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This paper investigates the asymptotic behavior of tests in situations where the
likelihood is locally asymptotically quadratic+ Necessary and sufficient condi-
tions are given for a test to be admissible+ Even without these restrictive para-
metric assumptions, it is shown that certain common procedures—such as the
augmented Dickey–Fuller test in cases where no deterministic trend is present
or standard tests for restrictions on cointegrating relationships—are asymptoti-
cally inadmissible+ These results confirm the existence of tests that dominate these
classical tests for all parameters+

1. INTRODUCTION

This paper discusses optimality properties of certain statistical tests and makes
two contributions+ First we analyze a restricted parametric model+ These restric-
tions enable us to determine the class of asymptotically optimal tests+ More-
over, we show that in nonclassical situations many traditional tests for testing
simple hypotheses, such as, e+g+, the usual generalizations of the t-test, are not
in our class and are inadmissible+ Second, we use these results to show the
inadmissibility of some familiar procedures, such as the Dickey–Fuller and
related tests, when there is no deterministic trend in the regression or standard
t-type tests for restrictions on cointegrating relations+

We begin by outlining the asymptotic testing problem for which we can
exactly describe the class of all admissible tests+ Let us assume that our para-
metric family is unidimensional, and later on we move on to discuss more gen-
eral cases+

Many problems in asymptotic statistics have a specific form, namely, that
the logarithm of the likelihood can be approximated by a quadratic function of
the ~properly normalized! parameter+ Classical asymptotic analysis then rests
on two crucial assumptions: first, that the linear term of the quadratic function
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is ~asymptotically! normal; and second, that the quadratic term ~the Fisher infor-
mation! is asymptotically constant+

In many situations relevant for econometrics—most of them connected to
problems with unit roots—these assumptions are not fulfilled+Although the log-
likelihood can asymptotically be approximated by a quadratic function, the lin-
ear term in the parameter is not Gaussian, and the matrix describing the quadratic
term is not a constant+ The most typical example arises with the simplest auto-
regressive ~AR! model

Dyt � dyt�1 � ut ,

where ut is normal with zero expectation and known variance+ Then it is straight-
forward to show that the likelihood is quadratic around d � 0+ The properly
normalized coefficients of this quadratic function are neither normal nor con-
stant+ The prominence of this example indicates that there should be a signifi-
cant number of possible applications+ These will be discussed in more detail in
Section 3+

So let us denote by pn~u! the density corresponding to parameter u+ For sim-
plicity, let us assume that the parameter u is unidimensional+ So, for a given
true parameter u0, we assume that asymptotically with a suitable scaling sequence
Dn F `

log pn~u0 � Dn
�1 h!� log pn~u0 ! ; hWn �

1

2
An h 2, (1)

where we assume that the pair ~Wn,An! converges in distribution to a nontrivial
limit ~W,A!+ We need not discuss here the precise meaning of the approxima-
tion or convergence in ~1!, for which the reader is referred to Le Cam and Yang
~1990!, Ploberger ~2004!, and Jeganathan ~1991, 1995!+ In Ploberger ~2004!,
specific problems associated with testing

u � u0 (2)

were discussed+
First of all let us analyze ~1!+ If the log-likelihood were exactly quadratic

~i+e+, in ~1! we would replace ; with �!, then the likelihood only depends on
~Wn,An!+ Consequently, this pair would be a sufficient statistic+ In that case, we
would be able to find for every test w another test c depending only on ~Wn,An!
so that w and c have identical power+ Hence, we would only need to analyze
tests depending on ~Wn,An!+

Modern statistical theory allows us to use similar reasoning in the asymp-
totic case+We can, however, no longer analyze the tests themselves; the theory
only gives us convergence results about the power functions of the tests+ Typi-
cally, the theory allows us to show that the behavior of power functions of
problems like ~2! is similar to a fixed “asymptotic” testing problem+ The theory
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shows that one can approximate the power functions of tests for ~2! with power
functions of tests for the “asymptotic” problem up to an arbitrary accuracy+

We now briefly sketch the reason for this kind of analysis, emphasizing that
the arguments in the following paragraph are heuristic+ A rigorous treatment of
the subject can be found in Strasser ~1985!+

If a test c is admissible for the asymptotic problem, then we know that we
can find a sequence wn of tests for ~2! such that with increasing sample size the
difference between the power functions of the wn and the power function of c
converges to zero+ ~Although the tests are defined on different sample spaces,
their power functions have the same domain, namely, the parameter space!!
Then the wn are in a certain sense asymptotically admissible+ Assume one has
given some “competitors” rn+ Then the power functions of the rn can be approx-
imated by power functions of tests nn for the asymptotic problem+ There are
compactness results available that show that the power functions of the nn must
contain a convergent subsequence, converging to the power function of a test
n+ We did assume c to be admissible+ Hence it cannot be dominated by n, and
so it must have better power properties for some parameters+ Hence, asymptot-
ically, the same must be true for the power functions of wn and rn+ The same
kind of argument applies, vice versa, for tests that are not admissible for the
asymptotic problem+

This type of testing problem was analyzed for a one-dimensional parameter
in Ploberger ~2004!, and one of the main results was that power functions of
tests for ~2! can either be uniformly approximated or dominated by power func-
tions of tests for the following testing problem+Assume we have given a param-
etrized family Ql, l � R on the space

R � R� � $~W,A! : A � 0%

so that

dQl

dQ0

� exp�lW �
l2

2
A�+

We can think of this parametrized family as a statistical experiment, namely, a
sample of size one of a random two-dimensional vector distributed according
to a Ql with an unknown l+ Suppose we want to consider tests for the hypoth-
esis l � 0+ In Ploberger ~2004! a set of tests was constructed such that for
every other test we can find one from our class with “better” power properties+
Such a class is called “essentially complete” in Schervish ~1995, p+ 174! and
“complete” in Strasser ~1985, p+ 41! and Ploberger ~2004!+ Because the present
paper heavily relies on Ploberger ~2004!, we will continue to use the term com-
plete for this kind of set of tests+

Together with the limiting result, this complete class theorem characterizes
all possible limits for power functions of tests for the problem ~2!+ However,
the problem is that every set covering ~in our sense! a complete class is a com-
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plete class again+ Hence the result from Ploberger ~2004! does not allow us to
directly classify tests+ If we know that a test is within our class we cannot directly
conclude that it is admissible, because our definition allows the “complete class”
to contain additional tests+

Moreover, a test outside the complete class may be admissible+ The results
of Ploberger ~2004! do not preclude that there exists another test ~within the
class! with exactly the same power function+ In this paper, we show that this is
in fact not the case+ The main theorem implies that every test within our class
is admissible and characterized by the power function+ Hence we can conclude
that tests not in our class are asymptotically inadmissible+ So essentially we
show that for every test outside our complete class one can find a test from our
class that is better uniformly—i+e+, it is better for all values of the parameter!

Moreover, the same paper establishes the fact that the test based on the t- or
F-test-type statistic, namely, rejecting if

W 2

A
� U (3)

for some critical values U, is not within this class+ In Section 3 we discuss
important examples where our results show the existence of tests that domi-
nate standard procedures uniformly+ Obviously, it is also important to know
how much power one can win by using the admissible tests+ For the case of
unit root testing, this question was analyzed in Elliot, Rothenberg, and Stock
~1996!+

This result has also some interesting consequences when we are testing ~2!
for our family ~1!+ Suppose we have a sequence of tests cn for the finite-
sample problem such that their asymptotic power function converges to the
power function of ~3!+ Then the standard convergence results of decision prob-
lems ~cf+ Strasser, 1985! allow us to conclude that there exists a sequence of
tests with power functions dominating the power functions of cn uniformly!

In Section 3, we then extend these results to show the inadmissibility of cer-
tain familiar procedures+

1+ The Dickey–Fuller t-tests when no trend is present: Consider a univariate
time series yt and consider the models

Dyt � dyt�1 �p1Dyt�1 � {{{ � ppDyt�p � ut (4)

and suppose we want to test whether d � 0 against d � 0+ Then it seems
natural to compute the t-test statistic based on an estimator for d and use
the critical values established by Dickey and Fuller ~1979, 1981!+

2+ Suppose we have an estimator—say, [rn—for a scalar parameter r and
there exists a scaling statistic [sn

2+ Let us assume that ~with some normal-
izing sequence Dn!
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• M [sn
2

�1

~~ [rn � r!! converges in distribution to a standard normal
distribution+

• Dn
�2 [sn

2 converges in distribution to some random variable s, which is
almost surely positive and not a constant+

• Asymptotically, the distributions of M [sn
2

�1

~ [rn � r! and Dn
�2 [sn

2 are
independent+

Although there are some other applications, the most important case where
this kind of phenomenon occurs is the estimation of parameters describing cointe-
grating relationships+ So when testing a restriction—say, r� 0—one is tempted
to use the analogue to the Wald test+ Indeed, one can easily see that in case the
null is true,

[rn

M [sn
2

(5)

converges in distribution to a standard normal distribution+ Therefore it seems
natural to use tests based on ~5! and use one- or two-sided critical values+ Here
I show that these procedures are inadmissible in the two-sided case+

Here we only deal with the simplest cases of unit root testing+ Clearly, the
results would be more valuable if we allowed for deterministic terms+ Typi-
cally, one is interested in tests invariant with respect to these terms+ The advan-
tage of this approach would be a reduction in the parameter space, which would
suit us well+ However, the “reduced” problem no longer satisfies ~1!+ So a more
general analysis of the problem would be beyond the scope of the paper+

2. THE MAIN THEOREMS FOR THE UNIDIMENSIONAL CASE

Tests are functions w from the set R � R� to the interval @0,1# ~w � 0 means
that we accept the null; w� 1 means that we reject the null; and in between we
randomize!+

The power function of a test w is the function that attaches to each l � R
the value �wdQl+ The concept of a power function enables us to compare tests+
A test w is better than a test c if

�wdQl � �cdQl for l� 0,

�wdQl � �cdQl for l� 0+ (6)

So a better test dominates the worse test for all possible values of the param-
eter+ In Ploberger ~2004!, it was established that the set C of tests consisting of
the test functions defined subsequently is complete ~or essentially complete
according to Schervish, 1995!+
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These test functions are described by the following parameters: U,a,b, c and
measures m,n subject to the following restrictions+

1+ n is a s-finite measure on @�1,1# � $0% ~i+e+, no mass outside the unit
interval with the number zero excluded! such that for all compact sets
K � @�1,1# � $0% n~K ! � ` and

c � �
@�1,1#

l2 dn~l! (7)

~in particular �@�1,1# l
2 dn~l! is finite and c � 0!+

2+ m is defined on R � @�1,1# ~i+e+, the real line except the unit interval!,
and for all M � 1

m~@�M,�1# � @1,M # ! � `+ (8)

3+ Not all the numbers a,b, c,U and measures m and n are trivial+
4+ The test has the correct size—say, a � 1—under the null+

Then define the function

u~A,W ! � bW �
c

2
~W 2 � A!

� �
@�1,1#

�exp�lW �
l2

2
A�� �1 � lW �

l2

2
~W 2 � A!�� dn~l!

� �
R�@�1,1#

exp�lW �
l2

2
A� dm~l!+ (9)

Now let the class of tests be characterized by the following properties:
~i! the test should reject the null for all ~A,W !, so that A � a; ~ii! if A � a,
then the test should reject if

u~A,W ! � U (10)

and accept if

u~A,W ! � U+ (11)

These parameters do not describe the test completely+ In particular, we did not
define what happens if A � a or if u~A,W ! � U+ So if these equations do not
describe null sets ~with respect to all Qh!, our complete class defined previ-
ously may contain some additional ~not optimal! tests+ This, however, is not a
contradiction to the definition of a complete class—any larger set of a com-
plete class is a complete class, too!

Remark 1+ Because of our restrictions 1 and 2, in particular expressions ~7!
and ~8!, we can easily see that every function u~A,W ! satisfying ~9! can for
every b,g � 0 be written as
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u~A,W ! � b 'W �
c '

2
~W 2 � A!

� �
@�b,g#

�exp�lW �
l2

2
A�� �1 � lW �

l2

2
~W 2 � A!�� dn '~l!

� �
R�@�b,g#

exp�lW �
l2

2
A� dm'~l!, (12)

where n ',m' are the restrictions of the measure m � n on @�b,g# and R �
@�b,g# , respectively+

Remark 2+ Because

]3

]l3
exp�lW �

l2

2
A� � exp�lW �

l2

2
A�$~W � lA!@~W � lA!2 � 3A#%,

we can replace the first integral in ~9! by

�
@�b,g#

�exp�lW �
l2

2
A�� �1 � lW �

l2

2
~W 2 � A!�� dn '~l!

��
@�b,g#

��
0

l�
0

w�
0

v

exp�zW �
z 2

2
A�

� ~W � zA!@~W � zA!2 � 3A# dzdvdw� dn '~l!+ (13)

Additionally, we assume that the following three conditions are fulfilled+

Condition C1+ For some « � 0 we have

sup
6l 6�«

�A3 dQl � `, (14)

sup
6l 6�«

�6W 63 dQl � `+ (15)

Condition C2+ The support of the measure Q0 ~and hence the support of all
the measures Ql! is the whole R � R� � $~W,A! : A � 0% ~i+e+, every open set
of R � R� has positive probability under Q0!+

Condition C3+ The distribution function of A is continuous ~i+e+, for all a
Q0~ @A � a# ! � 0!+
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THEOREM 1+ Suppose restriction 1 and Conditions C1, C2, and C3 hold
and assume that c is a test that has the same or a better power function than
the test w, which is from our class and is determined by the parameters
a, b, c,U,m,n. Then c is from our class, too, and determined by the same
parameters.

Proof+ The proof is provided in the Appendix+

It is, however, a nontrivial task to show that tests are not in our complete
class+ For a proof of this fact, it is not sufficient to show that the corresponding
test statistic cannot be written in the form ~9!+ One has to show that the corre-
sponding test ~or the critical set! cannot be generated as a level set of any func-
tion ~9!!

Suppose now that we have given a family Ql,l � R and a test w ~which is a
function from R � R� into @0,1# ! satisfying the following requirements+

1+ All the assumptions of the previous theorem are fulfilled+
2+ Every neighborhood of the point ~0,0! has positive probability with respect

to Q0+
3+ There exists a constant K � 1 such that

w~W,A! � 0 if
W 2

A
� K,

w~W,A! � 1 if
W 2

A
� K+

Then the following theorem holds+

THEOREM 2+ The test w is not in our class and is therefore inadmissible.

Proof+ The assumptions of this theorem are quite similar to those of
Ploberger ~2004!, and only our second assumption here is stronger+ Here
we only postulate that all neighborhoods of the origin have positive mass,
instead of assuming that every open set of the half plan R � R� has positive
mass+ One can easily see that this requirement is sufficient, because only the
behavior of the power function for alternatives near the origin is used in
the proof+ �

In case the likelihoods are given by ~1!, one consequence of the preceding
theorems is that the analogues to the “classical” Lagrange multiplier ~LM!, like-
lihood ratio ~LR!, and Wald tests for testing u� u0 are asymptotically inadmis-
sible+More precisely, let us denote by wn such a test+ The “classical” tests reject
when test statistics exceed the critical values+Moreover, it is an easy exercise—
very similar to the standard proof of asymptotic equivalence in the stationary
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case—to show that differences between suitably normed and transformed test
statistics and Wn

20An converge to zero under the null+ Let us denote the asymp-
totic critical value for the test statistic Wn

20An by K and assume that K is such
that the cumulative distribution function of W 20A is continuous at K+ This is
not a very strong restriction, because a cumulative distribution function can
have at most countably many discontinuities+ Let us define wn by

wn~Wn ,An ! � 0 if
Wn

2

An

� K,

wn~Wn ,An ! � 1 if
Wn

2

An

� K+

Then we can easily see that under the null the probability of the LM, LR, and
Wald tests and the tests wn giving different results converges to zero+ ~So, with
probability converging to one under the null, either all of them accept or all of
them reject!! Hence the power functions of wn and the classical tests are asymp-
totically the same under the null+

We now have to show that the same holds true for the alternatives+ Consider
local alternatives of the form

un � u0 �
C

Dn

+

In Ploberger ~2004!, contiguity of the probability measures corresponding to
u0 and un was established+ This means that for any sequence En of events such
that Pu0~En ! r 0 Pun~En ! r 0, too+ ~Contiguity is one of the cornerstones of
modern theoretical asymptotic theory+ For a more detailed discussion see
Le Cam and Yang, 1990; Strasser, 1985+! Because the probability of conflict
between the LM, LR, and Wald tests and wn converges to zero under the null,
the result quoted previously allows us to conclude that the probability of a
conflict under the local alternatives converges to zero, too+ Hence, the differ-
ence of the probabilities of rejection—which is exactly the definition of a power
function—must converge to zero for n r `+ Therefore, the power functions
are the same asymptotically+ We assumed that ~Wn,An! r ~W,A! in distribu-
tion under the null, and so Wn

20An r W 20A in distribution, too+ Because the
cumulative distribution function of the limiting distribution is continuous at
K, the power function of the wn ~and, consequently, the power functions of the
LM, LR, and Wald tests! must converge to the power function of our test w
under the null+

To show the convergence of the power functions of the wn to the power func-
tion of w at the local alternatives requires only a bit more technical effort+ Let
us fix the sequence of local alternatives and consider the densities
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�n �
dPun
dPu0
+

Then we can easily conclude from ~1! that

�nr � � exp�CW �
C 2

2
A� (16)

in distribution+ We did assume, however, that

��dQ0 ��exp�CW �
C 2

2
A� dQ0 � 1,

because otherwise QC would not be a probability measure+ Now let « � 0 be
arbitrary+ Then we can find an L so that

�inf~�~A,W !, L! dQ0 � 1 � «+

Consequently, as �n r � in distribution,

lim
nr`

�min~�n~An ,Wn !, L! dPun � 1 � «,

and as ��n dPun � 1,

lim
nr`

�~�n � min~�n , L!! dPun � «+ (17)

Hence we have

lim�wn dPun � lim�wn �n dPu0 +

One can easily see that

�n � min~�n~A,W !, L!� wn min~�n~A,W !, L! � wn �n � wn min~�n~A,W !, L!+

Further, because of the convergence of ~An,Wn! and �n,

lim�wn min~�n~A,W !, L! dPun ��wmin~�~A,W !, L! dQ0 +
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We have that ~when using ~17!!

«��wmin~�~A,W !, L! dQ0 � lim sup�wn dPun

� lim inf�wn dPun

� �wmin~�~A,W !, L! dQ0 +

As « � �wmin~�, L! dQ0 � �~� � min~�, L!! dQ0 � �wmin~�, L! dQ0 �
�w� dQ0,we can conclude that

«��w� dQ0 � lim sup�wn dPun � lim inf�wn dPun � �w� dQ0 � «+

Because « was arbitrary, we have shown that

lim�wn dPun ��w� dQ0 +

This establishes the fact that the power function of the wn converges to the
power function of w for all local alternatives+ Because we already know that w
is not within our class, we can find a test c with ~strictly! better power proper-
ties+ In Theorem 3 in Section 3 we show that in this situation it is possible to
construct tests cn with strictly better asymptotic power properties than the wn,
which establishes our result, namely, that the wn are asymptotically inadmissible+

In view of the preceding results one is tempted to look at other “generaliza-
tions” of the classical LR test to situations with stochastic information+ One
such generalization is the test based on the posterior information criterion ~PIC!
~cf+ Phillips, 1996; Phillips and Ploberger, 1996; Ploberger and Phillips, 2003!+
Consider tests that reject if

W 2

2A
�

1

2
ln A � K (18)

and accept if

W 2

2A
�

1

2
ln A � K, (19)

where K is a constant determined by the desired significance level+ These tests
are all admissible+ Simply consider our measures m,n to be the Lesbesgue mea-
sure and choose the other constants appropriately+ Then it is a simple but tedious
calculation to show that ~12! yields a test based on
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1

MA
exp�W 2

2A
�,

which is immediately seen to be equivalent to the test determined by ~18! and
~19!+

It should be noted that in the “classical” case of A being constant this test is
equivalent to a test based on W 20A, too+ So we can view the PIC test as a
generalization of the classical tests, too+

3. APPLICATIONS

The result of the previous section establishes a minimal complete class theo-
rem for a rather large class of testing problems+ Apart from the three technical
conditions we only require the likelihood function to be locally asymptotically
quadratic+ The main point of interest seems to be that this class of admissible
tests is quite different from the one for the classical problem where W is Gauss-
ian and A constant+ In this kind of situation the set of all admissible tests is
well known even for multivariate parameters ~Birnbaum’s theorem; cf+ Strasser,
1985!+ Each of these tests is characterized by a convex set ~in the univariate
case an interval! and rejects if W lies outside the interval+ Hence Theorem 1 of
the previous section seems to be of considerable theoretical interest+ It shows
that even a small change in our assumptions makes enormous differences for
the class of admissible tests+

In the previous section we only dealt with one-parameter families+ This fact
represents a significant hurdle for a direct application of the result+ However,
we can apply the result to prove the inadmissibility of tests+ We will show that
certain tests—e+g+, the Dickey–Fuller t-test and the pseudo-t-test based on the
statistic ~5!—can be interpreted as tests on a unidimensional parameter+ Our
result then shows that there must exist a test with uniformly better power func-
tion+ The drawback is that the result is nonconstructive+ The only information
we supply about the better test is that it has a form of ~9!+ Nevertheless, the
result may motivate researchers in the field+ Efforts to find better tests are now
not doomed from the start+ We know that a better test exists!

Let us first analyze the Dickey–Fuller test+ Unfortunately, the techniques pre-
sented here cover only the cases that do not occur that often in practice+ In
most cases the data contain a drift or a deterministic trend+ It should be noted
that especially the presence of deterministic trends changes the situation com-
pletely+ I conjecture that in this case the Dickey–Fuller t-test is admissible+
The results of Müller and Elliot ~2001! establish an optimality property+ For a
detailed analysis also see Elliot et al+ ~1996!, Phillips and Xiao ~1998!, and
Stock ~1995!+ Nevertheless, I think that the results of this paper are important
to the theory of testing for unit roots+ It shows, in particular, that the situation
is radically different from the classical one+
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Let us now assume that a process yt is defined by ~4! and let us furthermore
assume that the

ut are i+i+d+ Gaussian (20)

with zero expectation and that all of the roots of the polynomial

p~z! � 1 � 	
1

p

pi z i

lie outside the unit circle+ Then let us consider local alternatives

dn �
C

n
+ (21)

Jeganathan ~1991, 1995! performed a rigorous asymptotic analysis for these
kinds of testing problems+ In particular, he established limiting properties of
these experiments+ Using his results, one can easily show that in many interest-
ing cases the necessary conditions of our theorems are fulfilled+ The “elemen-
tary” case of the Dickey–Fuller test without a trend is discussed in Ploberger
~2004!+

In many applications, however, one wants to avoid relatively narrow para-
metric assumptions such as ~20!+ Standard statistical theory of optimal testing
~cf+ Strasser, 1985! is based on Neyman–Pearson tests, which critically depend
on densities+ Hence we cannot show the admissibility of tests+ Under certain
circumstances, however, we can show that certain tests are not admissible in
the sense that there exists a test with a uniformly better power function+

Let us now assume that Pu is a family of probability measures parametrized
by a parameter u+ We assume that the parameter can be split into two parts,

u � �d
b
�,

where d should be one-dimensional, whereas the nuisance parameter b can be
of arbitrary dimension+ Suppose we want to test the hypothesis d � 0+

Suppose one has an estimator—say, Zdn—for d; then one will be tempted to
use an analogue to the usual t-test+ One will construct some other statistic—
say, [sn

2—so that

Zdn

M [sn
2

converges in distribution+

Then it is easy to construct a test+ In the “classical” case, where Zdn is asymp-
totically normal, [sn

2 will be an appropriately scaled consistent estimator for the
asymptotic variance+We are more interested in the nonstandard case, where the
limiting distribution of the properly scaled [sn

2 is nontrivial+

TESTS IN UNIT-ROOT-LIKE SITUATIONS 27

https://doi.org/10.1017/S0266466608080031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080031


In some cases, we can utilize our approach analyzing the nonoptimality of
tests+ In the previous section, we were mainly working with the scores and the
“information” ~the second derivative! of the likelihood function+ Here the situ-
ation is different+We start with estimators for the parameter and their accuracy+

So let us review the basic assumption of the previous section+ For doing so,
we must find analogues to the Wn and An defined earlier+ We started with the
model ~1!:

log pn~u0 � Dn
�1 h!� log pn~u0 ! ; hWn �

1

2
An h 2+

Then it is easily seen that—in case the logarithm of the likelihood is twice
continuously differentiable—the maximum likelihood estimator Zun can be
approximated in the following way:

Dn~ Zun � u0 !� An
�1 Wnr 0+

Moreover, we can easily conclude from our assumptions that MAn
�1Wn con-

verges in distribution, and so [sn
2 � An 0Dn

2 would be a feasible normalizing
estimator+

In our situation, however, we start with the estimators Zdn, [sT
2 + So let us

assume that there exists an appropriate sequence of scaling factors Dn and define
~keeping in mind that we want to test d � d0!

An � Dn
2 [sn

2 ,

Wn � [sn~ Zdn � d0 !+

Then we assume that the following four assumptions are fulfilled+

Assumption A1+ The nuisance parameter b is fixed+

Assumption A2+ ~An,Wn! converges �for u� �d0

b
�� in distribution to

some random variable ~A,W ! with distribution Q0, which fulfills the pre-
requisites of the previous section+

Assumption A3+ For local alternatives

dn � d0 �
c

Dn

(22)

�i+e+, un � �dn

b
�� , the distributions of ~An,Wn! converge to a measure Qc with

dQc

dQ0

� exp�cW �
c2

2
A�+
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Assumption A4+ The mapping c r Qc is continuous ~with respect to the
weak topology of measures!+ This means that cnr c implies Qcn

r Qc weakly+

Essentially, we assume that the statistic ~An,Wn! behaves “the same way” as
in the case of a unidimensional parameter+ We will now construct some exam-
ples that show that these assumptions will be fulfilled in many cases of consid-
erable interest+ In particular, it should be noted that we do not require parametric
assumptions such as, e+g+, Gaussian distributions of the error terms!

1+ The generalized augmented Dickey–Fuller ~ADF! test with no determin-
istic trend+ Said and Dickey ~1984! investigated the ADF test for unit roots for
autoregressive moving average ~ARMA! processes with independent and iden-
tically distributed ~i+i+d+! innovations+ Lately, in Chang and Park ~2002! fur-
ther generalizations of the model ~4! are considered ~e+g+, ut are martingale
differences with a very general structure, and the index p may depend on the
sample size and increase to infinity!+ So let us consider the model ~4! and
define

b � ~p1, + + + ,pp !
'+

They show that, even under the general circumstances considered in their paper
~using our notation!, letting Zdn be the OLS estimator for d and using an estima-
tor ZAn, where ZAn

�1 equals the denominator in the t-test ~i+e+, “variance esti-
mator”!, the properly normalized distributions of ZAn and the estimation error
jointly converge in distribution to the corresponding distributions for the ~sim-
ple! Dickey–Fuller test+ Thie convergence holds for d� 0 and also for the local
alternatives ~22! ~cf+ Chang and Park, 2002!+ So let us define the “scores” by

ZWn � n Zdn ZAn

and denote by Qc the limiting distribution of

~ ZWn , ZAn !+

The measures Qc are defined on the set $~A,W ! : A � 0% � R2 + As mentioned
before, the limiting distributions of our statistics are the same as for the Dickey–
Fuller test+ Hence we can conclude that the measures Qc are the same as the
asymptotic distributions for the simple random walk model, which was dis-
cussed in Ploberger ~2004!+ So we may conclude that

dQc

dQ0

� exp�cW �
c2

2
A�+

Moreover, it can easily be seen that other assumptions of our main theorem are
fulfilled, too+ Elementary calculations show that the two-sided ADF test rejects
when
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ZWn
2

ZAn

� n2
Zdn
2

10 ZAn

exceeds the critical value—say, U+ Hence the power of the ADF test against a
local alternative ~22! will converge to

Qc��W 2

A
� U��+

This only holds for all those U for which Qc~$W
20A � U %!� 0+ Because, how-

ever, the Qc have densities with respect to Q0, Qc~$W
20A � U %! � 0 implies

that Q0~$W 20A � U %! � 0+ But this inequality can only be true for countably
many U+ Hence we have convergence for all but at most countably many U+

2+ Cointegrated system testing+ Another possible application is the testing of
restrictions on certain parameters of cointegrated systems+ Let us first consider
the simplest possible case, namely, a bivariate system in Phillips’ triangular
form:

y1, t � gy2, t � ut , (23)

Dy2, t � vt +

For simplicity, let us assume that ut , vt are i+i+d+ standard normal with zero expec-
tation and the covariance being the identity matrix ~which implies that ut , vt are
uncorrelated!+ Then we can estimate g with OLS, and our estimation error will
be

[gn � g �
	 y2, t ut

	 y2, t
2
+

Let us now suppose that we want to test g � g0+ Then some tedious but ele-
mentary calculations show that the asymptotic distribution of n~ [gn � g0! con-
verges under the null to

�
0

1

W2 dW1

�
0

1

W1
2

,

where W1,W2 are independent Wiener processes+ Moreover, we can also con-
sider local alternatives of the form

gn � g0 �
c

n
+

30 WERNER PLOBERGER

https://doi.org/10.1017/S0266466608080031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080031


Then n~ [gn � g0! converges in distribution to

�
0

1

W2 dW1

�
0

1

W1
2

� c+

3+ Some generalizations+We can generalize the ideas of the preceding exam-
ple for use in a more general context+ Suppose we want to test whether a
parameter

d � d0

and we have an estimator Zdn, an estimator for the “information” ZAn, and a
sequence of scaling factors Dn, so that the following properties hold true+

For local alternatives

dn � d0 �
c

Dn

(24)

the distributions of ~ ZWn, ZAn!, where ZWT � Dn~ Zdn � d0!, converge in distribution
to a ~W,A! with the following properties+

• The distribution of A is independent of c+
• The conditional distribution of W given A is normal with expectation cA

and variance A+
• The distribution of A satisfies all the assumptions of our main theorem+

Many popular estimators for the cointegrating relationships have these asymp-
totically mixed normal properties: It is well established that the standard esti-
mators for the cointegrating relationships are normal only after conditioning:
cf+ Ahn and Reinsel ~1990!, Phillips and Hansen ~1990!, Phillips and Ouliaris
~1990!, Saikkonen ~1991!, Johansen ~1988, 1991!, Stock and Watson ~1993!,
and also Hamilton ~1994, Sect+ 19+3!+ Testing linear restrictions on these param-
eters with Wald-type tests ~cf+ Davidson, 1998! therefore will be covered by
our theory, at least for one-dimensional restrictions+

A testing problem satisfying the preceding conditions is called locally asymp-
totically mixed normal ~LAMN! ~cf+ Le Cam and Yang, 1990; Jeganathan, 1991,
1995!+ Apart from the economic applications quoted later, this type of model
has also received much attention in the statistical literature ~cf+ the references
cited previously!+

4+ Other cases+ Asymptotically mixed normal families do not only occur in
connection with unit root tests or cointegration+ Other cases of interest in eco-
nomics are given in Park and Phillips ~2001! and Aït-Sahalia ~1999!+

So let us now assume that we have given a testing problem satisfying the
preceding assumptions+ We might be tempted to use the generalized t-test wT
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for our testing problem+ This means we reject when the absolute value or, equiv-
alently, the square of

ZWn

M ZAn

� Dn An~dn � d0 !

is larger than the critical value+ Furthermore, let us assume that this critical
value has an absolute value larger than one, i+e+,

U � 1+ (25)

Let us additionally assume that the cumulative distribution function of the lim-
iting distribution of our test statistic is continuous at U+ This is equivalent to

Q0�� W

MA
�2

� U�� 0+ (26)

Hence the cumulative distribution function of the limiting distribution of our
test statistic is continuous in U+

THEOREM 3+ Suppose Assumptions A1–A4 and also (25) and (26) are sat-
isfied. Then the tests

wn � I� ZWn
2

ZAn

� U�
defined earlier are inadmissible. There exist tests

cn � cn~ ZWn , ZAn !

depending on Wn and An alone that have a strictly better asymptotic power
function than wn. For alternatives (24) we have

lim sup�wn dP~dn ! � lim inf�cn dP~dn ! if c � 0, (27)

where for at least one c � 0 the left-hand side is smaller than (and not equal
to) the right-hand side. Moreover, we also have

lim inf�wn dP~dn ! � lim sup�cn dP~dn ! if c � 0. (28)

Remark 3+ In many cases, it is not that surprising that the tests wn are inadmis-
sible+As an example take, e+g+, one of the preceding models with non-Gaussian
error terms ut , vt , when their distribution is known up to a finite-dimensional
parameter+ Then estimators based on parametric models for ut , vt should be
more accurate, and hence the corresponding tests would yield more power+ How-
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ever, it is interesting to observe that there exists a test better than wn depending
on ~Wn,An! alone! Therefore there exists some way of computing a test statis-
tic with ~Wn,An! other than the t-test statistic, which defines a test with a uni-
formly better asymptotic power function!

Remark 4+ Unfortunately, the proof is nonconstructive+ I only assert the exis-
tence of such a test+ The proof does not provide a way to construct this domi-
nating test+

Remark 5+ Here we will prove pointwise convergence in ~27! and ~28!+With
some technical refinements, the proof can be modified to show that the conver-
gence in ~27! is uniform on bounded sets of C+

Proof of Theorem 3+ The proof can be found in the Appendix+
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APPENDIX

Proof of Theorem 1. We give an indirect proof+ Let us assume that the test w is
from our class and has the same ~or worse! power function as c+

Let us first deal with the extreme cases+ So let us assume that the parameters describ-
ing the test w are zero except for U+ Then U must be nonzero ~because we did assume
that not all of the parameters vanish!, and we can conclude that w must be a trivial test,
either accepting for all ~A,W ! if U is positive or rejecting in every case if U is negative+
Hence we can easily see that—as c must have the same or better power function as
w—c must be trivial, too+

PROPOSITION 1+ Let us assume that the parameter a for our test w is nonzero.
Then the test c � 1 on the set $~A,W ! : A � a% Q0 almost surely.

For the proof of our proposition the following lemma is helpful+

LEMMA 1+ There exist k1,C1 � 0, so that the test w rejects on the set

$~A,W ! :W � k1 A � C1,A � a%,

or there exist k2,C2 � 0, so that the test w rejects on the set

$~A,W ! :W � k2 A � C2 ,A � a%.

Let us now prove the lemma+ First, let us look at the trivial cases+ If m � n � 0, the
lemma is trivial+ Let us now assume that m � n is nontrivial+ Then, at least one of the
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sets $l : l � 0% and $l : l � 0% is not a m� n null set+ Let us assume without limitation
in generality that

~m� n!~$l : l � 0%! � 0+

If this is true, then there exist a,b � 0 such that

~m� n!~$l : b � l � 2a%! � 0+ (A.1)

Consequently using ~13!, we may write our criterion function u as

u~A,W ! � b 'W �
c '

2
~W 2 � A!

� �
@�a,a#

1

l2 ��
0

l�
0

w�
0

v

exp�zW �
z 2

2
A�

� ~W � zA!@~W � zA!2 � 3A# dz dv dw� ~l2 dn '~l!!

� �
R�@�a,a#

exp�l�W �
l

2
A�� dm'~l!+ (A.2)

With

~m� n!~$l : b � l � 2a%!�m'~$l : b � l � 2a%! � 0+ (A.3)

So let us define

k1 � max~b,a� 3!

and let us define C1 later on+We will, however, without limitation of generality, assume
that

C1 � 1+

We now want to show that our test rejects if

W � k1 A � C1+ (A.4)

To do so, we have to show that for all values of ~W,A! satisfying ~A+4! u~A,W ! becomes
bigger than the critical value+ Hence, we have to find lower bounds for all the terms ~A+2!+
Subsequently we will show that all terms—except the last one—are bounded from below
by polynomials in W � A, at least for the values of ~W,A! that are of interest to us+
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Because ~A+4! implies that W � 0 and W � A we have

bW � �6b ' 6~W � A!,

and, as c ' � 0,

c '

2
~W 2 � A! � 0+

Now observe that for W � k1 A � 1 for z with z � a

W � zA � 1 � 0,

and, because of our definition of k1,

~W � zA!2 � 3A � 0+

To analyze the first integral in ~A+2! let us distinguish two cases: l � 0 and l � 0+ For
the first case, observe that for z � 0,W � 0

zW �
z 2

2
A � 0+

Hence, for �a � l � 0

1

l2 ��
0

l�
0

w�
0

v

exp�zW �
z 2

2
A�~W � zA!@~W � zA!2 � 3A# dz dv dw�

� �~W � aA!@~W � aA!2 � 3A#a06

� max~a,1!4$~W � A!3 � ~W � A!2 %+

On the other hand, for W � 0 and l � 0

1

l2 ��
0

l�
0

w�
0

v

exp�zW �
z 2

2
A�~W � zA!@~W � zA!2 � 3A# dz dv dw� � 0,

because the expression inside the integral is nonnegative and all the bounds of the inte-
grals are nonnegative+ Because the integrand in the last term on the right-hand side of
~A+2! is nonnegative, we have for W � 0

u~A,W ! � p~W � A!��
~2a,b!

exp�l�W �
l

2
A�� dm'~l!,

where p~+! is a polynomial ~of third order! representing our estimates for the first three
terms of ~A+2!+ Let us fix the constant C1 � 0 later on+ For any nonnegative C1, if
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W � k1 A � C1, then for l � ~2a,b!, W � ~l02!A � ~b02!A, and hence W � A �
W � ~l02!A � ~1 � l02!A � ~W � ~l02!A!~1 � ~20b!~1 � l02!!+ Hence, for all W �
k1 A � C1

�W �
l

2
A� � ~W � A!g,

with g � 10~1 � ~20b!~1 � k102!! and

u~A,W ! � p~W � A!�m'~$l : b � l � a%!exp~ag~W � A!!+

If W � k1 A � C1, then obviously W � A � C1+ Because an exponential function grows
faster than any polynomial, we can find a C1 such that for all W � A � C1 the right-
hand side of the preceding inequality is strictly bigger than U—our critical value+ Hence,
our test w will reject+

Now we can proceed to prove Proposition 1+ Let us assume that the proposition does
not hold true and c� 0 on the set B � $~A,W ! : A � a% with Q0~B! � 0+ Because with

Bn � B � �~A,W ! : A � a �
1

n
, 6W 6 � n�

Bn F B and consequently Q0~Bn! F Q0~B! � 0, we can find an n so that

Q0~Bn ! � 0+

Now let us consider the power functions of our tests w, c for probability measures Ql,
where we choose l depending on the behavior of the test w+ Lemma 1 guarantees that
the test w � 1 on the set $~A,W ! :W � k1 A � C1% ~in this case choose l r `! or
w � 1 on the set $~A,W ! :W � k2 A � C2% ~in this case choose l r �`!+ We will
discuss the first case only, because the second one is perfectly analogous+ As the power
function of c is not worse than the one of w for all values of the alternative, we have

�~w� c! dQl � 0+ (A.5)

The fact that w � 1 on Bn implies that

�~w� c! dQl � �
Bn

dQl��
$~A,W ! :A�a,W�k1 A�C1%

dQl+ (A.6)

We can easily see that for l r `

inf
~A,W !�Bn

exp�lW �
l2

2
A�

exp��
l2

2
�a �

1

2n
�� r `
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and hence

exp�l2

2
�a �

1

2n
���

Bn

dQlr `+

On the other hand

exp�l2

2
�a �

1

2n
���

$~A,W ! :A�a,W�k1 A�C1%

dQl

� exp�l2

2
�a �

1

2n
���

$~A,W ! :A�a,W�k1 A�C1%

exp�lW �
l2

2
A� dQ0

� exp�l2

2
�a �

1

2n
���

$~A,W ! :A�a,W�k1 A�C1%

exp�l~k1 A � C1!�
l2

2
A� dQ0

� exp��
l2

2
� 1

2n
�� C1l� lk1 a �

k1
2

2
�

� �
$~A,W ! :A�a,W�k1 A�C1%

exp��
k1

2

2
� l�k1~A � a!�

l2

2
~A � a!�� dQ0 +

Now we can easily see that exp~�~l202!~102n! � C1l � lk1 a � ~k1
202!! r 0 for

lr `+ Because exp~�~k1
202!� l~k1~A � a!� ~l202!~A � a!!!� 1, one can conclude

that the preceding estimates guarantee that

exp�l2

2
�a �

1

2n
���

$~A,W ! :A�a,W�k1 A�C1%

dQlr 0+

Therefore ~A+6! implies that

exp�l2

2
�a �

1

2n
���~w� c! dQlr `,

which contradicts ~A+5!+ Hence our assumption that there exists a nontrivial set B must
be wrong, which is just the proposition we wanted to prove+

Now that our main tools are established, we can proceed with the proof of the theo-
rem+ We will show that w � c+ So let us start with an extreme case, namely, that

w � I ~A � a!+

Then the proposition we just proved shows that c rejects on ~A � a!, too+ Hence, we
may conclude that w � c+ Moreover, the power function of c is better than the power
function of w on the null; hence �~c � w! dQ0 � 0+ Therefore we can conclude that
c � wQ0 almost surely+

Next we investigate the general case, namely, where at least one of the parameters
b, c,m,n is nontrivial+ For this purpose we introduce the following notation+ For each
test r let
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P~r!~l! ��r exp�lW �
l2

2
A� dQ0

and define the functional Ln by

Ln~r! � bP~r!'~0!�
c

2
P~r!''~0!

� �
@�1,1#

��
0

l�
0

w�
0

v

~P~r!'''~z!! dz dv dw� dn~l!

��
@�n,�1!`~1, n!

P~r!~l! dm~l!+

It is easily seen that our assumptions ~14! and ~15! guarantee that all power functions of
tests are three times differentiable+ Hence our functionals are well defined+ The first
integral on the right-hand side of the preceding definition is finite because of the defi-
nition of the integrand ~o~l2!! and ~7!+ Moreover, because our functionals only depend
on the power functions, we have

Ln~w! � Ln~c!+

Moreover, we can easily see that with

u~A,W ! � bW �
c

2
~W 2 � A!

� �
@�1,1#

�exp�lW �
l2

2
A�� �1 � lW �

l2

2
~W 2 � A!�� dn~l!

� �
R�@�1,1#

exp�lW �
l2

2
A� dm~l!,

and

un~A,W ! � bW �
c

2
~W 2 � A!

� �
@�1,1#

�exp�lW �
l2

2
A�� �1 � lW �

l2

2
~W 2 � A!�� dn~l!

� �
@�n+n#�@�1,1#

exp�lW �
l2

2
A� dm~l!

then

Ln~r! ��run~A,W ! dQ0
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and

un F u+

Hence,

0 � Ln~w!� Ln~c!� U�~w� c! dQ0

���~w� c!~un � U ! dQ0

��
@u�U #

~w� c!~un � U ! dQ0 ��
@u�U #

~w� c!~un � U ! dQ0 + (A.7)

We will now analyze the behavior for n r `+
Let us first analyze �@u�U #~w � c!~un � U ! dQ0 � �@u�U # c~U � un! dQ0+ We can

apply the dominated convergence theorem ~U � un is monotonically falling and on the
event @u � U # between 0 and U !+ We therefore have

�
@u�U #

~w� c!~un � U ! dQ0r �
@u�U #

c~U � u! dQ0 � 0+ (A.8)

For the second term, observe that

�
@u�U #

~w� c!~un � U ! dQ0

��
@u�U #

c~A,W !~1 � c! dQ0

� �
@u�U #

~1 � c!�
@�n+n#�@�1,1#

exp�lW �
l2

2
A� dm~l! dQ0 , (A.9)

with

c~A,W ! � bW �
c

2
~W 2 � A!

� �
@�1,1#

�exp�lW �
l2

2
A�� �1 � lW �

l2

2
~W 2 � A!�� dn~l!,

and c~A,W ! does not depend on n+ Moreover, assumptions ~14! and ~15! for the integral
in conjunction with Remark 2 guarantee the absolute integrability of c with respect to
Q0+ For the second term on the right-hand side of ~A+9! we may use the monotone con-
vergence theorem and conclude that

�
@u�U #

~1 � c!�
@�n+n#�@�1,1#

exp�lW �
l2

2
A� dm~l! dQ0

40 WERNER PLOBERGER

https://doi.org/10.1017/S0266466608080031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080031


converges to

�
@u�U #

~1 � c!�
@�`+`#�@�1,1#

exp�lW �
l2

2
A� dm~l! dQ0

~or `, if the integral is not finite!+ Hence, we may conclude that

�
@u�U #

~w� c!~un � U ! dQ0r �
@u�U #

~1 � c!~u � U ! dQ0 � 0,

where again the integral on the right-hand side may be infinite ~as the integrand is non-
negative, this is not a serious problem!+ Because in ~A+8! the limit is finite, we may add
~A+8! to the preceding equation and conclude that

�
@u�U #

~w� c!~un � U ! dQ0 ��
@u�U #

~w� c!~un � U ! dQ0

r �
@u�U #

c~U � u! dQ0 ��
@u�U #

~1 � c!~u � U ! dQ0 +

However equation ~A+7! guarantees that all the terms of the preceding sequence are
zero; hence the limit has to be zero, too+ Therefore

�
@u�U #

c~U � u! dQ0 ��
@u�U #

~1 � c!~u � U ! dQ0 � 0,

which implies that c� 0 on @u � U # and c� 1 on @u � U # + So c and w can differ only
on the set @u � U # , which was just the result we wanted to establish+

Proof of Theorem 3. Assumption A3 states that the distributions of ~WT ,AT ! under
PdT

converge weakly to Qc+ Hence,

lim�wT dP~dT ! � lim PdT
$~W,A! :W 20A � U %

� Qc $~W,A! :W 20A � U %,

because we did assume that the measure of the boundary of the set $~W,A! :W 20A � U %
has Q0-measure, and hence Qc-measure 0+ Hence the limiting power function of the test
wT is the power function of the test w� I $~W,A! :W 20A � U % with respect to the mea-
sures Qc+ Ploberger ~2004! establishes that this test is not within the complete class
described in the previous section, and hence our main theorem establishes that this test
cannot be admissible: Hence there must exist a test c � c~A,W !, such that

�w dQC � �c dQc for all c � 0,

�w dQ0 ��c dQ0 ,

(A.10)
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and for at least one c the left-hand side in ~A+10! is strictly smaller than the right-hand
side+ To prove our theorem, we have to establish the existence of tests cn � cn~An,Wn!,
such that

lim�cn dP~dn ! ��c dQc

for all c+ The test c is a measurable function of R2 to the interval @0,1# + Hence, Lusin’s
theorem ~cf+ Rudin, 1974, p+ 56! guarantees the existence of continuous functions fn,
such that

Q0~ @c� fn # ! � 10n+

Because 0 � c � 1, without limitation of generality we can assume that 0 � fn � 1,
too ~otherwise replace fn by max~0,min~fn,1!!!+ Hence, we can interpret fn~An,Wn!
as tests+ By applying Chebyshev’s inequality, we can easily see that for every e � 0
and all M there exists a K � K~e!, such that sup6c�M Qc~ @6W 6 � K # ! � e+ Because for
6W 6 � K, 6c 6 � M exp~cW � c2A02! � exp~KM !, we have for arbitrary e � 0 and arbi-
trary M

Qc~ @c� fn# ! � Qc~ @6W � K~e!6# !��
@6W�K~e!6#�@c�fn#

exp~cW � c2A02! dQ0

� e� exp~KM !Q0~ @c� fn # ! � e� exp~KM !0n,

and therefore ~as 6�c dQc � �fn dQc6 � Qc~ @c � f#!!

lim
nr`

sup
6c 6�M

��c dQc ��fn dQc� � 0+ (A.11)

On the other hand, fn are continuous functions+ So our fourth assumption and Pro-
horov’s theorem guarantee the relative compactness of the set of distributions of the
~Wn,An! under Pn~dn!, where dn � Dn

�1 c � d0 and 6c 6 � M+ Moreover, we did assume
that the distribution of ~Wn,An! under Pn~dn! converges ~for all c! to the distributions to
the Qc; hence it is easy to see that the set containing the

Pn~dn !~Wn ,An !
�1

and the Qc, both for 6c 6 � M, is compact+ Therefore, it can easily be seen that

lim
Tr`

sup
6c 6�M

��fn~Wn ,An ! dPn~dn !��fn dQc� � 0+

This limiting relation and ~A+11! together imply that there exist sequences Mn F `,
mn r ` such that

lim
Tr`

sup
7c7�Mn

��fmn
~Wn ,An ! dPn~dn !��c dQc� � 0,

which is just the result we wanted to show+

42 WERNER PLOBERGER

https://doi.org/10.1017/S0266466608080031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080031

