2n − 2Ck

� (4π)−nr−2n
k e2Ck

∫
B(pk,rk)

(4|φ′|2 − 2φ2 lnφ) dV + r2
k max

Bk

R − 2n − 2Ck.

Let V (r) = Vol(B(pk, r)). The necessary ingredients of the argument are that

(a) r−2n
k Vol(B(pk, rk)) → 0;

(b) r2
kR is uniformly bounded above;

(c) Vol(B(pk, rk))/ Vol(B(pk, rk/2)) is uniformly bounded above.

If Vol(B(pk, rk))/ Vol(B(pk, rk/2)) < 3n for all k, then we are done. If not, then for a
given k we have that Vol(B(pk, rk))/ Vol(B(pk, rk/2)) � 3n. Let r′

k = rk/2. We have
(r′

k)−2n Vol(B(pk, r′
k)) � r−2n

k Vol(B(pk, rk)) and (r′
k)2R � C1 on B(pk, r′

k). Replace rk

by r′
k. If Vol(B(pk, r′

k))/ Vol(B(pk, r′
k/2)) < 3n, then we stop. If not, then we repeat the

process and replace r′
k by r′

k/2. At some point we will achieve that

Vol(B(pk, r′′
k))

Vol(B(pk, r′′
k/2))

< 3n,

where r′′
k is of the form rk/2m. In what follows we consider the new sequence {pk, r′′

k}∞
k=1,

which we rename to {pk, rk}∞
k=1. Hence V (rk) − V (rk/2) � C ′V (rk/2). Therefore,

∫
B(pk,rk)

(4|φ′|2 − 2φ2 lnφ) dV � C(V (rk) − V (rk/2))

� CV (rk/2)

� C

∫
Bk

φ2 dV.

Plugging this into the previous estimate for W and using the constraint

(4πτk)−n

∫
M

u2
k dVtk

= 1,

we get
W(uk) � C ′′ − 2Ck. (2.20)

Since Ck → +∞ and µ(g(tk), r2
k) � W(g(tk), uk, r2

k), we conclude that µ(g(tk), r2
k) →

−∞. By condition (a) we have A � µ(g(tk), r2
k) → −∞, which is impossible.

The previous argument implies that Volg̃(s) Bg̃(s)(x,
√

1 − 2s) � κ(1 − 2s)n, since
R(g̃(s)) � 1/(1 − 2s), which by rescaling implies VolB(x, 1) � κ at metric g(t), where κ

is a constant depending only on the initial metric g(0). �
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Claim 2.7. There is a uniform constant C such that

u(y, t) � C dist2t (x, y) + C,

R(y, t) � C dist2t (x, y) + C,

|∇u| � C distt(x, y) + C,

where u(x, t) = miny∈M u(y, t).

Proof. By Lemma 2.4 we can assume that u � δ > 0, since otherwise we can consider
u+2B+δ instead of u. From (2.9) it follows that

√
u + 2B is uniformly Lipschitz bounded

since |∇(
√

u + 2B)| � C = C(δ) and, therefore,

|
√

u(y, t) −
√

u(z, t)| � |∇u|(p, t)
2
√

u
distt(y, z)

� C̄ distt(y, z),

and, therefore,

u(y, t) � (C̃ distt(y, z) +
√

u(x, t))2

� C1 dist2t (x, y) + C1u(x, t).

Assume that u(x, t) � K(t). Then u(y, t) � K(t) for all y ∈ M and we would have

(2π)n =
∫

M

e−u dVt � e−K(t) Vol(M) → 0

if K(t) → ∞, which is not possible. Therefore, u(x, t) � K, for a constant that does not
depend on t, and finally

u(y, t) � C dist2t (y, x) + C̃ (2.21)

for some uniform constants C and C̃. The other two estimates in the claim follow from
(2.21) and Proposition 2.5. �

By Claim 2.7 it follows that if we manage to estimate the diameter, we will get uniform
bounds on the scalar curvature and the C1-norm of u.

3. A uniform upper bound on diameters

In this section we want to prove the following proposition which will finish the proof of
Theorem 1.1.

Proposition 3.1. There is a uniform constant C such that diam(M, g(t)) � C.

We argue by contradiction. Assume that the diameters are unbounded in time. Denote
by dt(z) = distt(x, z) where u(x, t) = miny∈M u(y, t).
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Let B(k1, k2) = {z : 2k1 � dt(z) � 2k2}. Consider an annulus B(k, k+1). By Claim 2.7
we have that R � C22k on B(k, k + 1). The ball B(k, k + 1) contains 22k−1 balls of radii
1/2k. By Claim 2.7 and Proposition 2.6 we have that at time t

Vol(B(k, k + 1)) �
∑

i

Vol(B(xi, 2−k)) � 22k−12−2knC, (3.1)

where {xi} are the centres of 22k−1 balls contained in B(k, k + 1).

Claim 3.2. For every ε > 0 we can find B(k1, k2) with k1 < k2, such that if diam(M, g(t))
is large enough, then

(a) Vol(B(k1, k2)) < ε and

(b) Vol(B(k1, k2)) � 210n Vol(B(k1 + 2, k2 − 2)).

Proof. Since Volt(M) is constant along the flow, it is uniformly bounded. If the diameter
is sufficiently big, there is k0 such that for all k2 � k1 � k0, we have that Vol(B(k1, k2)) <

ε. If our estimate (b) did not hold, that is, if

Vol(B(k1, k2)) � 210n Vol(B(k1 + 2, k2 − 2)),

we would consider B(k1 + 2, k2 − 2) instead and ask whether (b) holds for that ball.
Assume that for every p, at the pth step we are still not able to find our radii so that (a)
and (b) are satisfied. In that case, at the pth step we would have

Vol(B(k1, k2)) � 210np Vol(B(k1 + 2p, k2 − 2p)).

In particular, assume we have the above estimate at the pth step so that k1 +2p+1 ∼
k2 − 2p, which is for

2p ∼ 1
2 (k2 − k2 − 1). (∗)

Take k1 = k/2 and k2 = 3k/2 for k � 1. In that case (∗) becomes p ∼ k/4, k1 + 2p ∼ k

and k2 − 2p ∼ k + 1. Combining this with (3.1) yields

ε > Vol(B(k1, k2)) � 210nk/4 Vol(B(k, k + 1)) � 210nk/4C22k2−2nk.

This leads to a contradiction if we let k → ∞. This finishes the proof of our claim. �

For every t for which the diameter of (M, g(t)) becomes very big, find k1 and k2 as in
Claim 3.2. Then we have the following lemma.

Lemma 3.3. There exist r1, r2 and a uniform constant C such that 2k1 � r1 � 2k1+1,
2k2−1 � r2 � 2k2 and ∫

B(r1,r2)
R � CV,

where B(r1, r2) = {z ∈ M : r1 � dt(z) � r2} and V = Vol(B(k1, k2)).
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Proof. We will first prove the existence of r1, such that 2k1 � r1 � 2k1+1 and

Vol S(r1) � 2
V

2k1
, (3.2)

where S(r) is a metric sphere of radius r. We have that

d
dr

Vol(B(r)) = VolS(r). (3.3)

Assume that for all r ∈ [2k1 , 2k1+1] we have Vol(S(r)) � 2(V/2k1). Integrate (3.3) in r.
Then

Vol(B(k1, k1 + 1)) =
∫ 2k1+1

2k1

Vol(S(r)) dr

> 2
V

2k1
2k1 = 2V = 2 Vol(B(k1, k2)),

which is not possible, since k2 � k1 by the proof of Claim 3.2. If for all r ∈ [2k2−1, 2k2 ]
we have that Vol(S(r)) � 2(V/2k2), similarly as above we would get Vol(B(k2 −1, k2)) >

V = B(k1, k2), which is not possible. Therefore, there exists r2 ∈ [2k2−1, 2k2 ] such that

Vol S(r2) � 2
V

2k2
. (3.4)

Estimates (3.2), (3.4) together with bounds on ∇u obtained in Claim 2.7 imply∫
B(r1,r2)

R =
∫

B(r1,r2)
(R − n) + n Vol(B(r1, r2))

= −
∫

B(r1,r2)
∆u + n Vol(B(r1, r2))

�
∫

S(r1)
|∇u| +

∫
S(r2)

|∇u|

� V

2k1
C2k1+1 +

V

2k2
C2k2+1

= C̃V < C̃ε.

�

We can now finish the proof of Proposition 3.1.

Proof of Proposition 3.1. The proof of the proposition is similar to the proof of Perel-
man’s non-collapsing theorem from [7]. Assume diam(M, g(t)) is not uniformly bounded
in t, that is, there exists a sequence ti → ∞ such that diam(M, g(ti)) → ∞. Let εi → 0
be a sequence of positive numbers. By Claim 3.2 we can find sequences ki

1 and ki
2 such

that

Volti Bti(k
i
1, k

i
2) < εi, (3.5)

Vol(Bti(k
i
1, k

i
2)) � 210n Vol(B(ki

1 + 2, ki
2 − 2)). (3.6)
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For each i, find ri
1 and ri

2 as in Lemma 3.3. Let φi be a sequence of cut-off functions such
that φ(z) = 1 for z ∈ [2ki

1+2, 2ki
2−2] and equal to zero for z ∈ (−∞, ri

1] ∪ [ri
2,∞). Let

ui(x) = eCiφi(distti
(x, pi)) such that (2π)−n

∫
M

u2
i = 1. This implies

(2π)n = e2Ci

∫
M

φ2
i

� e2Ci Volti Bti(k
i
1, k

i
2 + 1)

� e2Ciεi.

Since εi → 0, this is possible only if limi→∞ Ci = −∞. By Perelman’s monotonicity
formula,

A � W(g(ti), ui,
1
2 )

= (2π)−ne2Ci

∫
Bti

(ri
1,ri

2)
(4|φ′

i(distti
(y))|2 − 2φ2

i lnφi) dVti

+ (2π)−n

∫
Bti

(ri
1,ri

2)
Ru2

i dVti − 2n − 2Ci. (3.7)

First of all by Lemma 3.3 and (3.6) we have
∫

Bti
(ri

1,ri
2)

Ru2
i � e2Ci

∫
Bti

(ri
1,ri

2)
R

� C̃e2Ci Volti Bti(k
i
1, k

i
2)

� C̃e2Ci210n Volti
Bti

(ki
1 + 2, ki

2 − 2)

� C̃210n

∫
M

u2
i dVti

= C̃210n(2π)n.

By (3.6) we also have

e2Ci

∫
Bti

(ri
1,ri

2)
(4|φ′

i(distti
(y))|2 − 2φ2

i lnφi) dVti

� Ce2Ci Volti Bti(k
i
1, k

i
2)

� e2CiC210n Volti Bti(k
i
1 + 2, ki

2 − 2)

� C210n

∫
M

u2
i

= C210n(2π)n.

By (3.7) we get
A � C̄ − 2Ci → −∞

as i → ∞, and we get a contradiction. Therefore, there is a uniform bound on (M, g(t)),
which gives us uniform bounds on scalar curvatures and |u(y, t)|C1 . �
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