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COINTEGRATION AND DISTANCE
BETWEEN INFORMATION SETS

UMBERTO TRIACCA
Istituto Nazionale di Statistica

This paper investigates Granger noncausality and the cointegrating relation be-
tween two time series in the Hilbert space framewaiiks framework allows us to
analyze the relationship between cointegration and distance between two informa-
tion setsln particulaywe prove that if two variableX andY, are cointegratedhen

the distance between two information setsncerning the differenced seriax
andAY, must be less than the standard deviation ¥f

1. INTRODUCTION

A time seriesX,, is said to be integrated of orddr(denotedX; ~ | (d)) if it is a
series that has a stationaigvertible, nondeterministic ARMA representation
after differencingd times If X, andY,; are bothl (d) and there exists a scalar
(#0) so thatZ; = X; — a¥; ~ 1(d — b), b > 0, thenX; andY; are said to be
cointegrated of orded, b, denoted X;,Y;) ~ Cl(d,b).

Now we suppose that two time serjeg andY;, are bothl (1). The main pur-
pose of this paper is the formalization of the following idéghe information in
the past and present of the varialAl = (1 — L)Y;, whereL is the lag operator
defined byLY; = Y;_4, organized in whatever forrfi.e., considering any finite
and infinite linear combination of the variables,AY;_1,AY;,AY;,4,...), is “t00
distant” from the pasfpresentand future of the variabla X; (i.e., the sef{AX;;
t=0,+1+2,...}), thenX; andY,; are not cointegrated

The paper is organized as follows Section 2 we state Granger’s definition of
noncausality in Hilbert space framework Sections 3 and 4 the main results are
presentedConclusions are given in Section 5

2. GRANGER’S NONCAUSALITY IN HILBERT SPACE FRAMEWORK

In this section we focus on the causal relationship between two time series
{Xi, Xi_1,...tand{Y,, Y,_1,...}. The definition of causality that we consider is that

of Grangern(1969. The essence of Granger’s concept of causality is Ytaes

not causeX if and only if the(minimum mean square erpdinear predictor of

X1 based onXi, X;_1,...,Y;,Y_1,... is equal to the linear predictor based on
X, Xi_1,... alone
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Granger’s definition of noncausality can be formalized in terms of Hilbert
space geometry

Let L2(Q,F,P) be the Hilbert space of square integrable random variable
defined P-almost surely on the probability spac@,F,P). In L?(Q,F,P) the
inner product and the norm are defined mspectively(x,y) = E(xy), |x|| =
(E(x?))¥2 Ox,y € L%(Q,F,P). If |x, — x| = 0 asn — oo, we say thafx,}
converges in quadratic mean to a limit poxtA point is a limit point of a set
M (subset ofL2(Q, F,P)) if it is a limit point of a sequence frorv. In partic-
ular, M is said to be closed if it contains all its limit pointi§ Sis an arbitrary
subset oL.?(Q, F, P), then the set of alh, x; + -+ + aXe (k=12,...;a4,..., 8
arbitrary real numbersy, ..., X, arbitrary elements 08) is called linear man-
ifold spanned byS and is symbolized by £%). If we add to sgS) all its limit
points we obtain a closed set that we call the closed linear manifold spanned by
S symbolized by s¢5). Two elements, y of L?(Q, F,P) are called orthogonal
if (x,y) =0, and we writex L y. If SC L?(Q,F,P) is any subset df2(Q, F,P),
then we writex 1 Sif x L sfor all s € S; similarly, the notationS L T, for two
subsetsSandT of L?(Q, F, P), indicates that all elements &are orthogonal to
all elements ofT. For two subset$ and T of L?(Q,F, P) it is well known that
if x L TOx € S then sgS) L T. For a givenx € L?(Q,F,P) and a closed
subspac&of L2(Q, F,P), we define the orthogonal projection o L%(Q,F,P)
on S denoted by(x|S), as the element dBsuch that|x — (x|S)| = | x — z| for
any z € S We observe that iM and N are orthogonal closed subspaces of
L2(Q,F,P),thenM + N={m+ n;m& M, n € N} is a closed linear subspace
of L2(Q,F,P) and(x|M + N) = (x|M) + (x|N) for anyx € L2(Q,F,P).

We now consider a bivariate discrete stochastic prodéXs,Y;),t =
0,£1,%+2,...}, defined on(Q, F, P), with finite second momentdVithout loss
of generalitywe can suppose th&(X;) = E(Y;) = 0 t. We denote byHyy(t),
Hx(t), andHy(t) the closures with respect to mean square convergence of the
linear manifolds generatedespectively by subsetgX;, X;_1,...,Y,Yi—1,...},
X, Xi—1, ...}, and{¥.,Y,_1,...} in the Hilbert spacé.?(Q,F,P), that is

Hxv(t) = sP{Xe, Xi-1,-.-, ¥, Yeog, -0 ),
Hx(t) = sp({X;, X;-1,...}),
Hy(t) = sp({Y;, Y- 1,...}).
We observe that iHy(t) andHy(t) are orthogonalHx(t) L Hy(t), then
Hxy(t) = Hx(t) + Hy(t) = {X +y; x € Hx(t), y € Hy(D)}.

The linear subspadéyy(t) represents the information “linearly organized” con-
tained in the present and past of the prodg®s,Y;), t = 0,£1,+2,...}. With
respect to this information set we can give the following definition of Granger
noncausality
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DEFINITION 1. Thevariable Y does not Granger cause theriable X iff
(Xes1|Hxy(1)) = (Xesa| Hx (1)) Ot

A variable Y Granger causes another variaBlggiven the information set
Hyxy(1), if X, 1 can be better predicted using valuéss, s= 0 than without past
and presenY values that is Y Granger causeX if the information inHy(t) is
relevant in explaining futurX values

Asimilar definition may be found in Bruneau and Nicol@®94), Boudjellaba
Dufour, and Roy(1992, and Kohn(1981).

3. CAUSALITY AND DISTANCE

Let{(X.,Y,),t=0,£1,+2,...} be a stationary procesdefined on the probability
space(Q, F,P), with E(X,) = E(Y;) = 00t, and leto?,0¢ denote the variance
of X; andY,, respectively We consider furthermore the following subset of
L2(Q,F,P):

IX = {Xt, t= O,iLiZ,...}.

The quantity

d(Ix, Hy(1) = inf{[x—y[; x € Ix, y € Hy(t)}

is said distance betweép andHy(t). We observe thad(ly, Hy(t)) = ox.
We now can prove the following theorem

THEOREM 1 If d(Ix, Hy(t)) = ox, then Y does not Granger cause X
Proof If d(Ix,Hy(t)) = ox, then|X. — y| = ox Oy € Hy(t), Or. We prove
first thatX. is orthogonal to all vectors iHly(t) O7. If y= 0, we have(X,,y) =
0 Or. Now suppose # 0. For a giveny € Hy(t), and for any scala € R, we
have
o = X2 =X, = ay[? =(X; — ay, X, — ay)
= (X:, X;) = 2a(X;, y) + a*(y,y)
= [X:[? = 2a(X;,y) + a®|y|?* Or.

Therefore 6= a?|y|? — 2a(X,, y) O7. Becausg # 0, we can choose = (X,, y)/
|yll?Or so that

0= (X »7IYI?) = 2(X, N7yl = =X, »7lyl* Or.
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It follows that(X,,y) = 00r. ThusX, L Hy(t) Or. BecauseHy = sp{X; t =
0,+£1,£2,...}, this impliesHx L Hy(t). Therefore we have

(Xir 1/ Hxy(1) = (X2 Hx (1) + Hy (1))
= (Xera[Hx (D) + (Xera|Hy (1))
= (Xira|Hx(1)) Ot
That is Y does not Granger cause the variaXle u

Theorem 1 asserts that when the distance between any linear combiffiation
nite or infinite) of an element of the s¢Y;,Y,_1,...} and any element of the skgt
is equal tooy, then the variabléf does not Granger cause the variaKle

We now consider the distance betwdgrandHy = sp{Y;; t = 0,+1,+2,...},
that is the quantityd(Ix, Hy) = inf{|x — y|; X € Ix, y € Hy}.

THEOREM 2 If d(lIx, Hy) = ox, then Y does not Granger cause X and X does
not Granger cause.Y

Proot By using the same arguments we used in proving TheoremeXkan
show that ifd(lx,Hy) = ox, then X; L Hy[Ot. BecauseHyx = sp{X;; t =
0,+1,+2,...}, this impliesHyx 1L Hy. Therefore we have

(Xer 1 Hxy(1) = (Xera[Hx () + Hy (1))
= (Xera[Hx () + (Xera[Hy (1))
= (Xera[Hx (1)) Ot

and

(Ve[ Hyxy (1) = (Yera|Hx (1) + Hy (1))
= (Yera| Hx (1)) + (Yera| Hy (1))
= (YeraHy(D) DOt

Thatis Ydoes not Granger cause the variakkndX does not Granger cause the
variableY. u

Theorem 2 states that the conditid(ix, Hy) = o is sufficient to exclude any
Granger causal link betweefiandY. This could appear surprisingndeed we
could expect that such a condition would be sufficient only to exclude causality
from Yto X. We would also expect to need two conditions—name{¥x, Hy) =
ox andd(ly, Hyx) = oy, wherely ={Y;; t =0,+1,+2,...}—to obtain the thesis of
Theorem 2But this would be redundant because the following theorem applies

THEOREM 3 d(lx, Hy) = O, iff d(ly, Hx) = 0Ovy.
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Proof If d(Ix,Hy) = ox, thenHx 1 Hy; thus by the Pythagorean theoreme
have

ly=xIZ=1lyl?+x|*> Ox€Hx,  Oy€EHy.

In particularwe have|Y, — x||2 = | Y;|? + | |2 Ox € Hy, Ot, and this implies that
IY; = x| = | Y| = oy OX € Hy, Ot, that is d(ly, Hx) = . In a similar way we can
prove thatd(ly, Hy) = oy impliesd(lx, Hy) = ox. u

In this section we have proved the following statements

1. Ifthe distance between the d3gt={X;;t =0,+1,+2,...} and the linear spadey(t)
reaches the limit valuey, thenY does not Granger cau3e

2. if this same value is reached by the distance between theyset {X;; t =
0,+1,+2,...} and the linear spacky, thenY does not Granger causéand X
does not Granger caude

In other termswe have thatif Y Granger causes thend(lx, Hy(t)) < ox, and
if Y Granger causesor X Granger cause$ thend(lx, Hy) < ox. Thereforethe
conditiond(lx,Hy) < ox can be interpreted as a condition of contiguitlye
existence of a Granger causal link betweeandY indicates that processgx; }
and{Y;} are contiguougthat is d(Ix, Hy) < ox.

Moreover we note thatif oy = 0, then the variableX is causally prior with
respect to any variablend this is consistent with the fact that the Granger’s
approach to causality excludes all nonstochastic variables

Finally we observe that we have not at all considered the distance between the
setsly = {X;;t=0,£1,+2,...}andly ={Y;; t =0,+1,%+2,...}, because even if
this distance were greater than or equabig the information contained ih,
could be organized so as to be useful for the prediction of the futuxelodt us
consideyin fact, the proces$(X, Y;), t=0,+1+2,...} defined as
Xi=aY 1+ g a<0
Yt = 8)’1

wheree, ande,, are independent white noiswith E(c%) = E(s7) = 1.2 In

this caseY Granger causeX; further, becausal(ly,lyv) = v a? + 2 andoy =
Ja?+ 1 we haved(ly, ly) = ox. Thus the conditiord(ly,ly) = oy does not
imply the noncausality betweedandY.

4. COINTEGRATION AND DISTANCE

We now abandon the assumption th@X;,Y;)’, t = 0,£1,+2,...} is a stationary
processSuppose thak; and; are bothl (1) and that they are generated by a
vector autoregressive process of orger

Xt t
MERE
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where

o [AuL) A
( ‘{Am(L) A22<L)}

=l—AL—--—ALP

_ {1 O} - [3111 312,1}_ o |:a1],p a12,p:|Lp
01 dz11 Q21 Az1p QAxop
and(ey, &, is a bivariate white noise process with mean zero and nonsingular
covariance matrix
In the procesg1) Y does not Granger causeéiff a;,; = 0 fori =1,...,p.
ConverselyX does not Granger caud@ff a,;; =0fori=1,...,p.

We observe that using the first-difference operaipl) can be reparameter-
ized as an error correction model

AX; it [AXe Xi-p Ext
=>T + 11 + ,
NS I=T P\ Yool ey
where

i p
E=—<|—2A1> fori=1,...,p—1 and H:_<|_2Aj>-
= =t

The cointegration literature focuses on the parameter mHtidecauseas-
suming that all roots of the implicit VAR polynomiétief A(z)]) lie outside the
unit circle or equal to 1the nonstationarity character of the analyzed series
(X,Y), is determined byl. If IT has full rank all variables in the system are
stationaryOn the contrarywhenll = 0, the variables are not cointegrajeshd
the process may be represented as a VAR in first differemic8lsis not zero and
has rank 1the variables are cointegrated

A well known result is that cointegration implies Granger causality in at least
one directionGranger1988; if (X.,Y;) ~ Cl(1,1), thenY Granger causesor X
Granger causes.

Now, becaus€A X;,AY;)’" is supposed to be a zero mean purely nondetermin-
istic stationary procesthere exists a multivariate Wold representatesifollows

X Ext
(1—L)[Yt]=‘1’(|-){eyl, (2)

where

[‘1’11“—) ‘1’12(L)]
V(L) =

Wai(L)  Wao(l)
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With W (L) = W o+ W 1L + W 5L2 + +-- andWyy o= Wor0 =1 Vi 0= Vp10=
0. We remember thatY does not Granger cauaiff ¥;,; =0fori =1,2,....
ConverselyA X does not Granger caugdd iff ¥,,; =0 fori =1,2,.... Thus we
can prove the following result

THEOREM 4 If AY does not Granger causeX andA X does not Granger
causeAY, then Y does not Granger cause X and X does not Granger cause Y

Proof If AY does not Granger cauaeX andA X does not Granger cauad,
thenW;,(L) = ¥,,(L) = 0. Premultiplying(2) by A(L) results in

X B Ext
(1- L)A(L){Yt] = A(L)\P(L)[eyj' (3)

Substituting(1) in (3), we have

Ext Ext
1-L = A(L)¥(L . 4
( )[eyt] (L)w( ){eyt} (4)

Now, equation(4) has to hold for all realization die, €,;)’, which requires that
(1— L)l andA(L)W¥(L) represent the identical polynomialin This means that

(1-2)1 =A(2)¥(2) %)

for all values ofz. Thus because by hypothestsr does not Granger caugeX
andA X does not Granger cauag, we have that

1-L 0 | _[Au(L)¥na(l)  Anp(L)¥(L)
0 1-L Aoa(L)Wra(L)  Agp(L)Wop(L)

To this point we can finally establish a result that places in relation the distance
between the differentiated process&¥; andAY;, and the condition of cointe-
gration between the processgsandy;.

We remember first of all thaf(AX;,AY;), t = 0,£1,£2,...} is a stationary
processdefined on the probability spadé), F,P), with E(AX;) = E(AY;) =
0 0t; let o2 denote the variance a@fX,. We consider the following subsets of
L2(Q,F,P):

lax = {AX;t=0,+1+2,...}

and

Hyy = SP{AY;; t=0,+£1,+2,...}.

The distance betwedny andH ,y is the quantity
d(lax,Hay) = inf{|x —y[; X € I5x, y € Hav}.

Now, we can prove the following theorem
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THEOREM & If d(l,x,Hay) = 0ax, then X and ¥ are not cointegrated

Proof If d(l,x,Hay) = oax, then by Theorem 2AY does not Granger cause
AXandA X does not Granger caua®. It follows, by Theorem 4thatY does not
Granger caus& and X does not Granger caude Thus because cointegration
implies Granger causality in at least one direcfiwe can conclude that, andY,
are not cointegrated u

Theorem 5 asserts that X and Y are cointegratedthen the distance be-
tween at least one linear combinatiffimite or infinite) of elements of the set
{...,AY,_1,AY;,AY,,4,...} and at least one element of the $gf must be less
than the standard deviation afX.

5. CONCLUSION AND INTERPRETATION OF THE RESULTS

In this paper we have investigated Granger noncausality and the cointegrating
relation between two nonstationary time series in the Hilbert space framework

We have shown that when the information in the past and present of the
variableY, organized in whatever forri.e., considering any finite and infinite
linear combination of the variableg,Y;_4,...), is “too distant” from the past
presentand future of the variabl¥X (i.e., the sefX;; t = 0,£1,£2,...}), thenY
does not Granger cause the variaildt is interesting to see how this result is
related to noncausality in the usual senBee notion of Granger causality stip-
ulates that a variabl¥ causes another variab¥eif the past and present values
of Y can be used to prediat more accurately than simply using the past and
present values oK. Now, if d(Ix,Hy(t)) = ox, thend(Ix(t+),Hy(t)) = ox,
wherely(t+) = {X(1, X¢12,... 1. This means that the information in the past
and present of the variabM organized in whatever forrti.e., the setHy(t)),
is “too distant” from the information iry(t+) and hence the information in
Hy(t) is not relevant in explaining futur¥ values(i.e.,, Y does not Granger
causeX).

Theorem 2 asserts that in a bivariate framework the existence of a Granger
causal link betweelX andY requests that the procesges} and{Y;} are contig-
uous that is d(Ix,Hy) < ox. It is worth emphasizing thain a multivariate
framework Granger causality does not require that every cause is contiguous
with its effectg howeverin a bivariate framewaorkt points out only direct causal
links between contiguous process€his is the problem of noncausality due to
omitted variablegLutkepoh| 1982.

We also have proved that X; and; are bothl (1) and if the information in
the past and present of the varialdl¥ = (1 — L)Y;, organized in whatever
form (i.e., considering any finite and infinite linear combination of the vari-
ables...,AY,_1,AY;,AY;;4,...) is “too distant” from the pastpresentand fu-
ture of the variablez\ X; (i.e, the set{AX;; t = 0,+1,+2,...}), thenX; and;
are not cointegratedThis is a surprising resultaccording to it a condition
concerning the differenced series implies a condifioancointegrationcon-
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cerning the linear combinations of the serigslevels. The intuition behind it

is the following Cointegration is the statistical implication of the existence of

a long-run relationship between the economic variabésen two variablesX

andY, are cointegrated there is a tendency for the variables to move together to
maintain a log-run equilibriumtherefore a cointegration relationship cannot
exist betweerX andY if the information in the paspresentand future ofAY,
organized in whatever forms “too distant” from the pastpresentand future

of AX.

In general differencing the data causes loss of information about the relation-
ship between the levels of the variahleswevey according to Theorem,%he
cointegration property can be detected from differenced variables seems to
mean that we need not information of nominal variables but only that of the
differenced variables to see the variables are not cointegrated

Finally, we note that Theorem 5 connects to earlier work on efficient estima-
tion of cointegrating regressions by way of lead and lag formulatises Phillips
and Loretan1991; Saikkonen1991; Stock and Watsarl993.

NOTES

1. Details on Hilbert spaces can be found in Halni®851), Brockwell and Davig1987), and
Caines(1987.
2. We remember that for the procei$¥;,Y;)’, t = 0,£1,+2,...} defined as

X = a1 + &y,
Y = ey,
wheree, ande,, are independent white noiseith E(¢2) = E(s7) = 1, we have

Ja?+2 ifa<O
d(lx,ly) = { V2 ifa=0.
JVa?—=2a+2 ifa>0
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