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Abstract. Starting from a memory-function formalism coupled with the Green–
Kubo formula and an approximate expression for the generalized Coulomb loga-
rithm, the electric conductivity of a dense high-temperature hydrogen plasma is
studied. A pseudopotential model, taking account of short-range quantum effects
and long-range screening-field effects, is employed to include quantum mechani-
cal and polarization effects. An analytical formula for the Coulomb logarithm is
proposed when the thermal de Broglie wavelengths are rather smaller than the De-
bye radius. A minimum in the curve of electrical conductivity is found and some
physical evidence for its appearance is produced.

1. Introduction
Theoretical studies of the thermodynamic and transport properties of dense high-
temperature plasmas, encountered in inertial-confinement fusion experiments and
in the interiors of main-sequence stars, are of great importance. Knowledge of
these properties proves to be necessary for the description of various processes. For
the time being, to obtain this knowledge, both computer simulation methods, i.e.
Monte Carlo experiments (see e.g. [1]) and molecular dynamics (see e.g. [2]), and
standard theoretical approaches such as the Ornstein–Zernike relation (see e.g. [3]),
Green functions (see e.g. [4]), and the density-response formalism (see e.g. [5–7]),
are widely used.

In this paper, we study the transport properties of semiclassical two-component
plasmas that are typical of the solar interior and inertial confinement fusion. Such
plasmas generate pressures of approximately 105 Mbar and temperatures of about
107 K. As a result, quantum mechanical and polarization effects play significant
roles in determining the characteristics of the plasma medium. It should also be
stressed here that under these conditions, a plasma is found to be in a weakly
coupled state and nonideality effects are irrelevant to its consideration. For strongly
coupled plasmas, the local field correction must be taken into account (see e.g. [8,9]).

2. Dimensionless plasma parameters.
In this paper, a two-component plasma consisting of ions (with electric charge Ze,
mass mi, and number density ni) and electrons (with electric charge −e, mass me,
and number density ne = Zni) is considered. The ionic subsystem of the plasma
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may be characterized by the average interparticle spacing

a =
(

3
4πni

)1/3

(2.1)

and the dimensionless Coulomb coupling parameter

Γ =
(Ze)2

akBT
, (2.2)

where T is the plasma temperature and kB is Boltzmann’s constant.
The electron subsystem may also be described by two dimensionless parameters:

the density parameter

rs =
(

3
4πne

)1/3
mee

2

~2 (2.3)

and the degeneracy parameter

θ =
kBT

EF
= 2

(
4

9π

)2/3

Z5/3 rs
Γ
, (2.4)

where EF is the Fermi energy of electrons and ~ is Planck’s constant.
In this paper, a hydrogen plasma (Z = 1) with rs ∼ 1 and Γ ∼ 1 is studied. From

(2.4), it follows that θ ∼ 1, and consequently degeneracy effects should be taken
into account.

3. Pseudopotential model
In the theory of a semiclassical fully ionized plasma, effective potentials are used to
investigate the thermodynamic and transport properties. These pseudopotentials
conventionally mimic quantum effects of diffraction and symmetry at short dis-
tances [10,11]. In particular, Deutsch and co-workers proposed the following form
of the effective potential of plasma particle interaction:

ϕab(r) =
eaeb
r

[
1− exp

(
− r

λab

)]
+ δaeδbekBT ln 2 exp

(
− r2

λ2
eeπ ln 2

)
, (3.1)

where ea and eb are the electric charges of the interacting pair, λab=~/(2πµabkBT )1/2

is the thermal de Broglie wavelength, µab = mamb/(ma +mb) is the reduced mass
of the interacting pair, and δab is the Kronecker delta.

There also exist another type of pseudopotentials (such as the Debye–Hückel
potential and that proposed by Baimbetov et al. [12, 13]), which simulate long-
range polarization effects at large distances.

Starting from the pseudopotential (3.1), Arkhipov et al. [14,15] constructed a new
pseudopotential model that incorporates both quantum and polarization effects.
Specifically, the Fourier transform of this pseudopotential is written as

Φ̃ee(k) =
4πe2

∆

{
1

k2(1 + k2λ2
ee)

+
1

k4r2
Di

[
1

(1 + k2λ2
ee)(1 + k2λ2

ii)
− 1

(1 + k2λ2
ei)2

]
+A
(

1 +
1

k2r2
Di(1 + k2λ2

ii)

)
exp
(
−k

2

4b

)}
, (3.2)
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Φ̃ii(k) =
4πZ2e2

∆

{
1

k2(1 + k2λ2
ii)

+
1

k4r2
De

[
1

(1 + k2λ2
ee)(1 + k2λ2

ii)
− 1

(1 + k2λ2
ei)2

]
+

A

k2r2
Di(1 + k2λ2

ii)
exp
(
−k

2

4b

)}
, (3.3)

Φ̃ei(k) = −4πZe2

∆
1

k2(1 + k2λ2
ei)
, (3.4)

where

A =
kBT ln 2

√
π b−3/2

4e2 , rDe =
(

kBT

4πnee2

)1/2

and rDi =
(

kBT

4πniZ2e2

)1/2

are the Debye screening radii of electrons and ions respectively, and

∆ = 1 +
1

k2r2
De(1 + k2λ2

ee)
+

1
k2r2

Di(1 + k2λ2
ii)

+
1

k2r2
Dek

2r2
Di

[
1

(1 + k2λ2
ee)(1 + k2λ2

ii)
− 1

(1 + k2λ2
ei)2

]
+
A

r2
De

(
1 +

1
k2r2

Di(1 + k2λ2
ii)

)
exp
(
−k

2

4b

)
. (3.5)

Expressions for Φab(r) in ordinary configuration space can be obtained from (3.2)–
(3.5) with the aid of the Fourier transform:

Φab(r) =
1

(2π)3

∫
dk Φ̃ab(k) exp(ik·r).

Subject to λii, λei, λee� rDi, rDe, the Fourier transformation can be performed
analytically, and gives rise to the following simple form:

Φab(r) =
eaeb
r

[
exp
(
− r

rD

)
− exp

(
− r

λab

)]
+δaeδbekBT ln 2 exp

(
− r2

λ2
eeπ ln 2

)
, (3.6)

This expression differs from (3.1) by the presence of the exp(−r/rD) term in the
brackets instead of 1.

4. Electrical conductivity
It is well known that the static structure factors are important characteristics of
physical systems and may be used for calculation of both thermodynamic func-
tions and transport properties. Arkhipov and Davletov [14] proposed the following
analytical expression for Sab(k):

Sab(k) = δab −
√
nanb
kBT

Φ̃ab(k), (4.1)

where Φ̃ab(k) is expressed through (3.2)–(3.5).
After neglecting terms quadratic is λab/rD in the case of λii, λei, λee� rDi, rDe,
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Figure 1. Normalized electrical conductivity σ∗ of a hydrogen plasma at rs = 0.4: (1) (4.5)
with (4.1); (2) (4.5) with (4.7); (3) Iyetomi et al. [16]; (4) Baus et al. [17]; (5) Boercker et
al. [18].

the static structure factors are simplified to

See(k) = 1− r2
D

r2
De(1 + k2λ2

ee)(1 + k2r2
D)
, (4.2)

Sii(k) = 1− r2
D

r2
Di(1 + k2λ2

ii)(1 + k2r2
D)
, (4.3)

Sei(k) =
r2
D

rDerDi(1 + k2λ2
ei)(1 + k2r2

D)
, (4.4)

with r−2
D = r−2

De + r−2
Di .

In the second Sonine polynomial approximation, the normalized conductivity σ∗

of a plasma can be written down [16], in the form

σ∗ =
σ

ωpe
= 1.93

(
3π
2

)1/2 1
4πΓ3/2L

, (4.5)

where ωpe = (4πnee2/me)1/2 is the electron plasma frequency and L is the gen-
eralized Coulomb logarithm. In a memory-function formalism coupled with the
Green–Kubo formula, the generalized Coulomb logarithm is related to the static
structure factors Sab(k) via the simple formula [17]

L =
∫ ∞

0

dk

k

[
See(k)Sii(k)− S2

ei(k)
]

(1 + k2λ2
ei)2

. (4.6)

Formulae (4.1) and (4.6) provide a simple calculation scheme for the general-
ized Coulomb logarithm L and the electrical conductivity (4.5) of a dense high-
temperature plasma.

Substituting (4.2)–(4.4) into (4.6), one can derive the following simple expression
for L:

L = ln
(
rD
λei

)
− 1

2
. (4.7)

In Figs 1 and 2 we plot the electrical conductivity (4.5) of a hydrogen plasma with
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Table 1. The normalized electrical conductivity σ∗ of a hydrogen plasma based on (4.6)
and the expressions for the static structure factors (4.1).

rs = 0.4 rs = 0.5 rs = 0.6

Γ σ∗ Γ σ∗ Γ σ∗

0.59 3.1835 0.69 2.5823 0.79 2.1814
0.60 3.1824 0.70 2.5815 0.80 2.1809
0.61 3.1818 0.71 2.5810 0.81 2.1806
0.62 3.1817 0.72 2.5808 0.82 2.1805
0.63 3.1822 0.73 2.5809 0.83 2.1806
0.64 3.1831 0.74 2.5813 0.84 2.1809
0.65 3.1844 0.75 2.5820 0.85 2.1814
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Figure 2. Normalized electrical conductivity σ∗ of a hydrogen plasma at rs = 1.0: (1) (4.5)
with (4.1); (2) (4.5) with (4.7); (3) Iyetomi et al. [16]; (4) Baus et al. [17]; (5) Boercker et
al. [18].

the generalized Coulomb logarithm (4.6) and compare it with the results of other
methods. From Figs 1 and 2, it is clear that the simple analytical expression for
the electrical conductivity obtaining from formula (4.7) fits very well for small Γ
(Table 1).

Boercker et al. [18] considered electrons to be a classical subsystem, and therefore
the results of this work are invalid for θ 6 1. If the Fermi degeneracy effect is
weak (θ > 1), then the electrical conductivity, evaluated in [18] shows fairly good
agreement with the results presented here. From Figs 1 and 2, one can see that for
θ 6 1 (or Γ > 1), the electrical conductivity (4.6) with the structure factors (4.1)
matches with the data from [16], where the quantum density-response formalism
has been used and the exchange effects are included through the Fermi distribution
function of electrons.

It is easy to see that a minimum appears in the curve of the electric conductivity.
Analogous behaviour of the normalized electric conductivity has been observed by
Iyetomi et al. [16] and Boercker et al. [18]. The occurrence of a minimum in the
curve of the electric conductivity has the following clear physical sense. It is well
known that the scattering of electrons from ions plays an essential role in determin-
ing the plasma conductivity. In electron–ion interaction, the electrostatic forces,
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which in a plasma have a characteristic radius of action rD (the Debye radius), are
attractive forces, whereas quantum effects, which have a characteristic radius of
action λei, lead to the appearance of repulsive forces in complete accord with (3.1).
The minimum location is thus determined by the equating of characteristic radii
of action of the repulsive and attractive forces, rD ≈ λei, which ultimately leads to
the following condition for the dimensionless parameters:

Γmin ≈
√

1
3πrs. (4.8)

It follows from the analysis of Table 1 that the estimate (4.8) fits better for smaller
density parameters rs, because then the quantum effects play more important role.

5. Conclusions
In this paper, the electrical conductivity of high-temperature two-component plas-
mas has been investigated, and the results have been compared with other methods.
It has been shown that the present results agree fairly well with the data of Iyetomi
et al. [16], where the quantum density-response formalism was used. Unlike the
work of Iyetomi et al., in which the degeneracy effects were taken into account via
the Fermi distribution function of electrons, we have taken into consideration these
effects in the interparticle potential (3.2)–(3.5). The analytical expression for the
generalized Coulomb logarithm has been found for separable scales of action of the
quantum and screening effects. It should be emphasized that the simple analytical
expression for the electrical conductivity achieving from (4.7) fits very well with the
more general formula (4.6) for small Γ. The location of the minimum in the curve
of the electrical conductivity has been found, and its appearance is determined by
the equality of the electron–ion de Broglie wavelength and the Debye radius.
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