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ABSTRACT
In this paper, longitudinal and lateral-directional aerodynamic characterisation of the Cropped
Delta Reflex Wing (CDRW) configuration−based unmanned aerial vehicle is carried out by
means of full-scale static wind-tunnel tests followed by full-scale flight testing. A predecided
set of longitudinal and lateral/directional manoeuvres is performed to acquire the respective
flight data, using a dedicated onboard flight data acquisition system. The compatibility of
the acquired dynamics is quantified, in terms of scale factors and biases of the measured
variables, using Kinematic consistency check. Maximum likelihood (ML), least squares and
newly emerging neural Gauss−Newton (NGN) methods were implemented for a wing-alone
delta configuration, mainly to capture the dynamic derivatives for both longitudinal and lateral
directional cases. Estimated damping and weak dynamic derivatives, which are in general
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challenging to capture for a wing alone configuration, are consistent using ML and NGN
methods. Validation of the estimated parameters with aerodynamic model is performed by
proof-of-match exercise and are presented therein.

Keywords: Reflex wing; Delta configuration UAV; Parameter estimation; ML; LS; NGN
methods

NOMENCLATURE

ax, ay, az Body axes accelerations, m/s2

CD, CL, CY Drag, lift and side force aerodynamic coefficients

CD0 , CL0 , CY0 Non-dimensional parameter constants of lift, drag and side force at zero
angle-of-attack

CL(.) , CY(.) , CD(.) Non-dimensional derivative of lift, side and drag force coefficients

Cl, Cm, Cn Rolling, pitching and yawing moment coefficients

Cl0 , Cm0
, Cn0 Non-dimensional constant of rolling, pitching and yawing moment at

zero angle-of-attack

Cl(.) , C
m(.)

, Cn(.) Non-dimensional derivative of rolling, pitching and yawing moment
coefficients

α, β Free stream angle-of-attack and sideslip angle, degree

x, y, z Position variable of UAV w.r.t inertial frame, m

�, θ , ψ Euler angles of UAV w.r.t inertial frame, degree

u, v, w Body axes velocity components of UAV, m/s

p, q, r Body axes Euler rates (roll, pitch and yaw), rad/s

δa, δe, δr Aileron, elevator and rudder deflection angles, degree

Ix, Iy, Iz Body axes moment of inertia components along x-y-z axis, kg-m2

Ixz Cross moment of inertia components in x-z plane, kg-m2

ĉ Mean aerodynamic chord, m

g Acceleration due to gravity, m/s2

k Correction factor in induced drag

m Mass of UAV, kg

S Reference wing area, m2

J Cost function

T Thrust, N

V Free stream velocity, m/s

Z Measured Flight flight Datadata

ρ Free stream density, kg/m3

	 Vector of Aerodynamic aerodynamic parameters to be estimated

λ Taper ratio

(·) Time derivative
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1.0 INTRODUCTION
Unmanned aerial vehicles (UAVs) are playing an increasingly important role in both civilian
and military operations. This remarkable development of UAVs is largely due the operational
ease, cost-effectiveness and increased control capabilities in the field with its unmanned
flight. Common military applications of UAV include reconnaissance, surveillance, com-
bat, rescue, battle damage assessment and communications relays. Design of UAV is quite
robust in its development and presents vast research opportunities(1), depending upon mis-
sion requirements or selection of design and configuration. These design considerations are
based on aerodynamic characteristics, performance evaluation, stability-control analysis, sim-
ulation and structural stress analysis. Traditionally analytical methods, wind-tunnel testing,
Computational fluid dynamics (CFD) analysis and flight tests are used to develop the aero-
dynamic database for designing the most efficient autonomous flight controllers. A database
of aerodynamic parameters, which characterise the performance of the flight vehicle, helps in
the diagnosis of the design of the UAV and its autonomous capability.

Theoretical estimates of aerodynamic parameters depend upon historical database and
analytical expressions, which are less accurate and need to be verified with experiments. The
generated aerodynamic database from wind-tunnel tests needs corrections such as wall/sting
interference, scale factor, and Reynold’s number duplication, etc. to name a few. Experimental
measurements or CFD analyses are limited to the estimation of static aerodynamic parame-
ters and are complementary during preliminary design phase(2). Parameter estimation from
flight data not only addresses the aforementioned issues, but it also enhances the accuracy
and comprehensiveness of the aerodynamic model structure of the flight vehicle. Estimation
of parameters for small UAVs is a research area of constant exploration(3). Constrained
parameter optimisation algorithm is traditionally used to estimate aerodynamic parameters
from the flight tests of a conventional fixed-wing UAV. Suk et al details a comparison of per-
formance for extended Kalman filter (EKF), simplified and augmented versions of unscented
Kalman filter (UKF) methods in time domain for estimating the parameters from the flight
data of fixed-wing aircraft (HFB-320) and a rotary-wing UAV (ARTIS)(4,5). Condomines et
al uses UKF technique to estimate wind field and aerodynamic parameters of a small-scale
glider UAV (Solius glider)(6). Meng et al extends the application of iterated EKF technique to
estimate the parameters from simulated non-linear flight data of a small fixed-wing UAV(7).
Dorobantu et al identifies aerodynamic parameters of a low-cost, fixed-wing UAV (Ultra
Stick 25e) by fitting the model to frequency responses extracted from the flight data(8).
Padayachee et al discusses the regression analysis and maximum likelihood (ML) method
to perform aerodynamic model identification of a twin-boom electrically powered fixed-wing
UAV from flight data(9). Chase et al demonstrates estimation of longitudinal aerodynamic
force coefficients using least squares (LS) and Kalman Filter regression models from flight
tests of fixed-wing UAV(10). Hoffer et al elaborates on recursive least squares algorithm with
error filtering−based online learning scheme to develop the aerodynamic model of a low-cost
fixed-wing T-tail UAV(11). Jameson et al addresses the effects of reconstruction and differenti-
ation of state variables on the reliability of estimated parameters, using simulated flight data of
Aerosonde UAV (fixed-wing twin-tail-boom UAV)(12). Tieying et al proposed modified parti-
cle swarm optimisation methodology to carry out the longitudinal parameter identification of
a small UAV from flight tests(13). Hemakumara et al proposed non-parametric approach based
on multi-output local and global Gaussian process approximations to estimate the parameters
from flight tests of a fixed-wing UAV (Brumby Mk-III UAV) with canard configuration(14).

Majority of the system identification research on UAVs has been carried out using clas-
sical estimation techniques such as ML, LS and Kalman filter methods. Fixed-wing UAVs
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considered for parameter identification research correspond only to conventional configura-
tions. Black-box estimation methods based on artificial neural networks (ANNs) have also
been successfully used for the identification problems for both fixed- and rotary-wing air-
crafts and are gaining acceptability in research and industry(15–19). Peyada et al proposed a
neural Gauss−Newton (NGN) method for parameter estimation of flight vehicles that are
validated for low angles of attack flight data of manned (Hansa-3 and ATTAS) aircrafts(20,21).

This work extends the application of LS, Maximum Likelihood Estimation (MLE) and
NGN methods for parameter estimation for unconventional UAV from the longitudinal and
lateral-directional flight tests data, with flow angles measured explicitly. This paper presents
a full-scale wind-tunnel test of Cropped Delta Reflex Wing configuration to analyse the aero-
dynamic model structure that needs to be postulated a priori for parameter estimation from
flight data. The estimated responses of the motion variables using NGN method are compared
with the classical ML and LS methods for their longitudinal and lateral/directional dynam-
ics. Confidence levels in the estimated parameters were quantified by means of respective
Cramer-Rao bounds(2). To examine the consistency of estimates from the three methods, a
scatter plot, along with the mean and standard deviation, is presented. Finally, the estimates
and the aerodynamic model are validated by means of a proof-of-match exercise.

2.0 UAV DYNAMICS
This section presents a brief description of the aircraft longitudinal and lateral-directional
dynamics of the CDRW UAV. Rigid-body equations of motion are used to define the kinetics
of the UAV. Although coupled six degrees of freedom (DOF) equations are required to define
the complete dynamics of UAV, Equations (1)–(4) and Equations (5)–(8) are used during the
simulation of CDRW, with the assumption that the longitudinal controls/disturbance will not
affect the lateral-directional dynamics and vice versa(22).

V̇ = ρsV 2

2m
CD + T

m
cosα + gsin (θ − α) . . . (1)

α̇ = −ρsV

2m
CL + q − T

mV
sinα + g

V
cos (θ − α) . . . (2)

q̇ = ρsV 2ĉ

2Iy
Cm + MThrust . . . (3)

θ̇ = q . . . (4)

β̇ = −ρsV

2m
CY − r + T

mV
sinβ + g

V
sin (θ − α) . . . (5)

ṗ =
(

1

JxxJzz − J2
xz

)
{Jzz L+ Jxz N} . . . (6)

ṙ =
(

1

JxxJzz − J2
xz

)
{Jxz L+ Jxx N} . . . (7)

φ̇ = p . . . (8)
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where V = √
u2 + v2 + w2 is the true airspeed, α is the angle-of-attack, β is the sideslip angle,

θ is the pitch angle, φ is the roll angle, p is the roll rate, q is the pitch rate, r is the yaw rate, T is
the thrust input, ρ is the air density, s is the wing surface area, b is the span of the wing and ĉ is
the length of the wing chord. Ix denotes the moment of inertia along x-axis, Iy is the moment
of inertia along y-axis, Iz is the moment of inertia along z-axis and Ixz is the cross-coupled
moment of inertia about x-z plane. MThrust is the moment created by the engine thrust, and
the variables obtained from the longitudinal motion model are considered as pseudo control
variables.

The aerodynamic force and moment coefficients appearing in Equations (1)–(8) are
modelled as follows(22):

CL = CL0 + CLαα+ CLq

(
qĉ

2V

)
+ CLδe δe . . . (9)

CD = CD0 + kC2
L . . . (10)

Cm = Cm0 + Cmαα+ Cmq

(
qĉ

2V

)
+ Cmδe δe . . . (11)

CY = CY0 + CYβ β + CYr

(
rb

2V

)
+ CYp

(
pb

2V

)
+ CYδr δr + CYδa δa . . . (12)

Cl = Cl0 + Clβ β + Clr

(
rb

2V

)
+ Clp

(
pb

2V

)
+ Clδr δr + Clδa δa . . . (13)

Cn = Cn0 + Cnβ β + Cnr

(
rb

2V

)
+ Cnp

(
pb

2V

)
+ Cnδr δr + Cnδa δa . . . (14)

where δe is elevator deflection, δr is rudder deflection and δa is aileron deflection. Induced drag
correction factor k, in Equation (10), is taken as an input from wind-tunnel measurements,
with a considered value of 0.12.

The vectors 	LG in Equation (15) and 	LD in Equation (16) consist of the set of
longitudinal and lateral-directional parameters, respectively, that are to be estimated

	LG = [
CL0 CLα CLq CLδe CD0 Cm0 Cmα Cmq Cmδe

]T
. . . (15)

	LD = [
CY0 CYβ CYr CYp CYδr Cl0 Clβ Clr Clp Clδr Clδa Cn0 Cnβ Cnr Cnp Cnδr

]T
. . . (16)

where CYδa , Cnδa are identified to be negligible from wind-tunnel data and hence are not
considered during the process of parameter estimation.

3.0 PARAMETER ESTIMATION METHODS
This subsection describes the estimation techniques, namely ML, LS and NGN methods,
used for longitudinal and lateral-directional aerodynamic characterisation of CDRW UAV
from flight data. For the estimation of parameters using LS and NGN methods, the non-
dimensional aerodynamic force and moment coefficients are required as an input. Since
these aerodynamic coefficients cannot be measured directly during flight test, Equations
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(17)–(24), which are a function of measured variables, are used to obtain the aforesaid
coefficients(23).

CX (k) = (
maXCG (k) − T

)
/q̂(k)S . . . (17)

CZ(k) = maZCG (k)/q̂(k)S . . . (18)

CL(k) = CX (k)sinα (k) − Cz(k)cosα (k) . . . (19)

CD(k) = −CX (k)cosα (k) − CZ(k)sinα (k) . . . (20)

Cm(k) = [
Iyq̇(k) − Ixz

(
p2(k) − r2(k)

) − (Iz − IX ) p(k)r(k)
]
/
(
q̂(k)ĉS

)
. . . (21)

CY (k) = maYCG (k)/q̂(k)S . . . (22)

Cl(k) = [
Ixṗ(k) − Iyz(q

2(k) − r2(k)) + (Iz − Iy)r(k)q(k)
]
/
(
q̂(k)bS

)
. . . (23)

Cn(k) = [
Izṙ(k) + Ixy(q2(k) − p2(k)) + (Iy − Ix)p(k)q(k)

]
/
(
q̂(k)bS

)
. . . (24)

where aXCG , aYCG , aZCG denote the net accelerations along x, y and z axes in body frame;
CX , CY , CZ are the force aerodynamic coefficients along x, y and z axes in body frame;
CL, CD, CY are the lift, drag and yawing force aerodynamic coefficients derived using
CX , CY , CZ and Cl, Cm, Cn are the roll, pitch and yawing moment aerodynamic coefficients
along x, y and z axes.

3.1 Least square method
The LS estimation is a classical methodology(2) that belongs to a class of equation error
methods. The LS method is not necessarily based on any statistical formulation but is often
characterised in statistical terms as estimates, denoted by random variables formulation. It is
denoted by the form:

Y = X	+ ε . . . (25)

where, Y is a N vector of response variable for data measurement points, X is an N × n
matrix of the state and input variables, 	 is a n vector of unknown parameters and ε is the
error in modelling. The LS solution will lead to the exact estimates of unknown parameters in
the absence of both measurement and process noise. The estimates determined using the LS
method solely depends on the cause−effect relationship in terms of dependent and indepen-
dent variables. Performance of the LS method also depends on the quality of data generated,
and it is assumed that independent variables are noise free, and dependent variables are cor-
rupted by a uniformly distributed noise. The LS solution of the unknown parameters (	) is
estimated by minimising the following cost function:

J(	)LS = 1

2
εTε= 1

2

[
Y T −	T X T

]
[Y − X	] . . . (26)
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where Y and X are vectors of dependent and independent variables, respectively, and ε is the
error in modelling(22). The solution to the LS estimate is given as:

	̂= (X T X )
−1

X T Y . . . (27)

3.2 Maximum likelihood method
Output error estimation method based on the ML function is a time-domain batch method-
ology, which is used to estimate aerodynamic parameters of aircrafts from flight tests(3,22,24).
The ML estimator requires a priori mathematical postulation of the flight dynamics accom-
panied by an accurate aerodynamic model, which is either a linear or a nonlinear function of
aerodynamic parameters. The ML-based methods are effectively used for aircraft parameter
estimation problems, even in the presence of noise in the measured flight data. The sys-
tem is corrupted by measurement noise, which is statistically independent and identically
distributed. In the presence of process noise, efficiency of ML estimates degrades due to
convergence problems. Desired control input for a manoeuvre is independent of systems
response and should sufficiently excite various modes of flight. The output vector of N
observations, which depends on the unknown parameter vector 	, comprises aerodynamic
parameters, initial conditions, measurement noise and process noise. Considering the mea-
surements to be fixed, probability density function is represented by a single parameter 	,
referred to as the likelihood function. ML method is defined as the study for which the out-
come of the experiment is most likely or the probability density function is maximised w.r.t	.
The parameters are estimated by maximising the likelihood function representing the proba-
bility density of observed variables. Therefore, the problem of finding a maximum likelihood
estimate becomes the problem of finding the 	 that maximises the likelihood function. The
ML algorithm requires the initial guess values of unknown parameters as an input, which
are subsequently optimised by means of Gauss-Newton algorithm. Cost function is defined
as(22,24)

J (	)=
(

1

2

) N∑
i=1

{
[Z (ti)− Y	 (ti)]

T
(
GGT

)−1
[Z (ti)− Y	 (ti)]

}
. . . (28)

where N is the length of data recorded, GGT is the covariance of measurement noise and
Y	 (ti) is the simulated response with given initial conditions and the guess values of unknown
aerodynamic parameters, 	.

3.3 Neural Gauss-Newton method
The NGN is one of the recent methodologies for parameter estimation, based on ANNs, that
has been applied to estimate both longitudinal and lateral-directional parameters of the current
UAV. The NGN estimation method is a time-domain post-processing technique that utilises
a feedforward neural network (FFNN) for a neural model utilised to predict the subsequent
behaviour of the flight vehicle over a period of time for given initial conditions(20–22,25,26).
The NGN training model is a point-to-point mapping of the input and output data to rep-
resent the flight dynamic model. The usage of neural model circumvents the need to use
a definitive mathematical description of the flight dynamics, thereby bypassing the numer-
ical integration of equations of motion. This particular feature enables the NGN method
to handle the process noise in the mathematical model. This neural model comprise of
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Figure 1. Neural architecture for building restricted flight dynamic model (26).

measured compatible flight data of the motion and control variables. This validated neu-
ral model, which is obtained post training, is used to compute response for any arbitrary
control input within the training boundary. This trained neural model is used to predict
subsequent motion variables at (k + 1)th instant for given measured initial variables at kth

instant (where k = 1 to n: n is the length of the data record). This approach is used to build
flight dynamic model, in a limited sense, from measured data for a given range of training
boundary.

The schematic of the neural architecture used during the training of longitudinal and lateral-
directional flight dynamic model of CDRW is presented in Fig. 1. Following vectors U(k) and
Z(k+1) in Equations (29) and (30), respectively, represent the input and output vectors for
neural training process

Uk = [Vk , αk , βk , �k , θk , k , pk , qk , rk , CDk , CY k , CLk , Clk , Cmk , Cnk]T . . . (29)

Zk+1 = [
Vk+1, αk+1, βk+1, �k+1, θk+1, k+1, pk+1, qk+1, rk+!, CDk+1,

CY k+1, CLk+1, Clk+1, Cmk+1, Cnk+1

]T
. . . (30)

The quality of the acquired flight data influences the performance and applicability of the
neural model. Tuning of these parameters requires proper attention to avoid over- or under-
training of the neural network. Careful selection of number of neuron in hidden layer as
well as iterations also plays a significant role while handling measured data corrupted by
noise(15–17,27). This trained neural model predicts the system output (Y	) corresponding to
assumed aerodynamic model and with measured initial conditions as an input. The initial
guess parameters are then optimised using Gauss-Newton algorithm, minimising the error
cost function(21,28,29).

4.0 MODEL SPECIFICATIONS
This section presents the inertial and geometric details of CDRW UAV.

A detailed design methodology adapted to develop CDRW is presented in Ref. (29).
The CDRW is a wing-alone blended-wing configuration with no horizontal stabiliser and a
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Table 1
Design, inertial and geometric details of CDRW UAV

Parameters Value

Span of the wing (b) 1.50 m

Wing reference area (S) 0.787 m2

Aspect Ratio ratio of the wing (AR) 2.9259

Root chord of the wing (cr) 0.90 m

Tapper ratio (λ) 0.1667

Wing Mean mean Aerodynamic aerodynamic Chord chord (c) 0.61 m

Span-wise location of MAC (ymac) 0.29 m

Weight (W) 35.81 N

Moment of Iinertia,

⎡
⎢⎢⎣

Ixx

Iyy

Izz

Ixz

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.235
0.088
0.361
0.009

⎤
⎥⎥⎦ kg − m2

Figure 2. Schematic planform view and side view of CDRW UAV(29).

dedicated fuselage. The cross-section of the wing is a NACA 23110 reflex aerofoil. Figure 2
represents the planform view and side view of the designed CDRW configuration. The control
surface, called as elevons located aft of the root chord, provide both longitudinal and lateral
control. Whereas, the all-movable vertical tail of high aspect ratio provides directional con-
trol. The high aspect ratio all movable vertical tail, located aft of the root chord, provides
directional stability and control. The cross-section of the dedicated all-movable vertical tail is
a symmetric NACA 0012 aerofoil. Geometric and design details of CDRW are presented in
Table 1.

5.0 WIND-TUNNEL TESTING
Prior to performing the flight tests, the CDRW model was subjected to full-scale wind-tunnel
testing at the National Wind Tunnel Testing Facility (NWTF), IIT Kanpur, to understand as
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Figure 3. CDRW model mounting in side test section of the NWTF.

well as to identify the form of static aerodynamic model structure and the respective parame-
ters. The cross-sectional dimensions of this low-speed closed-circuit wind-tunnel test section
is 3.0 m × 2.25 m(30). The β-mechanism of the test section, which is a cantilever structure sup-
ported by means of two coaxial turn tables, plays a vital role in the variation of angle-of-attack
and sideslip angles during the experiments.

During wind-tunnel tests, the forces and moments acting on the UAV are measured by
means of a six-component pre-calibrated load balance. Figure 3 presents the schematic and
the photograph of the model mounted on β-mechanism. It can be noticed that the rear-end
adapter holds the load balance with the β-mechanism, whereas the front-end adapter acts
as an interface between the load balance and the model. The front-end adapter transfers the
aerodynamic loads acting on the model to the balance and houses the balance during the tests.

Measurements of longitudinal static aerodynamic force and moment coefficients of CDRW
UAV were obtained by performing an alpha sweep test in which the angle-of-attack is varied
from −5◦ to 50◦ at a rate of 0.1◦ per second. Similarly, sideslip angle is varied from −15◦ to
15◦ at a rate of 0.1◦ per second for determining lateral-directional force and moment coef-
ficients. Through the wind-tunnel tests, it is made consistent that at least three data points
are collected between any two consecutive flow angles. Initially, a velocity sweep test from
5 m/s to 35 m/s with an interval of 3 m/s is performed on CDRW configuration. It is observed
that this specified range of velocity has no significant effect of Reynolds number on the aero-
dynamic force and moment coefficients. For all the wind-tunnel experiments, a Reynolds
number of 3.45 × 105 is maintained, with ĉ as the characteristic length.

The variation of non-dimensional lift, drag and moment coefficients with angle-of-attack of
CDRW UAV from the wind-tunnel tests is presented in Fig. 4. Figure 5 denotes the variation
of non-dimensional side-force, rolling and yawing moment coefficients with sideslip angle.
During these tests, the span of the model is accommodated along the width of the test section
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Figure 4. Generated longitudinal aerodynamic force and moment coefficients of CDRW(29).
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Figure 5. Generated lateral-directional aerodynamic force and moment coefficients of CDRW(29).

and made parallel to its floor/roof. Longitudinal and lateral-directional stability and control
derivatives derived from these wind-tunnel tests have been tabulated in Tables 4, 5 and 6,
along with the results from parameter estimation, using flight data.
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6.0 GENERATION OF FLIGHT DATA
Flight data generation is the process of recording the commanded inputs and the correspond-
ing response of the flight vehicle(22). Data gathering is one of the crucial aspects of flight
vehicle system identification, as the basic rule that applies to any system for parameter esti-
mation from experimental data is ‘If it is not in the data, it cannot be modeled’. This rule is
true irrespective of the type of flight vehicle, either manned or unmanned, considered for aero-
dynamic characterisation. It can be observed that the scope of parameter estimation technique
is limited by the quality of the generated flight data. The accuracy and reliability of the esti-
mated parameters depend on the amount of information available in the particular set of flight
data, irrespective of using either the classical or neural-based method. Proper instrumentation,
precise calibration and appropriate control input design play a vital role in the generation of
reliable flight data for parameter estimation. Rigorous flight tests have been performed with
the instrumented CDRW configuration in flight laboratory at IIT Kanpur. During flight tests,
predecided control inputs were applied in an attempt to excite the appropriate dynamics of
the CDRW UAV. These manoeuvres were executed about the trim velocities varying from
18 m/s to 25 m/s and thrust is held constant by holding the throttle stick at a constant position.
During the manoeuvres, the respective dynamics of UAV is captured by means of a dedicated
onboard data acquisition system, which is capable of on-board logging and data telemetry.
Lab-view platform has been used at the ground station to develop a graphical user interface
that facilitates real-time visualisation of telemetry data and also for an additional logging of
the received data.

The UAV’s motion variables, linear accelerations (ax, ay, az), body angular rates (p, q, r)
and Euler angles (φ, θ ,ψ), are measured by means of a nine-DOF inertial measurement unit
attached to the data acquisition system. Thrust and control surface deflections (δe, δa, δr) are
inputs recorded by tapping the pulse-density and pulse-width modulation signals from the
speed controller and servos, respectively.

Velocity and altitude of flight are obtained from two sets of measurements, one from pre-
calibrated absolute and differential pressure sensors attached to pitot and static tubes and
the other from Global positioning system (GPS) unit(29). The data acquisition system also
consists of six analog and digital input ports. Angle-of-attack (α) and angle of sideslip (β)
are measured by means of an in-house fabricated multi-turn potentiometer-based vane-type
sensors in the form of analog signals. The calibration details of the flow angle sensors, servos
and static thrust from the motor are detailed in Ref. (29).

The instrumented CDRW prototype along with the flight data acquisition system is pre-
sented in Fig. 6. Predefined control inputs are executed for the UAV trimmed at an altitude
of approximately 50–70 m and is verified in real time from the online display of flight
data. Following this approach, various modes of flight were executed during moderately
calm weather. A total of 12 sets of flight data were used, with six each for longitudinal and
lateral-directional parameter estimation using ML, LS and NGN methods, respectively.

Flight data classification is performed as follows: URW_LG1 to URW_LG6 for longitu-
dinal cases and URW_LD1 to URW_LD6 for lateral directional manoeuvres. URW in the
aforementioned flight data nomenclature denotes unmanned reflex wing, and LG and LD
denote longitudinal and lateral directional cases, respectively, followed by a numeric for
corresponding flight data set.

As mentioned previously, six sets of longitudinal flight data (URW_LG1-URW_LG6) and
six sets of lateral-directional flight data (URW_LD1-URW_LD6) are used to carry out the
compatibility check. Tables 2 and 3 present the obtained results of compatibility check for
longitudinal and lateral-directional flight data. It can be observed that the scale factors Kα and
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Figure 6. Instrumented CDRW configuration and the data acquisition system for flight tests.

Kβ are close to unity, biases are negligible for both the cases and the influence of system errors
on the measured motion variables is minimal. The corresponding lower values of Cramer-Rao
bounds, obtained as an output of the ML method, further enhanced the confidence level in
the acquired flight data of the CDRW configuration. The flight data measured by means of
sensors consist of motion variables, which are susceptible to systematic and random errors.
These measured data, corrupted with errors, cannot be used directly for parameter estimation,
since these introduce data incompatibility. An independent check needs to be performed to
verify the consistency of the measured variables. To estimate these errors, a kinematic consis-
tency check was performed by considering the measured accelerations and angular rates as an
input. This process of data compatibility check, which is also termed flight path reconstruc-
tion (FPR), is as an integral part of aircraft parameter estimation. The primary goal of FPR
is to identify the systematic errors and to make the flight data consistent prior to parameter
estimation.

A deterministic output error technique is used to estimate the set of unknown parameters
in terms of scale factors and biases. Vectors 	FPR_LG and 	FPR_LD in Equations (31) and
(32) represent the systematic errors estimated for longitudinal and lateral-directional cases,
respectively.

	FPR_LG = [
�ax �ay �az �p �q �r Kα �α

]T
. . . (31)

	FPR_LD = [
�ax �ay �az �p �q �r Kβ �β

]T
. . . (32)

Figures 7 and 8 present the measured and computed response of motion variables
(V , α, β, φ, θ ,ψ) obtained during the data compatibility check from flight data for longi-
tudinal and lateral-directional control inputs, respectively. It is observed from the figures that
most of the reconstructed state variables are a close match with the measured flight data.
The flight data were reconstructed after incorporating the centre of gravity shift, biases and
scale factors, and the resulting sets of compatible flight data are used to perform aerodynamic
characterisation by using parameter estimation methods.

7.0 RESULTS AND DISCUSSION
Six flight data sets with nomenclature URW_LG1 to URW_LG6, generated with various ele-
vator control inputs, are used to perform longitudinal aerodynamic characterisation using ML,
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Table 2
Data compatibility check for cropped delta reflex-wing longitudinal flight data

Parameters �ax �ay �az �p �q �r Kα �α

Units m/s2 m/s2 m/s2 rad/s rad/s rad/s - rad

URW_LG1 −0.0037 0.0118 0.0739 0.0004 0.0005 0.0001 0.9728 −0.0030
(0.002) (0.0028) (0.0023) (0.0001) (0.0001) (0.0001) (0.0018) (0.0003)

URW_LG2 0.0415 0.0560 0.0228 0.0004 −0.0011 0.0001 0.9360 −0.0020
(0.0013) (0.0008) (0.0019) (0.0002) (0.0001) (0.0004) (0.0007) (0.0001)

URW_LG3 −0.0151 0.0043 0.1198 0.0013 −0.0010 0.0009 0.9365 0.0044
(0.001) (0.0006) (0.0011) (0.0004) (0.0005) (0.0007) (0.0007) (0.0001)

URW_LG4 0.1664 0.0532 −0.0540 0.0054 0.0017 0.0008 0.9181 −0.0210
(0.0049) (0.0046) (0.0151) (0.0002) (0.0004) (0.0001) (0.0051) (0.0004)

URW_LG5 −0.0154 0.0147 −0.0401 −0.0011 0.0006 0.0012 0.9199 0.0051
(0.0003) (0.0009) (0.0008) (0.0008) (0.0001) (0.0005) (0.0013) (0.0001)

URW_LG6 −0.0209 0.0377 0.0531 −0.0010 0.0006 0.0012 0.9394 −0.0011
(0.0021) (0.002) (0.0027) (0.0001) (0.0001) (0.0001) (0.0013) (0.0003)

Values in parentheses represent Cramer-Rao bound.
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Table 3
Data Compatibility check for cropped delta reflex-wing lateral-directional flight data

Parameters �ax �ay �az �p �q �r Kβ �β

Units m/s2 m/s2 m/s2 rad/s rad/s rad/s - rad

URW-LD1 0.0133 −0.0118 0.0039 −0.0011 0.0021 0.0022 1.0037 0.0004
(0.0002) (0.0013) (0.0005) (0.0001) (0.0001) (0.0001) (0.0012) (0.0001)

URW-LD2 −0.0442 0.0164 0.0584 −0.0012 −0.0013 0.0023 0.9947 0.0019
(0.0023) (0.001) (0.0007) (0.0001) (0.0005) (0.0001) (0.0004) (0.0009)

URW-LD3 0.0139 0.0091 −0.0261 −0.0021 0.0014 −0.0041 0.987 0.0001
(0.0002) (0.0015) (0.0008) (0.0001) (0.0006) (0.0002) (0.0018) (0.0001)

URW-LD4 0.0118 −0.0274 0.0289 0.0022 −0.0031 0.0014 0.9869 0.0054
(0.0004) (0.0025) (0.0015) (0.0000) (0.0002) (0.0007) (0.0013) (0.0001)

URW-LD5 0.0199 −0.0153 0.0492 0.0044 0.0031 0.0012 0.9614 0.006
(0.0004) (0.0013) (0.0008) (0.0000) (0.0002) (0.0004) (0.0014) (0.0001)

URW-LD6 0.0135 −0.0301 0.0177 0.0041 0.0012 0.0014 0.9777 0.0014
(0.0002) (0.00183) (0.0006) (0.0001) (0.0001) (0.0006) (0.0017) (0.0001)

Values in parentheses represent Cramer-Rao Bound.
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Figure 7. (Continued)

LS and NGN methods. Similar methods are employed to carry out lateral-directional parame-
ter estimation for six sets of flight data, namely URW_LD1 to URW_LD6, obtained from the
manoeuvres with dominant aileron and rudder control inputs. While handling the estimation
problem using the ML and NGN methods, which belong to a class of output error minimi-
sation, the aim is to minimise the error between measured and simulated responses such as
V∞, α, β, ∅, θ , p, q, r, ax, ay, az with a set of guess parameters and the initial conditions as an
input. In case of the LS method, parameters are estimated by minimising the error between
measured and simulated dependent variables such as CL, CD, CY , Cl, Cm and Cn. Since these
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Figure 7. Data compatibility check of CDRW longitudinal configuration: URW_LG1-LG6.

aerodynamic coefficients cannot be measured directly during flight tests, instead they are
reconstructed from measured independent variables using Equations (21)–(28). These recon-
structed non-dimensional aerodynamic force and moment coefficients are treated as measured
variables. Figures 9 and 10 present the estimated response of motion variables using the ML,
NGN and LS methods for longitudinal and lateral-directional modes, respectively. For the
ML and NGN methods, the response of motion variables is obtained as a part of the output,
whereas in case of the LS method, the estimated parameters, which are the output, are used to
simulate the respective dynamics using rigid body equations of motion presented in Equations
(1)–(14).

It can be observed from Figs. 7 and 9 that the variation in angle-of-attack for all the
longitudinal manoeuvres is within the range of –10◦≤ α ≤10◦. Referring to Fig. 4, which
represents the variation of longitudinal aerodynamic force and moment coefficients with
angle-of-attack from wind-tunnel testing, it can be noticed that the variation of CL is almost
linear in the interval –5◦ ≤ α ≤ 10◦ and the corresponding value of CLα is 3.06. Although
small but noticeable deviation from linearity in the variation of CL can be observed within
the regime 10◦ ≤ α ≤ 14◦, beyond which there is a significant non-linearity followed by a
stall at around α ≈ 21◦. The CLα in the angle-of-attack domain –5◦ ≤ α ≤ 14◦ is 2.98, and
its relative error w.r.t. CLα in the regime –5◦ ≤ α ≤ 10◦ is less than 3%. Hence, the varia-
tion in the aerodynamic coefficients is considered to be linear in the angle-of-attack regime
–5◦ ≤ α ≤ 14◦. As mentioned earlier, the variation in angle-of-attack for all the manoeuvres
falls well within the considered linear regime, and hence, the postulated aerodynamic model
in Equations (9)–(11) should be sufficient to capture the respective dynamics.

Figure 9(a)–(d) presents the estimation of longitudinal motion variables using the ML, LS
and NGN methods. Referring Fig. 9, it is observed that the estimated motion variables are
in close agreement with the corresponding measured data for the ML and NGN methods.
It is also noticed that the maximum deviation in the estimated angle-of-attack, using the ML
and NGN methods, is observed for the flight data URW_LG2 and URW_LG6, respectively.
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Figure 8. Data compatibility check of CDRW lateral-directional configuration: URW_LD1-LD6.
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Figure 9. Longitudinal parameter estimation of CDRW configuration.

The corresponding deviation of α w.r.t measured data is 1◦ and 2.5◦, respectively. Similarly,
the maximum deviation in the pitch rate for the corresponding flight data sets is observed to be
of the magnitude 0.1 rad/s and 0.3 rad/s at a data point 1.1 s and 1.7 s, respectively. Referring
Figs 8 and 10, it can be observed that the variation in the side slip during all the lateral-
directional manoeuvres is in the range of –5◦ ≤ β ≤ 6◦, which is well within the linear regime
according to the wind-tunnel results presented in Fig. 5. It is also observed from Fig. 10,
barring data set URW_LD5, that the maximum deviation in the sideslip angle using the MLE
and NGN methods is less than 1◦ and 0.5◦, respectively. The corresponding deviation in the
roll rates is 0.05 rad/s and 0.025 rad/s, and the respective yaw rates the deviation is of the
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Figure 10. Lateral-directional parameter estimation of CDRW configuration.

magnitude 0.1 rad/s and 0.03 rad/s for the MLE and NGN methods, respectively. It is evident
from the aforementioned discussion that the considered linear lateral-directional aerodynamic
model is able to capture the lateral-directional dynamics.

From Figs. 9 and 10, it is observed that the trained neural model of NGN method is able
to predict and match the measured flight data for majority of the flight data sets. This pattern
following the ability of the trained neural network enables the NGN method to perform on
par with the classical ML method. Major deviation of NGN estimates is observed from the
figures related to the flight data sets URW_LG6 and URW_LD5. During the neural training
for the NGN method, the control input is not considered as input for training but plays a
vital role during the estimation process through the postulated aerodynamic model. Hence,
the NGN method becomes sensitive to the kind of excitation and the respective training.
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On the other hand, the LS estimates show a significant deviation in the estimated response with
the measured data. Interestingly, it is observed that the current URW configuration reaches
the steady-state condition in a very short interval of time after the application of an excitation
input.

The estimated longitudinal and lateral-directional parameters, along with Cramer-Rao
bound and standard deviation from six sets of flight data, using the ML, LS and NGN meth-
ods, are presented in Table 4–7. Figures 11 and 12 present the corresponding scatter plots
for the estimated derivatives, using aforementioned methods. Tables 8–9 quantify the mean
and standard deviation of the estimates from six sets of longitudinal and six sets of lateral-
directional flight data, respectively. It can be observed that the ML and NGN estimates of
aerodynamic parameters are consistent and in close agreement with the wind-tunnel results
of CDRW configuration(29). The obtained lower values of Cramer-Rao bound enhance the
confidence in the estimated parameters. There is a consistent and significant deviation in the
estimated parameters using the LS method, which can be attributed to the fact that the LS
method yields inconsistent and biased estimates in the presence of noise in the measured
independent variables. Referring Tables 4–5, it can also be observed that the estimated values
of pitch damping derivatives are very low in magnitude. For an aircraft with no dedicated
horizontal tail, which is a major contributor for pitch damping, estimating Cmq and CLq is a
challenging task. Though small in magnitude, consistent estimates of Cmq are observed from
the scatter plots in Fig. 11, with the respective mean and standard deviation of −0.073 and
1.2% using the MLE method and −0.071 and 0.6% using the NGN method. It is also observed
that the estimates of CL0 and Cm0 are in a close match with the wind-tunnel values, and the
respective relative error is less than 0.01%. A small but noticeable scatter is observed in the
estimates of CLα and Cmα, but the percentage error of the mean w.r.t wind-tunnel values is
close to 0.75% and 6.4% for the ML methods and 0.01% and 4.175% for the NGN methods.
Due to the onboard acquisition of the approximate variation of thrust during maneuvers, the
estimated profile drag parameter CD0 is close to the wind-tunnel measurements, with a rel-
ative error of mean from both the MLE and NGN methods close to 1%. It can be observed
from Table 8 that the estimate of elevator control derivative Cmδe is consistent, with a mean
of −0.4037 and the respective standard deviation as low as 3.3%. Whereas the weak deriva-
tives such as CLδe and CLq are found to be fluctuating w.r.t wind-tunnel testing data. From
Fig. 12, it is observed that the estimated lateral-directional bias parameters CY0 , Cl0 and Cn0

deviate with a relative error of 0.01%. It is also noticed that the mean values of the estimated
lateral-directional static stability derivatives, Clβ and Cnβ , are −0.089 and 0.021 using the
MLE method and −0.055 and 0.015 using the NGN method. The corresponding deviation
of these estimated derivatives from wind-tunnel measurements is 0.012 and 0.001 using the
MLE method and 0.045 and 0.005 using the NGN method. It can be inferred from Fig. 12
that the estimates of roll and yaw damping derivatives, Clp and Cnr , using the MLE method,
are consistent, with a mean of −0.5 and −0.067 and standard deviation of 0.7% and 1.9%,
respectively. The offset estimates of Clp and Cnr using the NGN method, are observed with
URW_LD5 and URW_LD6, respectively. Barring respective data sets, the estimates of afore-
mentioned derivatives are also consistent using the NGN method, with a corresponding mean
of −0.48 and −0.031. The estimates of Clδa are also observed to be consistent using both
the MLE and NGN methods, with a percentage deviation of mean w.r.t wind-tunnel esti-
mate to be 0.8% and 0.6%, respectively, barring URW_LD5 NGN estimate. It is observed
that the estimates, using both the MLE and NGN methods, of the derivatives CYδr , Clδr and
Cnδr are inconsistent and have a significant deviation from wind-tunnel measurements. This
may be attributed to the reason that the rudder control inputs during all the lateral-directional
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Table 4
Estimated Longitudinal parameters of CDRW: URW_LG1, URW_LG2, and URW_LG3

Wind-Tunnel URW_LG1 URW_LG2 URW_LG3

Values MLE LS NGN MLE LS NGN MLE LS NGN

CL0 0.067 0.073 0.005 0.065 0.061 0.008 0.065 0.062 0.006 0.067
(0.0015) [0.0261] (0.0004) (0.0011) [0.0159] (0.0012) (0.0016) [0.0172] (0.0003)

CLα 2.980 3.032 4.699 2.936 3.109 4.581 2.881 2.870 5.003 3.284
(0.0316) [0.1231] (0.0299) (0.0224) [0.0727] (0.0182) (0.0381) [0.0876] (0.0115)

CLq − 0.499 6.718 0.586 0.726 6.186 0.546 0.835 2.128 0.707
(0.0369) [0.1391] (0.0138) (0.0335) [0.0928] (0.0395) (0.0438) [0.0988] (0.0254)

CLδe
0.401 0.358 1.619 0.317 0.498 1.801 0.402 0.364 3.156 0.344

(0.0534) [0.1541] (0.0498) (0.0387) [0.096] (0.0414) (0.0603) [0.1115] (0.0345)

CD0 0.020 0.019 0.019 0.022 0.019 0.031 0.017 0.019 0.036 0.021
(0.0001) [0.0261] (0.0001) (0.0002) [0.0162] (0.0001) (0.0003) [0.0162] (0.0001)

Cm0 0.010 0.013 0.012 0.013 0.011 0.012 0.009 0.011 0.012 0.009
(0.0001) [0.0261] (0.0001) [0.0163] (0.0004) (0.0001) (0.0001) [0.0152] (0.0001)

Cmα −0.241 −0.287 −0.297 −0.291 −0.256 −0.296 −0.259 −0.268 −0.327 −0.253
(0.0009) [0.1241] (0.0004) (0.0006) [0.0741] (0.0007) (0.0012) [0.0771] (0.0007)

Cmq − −0.085 −0.343 −0.074 −0.054 −0.321 −0.075 −0.084 −0.105 −0.071
(0.0028) [0.1410] (0.0032) (0.0024) [0.0946] (0.0031) (0.0033) [0.0869] (0.0033)

Cmδe
−0.410 −0.474 −0.359 −0.448 −0.383 −0.376 −0.330 −0.411 −0.461 −0.386

(0.0019) [0.1510] (0.0009) [0.0012) [0.0978] (0.0008) (0.0021) [0.0981] (0.0013)

Values in parentheses represent Cramer-Rao bound and those in square brackets, represent standard deviation.
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Table 5
Estimated Longitudinal parameters of CDRW: URW_LG4, URW_LG5 and URW_LG6

Wind-Tunnel URW_LG4 URW_LG5 URW_LG6

Values MLE LS NGN MLE LS NGN MLE LS NGN

CL0 0.067 0.059 0.015 0.065 0.057 0.040 0.062 0.069 0.022 0.063
(0.0022) [0.0213] (0.0007) (0.0024) [0.0111] (0.0023) (0.0010) [0.0341] (0.0033)

CLα 2.980 3.043 4.789 2.923 3.099 4.513 2.838 2.862 4.329 3.019
(0.0285) [0.0782] (0.0169) (0.0585) [0.0569] (0.0236) (0.0184) [0.1604] (0.0415)

CLq − 0.583 6.107 0.637 0.725 6.042 0.608 0.818 6.276 0.533
(0.0588) [0.1222] (0.0283) (0.081) [0.0848] (0.0728) (0.0209) [0.1903] (0.0347)

CLδe
0.401 0.541 2.443 0.404 0.567 1.807 0.464 0.401 1.403 0.409

(0.0537) [0.1034] (−0.004) (0.0969) [0.0718] (0.0176) (0.0298) [0.2059] (0.0385)

CD0 0.020 0.022 0.025 0.018 0.019 0.023 0.021 0.021 0.021 0.022
(0.0001) [0.0195] (0.0001) (0.0002) [0.0096] (0.0001) (0.0001) [0.0342] (0.0001)

Cm0 0.010 0.017 0.020 0.012 0.009 0.009 0.010 0.012 0.010 0.009
(0.0001) [0.0266] (0.0001) (0.0001) [0.0085] (0.0001) (0.0001) [0.0346] (0.0001)

Cmα −0.241 −0.236 −0.319 −0.219 −0.239 −0.301 −0.253 −0.259 −0.258 −0.234
(0.0007) [0.0975] (0.0009) (0.0011) [0.0434] (0.0006) (0.0007) [0.1628] (0.0006)

Cmq − −0.076 −0.365 −0.067 −0.082 −0.339 −0.078 −0.059 −0.328 −0.059
(0.0037) [0.1524] (0.0037) (0.0059) [0.0646] (0.0045) (0.0019) [0.1931] (0.0001)

Cmδe
−0.410 −0.384 −0.426 −0.413 −0.381 −0.387 −0.434 −0.389 −0.319 −0.435

(0.0018) [0.1291] (0.0011) (0.0026) [0.0548] (0.0019) (0.0013) [0.2092] (0.0022)

Values in parentheses represent Cramer-Rao bound and those in square brackets represent standard deviation.
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Table 6
Estimated parameters from lateral-directional flight data CDRW: URW_LD1, URW_LD2, and URW_LD3

Wind-Tunnel URW_LD1 URW_LD2 URW_LD3

Values MLE LS NGN MLE LS NGN MLE LS NGN

Cy0 0 0.0008 0.0001 0.0000 −0.0049 −0.0012 0.0000 −0.0028 −0.0027 0.0000
(0.0001) (0.0014)∗ (0.0000) (0.0009) (0.0087)∗ (0.0000) (0.0004) (0.0041)∗ (0.0000)

Cyβ
−0.131 −0.1328 −0.1162 −0.116 −0.1364 −0.1214 −0.131 −0.1309 −0.1204 −0.126

(0.0011) (0.0052)∗ (0.0000) (0.0029) (0.0093)∗ (0.0004) (0.0005) (0.0071)∗ (0.0000)

Cyp
− −0.0844 0.0079 −0.059 −0.0801 −0.0131 −0.036 −0.0911 −0.0169 −0.028

(0.0019) (0.0096)∗ (0.0057) (0.0021) (0.0183)∗ (0.0209) (0.0013) (0.014)∗ (0.0017)

Cyr
− 0.0525 0.0493 0.128 0.3737 0.0303 0.117 0.1452 0.0172 0.158

(0.0073) (0.0112)∗ (0.0013) (0.0169) (0.0313)∗ (0.2574) (0.0058) (0.0155)∗ (0.002)

Cyδr
0.429 0.5031 0.4268 0.522 0.3683 0.4438 0.300 0.4005 0.4081 0.479

(0.0048) (0.0144)∗ (0.0034) (0.0156) (0.0391)∗ (0.937) (0.0079) (0.0183)∗ (0.0016)

Cl0 0 0.0004 0.0001 0.0000 −0.0036 −0.0003 0.0000 0.0016 −0.0004 0.0000
(0.0001) (0.0013)∗ (0.0000) (0.0004) (0.0083)∗ (0.0002) (0.0001) (0.0038)∗ (0.0000)

Clβ −0.101 −0.0933 −0.0648 −0.085 −0.0957 −0.0674 −0.077 −0.0878 −0.0622 −0.036
(0.0005) (0.0049)∗ (0.0013) (0.0011) (0.0088)∗ (0.1384) (0.0008) (0.0066)∗ (0.0000)

Clp − −0.5062 −0.3705 −0.496 −0.5131 −0.3963 −0.437 −0.4882 −0.3592 −0.531
(0.0008) (0.0089)∗ (0.0041) (0.0028) (0.0174)∗ (0.7521) (0.0033) (0.0131)∗ (0.0013)
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Table 6
Continued.

Wind-Tunnel URW_LD1 URW_LD2 URW_LD3

Values MLE LS NGN MLE LS NGN MLE LS NGN

Clr − 0.0512 0.0576 0.098 0.198 0.0941 0.098 0.1045 0.0472 0.208
(0.0034) (0.0102)∗ (0.0001) (0.0062) (0.0298)∗ (0.1657) (0.0029) (0.0145)∗ (0.0001)

Clδa
−0.102 −0.0941 −0.07 −0.110 −0.0949 −0.0751 −0.121 −0.0912 −0.0682 −0.068

(0.0002) (0.0036)∗ (0.0196) (0.0005) (0.0372)∗ (0.187) (0.0005) (0.0052)∗ (0.0014)

Clδr
0.021 0.0561 0.0241 0.019 −0.0386 0.0106 0.013 0.0552 0.0062 0.022

(0.002) (0.0133)∗ (0.0004) (0.007) (0.0073)∗ (0.0087) (0.0016) (0.0171)∗ (0.0002)

Cn0 0 0.0005 0.0009 0.0000 0.0004 −0.0004 0.0000 0.0002 0.0008 0.0000
(0.0001) (0.0017)∗ (0.0000) (0.0008) (0.0115)∗ (0.0015) (0.0001) (0.0059)∗ (0.0000)

Cnβ
0.020 0.0274 0.0169 0.018 0.0175 0.0182 0.018 0.0156 0.0159 0.012

(0.0005) (0.0065)∗ (0.0003) (0.0003) (0.0123)∗ (0.0065) (0.0002) (0.0102)∗ (0.0000)

Cnp − 0.0362 0.0123 0.022 0.0164 0.0148 0.018 0.022 0.0115 −0.014
(0.0006) (0.0119)∗ (0.0001) (0.0001) (0.0243)∗ (0.2878) (0.0002) (0.0210)∗ (0.0002)

Cnr − −0.1031 −0.015 −0.030 −0.0795 −0.0146 −0.038 −0.0589 −0.0093 −0.029
(0.0019) (0.0136)∗ (0.0004) (0.002) (0.0416)∗ (0.0794) (0.0011) (0.0222)∗ (0.0000)

Cnδr
−0.011 −0.0244 −0.0079 −0.009 −0.006 −0.0182 −0.014 −0.006 0.0069 −0.025

(0.0009) (0.0178)∗ (0.0005) (0.0002) (0.0519)∗ (0.1804) (0.0001) (0.0262)∗ (0.0001)

Values in parentheses represent Cramer-Rao bound and those in with ∗ represent standard deviation.
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Table 7
Estimated Parameters from lateral-directional flight data CDRW: URW_LD4, URW_LD5, and URW_LD6

Wind-Tunnel URW_LD4 URW_LD5 URW_LD6

Values MLE LS NGN MLE LS NGN MLE LS NGN

Cy0 0 −0.0014 −0.0008 0.0000 −0.0005 −0.001 0.0000 0.0006 0.0001 0.0000
(0.0001) (0.0013)∗ (0.0000) (0.0002) (0.0027)∗ (0.0000) (0.0001) (0.0037)∗ (0.0000)

Cyβ
−0.131 −0.1274 −0.1124 −0.1301 −0.1159 −0.1171 −0.1242 −0.1203 −0.1187 −0.1222

(0.0003) (0.0136)∗ (0.0000) (0.0008) (0.0094)∗ (0.0000) (0.0005) (0.0122)∗ (0.0000)

Cyp
− −0.0733 0.0543 −0.0572 −0.0768 −0.0041 −0.0241 −0.0807 −0.0009 −0.1984

(0.001) (0.0338)∗ (0.0006) (0.0015) (0.0193)∗ (0.0000) (0.0006) (0.0256)∗ (0.0004)

Cyr
− 0.0795 0.0645 0.1301 0.0485 0.0609 0.1161 0.1015 0.037 0.3459

(0.0017) (0.0174)∗ (0.0059) (0.0035) (0.0188)∗ (0.0002) (0.0032) (0.031)∗ (0.0181)

Cyδr
0.429 0.4584 0.4532 0.4592 0.4681 0.4268 1.6781 0.485 0.4242 −0.1368

(0.0003) (0.0072)∗ (0.0127) (0.0039) (0.0277)∗ (0.0447) (0.0036) (0.0385)∗ (0.0123)

Cl0 0 −0.0007 −0.0005 0.0000 −0.0005 −0.0004 0.0044 0.0001 0.0005 −0.0002
(0.0002) (0.0012)∗ (0.0000) (0.0008) (0.0021)∗ (0.0000) (0.0007) (0.0031)∗ (0.0000)

Clβ −0.101 −0.0881 −0.0684 −0.0901 −0.0819 −0.0635 −0.0078 −0.0843 −0.064 −0.0311
(0.0004) (0.0129)∗ (0.0017) (0.0004) (0.0073)∗ (0.0001) (0.0003) (0.0102)∗ (0.0019)

Clp − −0.5092 −0.3918 −0.5072 −0.4994 −0.3717 −0.0865 −0.5035 −0.3715 −0.4151
(0.0018) (0.0321)∗ (0.002) (0.0007) (0.0151)∗ (0.0002) (0.0007) (0.0215)∗ (0.0235)
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Table 7
Continued.

Wind-Tunnel URW_LD4 URW_LD5 URW_LD6

Values MLE LS NGN MLE LS NGN MLE LS NGN

Clr − 0.0504 0.0542 0.1041 0.0321 0.0532 −0.1192 0.0659 0.0405 0.2574
(0.0005) (0.0164)∗ (0.0022) (0.0019) (0.0147)∗ (0.0021) (0.0016) (0.0261)∗ (0.0101)

Clδa
−0.102 −0.0961 −0.0744 −0.0961 −0.0941 −0.0703 0.4400 −0.0945 −0.0704 −0.1495

(0.0004) (0.0141)∗ (0.0047) (0.0002) (0.0065)∗ (0.0104) (0.0001) (0.0093)∗ (0.0119)

Clδr
0.021 0.0259 0.0149 0.0192 0.0304 0.017 0.0331 0.0462 0.0213 −0.0974

(0.0001) (0.0068)∗ (0.0004) (0.0017) (0.0216)∗ (0.0005) (0.0014) (0.0323)∗ (0.014)

Cn0 0 0.0002 0.0001 0.0000 0.0005 0.0002 −0.0005 0.0002 0.0004 −0.0001
(0.0002) (0.0011)∗ (0.0000) (0.0009) (0.0013)∗ (0.0000) (0.0007) (0.0017)∗ (0.0000)

Cnβ
0.020 0.0219 0.0181 0.0191 0.0227 0.0173 0.0109 0.0213 0.0166 0.0134

(0.0001) (0.0114)∗ (0.0004) (0.0002) (0.0046)∗ (0.0004) (0.0002) (0.0056)∗ (0.0009)

Cnp − 0.0271 0.0151 0.0193 0.0275 0.0152 0.0195 0.0185 0.0132 0.0113
(0.0002) (0.0284)∗ (0.0013) (0.0002) (0.0095)∗ (0.0007) (0.0001) (0.0117)∗ (0.0006)

Cnr − −0.0559 −0.0151 −0.0284 −0.0597 −0.0133 −0.0304 −0.0472 −0.0138 −0.1238
(0.0004) (0.0146)∗ (0.0004) (0.0009) (0.0092)∗ (0.0009) (0.0008) (0.0142)∗ (0.0053)

Cnδr
−0.011 −0.0152 −0.0092 −0.0094 −0.0284 −0.0071 −0.0393 −0.0024 −0.0067 −0.033

(0.0005) (0.0061)∗ (0.0000) (0.0008) (0.0135)∗ (0.0006) (0.0004) (0.0176)∗ (0.003)

Values in parentheses represent Cramer-Rao bound and those in with ∗ represent standard deviation.
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Figure 11. Scatter plot of parameter estimated using the ML, LS and NGN methods.

manoeuvres are almost negligible, which definitely limit the excitation of respective deriva-
tives. As mentioned earlier, the CDRW configuration is equipped with a high-aspect-ratio
all-movable vertical tail, because of which the UAV during flight tests is observed to be very
sensitive for rudder inputs. Due to this reason, the pilot operating from ground station was not
able to execute the designed rudder control inputs.

To validate the aerodynamic model and estimated parameters using the ML and NGN
methods, proof-of-match exercise is performed for both longitudinal and lateral-directional
motion, presented in Figs. 13 and 14, respectively. The validation task was performed by
taking the mean of the estimated aerodynamic parameters obtained from the flight data
URW_LG1, URW_LG2, URW_LG4 and URW_LG6, which are used to generate simulated
outputs for elevator inputs of flight data URW_LG3 and URW_LG5, respectively. Similarly,
simulated outputs are generated for elevator inputs of flight data URW_LD2 and URW_LD3
by using the mean of the aerodynamic parameters estimated from flight data URW_LD1,
URW_LD4, URW_LD5 and URW_LD6. The aerodynamic model considered for estimation
is kept constant during the exercise and six DOF equations of motion are used for computing
the estimated response.
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Figure 12. Scatter plot of lateral-directional parameters using the ML and LS methods for CDRW
configuration.

Figure 13. Proof-of-match exercise for longitudinal mode.
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Table 8
Mean of longitudinal estimates of CDRW using the ML, LS and NGN methods

Wind-Tunnel Mean of the Estimates
Values MLE LS NGN

CL0 0.067 0.0635 0.0161 0.0645
[0.00564] [0.01223] [0.00161]

CLα 2.980 3.0025 4.6523 2.9802
[0.1004] [0.21326] [0.14668]

CLq − 0.6977 5.5762 0.6028
[0.12077] [1.55726] [0.05836]

CLδe
0.401 0.4548 2.0382 0.3921

[0.08406] [0.59193] [0.04765]

CD0 0.020 0.0198 0.0258 0.0202
[0.00121] [0.0059] [0.00195]

Cm0 0.010 0.0122 0.0125 0.0103
[0.00248] [0.00355] [0.0016]

Cmα −0.241 −0.2575 −0.2997 −0.2515
[0.01727] [0.02191] [0.0223]

Cmq − −0.0733 −0.3002 −0.0708
[0.01232] [0.08836] [0.00624]

Cmδe
−0.410 −0.4037 −0.3881 −0.4078

[0.03302] [0.04568] [0.03999]

Values in square brackets represent standard deviation.

Figure 14. Proof-of-match exercise for lateral-directional mode.
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Table 9
Mean of lateral-directional estimates of CDRW using the ML, LS and NGN

methods

Wind-Tunnel Values Mean of the Estimates

MLE LS NGN

Cy0 0 −0.0013 −0.0009 0.0000
[0.00020] [0.00094] [0.00000]

Cyβ
−0.131 −0.1272 −0.1177 −0.1251

[0.00713] [0.00296] [0.00611]

Cyp
− −0.0811 0.0045 −0.0652

[0.00565] [0.02367] [0.06231]

Cyr
− 0.1335 0.0432 0.1661

[0.11220] [0.01676] [0.09012]

Cyδr
0.429 0.4472 0.4305 0.5502

[0.04747] [0.01452] [0.60322]

Cl0 0 −0.0005 −0.0002 0.0014
[0.00159] [0.00035] [0.00211]

Clβ −0.101 −0.0885 −0.0651 −0.0551
[0.00048] [0.00218] [0.03442]

Clp − −0.5032 −0.3768 −0.4122
[0.00796] [0.01297] [0.16512]

Clr − 0.0831 0.0578 0.1083
[0.05618] [0.01714] [0.13031]

Clδa
−0.102 −0.0942 −0.0714 −0.1086

[0.00148] [0.00249] [0.24111]

Clδr
0.021 0.0292 0.0157 0.0013

[0.03241] [0.00611] [0.04924]

Cn0 0 0.0003 0.0003 −0.0002
[0.00014] [0.00044] [0.00000]

Cnβ
0.020 0.0211 0.0172 0.0151

[0.00379] [0.00079] [0.00414]

Cnp − 0.0246 0.0137 0.0132
[0.00658] [0.00141] [0.01321]

Cnr − −0.0674 −0.0135 −0.0471
[0.01864] [0.00198] [0.03822]

Cnδr
−0.011 −0.0137 −0.0071 −0.0093

[0.00982] [0.00735] [0.02511]

Values in square brackets represent standard deviation.
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8.0 CONCLUSION
Parameter estimation from flight tests of the designed CDRW configuration using the ML, LS
and NGN methods over six sets of flight data pertaining to longitudinal and lateral/directional
dynamics is performed. Estimated motion variables corresponding to longitudinal and lat-
eral dynamics using the ML and NGN methods were able to match reasonably well with
the measured flight data, with NGN requiring much more training to perform accurately for
the lateral-directional case. Parameters estimated using the ML and NGN methods are con-
sistent over six sets of flight data, and the corresponding mean is in close agreement with
wind-tunnel estimates. The lower values of Cramer-Rao bounds establish a higher confidence
level in the estimated parameters. The results from the ML and NGN methods were entrusted
by the minimal scatter and a negligible standard deviation, whereas the estimates from the
LS method displayed significant scatter and deviates from the ML and NGN methods and
from wind-tunnel test results. The pattern following ability of the trained neural network
enabled the NGN method to perform on par and better than the classical ML method upon
extensive training of neural weights. The restriction in training of the neural network for a
particular flight data set has been reflected during proof-of-match exercise. The quality of
the estimates can be further improved by implementing the predecided input by a dedicated
on-board controller. This task will maximise the possibility of exciting the manoeuvres with
desired frequencies. The estimates from the ML and NGN methods were consistent and can
be improved by a greater number of flight data sets for various flight regimes, which will
enhance the confidence in generalising their application for parameter estimation of UAVs.
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