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Inactivity time is a reliability conception dual to the residual lifie this article we
establish some stochastic comparisons on inactivity time and the residual life of
series and parallel systeprespectivelySome applications are presented as well

1. INTRODUCTION

Series and parallel systems are two familiar reliability structukeseries system
functions if and only if each of its components functipwhereas a parallel system
functions if and only if at least one of its components functidngractical situa-
tions one often meets two basic systerassystem composed of used units and a
used systenLi and Zhand 5] have proved that the life of a parallel or series system
composed of usediid. elements is stochastically larger than that of a used parallel
or series systensimilar results were also derived for the inactivity tinRecently
Pellerey and Petak¢§] obtained a more general conclusiarhich asserts that the
life of a coherent system composed of used elements is stochastically larger than that
of a used coherent systein this article we establish some stochastic comparison
results on their inactivity time and residual life for parallel or series systespec-
tively. The results of Li and Zhan] are improved in the sense that the residual life
of a parallelseries system composed afid. used elements is larg&gmalle) than

that of a used paralléseries system of ii.d. elements in likelihood ratio ordeFhe
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hazard rate order is proved to be valid when the concerned systems are of indepen-
dent but not identical elementSome related applications are presented as well

Throughout this articlghe termsncreasinganddecreasingnean nondecreas-
ing and nonincreasingespectivelyAll random variables under consideration are
restricted to nonnegative cases

For conveniencedet us first recall some key definitions and well-known notions
which will be useda/0 is taken to be equal tw whenevera = 0.

Let X andY be two random variables with absolutely continuous cumulative
distribution functionsF(x) and G(x), respectivelyand probability density func-
tions f(x) and g(x), respectively Denote their survival functions b¥§(x) =
1— F(x) andG =1 — G, respectively

DEFINITION 1:

1. X is said to be smaller than Y in stochastic dominance order (denoted by
X =4Y)ifF(x) = G(x) for all x.

2. Xis said to be smaller than Y in hazard rate order (denoted b, XY) if
G(x)/F(x) is increasing in x.

3. X is said to be smaller than Y in reversed hazard rate order (denoted by
X =,,Y)if G(x)/F(x) is increasing in x.

4. X is said to be smaller than Y in the likelihood ratio order (denoted by
X =, Y)if g(x)/f(x) is increasing in Xx.

For ease of referenceelations among these orderings are presented as follows
(see e.g., Shaked and Shanthikumid]):

X S" Y = XSth
[l 1l
X=nY = X=gY.

2. MAIN RESULTS

AssumeX andY, two component lifetimgsto be mutually independent random
variablesthe lifetime of a parallel system composeddndY can be expressed as
max{X, Y} and the lifetime of a series system composeX ahdY can be expressed
as min{X,Y}. The residual lifg Rosq 7]) and the inactivity timéIT) (Chandra and
Roy [3], Block, Savits and SingH2]) of the used components with age 0 are
respectively defined as

Xi = (X=t|X>1), Xpy = (t=X[X=1t); ()
their survival functions can be represented as
P(X;, > x) = F(x+t)/F(t), P(Xy) > x) = F(t —x)/F(t), (2)

whereF andG are survival functions oK andY, respectively
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Assume thaX andY are mutually independerit is obvious that
maX{XhYt}’ min{xt,Yt}

give respective random lives of the parallel and series systems of used components
and their residual lives are

(max{X, Y}y,  (min{X,Y}).
The expressions
max{X), Y}, min{Xq, Y}

present the maximum and the minimum of two inactivity tigespectivelyand
their respective inactivity times are

(max{X, Y}, (MIn{X,Y}) ).

It is obvious that

B MInEYY) = ) F(x+t)G(x+1t)
((Min{X, Y} > x) = EOGt)
BN Y = x) = F(xX+t)G(x+1t)
(mln{ ts l} X)_ 'f(t)G(t) )
SO
(min{X, Y}, 2 min{X.Y,}, t=0. (3)

Now, we present our main results
THEOREM 1: Assume that X and Y are i.i.d., then, for a#t0,
(max{X, Y} =, max{X, Y;}. (4)
Proor: Since

_ F2(x+1t) —F3(1)

P(max(X, Y} ==~ > o, x=0
F(x+1)—F(t)\?
P(max{Xt,\ﬂ}Sx)=<1_—|:(t)>, Xx=0,

their probability density functions are respectively
d F2(x+t)—F2(t)) 1 (d 5 )
N — _ +
dx< 1-F2(t) 1-F2p\ax XY
_ 2F(x+)f(x+1t)
O 1-FA(1)
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and
i(F(ert)—F(t))Z: 1 E(F(x+t)—|:(t))2
dx 1-F(t) (1—F(t))? dx
2(F(x+1) — F(t)f(x+1)
B (1= F(1)?
Note that

2(F(x+t)—F(t))f(x+t)[2F(x+t)f(x+t)}—1
(1-F(1)? 1-F2(t)

_ F(x+1t)—F(t) 1-F?(1)

 (1-F@1)?2  F(x+1)

_1+F(t)<1 F(t) >
T1-F@O)\T F(x+1)

is increasing irx. Thus the desired relation ifd) is valid.
THEOREM 2: Assume that X and Y are i.i.d.; then, for at:tO,
(max{X, Y}, =r max{Xq, Yo} (min{X,Y}) ) =, min{X), Y }.

Proor: Note that

((max{ 9 })(l)—x)_ Fz(t) ) =X=0,
F(t—x))\?
P(max{Xm,Y(t)}sx)=<1— F(O ) t=x=0,

and their probability density functions are respectively

d (1_ Fz(t—x)> _2F(t=x)f(t—x)

dx F2(t) F2(1) ’
£<l_ F(t—X)>2 ~2(F(t) —F(t—x)f(t—x)
dx Fy ) F2(t) '
Because
2(F(t) — F(t—x) f(t —x) [ZF(t— x)f(t— ><)]‘l __F®
F2(t) F2(1) SRt

is obviously increasing i, this yields the first relation ir5).
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Now, we turn to the second one

. 1-F2(t—x)

P((mln{X,Y})(t) =x)=1- ?_Z(t), t=x=0,
_ F2(t—x)

P(min{Xq, Yot =x) =1- TFap

Their respective probability density functions are

d < B 1—|52(t—x)> _ 2F(t—x)f(t —X)

dx 1-F2(1) 1-F2(t)
E(l— F2(t—x)> _2F(t=x)f(t—x)
dx F2(t) ) F2(t)
Since
2F(t—x)f(t—x) [ZF(t— x)f(t—x)}1
1-F2(t) F2(t)
~ F2(t) F(t—x
~ 1-F2(t) F(t—x)
) ( 1 1)
S 1-F2(t) \F(t—x)
is increasing irx, this yields the second relation (). u

In the following, we will consider the case th&tandY are assumed to be only
independent

TueoreEM 3: Assume that X and Y are independent (not necessarily identical); then,
forallt =0,

(max{X,Y}); =n max{X;,Y}. (6)
ProoF: Since

1-F(x+t)G(x+1t)
1-F()G(t) ’

lf(x+t)><1 G(x+1t)
F(t) -G

X=0,

P((max{X,Y}); > x) =

P(max{X;,Y;} >x)=1— <1— ), x= 0,
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it can be verified that

L (l If(ert)><1 G(x+t)> 1-F(x+t)G(x+1t)]?
[_ ~F() G M 1-F(1)G(t) ]

_1-F()G(t) F())G(x+1) + G(HF(x+1t) — F(x+ t)G(x + 1)
 EM)G() 1-F(x+t)G(x+t)
_1-F(1)G(1) (1— F(t)G(x+t)+G(t)|f(x+t)>
FH)G() 1-F(x+t)G(x+1)

is increasing ik = 0, and so we obtain the inequality (6). u

THEOREM 4: Assume that X and Y are independent (not necessarily identical); then,
forallt =0,

(max{X,Y}) ) =n max{X), Y}, (MIn{X, Y} ) =p min{X), Yot (7)
Proor: The survival functions of the concerned random variables are respectively

F(t—x)G(t —x)
FOG(t)
F(t—x) N G(t—x%x) F({t—xG(t—x)
F(t) Gty  FMG(H)

P((max{X,Y})q) > X) = t=x=0,

Note that
( F(t—x) N G(t—x) B F(t—x)G(t— x))[ F(t—x)G(t— x)}—l
F(t) G(1) F(H)G(1) F(H)G(1)
G(t)F(t—x) + G(t —x)F(t) — F(t —x)G(t — x)
F(t—x)G(t—x)

~ G() N FO
C G(t—x)  F(t—x)

is obviously increasing iw; thus the first inequality in(7) is obtained
Since

1-F(t—x)G(t—x)
1-Ft)G@H) 7

F(t—x)G(t—x)
FOG()

P((min{X,Y}) ) > Xx) =

P(min{X«), Yo} > x) =
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and
1-F(t—x)G(t—x) [ F(t—x)G(t— x)]l
1-F(t)G(1) F(t)G(t)
1-F(t—x)G(t—x) F(t)G(t)
1-F(t)G(t) F(t—x)G(t—x)
F(t)G(t) 1-(1-F(t—-x)Q-G(t—x)
C1-F@1)G(1) F(t—x)G(t—X)
_ F(E)G(E) < 1 N 1 —1)
1-FOGH)\F(t—x) G(t—x) ’
it is increasing irx. The second relation ifi7) is reduced also |

Remark: In fact, Theorems 1—-4 are available for parallel and series systems com-
posed ofn components

3. SOME APPLICATIONS

In this sectionwe present some interesting application results of our main theorems
in Section 2 They are closely related to some aging conceptions and arranged into
three separate partSor conveniencewe first present these aging conceptions as
follows.

DEFINITION 2:

1. An absolutely continuous random variable X ha®falya frequency of
order 2(PF2) if it has a log concave density function.

2. Arandom life X with distribution function F is said to bein€reasing failure
rate(IFR) (decreasing failure raf@®FR)) if its hazard rate function(x) =
f(x)/F(x) is increasing (decreasing) on its interval of support.

3. Arandom life X is said to be afecreasing reversed hazard rdd&®HR) if its
reversed hazard rata(x) = f(x)/F(x) is decreasing in time% 0.

For more details on PF2 and IFRefer to Barlow and Proschaf]; for details
on DRHR see Chandra and R¢$]. It should be pointed out that

Xis PF2= Xis IFR= Xis DRHR

Application 1: Theorem 1C.22 of Shaked and Shanthikun{&i stresses thafor a
nonnegative random variab}e

Xis PF2 ifandonlyifX=, X,, forallt=0. (8)

SupposeX andY are mutually independent and identical PF2 random Jitheen
XZIr Xt’ YZIr Yt’ t=0.
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By Theorem 1C.9 of Shaked and Shanthikuma], we havefor all t = 0,
min{X, Y} =, min{X,,Y;}

and
max{X,Y} =, max{X,Y;}.

In combination with(3) and Theorem 2t holds thaf for all t = 0,
min{X,Y} =, (min{X, Y}),

and
max{X,Y} =, (max{X,Y}).

By (8) again PF2 is preserved under both the formation of parallel systems and that
of series systems withiid. components

Application 2: One characterization of IFRDFR) [8, Thm. 1.B.19] is given as
follows:

Xis IFR(DFR) if and only if X =, (=) X, forallt = 0. (9)
Suppose&X andY are mutually independent IFEDFR) random livesthen
X = (=h) Xy Y=, (=) Y, t=0.
By Theorem 1B.3 of Shaked and Shanthikumfa], we have
(MIin{X, YY) =, (=) Min{X,, Y;}, t=0.
In combination with(3), it holds that
min{X,Y} =, (=) (Min{X,Y}),, t=0.

By (9) again IFR and DFR are both preserved under the formation of series systems
of independent components which are not necessarily identical

Theorem 1B.4 of Shaked and Shanthikumf8] asserts the followinglf
(X,Y;)(i=1,...,n) are mutually independent aixd(Y;) (i=1,...,n) are identical
thenX; =, Y; for every pair of(i, j ) implies thatX =y, Y forallr =1,...,n.In
a completely similar manngt can be showjthrough Theorem,3hat IFR and DFR
are both preserved under the formation of parallel systemsadfédomponents

In fact, Grosh[4] has obtained an analytical proof for the preservation property
of IFR under the formation of parallel systems o6fd. componentslit should be
pointed out here that the preservation of IFR under parallel systems is not satisfied
when the components are not identically distributédis is shown in the well-
known counterexamplil].
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Application 3: It can be shown that is DRHR if and only if its inactivity timeX,
is increasing irt = 0. Shaked and Shanthikumi@] presented one of their charac-
terizations in Theorem.B.32(ii) as follows

Xis DRHR if and only ifX =, X;, forallt= 0. (20)
Suppose&X andY are ii.d. DRHR random livesthen
X=X, Y=Y, t=0.
By Theorem 1B.23 of Shaked and Shanthikunm&], we have
max{X,Y} =,, max{X.,,Y.}, t=0.

Note that the likelihood ratio order implies the reversed hazard rate;ondesm-
bination with Theorem it holds that

max{X,Y} =, (max{X,Y}),, t=0.

By (10) again DRHR is preserved under the formation of parallel systems.df i
components
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