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This paper investigates Granger noncausality and the cointegrating relation be-
tween two time series in the Hilbert space framework+ This framework allows us to
analyze the relationship between cointegration and distance between two informa-
tion sets+ In particular,we prove that if two variables,XandY, are cointegrated, then
the distance between two information sets, concerning the differenced seriesDX
andDY, must be less than the standard deviation ofDX+

1. INTRODUCTION

A time series, Xt , is said to be integrated of orderd ~denotedXt ; I ~d!! if it is a
series that has a stationary, invertible, nondeterministic ARMA representation
after differencingd times+ If Xt andYt are bothI ~d! and there exists a scalara
~Þ0! so thatZt 5 Xt 2 aYt ; I ~d 2 b!, b . 0, then Xt and Yt are said to be
cointegrated of orderd,b, denoted~Xt ,Yt ! ; CI ~d,b!+

Now we suppose that two time series, Xt andYt , are bothI ~1!+ The main pur-
pose of this paper is the formalization of the following idea+ If the information in
the past and present of the variableDYt 5 ~12 L!Yt , whereL is the lag operator
defined byLYt 5 Yt21, organized in whatever form~i+e+, considering any finite
and infinite linear combination of the variables+ + + ,DYt21,DYt ,DYt11, + + + !, is “too
distant” from the past, present, and future of the variableDXt ~i+e+, the set$DXt ;
t 5 0,61,62, + + + %!, thenXt andYt are not cointegrated+

The paper is organized as follows+ In Section 2 we state Granger’s definition of
noncausality in Hilbert space framework+ In Sections 3 and 4 the main results are
presented+ Conclusions are given in Section 5+

2. GRANGER’S NONCAUSALITY IN HILBERT SPACE FRAMEWORK

In this section we focus on the causal relationship between two time series
$Xt ,Xt21, + + + % and$Yt ,Yt21, + + + %+The definition of causality that we consider is that
of Granger~1969!+ The essence of Granger’s concept of causality is thatY does
not causeX if and only if the~minimum mean square error! linear predictor of
Xt11 based onXt ,Xt21, + + + ,Yt ,Yt21, + + + is equal to the linear predictor based on
Xt ,Xt21, + + + alone+
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Granger’s definition of noncausality can be formalized in terms of Hilbert
space geometry+1

Let L2~V,F,P! be the Hilbert space of square integrable random variable
definedP-almost surely on the probability space~V,F,P!+ In L2~V,F,P! the
inner product and the norm are defined as, respectively, ^x, y& 5 E~xy!, 7x7 5
~E~x2!!102 ∀x, y [ L2~V,F,P!+ If 7xn 2 x7 r 0 asn r `, we say that$xn%
converges in quadratic mean to a limit pointx+ A point is a limit point of a set
M ~subset ofL2~V,F,P!! if it is a limit point of a sequence fromM+ In partic-
ular, M is said to be closed if it contains all its limit points+ If S is an arbitrary
subset ofL2~V,F,P!, then the set of alla1x1 1 {{{ 1 akxk ~k51,2, + + + ;a1, + + + ,ak

arbitrary real numbers; x1, + + + , xk arbitrary elements ofS! is called linear man-
ifold spanned byS and is symbolized by sp~S!+ If we add to sp~S! all its limit
points we obtain a closed set that we call the closed linear manifold spanned by
S, symbolized by sp~S!+ Two elementsx, y of L2~V,F,P! are called orthogonal
if ^x, y& 5 0, and we writex ' y+ If S, L2~V,F,P! is any subset ofL2~V,F,P!,
then we writex ' S if x ' s for all s [ S; similarly, the notationS' T, for two
subsetsSandT of L2~V,F,P!, indicates that all elements ofSare orthogonal to
all elements ofT+ For two subsetsS andT of L2~V,F,P! it is well known that
if x ' T ∀x [ S, then sp~S! ' T+ For a givenx [ L2~V,F,P! and a closed
subspaceSof L2~V,F,P!, we define the orthogonal projection ofx [ L2~V,F,P!
on S, denoted by~x6S!, as the element ofSsuch that7x 2 ~x6S!7# 7x 2 z7 for
any z [ S+ We observe that ifM and N are orthogonal closed subspaces of
L2~V,F,P!, thenM 1 N 5 $m1 n; m [ M, n [ N% is a closed linear subspace
of L2~V,F,P! and ~x6M 1 N! 5 ~x6M ! 1 ~x6N! for any x [ L2~V,F,P!+

We now consider a bivariate discrete stochastic process$~Xt ,Yt !
', t 5

0,61,62, + + + %, defined on~V,F,P!, with finite second moments+ Without loss
of generality, we can suppose thatE~Xt ! 5 E~Yt ! 5 0 ∀t+We denote byHXY~t!,
HX~t!, andHY~t! the closures with respect to mean square convergence of the
linear manifolds generated, respectively, by subsets$Xt ,Xt21, + + + ,Yt ,Yt21, + + + %,
$Xt ,Xt21, + + + %, and $Yt ,Yt21, + + + % in the Hilbert spaceL2~V,F,P!, that is,

HXY~t! 5 sp~$Xt ,Xt21, + + + ,Yt ,Yt21, + + + %!,

HX~t! 5 sp~$Xt ,Xt21, + + + %!,

HY~t! 5 sp~$Yt ,Yt21, + + + %!+

We observe that ifHX~t! andHY~t! are orthogonal, HX~t! ' HY~t!, then

HXY~t! 5 HX~t! 1 HY~t! 5 $x 1 y; x [ HX~t!, y [ HY~t!%+

The linear subspaceHXY~t! represents the information “linearly organized” con-
tained in the present and past of the process$~Xt ,Yt !

', t 5 0,61,62, + + + %+ With
respect to this information set we can give the following definition of Granger
noncausality+
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DEFINITION 1+ Thevariable Y does not Granger cause thevariable X, iff

~Xt116HXY~t!! 5 ~Xt116HX~t!! ∀t+

A variable Y Granger causes another variableX, given the information set
HXY~t!, if Xt11 can be better predicted using valuesYt2s, s$ 0 than without past
and presentY values, that is, Y Granger causesX if the information inHY~t! is
relevant in explaining futureX values+

Asimilar definition may be found in Bruneau and Nicolaï~1994!,Boudjellaba,
Dufour, and Roy~1992!, and Kohn~1981!+

3. CAUSALITY AND DISTANCE

Let $~Xt ,Yt !
', t 5 0,61,62, + + + % be a stationary process, defined on the probability

space~V,F,P!, with E~Xt ! 5 E~Yt ! 5 0 ∀t, and letsX
2,sY

2 denote the variance
of Xt and Yt , respectively+ We consider furthermore the following subset of
L2~V,F,P!:

IX 5 $Xt ; t 5 0,61,62, + + + %+

The quantity

d~IX ,HY~t!! 5 inf $7x 2 y7; x [ IX , y [ HY~t!%

is said distance betweenIX andHY~t!+We observe thatd~IX,HY~t!! # sX+
We now can prove the following theorem+

THEOREM 1+ If d~IX,HY~t!! 5 sX, then Y does not Granger cause X+

Proof+ If d~IX,HY~t!! 5 sX, then7Xt 2 y7 $ sX ∀y [ HY~t!,∀t+ We prove
first thatXt is orthogonal to all vectors inHY~t! ∀t+ If y 5 0, we havê Xt, y& 5
0 ∀t+ Now supposey Þ 0+ For a giveny [ HY~t!, and for any scalara [ R, we
have

sX
2 5 7Xt72 # 7Xt 2 ay72 5 ^Xt 2 ay,Xt 2 ay&

5 ^Xt ,Xt& 2 2a^Xt , y& 1 a2^ y, y&

5 7Xt72 2 2a^Xt , y& 1 a27y72 ∀t+

Therefore 0# a27y7222a^Xt, y& ∀t+BecauseyÞ0,we can choosea5 ^Xt, y&0
7y72 ∀t so that

0 # ~^Xt , y&207y72 ! 2 2^Xt , y&207y72 5 2^Xt , y&207y72 ∀t+
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It follows that ^Xt, y& 5 0 ∀t+ ThusXt ' HY~t! ∀t+ BecauseHX 5 sp$Xt ; t 5
0,61,62, + + + %, this impliesHX ' HY~t!+ Therefore, we have

~Xt116HXY~t!! 5 ~Xt116HX~t! 1 HY~t!!

5 ~Xt116HX~t!! 1 ~Xt116HY~t!!

5 ~Xt116HX~t!! ∀t+

That is, Y does not Granger cause the variableX+ n

Theorem 1 asserts that when the distance between any linear combination~fi-
nite or infinite! of an element of the set$Yt ,Yt21, + + + % and any element of the setIX

is equal tosX, then the variableY does not Granger cause the variableX+
We now consider the distance betweenIX andHY 5 sp$Yt ; t 5 0,61,62, + + + %,

that is, the quantityd~IX,HY! 5 inf $7x 2 y7; x [ IX, y [ HY%+

THEOREM 2+ If d~IX,HY!5sX, then Y does not Granger cause X and X does
not Granger cause Y+

Proof+ By using the same arguments we used in proving Theorem 1, we can
show that if d~IX,HY! 5 sX, then Xt ' HY ∀t+ BecauseHX 5 sp$Xt ; t 5
0,61,62, + + + %, this impliesHX ' HY+ Therefore, we have

~Xt116HXY~t!! 5 ~Xt116HX~t! 1 HY~t!!

5 ~Xt116HX~t!! 1 ~Xt116HY~t!!

5 ~Xt116HX~t!!! ∀t

and

~Yt116HXY~t!! 5 ~Yt116HX~t! 1 HY~t!!

5 ~Yt116HX~t!! 1 ~Yt116HY~t!!

5 ~Yt116HY~t!! ∀t+

That is,Ydoes not Granger cause the variableX andX does not Granger cause the
variableY+ n

Theorem 2 states that the conditiond~IX,HY! 5 sX is sufficient to exclude any
Granger causal link betweenX andY+ This could appear surprising; indeed, we
could expect that such a condition would be sufficient only to exclude causality
from Y to X+We would also expect to need two conditions—namely, d~IX,HY! 5
sX andd~IY,HX! 5 sY, whereIY 5 $Yt ; t 5 0,61,62, + + + %—to obtain the thesis of
Theorem 2+ But this would be redundant because the following theorem applies+

THEOREM 3+ d~IX,HY! 5 sX, iff d~IY,HX! 5 sY+
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Proof+ If d~IX,HY!5sX, thenHX ' HY; thus, by the Pythagorean theorem,we
have

7y 2 x72 5 7y72 1 7x72 ∀x [ HX , ∀y [ HY+

In particular,we have7Yt 2 x72 5 7Yt72 1 7x72 ∀x [ HX,∀t, and this implies that
7Yt 2x7$ 7Yt75sY∀x [ HX,∀t, that is, d~IY,HX!5sY+ In a similar way we can
prove thatd~IY,HX! 5 sY impliesd~IX,HY! 5 sX+ n

In this section we have proved the following statements+

1+ If the distance between the setIX 5 $Xt ; t 50,61,62, + + + % and the linear spaceHY~t!
reaches the limit valuesX, thenY does not Granger causeX;

2+ if this same value is reached by the distance between the setIX 5 $Xt ; t 5
0,61,62, + + + % and the linear spaceHY, then Y does not Granger causeX and X
does not Granger causeY+

In other terms,we have that, if YGranger causesX, thend~IX,HY~t!! , sX, and
if YGranger causesX or X Granger causesY, thend~IX,HY! , sX+ Therefore, the
condition d~IX,HY! , sX can be interpreted as a condition of contiguity: the
existence of a Granger causal link betweenX andY indicates that processes$Xt %
and$Yt % are contiguous, that is, d~IX,HY! , sX+

Moreover, we note that, if sX 5 0, then the variableX is causally prior with
respect to any variable, and this is consistent with the fact that the Granger’s
approach to causality excludes all nonstochastic variables+

Finally we observe that we have not at all considered the distance between the
setsIX 5 $Xt ; t 5 0,61,62, + + + % andIY 5 $Yt ; t 5 0,61,62, + + + %, because even if
this distance were greater than or equal tosX, the information contained inIY

could be organized so as to be useful for the prediction of the future ofX+ Let us
consider, in fact, the process$~Xt ,Yt !

', t 5 0,61,62, + + + % defined as

Xt 5 aYt21 1 «xt
a , 0

Yt 5 «yt

where«xt
and «yt

are independent white noise, with E~«xt

2 ! 5 E~«yt

2 ! 5 1+2 In

this caseY Granger causesX; further, becaused~IX, IY! 5 %a2 1 2 andsX 5
%a2 1 1, we haved~IX, IY! $ sX+ Thus the conditiond~IX, IY! $ sX does not
imply the noncausality betweenX andY+

4. COINTEGRATION AND DISTANCE

We now abandon the assumption that$~Xt ,Yt !
', t 5 0,61,62, + + + % is a stationary

process+ Suppose thatXt andYt are bothI ~1! and that they are generated by a
vector autoregressive process of orderp,

A~L!FXt

Yt
G 5 Fext

eyt
G (1)
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where

A~L! 5 FA11~L! A12~L!

A21~L! A22~L!G
5 I 2 A1L 2 {{{ 2 ApLp

5 F1 0

0 1G2 Fa11,1 a12,1

a21,1 a22,1
GL 2 {{{ 2 Fa11, p a12, p

a21, p a22, p
GLp

and~ext,eyt!
' is a bivariate white noise process with mean zero and nonsingular

covariance matrix+
In the process~1! Y does not Granger causeX iff a12, i 5 0 for i 5 1, + + + , p+

ConverselyX does not Granger causeY iff a21, i 5 0 for i 5 1, + + + , p+
We observe that using the first-difference operatorD, ~1! can be reparameter-

ized as an error correction model:

FDXt

DYt
G 5 (

i51

p21

Gi FDXt2i

DYt2i
G1 PFXt2p

Yt2p
G1 Fext

eyt
G,

where

Gi 5 2SI 2 (
j51

i

AjD for i 5 1, + + + , p 2 1 and P 5 2SI 2 (
j51

p

AjD+
The cointegration literature focuses on the parameter matrixP because, as-

suming that all roots of the implicit VAR polynomial~det@A~z!# ! lie outside the
unit circle or equal to 1, the nonstationarity character of the analyzed series,
~Xt ,Yt !

', is determined byP+ If P has full rank all variables in the system are
stationary+ On the contrary, whenP 5 0, the variables are not cointegrated, and
the process may be represented as a VAR in first differences+ If P is not zero and
has rank 1, the variables are cointegrated+

A well known result is that cointegration implies Granger causality in at least
one direction~Granger, 1988!; if ~Xt ,Yt ! ; CI ~1,1!, thenYGranger causesX or X
Granger causesY+

Now, because~DXt ,DYt !
' is supposed to be a zero mean purely nondetermin-

istic stationary process, there exists a multivariate Wold representation, as follows:

~12 L!FXt

Yt
G 5 C~L!Fext

eyt
G , (2)

where

C~L! 5 FC11~L! C12~L!

C21~L! C22~L!G
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with Cij ~L! 5 Cij ,0 1 Cij ,1L 1 Cij ,2L2 1 {{{ andC11,0 5 C22+0 51, C12,0 5 C21+0 5
0+We remember thatDY does not Granger causeDX iff C12, i 5 0 for i 51,2, + + + +
ConverselyDX does not Granger causeDY iff C21, i 5 0 for i 5 1,2, + + + + Thus we
can prove the following result+

THEOREM 4+ If DY does not Granger causeDX andDX does not Granger
causeDY, then Y does not Granger cause X and X does not Granger cause Y+

Proof+ If DY does not Granger causeDX andDX does not Granger causeDY,
thenC12~L! 5 C21~L! 5 0+ Premultiplying~2! by A~L! results in

~12 L!A~L!FXt

Yt
G 5 A~L!C~L!Fext

eyt
G+ (3)

Substituting~1! in ~3!, we have

~12 L!Fext

eyt
G 5 A~L!C~L!Fext

eyt
G + (4)

Now, equation~4! has to hold for all realization of~ext,eyt!
', which requires that

~12 L! I andA~L!C~L! represent the identical polynomial inL+ This means that

~12 z! I 5 A~z!C~z! (5)

for all values ofz+ Thus, because by hypothesisDY does not Granger causeDX
andDX does not Granger causeDY, we have that

F12 L 0

0 12 LG 5 FA11~L!C11~L! A12~L!C22~L!

A21~L!C11~L! A22~L!C22~L!G
andA12~L!C22~L! 5 A21~L!C11~L! 5 0 implies thatA12~L! 5 A21~L! 5 0+ n

To this point we can finally establish a result that places in relation the distance
between the differentiated processes, DXt andDYt , and the condition of cointe-
gration between the processesXt andYt +

We remember first of all that$~DXt ,DYt !
', t 5 0,61,62, + + + % is a stationary

process, defined on the probability space~V,F,P!, with E~DXt ! 5 E~DYt ! 5
0 ∀t; let sDX

2 denote the variance ofDXt + We consider the following subsets of
L2~V,F,P!:

IDX 5 $DXt ; t 5 0,61,62, + + + %

and

HDY 5 sp$DYt ; t 5 0,61,62, + + + %+

The distance betweenIDX andHDY is the quantity

d~IDX ,HDY! 5 inf $7x 2 y7; x [ IDX , y [ HDY%+

Now, we can prove the following theorem+
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THEOREM 5+ If d~IDX,HDY! 5 sDX, then Xt and Yt are not cointegrated+

Proof+ If d~IDX,HDY! 5 sDX, then, by Theorem 2, DY does not Granger cause
DX andDX does not Granger causeDY+ It follows, by Theorem 4, thatYdoes not
Granger causeX andX does not Granger causeY+ Thus, because cointegration
implies Granger causality in at least one direction,we can conclude thatXt andYt

are not cointegrated+ n

Theorem 5 asserts that ifX and Y are cointegrated, then the distance be-
tween at least one linear combination~finite or infinite! of elements of the set
$ + + + ,DYt21,DYt ,DYt11, + + + % and at least one element of the setIDX must be less
than the standard deviation ofDX+

5. CONCLUSION AND INTERPRETATION OF THE RESULTS

In this paper we have investigated Granger noncausality and the cointegrating
relation between two nonstationary time series in the Hilbert space framework+

We have shown that when the information in the past and present of the
variableY, organized in whatever form~i+e+, considering any finite and infinite
linear combination of the variablesYt ,Yt21, + + + !, is “too distant” from the past,
present, and future of the variableX ~i+e+, the set$Xt ; t 5 0,61,62, + + + %!, thenY
does not Granger cause the variableX+ It is interesting to see how this result is
related to noncausality in the usual sense+ The notion of Granger causality stip-
ulates that a variableY causes another variableX if the past and present values
of Y can be used to predictX more accurately than simply using the past and
present values ofX+ Now, if d~IX,HY~t!! 5 sX, then d~IX~t1!,HY~t!! 5 sX,
where IX~t1! 5 $Xt11,Xt12, + + + %+ This means that the information in the past
and present of the variableY, organized in whatever form~i+e+, the setHY~t!!,
is “too distant” from the information inIX~t1! and hence the information in
HY~t! is not relevant in explaining futureX values~i+e+, Y does not Granger
causeX !+

Theorem 2 asserts that in a bivariate framework the existence of a Granger
causal link betweenX andY requests that the processes$Xt % and$Yt % are contig-
uous, that is, d~IX,HY! , sX+ It is worth emphasizing that, in a multivariate
framework, Granger causality does not require that every cause is contiguous
with its effects; however, in a bivariate framework, it points out only direct causal
links between contiguous processes+ This is the problem of noncausality due to
omitted variables~Lutkepohl, 1982!+

We also have proved that ifXt andYt are bothI ~1! and if the information in
the past and present of the variableDYt 5 ~1 2 L!Yt , organized in whatever
form ~i+e+, considering any finite and infinite linear combination of the vari-
ables + + + ,DYt21,DYt ,DYt11, + + + ! is “too distant” from the past, present, and fu-
ture of the variableDXt ~i+e+, the set$DXt ; t 5 0,61,62, + + + %!, thenXt andYt

are not cointegrated+ This is a surprising result: according to it a condition
concerning the differenced series implies a condition~noncointegration! con-
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cerning the linear combinations of the series~in levels!+ The intuition behind it
is the following+ Cointegration is the statistical implication of the existence of
a long-run relationship between the economic variables+When two variables, X
andY, are cointegrated there is a tendency for the variables to move together to
maintain a log-run equilibrium; therefore a cointegration relationship cannot
exist betweenX andY if the information in the past, present, and future ofDY,
organized in whatever form, is “too distant” from the past, present, and future
of DX+

In general differencing the data causes loss of information about the relation-
ship between the levels of the variables; however, according to Theorem 5, the
cointegration property can be detected from differenced variables+ This seems to
mean that we need not information of nominal variables but only that of the
differenced variables to see the variables are not cointegrated+

Finally, we note that Theorem 5 connects to earlier work on efficient estima-
tion of cointegrating regressions by way of lead and lag formulations~see Phillips
and Loretan, 1991; Saikkonen, 1991; Stock and Watson, 1993!+

NOTES

1+ Details on Hilbert spaces can be found in Halmos~1951!, Brockwell and Davis~1987!, and
Caines~1987!+

2+ We remember that for the process$~Xt ,Yt !
', t 5 0,61,62, + + + % defined as

Xt 5 aYt21 1 «xt
,

Yt 5 «yt
,

where«xt
and«yt

are independent white noise, with E~«xt

2 ! 5 E~«yt

2 ! 5 1, we have

d~IX , IY! 5 5
% a2 1 2 if a , 0

#2 if a 5 0

% a2 2 2a 1 2 if a . 0

+
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