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Abstract. Starting from a memory-function formalism coupled with the Green—
Kubo formula and an approximate expression for the generalized Coulomb loga-
rithm, the electric conductivity of a dense high-temperature hydrogen plasma is
studied. A pseudopotential model, taking account of short-range quantum effects
and long-range screening-field effects, is employed to include quantum mechani-
cal and polarization effects. An analytical formula for the Coulomb logarithm is
proposed when the thermal de Broglie wavelengths are rather smaller than the De-
bye radius. A minimum in the curve of electrical conductivity is found and some
physical evidence for its appearance is produced.

1. Introduction

Theoretical studies of the thermodynamic and transport properties of dense high-
temperature plasmas, encountered in inertial-confinement fusion experiments and
in the interiors of main-sequence stars, are of great importance. Knowledge of
these properties proves to be necessary for the description of various processes. For
the time being, to obtain this knowledge, both computer simulation methods, i.e.
Monte Carlo experiments (see e.g. [1]) and molecular dynamics (see e.g. [2]), and
standard theoretical approaches such as the Ornstein—Zernike relation (see e.g. [3]),
Green functions (see e.g. [4]), and the density-response formalism (see e.g. [5-7]),
are widely used.

In this paper, we study the transport properties of semiclassical two-component
plasmas that are typical of the solar interior and inertial confinement fusion. Such
plasmas generate pressures of approximately 10° Mbar and temperatures of about
107 K. As a result, quantum mechanical and polarization effects play significant
roles in determining the characteristics of the plasma medium. It should also be
stressed here that under these conditions, a plasma is found to be in a weakly
coupled state and nonideality effects are irrelevant to its consideration. For strongly
coupled plasmas, the local field correction must be taken into account (see e.g. [8,9]).

2. Dimensionless plasma parameters.

In this paper, a two-component plasma consisting of ions (with electric charge Ze,
mass m;, and number density n;) and electrons (with electric charge —e, mass m.,
and number density n. = Zn;) is considered. The ionic subsystem of the plasma
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may be characterized by the average interparticle spacing

. 1/3
3
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and the dimensionless Coulomb coupling parameter

Ze)?
- Ze) , (2.2)
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where T is the plasma temperature and kp is Boltzmann’s constant.
The electron subsystem may also be described by two dimensionless parameters:
the density parameter

. 1/3 2
3 Mmee
s = : 2.3
" <47m@ ) h? 23)
and the degeneracy parameter
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where Er is the Fermi energy of electrons and £ is Planck’s constant.

In this paper, a hydrogen plasma (Z = 1) with r; ~ 1 and I' ~ 1 is studied. From
(2.4), it follows that 6 ~ 1, and consequently degeneracy effects should be taken
into account.

3. Pseudopotential model

In the theory of a semiclassical fully ionized plasma, effective potentials are used to
investigate the thermodynamic and transport properties. These pseudopotentials
conventionally mimic quantum effects of diffraction and symmetry at short dis-
tances [10,11]. In particular, Deutsch and co-workers proposed the following form
of the effective potential of plasma particle interaction:

2
GE % {1 —exp(—;>:| +(5ae(5bek‘BTln2exp( T), (3.1)
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where e, and e, are the electric charges of the interacting pair, /\ab:h/(QﬂuakaT)l/2
is the thermal de Broglie wavelength, i, = mgmy/(mg + my) is the reduced mass
of the interacting pair, and 94 is the Kronecker delta.

There also exist another type of pseudopotentials (such as the Debye-Hiickel
potential and that proposed by Baimbetov et al. [12,13]), which simulate long-
range polarization effects at large distances.

Starting from the pseudopotential (3.1), Arkhipov et al. [14,15] constructed a new
pseudopotential model that incorporates both quantum and polarization effects.
Specifically, the Fourier transform of this pseudopotential is written as

b (k I 1 L] 1 1
eelk) = 74 K21+ K2A2,) ks, [(1+E2AZ)(1+K20Z) (1 + k22,2
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are the Debye screening radii of electrons and ions respectively, and
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Expressions for ®@g(r) in ordinary configuration space can be obtained from (3.2)—
(3.5) with the aid of the Fourier transform:
1

Dyp(r) = Gy

/dk(i)ab(k) exp(iker).

Subject to Aii, Aeiy Aee € T'Di, TDe, the Fourier transformation can be performed
analytically, and gives rise to the following simple form:

Dyp(r) = ea:b [exp <—7;> — exp (—;b)]

2
+84e0bekBT In 2 exp <_)\2:rlr12> , (3.6)

This expression differs from (3.1) by the presence of the exp(—r/rp) term in the
brackets instead of 1.

4. Electrical conductivity

It is well known that the static structure factors are important characteristics of
physical systems and may be used for calculation of both thermodynamic func-
tions and transport properties. Arkhipov and Davletov [14] proposed the following
analytical expression for Sqp(k):

Sun(k) = 8ap — “E o B (k). (4.1)

where @y (k) is expressed through (3.2)—(3.5).
After neglecting terms quadratic is Agp/7p in the case of Ai;, Aeiy Aee < TDi, T'Des
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Figure 1. Normalized electrical conductivity o™ of a hydrogen plasma at rs = 0.4: (1) (4.5)
with (4.1); (2) (4.5) with (4.7); (3) Iyetomi et al. [16]; (4) Baus et al. [17]; (5) Boercker et
al. [18].

the static structure factors are simplified to

2
,
See(k) =1— — D 4.2
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with r~ =rp. + 0.

In the second Sonine polynomial approximation, the normalized conductivity o*
of a plasma can be written down [16], in the form

. 1/2
o 3m 1
* = =193 = S— 4.5
7 Wpe < 2 ) 471'1—‘3/2_[/ ( V))

where wye = (4mn.e’/m.)'/? is the electron plasma frequency and L is the gen-
eralized Coulomb logarithm. In a memory-function formalism coupled with the
Green—Kubo formula, the generalized Coulomb logarithm is related to the static
structure factors Sgp(k) via the simple formula [17]

L= /°° dk [See(k)Sii(k) — SZi(k)]
0o kK (1+k2X2,)2 '
Formulae (4.1) and (4.6) provide a simple calculation scheme for the general-
ized Coulomb logarithm L and the electrical conductivity (4.5) of a dense high-
temperature plasma.
Substituting (4.2)—(4.4) into (4.6), one can derive the following simple expression

for L:
D 1
L=In|{—|—-. 4.7
n()\m) 2 (4.7

In Figs 1 and 2 we plot the electrical conductivity (4.5) of a hydrogen plasma with

(4.6)
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Table 1. The normalized electrical conductivity o* of a hydrogen plasma based on (4.6)
and the expressions for the static structure factors (4.1).

rs =04 rs = 0.5 rs = 0.6
T o* T o* r o*
0.59 3.1835 0.69 2.5823 0.79 2.1814
0.60 3.1824 0.70 2.5815 0.80 2.1809
0.61 3.1818 0.71 2.5810 0.81 2.1806
0.62 3.1817 0.72 2.5808 0.82 2.1805
0.63 3.1822 0.73 2.5809 0.83 2.1806
0.64 3.1831 0.74 2.5813 0.84 2.1809
0.65 3.1844 0.75 2.5820 0.85 2.1814

Figure 2. Normalized electrical conductivity o™ of a hydrogen plasma at rs = 1.0: (1) (4.5)
with (4.1); (2) (4.5) with (4.7); (3) lyetomi et al. [16]; (4) Baus et al. [17]; (5) Boercker et
al. [18].

the generalized Coulomb logarithm (4.6) and compare it with the results of other
methods. From Figs 1 and 2, it is clear that the simple analytical expression for
the electrical conductivity obtaining from formula (4.7) fits very well for small I'
(Table 1).

Boercker et al. [18] considered electrons to be a classical subsystem, and therefore
the results of this work are invalid for 8 < 1. If the Fermi degeneracy effect is
weak (0 > 1), then the electrical conductivity, evaluated in [18] shows fairly good
agreement with the results presented here. From Figs 1 and 2, one can see that for
0 <1 (orI' > 1), the electrical conductivity (4.6) with the structure factors (4.1)
matches with the data from [16], where the quantum density-response formalism
has been used and the exchange effects are included through the Fermi distribution
function of electrons.

It is easy to see that a minimum appears in the curve of the electric conductivity.
Analogous behaviour of the normalized electric conductivity has been observed by
Iyetomi et al. [16] and Boercker et al. [18]. The occurrence of a minimum in the
curve of the electric conductivity has the following clear physical sense. It is well
known that the scattering of electrons from ions plays an essential role in determin-
ing the plasma conductivity. In electron—ion interaction, the electrostatic forces,
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which in a plasma have a characteristic radius of action rp (the Debye radius), are
attractive forces, whereas quantum effects, which have a characteristic radius of
action A, lead to the appearance of repulsive forces in complete accord with (3.1).
The minimum location is thus determined by the equating of characteristic radii
of action of the repulsive and attractive forces, rp = A¢;, which ultimately leads to
the following condition for the dimensionless parameters:

1—‘min ~ \/ %ﬂ-rs- (48)

It follows from the analysis of Table 1 that the estimate (4.8) fits better for smaller
density parameters 75, because then the quantum effects play more important role.

5. Conclusions

In this paper, the electrical conductivity of high-temperature two-component plas-
mas has been investigated, and the results have been compared with other methods.
It has been shown that the present results agree fairly well with the data of Iyetomi
et al. [16], where the quantum density-response formalism was used. Unlike the
work of Iyetomi et al., in which the degeneracy effects were taken into account via
the Fermi distribution function of electrons, we have taken into consideration these
effects in the interparticle potential (3.2)—(3.5). The analytical expression for the
generalized Coulomb logarithm has been found for separable scales of action of the
quantum and screening effects. It should be emphasized that the simple analytical
expression for the electrical conductivity achieving from (4.7) fits very well with the
more general formula (4.6) for small I'. The location of the minimum in the curve
of the electrical conductivity has been found, and its appearance is determined by
the equality of the electron—ion de Broglie wavelength and the Debye radius.
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