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Abstract

Recently, Lutz and Stull used methods from algorithmic information theory to prove two
new Marstrand-type projection theorems, concerning subsets of Euclidean space which are
not assumed to be Borel, or even analytic. One of the theorems states that if K ⊂R

n is any
set with equal Hausdorff and packing dimensions, then

dimH πe(K ) = min{dimH K , 1}
for almost every e ∈ Sn−1. Here πe stands for orthogonal projection to span (e).

The primary purpose of this paper is to present proofs for Lutz and Stull’s projection
theorems which do not refer to information theoretic concepts. Instead, they will rely on
combinatorial-geometric arguments, such as discretised versions of Kaufman’s “potential
theoretic” method, the pigeonhole principle, and a lemma of Katz and Tao. A secondary pur-
pose is to generalise Lutz and Stull’s theorems: the versions in this paper apply to orthogonal
projections to m-planes in R

n , for all 0 < m < n.

2020 Mathematics Subject Classification: 28A80 (Primary); 28A78 (Secondary)

1. Introduction

This paper contains combinatorial-geometric proofs of two recent projection theorems
of Lutz and Stull, namely [10, theorems 2 and 3]. The original arguments were based on
algorithmic information theory, and the intriguing point-to-set principle, established previ-
ously by Lutz and Lutz [9]: this principle – or rather a formula – expresses the Hausdorff
and packing dimensions of an arbitrary set K ⊂R

n as the supremum over the (relativized)
pointwise dimensions of elements x ∈ K . The information theoretic approach is very novel,
so it is perhaps natural to ask: can more “conventional” (from the fractal geometers’ point of
view!) arguments yield the same results? The purpose of this note is to show that they can,
at least in the case of the two projection theorems in [10].

We move to the details, and start with some notation: for 0 < m < n, the notation G(n, m)

refers to the Grassmannian manifold of m-dimensional subspaces of Rn , and γn,m is a natural
Haar measure on G(n, m), see [12, section 3·9] for more details. Write πV : Rn → V for the
orthogonal projection to an m-plane V ∈ G(n, m). Hausdorff and packing dimensions will
be denoted dimH and dimP, respectively (see Section 2 for precise definitions).

https://doi.org/10.1017/S0305004120000328 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004120000328
mailto:tuomas.t.orponen@jyu.fi
https://doi.org/10.1017/S0305004120000328


504 TUOMAS ORPONEN

For context, recall the Marstrand-Mattila projection theorem:

THEOREM 1·1 (Marstrand–Mattila). Let 0 < m < n, and let K ⊂R
n be an analytic set.

Then

dimH πV (K ) = min{dimH K , m} for γn,m a.e. V ∈ G(n, m).

The case (n, m) = (2, 1) is due to Marstrand [11], and the general case is due to Mattila
[13]. The analyticity assumption cannot be dropped, at least if the reader believes in
the continuum hypothesis: using the continuum hypothesis, Davies [1, theorem 1*] con-
structed a 1-dimensional set K ⊂R

2 with zero-dimensional projections to all lines. It
would be interesting to know if counterexamples can be constructed without the continuum
hypothesis.

In [10], Lutz and Stull showed that the analyticity condition can be dropped, however, in
somewhat weaker variants of Theorem 1·1:

THEOREM 1·2. Let 0 < m < n, and let K ⊂R
n be a set with dimH K = dimP K . Then

dimH πV (K ) = min{dimH K , m} for γn,m a.e. V ∈ G(n, m).

THEOREM 1·3. Let 0 < m < n, and let K ⊂R
n. Then

dimP πV (K )� min{dimH K , m} for γn,m a.e. V ∈ G(n, m).

To be precise, only the cases m = 1 of Theorems 1·2 and 1·3 were established in [10],
and I do not know if the case m > 1 would present additional difficulties for the information
theoretic approach in [10]. In this paper, we reprove Theorems 1·2 and 1·3 with combina-
torial arguments, which are essentially the same for all 0 < m < n. These arguments consist
of “δ-discretised” versions of the potential theoretic method, due Kaufman [8], and mul-
tiple applications of the pigeonhole principle. Some tools are also taken from Katz and
Tao’s paper [7]. However, details will be repeated to the extent that this paper is essentially
self-contained.

Finally, let us mention that Theorem 1·3 cannot be improved to

dimP πV (K )� min{dimP K , m} for γn,m a.e. V ∈ G(n, m),

even if K ⊂R
n is compact. Examples of compact sets K ⊂R

2 with dimP πL(K ) <

dimP K � 1 for all L ∈ G(2, 1) were constructed by Järvenpää [6]. The optimal lower
bounds – for analytic sets – were established by Falconer and Howroyd [2]. For a more recent
approach, see [4]. As far as is known, the possibility of such lower bounds for arbitrary sets
has not been investigated.

1·1. Notation

An open ball in R
n with centre x ∈R

n and radius r > 0 will be denoted B(x, r). For
A, B > 0, the notation A �p1,...,pk B means that there exists a constant C � 1, depending only
on the parameters p1, . . . , pk , such that A � C B. The two-sided inequality A �p B �p A is
abbreviated to A ∼p B, and A �p1,...,pk B is synonymous to B �p1,...,pk A. The notation “log”
means logarithm of base 2.
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1·2. Proof outlines

Theorem 1·3 is arguably less surprising than Theorem 1·2. It is already known that
the analyticity of K is not required for the γn,m almost sure lower bound dimBπV (K )�
min{dimH K , m}, where dimB stands for upper box dimension. For a short proof in R

2 using
combinatorial arguments, see [14, theorem 4·3]. One would, then, like to reduce the proof
of Theorem 1·3 to this known case via the formula

dimP πV (K ) = inf
{

sup
i

dimB Fi : πV (K ) ⊂
⋃

i

Fi

}
.

The only issue is that the most obvious reduction uses a Frostman measure supported on
K , as in [14, lemma 4·5], and this approach is not available for analytic sets. In the end,
however, it turns out Frostman measures can be dispensed with by additional combinatorial
arguments.

Let us then discuss Theorem 1·2. Assume for simplicity that 0 � s � m and Hs(K ) > 0,
where s := dimH K = dimP K . Ignoring some technicalities, the equality of Hausdorff and
packing dimension implies that for all small δ > 0, the set K can be covered by a family of
≈ δ−s balls of radius δ whose centres Kδ form a δ-discretised s-dimensional set (Definition
2·2). By an argument essentially due to Marstrand, the set Kδ has the following property:
there is a “tiny” exceptional set Gδ,bad ⊂ G(n, m) such that N (πV (KV,δ), δ) ≈ δ−s for all
V ∈ G(n, m) \ Gδ,bad and for all subsets KV,δ ⊂ Kδ with |KV | ≈ δ−s . For a more precise
statement, see Lemma 2·2.

We can now sketch the proof of Theorem 1·2. Assume that the conclusion fails: there
exists a set G ⊂ G(n, m) with γn,m(G) > 0 such that dimH πV (K ) < dimH K for all V ∈ G.
By a pigeonholing argument, this implies that there exists a scale δ > 0 and “non-tiny” subset
Gδ ⊂ G such that the following holds for all V ∈ Gδ: there is a set KV ⊂ K with Hs

∞(KV ) >

0 such that N (πV (KV ), δ) 	 δ−s . Since KV ⊂ K is contained in the δ-neighbourhood of Kδ,
and Hs

∞(KV ) > 0, the set KV,δ := {p ∈ Kδ : dist(p, KV )� δ} satisfies |KV,δ| ≈ δ−s , and so
the projection theorem stated above applies: since Gδ was “non-tiny”, there exists a plane
V ∈ Gδ \ Gδ,bad, hence N (πV (KV ), δ) ∼ N (πV (KV,δ), δ) ≈ δ−s . This contradicts the choice
of KV and completes the proof of Theorem 1·2.

2. Discretising fractals

Recall that the Hausdorff dimension of a set K ⊂R
n is the number dimH K = inf{s � 0 :

Hs
∞(K ) = 0}. Here Hs

∞(K ) is the s-dimensional Hausdorff content

Hs
∞(K ) = inf

{∑
i

diam(Ui)
s : K ⊂

⋃
i

Ui

}
.

We next recall packing dimension; for more information, see [12, section 5·9] or
[3, section 3·4].

Definition 2·1 (Packing and upper box dimensions). The packing dimension of a set
K ⊂R

n is the number

dimP K = inf

{
sup

i
dimB Fi : Fi is bounded and K ⊂

⋃
i∈N

Fi

}
.
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Here dimB is the upper box dimension, defined for bounded sets F ⊂R
n by

dimB F := lim sup
δ→0

log N (F, δ)

− log δ
,

where N (F, δ) stands for the least number of δ-balls required to cover F .

It may be worth pointing out that packing dimension can be defined in two alternative
ways (via upper box dimension, as above, or via packing measures), but the two notions
coincide for arbitrary sets in R

n , see [12, theorem 5·11]. Note also that the variant of
Theorem 1·3 for dimB (in place of dimP) is remarkably simple; this can be inferred by
combining [14, proposition 4·10] and [5, proposition A·1].

The next definitions are, as far as we known due to Katz and Tao [7]:

Definition 2·2 ((C, δ, s)-sets). Let δ, s > 0 and C � 1. A finite set P ⊂R
n is called a

(C, δ, s)-set if

|P ∩ B(x, r)|� C
(r

δ

)s
, x ∈R

n, δ � r � 1.

Here | · | refers to cardinality. We will informally talk of “(δ, s)-sets” if the constant C is not
important. A good, if imprecise, heuristic is that a (δ, s)-set looks like a δ-net inside a set of
Hausdorff dimension s. There are various ways of making this more precise. For example,
[5, proposition A·1] shows that any set K ⊂R

3 with Hs
∞(K ) =: τ > 0 contains a (δ, s)-set

of cardinality � τ · δ−s . A “converse” way to relate Hausdorff dimension and (δ, s)-sets is
Lemma 2·1 below, due to Katz and Tao [7], which states that an arbitrary subset of Rn with
dimH K < s can be strongly covered by δ-neighbourhoods of (δ, s)-sets.

Definition 2·3 (Strong covering). A sequence of sets E1, E2, . . . strongly covers another
set F if every point of F is contained in infinitely many of the sets Ei .

The next lemma, and its proof, are virtually the same as [7, lemma 7·5]. All the details
are included, because [7, lemma 7·5] is only stated for compact sets, and it also uses the
terminology of “hyper-dyadic rationals” which we avoid here.

LEMMA 2·1. Let 0 < s � n, and let K ⊂R
n be a set with dimH K < s. Then there exists a

constant C � 1, depending only on n, s, and dimH K such that the following holds. For every
k ∈ 2−N there exists a (Ck2, 2−k, s)-set Pk such that the sequence {Pk(Cn2−k)}k∈N strongly
covers K . Here Cn � 1 only depend on n.

Here, and in the rest of the paper, A(δ) refers to the δ-neighbourhood of A ⊂R
n .

Proof of Lemma 2·1. Fix ε > 0 such that dimH K < s − ε. Then, for every i ∈ {1, 2, . . .},
find a collection Qi of disjoint dyadic cubes of side-length at most 2−i which cover K and
satisfy ∑

Q∈Qi

�(Q)s−ε � 1. (2·1)

Above �(Q) refers to the side-length of Q. For i � j , write further Qi, j := {Q ∈Qi : �(Q) =
2− j }, and let Xi, j be the union of the cubes in Qi, j . Now, picking the centres of the cubes
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in Qi, j , we could obtain a 2− j -separated set Pi, j of cardinality |Pi, j |� 2 js , whose 2− j -
neighbourhood is essentially Xi, j . Then, a natural first attempt at Pj , j ∈N, would be the
union Pj :=⋃{Pi, j : 1 � i � j}, with |Pj |� j · 2 js , whose Cn2− j -neighbourhood contains⋃

{Xi,k : 1 � i � k} =: X j .

Note that the sets X j strongly cover K . The problem is, however, that Pj is not necessarily
a (C j2, 2− j , s)-set, so a further refinement is needed.

For 1 � i � j fixed, choose another collection Q′
i, j of disjoint dyadic cubes of side-length

at least 2− j which

(i) covers Xi, j , and
(ii) minimises the sum

∑{�(Q)s : Q ∈Q′
i, j } among all (disjoint) dyadic covers of Xi, j .

It is easy to see that a minimiser exists, since cubes of side-length exceeding 2−ε j/s need not
be considered. Indeed, if Q′

i, j contained a cube of such side-length, then also the sum in (ii)
would exceed 2−ε j . However, the collection Qi, j is a cover for Xi, j , and satisfies

∑
Q∈Qi, j

�(Q)s � 2−ε j
∑

Q∈Qi, j

�(Q)s−ε
(2·1)

� 2−ε j ,

using that �(Q)� 2− j for all Q ∈Qi, j . So, we know that Q′
i, j is a collection of dyadic

cubes of side-lengths between 2− j and 2−ε j/s . Moreover, if Q0 ⊂R
n is an arbitrary dyadic

cube, then ∑{
�(Q)s : Q ∈Q′

i, j and Q ⊂ Q0

}
� �(Q0)

s, (2·2)

since otherwise the sum in (ii) could be further reduced.
Next, for k ∈N, let

Q′
i, j,k := {Q ∈Q′

i, j : �(Q) = 2−k},
so that Q′

i, j ⊂⋃
k Q′

i, j,k . We record that

Q′
i, j,k = Ø, k /∈ {�ε j/s, . . . , j}. (2·3)

Let Pi, j,k be the collection of the centres of the cubes in Q′
i, j,k . It follows from (2·2) that

Pi, j,k is a (C, 2−k, s)-set for some C = C(n)� 1. For k ∈ {1, 2, . . .} fixed, we define

Pk :=
∞⋃

i=1

⋃
j�i

Pi, j,k .

We claim that K is strongly covered by the sequence {Pk(C2−k)}k∈N, and that Pk is a
(Ck2, 2−k, s)-set with C ∼n (s/ε)2. To see the first property, fix x ∈ K . Then, for every i ∈N,
x is contained in Xi, j (i) ⊂⋃Q′

i, j (i) for some j (i)� i . Consequently,

x ∈
⋃

Q′
i, j (i),k(i, j) ⊂ Pi, j (i),k(i, j)(Cn2−k(i, j))

for some k(i, j)� ε j (i)/s � εi/s, using also (2·3). This implies that x ∈ Pk(i, j)(Cn2−k(i, j)),
and since k(i, j) → ∞ as j → ∞, we conclude the strong covering property.
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To verify the (δ, s)-set property, note that if j > �ks/ε� then k < �ε j/s, hence Pi, j,k = Ø
by (2·3). It follows that we may re-write

Pk =
�ks/ε�⋃

i=1

�ks/ε�⋃
j=i

Pi, j,k .

Since each Pi, j,k was individually a (C, 2−k, s)-set, it follows that Pk is a (C(ks/ε)2, 2−k, s)-
set, as claimed.

The next lemma concerns the orthogonal projections of (δ, s)-sets. It is a δ-discretised
version of the following result of Marstrand [11]: if K ⊂R

n is a compact set with 0 <

Hs(K ) < ∞, then there exists a set Gbad ⊂ G(n, m) of zero γn,m measure such that the
following holds. Whenever V ∈ G(n, m) \ Gbad, and K ′ ⊂ K satisfies Hs(K ′) > 0, then
dimH πV (K ′) = min{m, s}. In particular, the “exceptional” set Gbad is independent of K ′.

LEMMA 2·2. Let 0 < m < n, 0 � s � n, and ε > 0. Then the following holds for all 0 <

δ < δ0, where δ0 depends only on ε and n. Let P ⊂ B(0, 1) ⊂R
n be a (δ−ε, δ, s)-set. Then,

there exists a set Gbad ⊂ G(n, m) with γn,m(Gbad)� δε , and the following property. If V ∈
G(n, m) \ Gbad, and if P ′ ⊂ P with |P ′|� δ−s+ε , then

N (πV (P ′), δ)� δ− min{s,m}+6ε . (2·4)

Proof. Let P ⊂R
n be a (δ−ε, δ, s)-set, as in the hypothesis. One may easily check that

∑
x∈P

∑
y∈P
x �=y

1

|x − y|m �
{

δ−2s−2ε, if m < s � n,

δ−m−s−3ε, if 0 � s � m.
(2·5)

Indeed, just divide the inner summation into dyadic annuli and use the (δ−ε, δ, s)-set con-
dition, and finally also observe that |P| = |P ∩ B(0, 1)|� δ−ε−s . For V ∈ G(n, m) fixed,
define next the quantity

EV (P) := |{(x, y) ∈ P × P : |πV (x) − πV (y)|� δ}|,
and note immediately that

EV (P) = |{(x, y) ∈ P × P : x �= y and |πV (x) − πV (y)|� δ}| + |P| =: E ′
V (P) + |P|.

(2·6)
We recall from [12, lemma 3·11] the following geometric estimate:

γn,m({V ∈ G(n, m) : |πV (x) − πV (y)|� δ})�n
δm

|x − y|m , x �= y. (2·7)

Combining (2·5), (2·6) and (2·7), and noting that |P|� δ−s−ε , we find that

∫
G(n,m)

EV (P) dγn,m(V )�n

∑
x,y∈P
x �=y

δm

|x − y|m + |P|�
{

δm−2s−2ε, if m < s � n,

δ−s−3ε, if 0 � s � m.
. (2·8)

Now, write Gbad ⊂ G(n, m) for the set of planes V ∈ G(n, m) such that (2·4) fails for some
set P ′ ⊂ P with |P ′|� δ−s+ε . We claim that

Gbad ⊂ {V ∈ G(n, m) : EV (P)� cn · δmin{s,m}−2s−4ε},
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where cn > 0 is a constant depending only on n. Indeed, divide V ∈ Gbad into dyadic cubes
Q with diam(Q) ∈ [δ/2, δ], and let D be the family of these cubes meeting πV (P ′). Then
|D|�n δ− min{s,m}+6ε by hypothesis. Moreover,

EV (P)�
∑
Q∈D

|{(x, y) ∈ P ′ × P ′ : πV (x), πV (y) ∈ Q}|

=
∑
Q∈D

|P ′ ∩ π−1
V (Q)|2 � 1

|D|

(∑
Q∈D

|P ′ ∩ π−1
V (Q)|

)2

�n δmin{s,m}−2s−4ε,

using Cauchy–Schwarz on the second line. Finally, by Chebyshev’s inequality and (2·8),

γn,m(Gbad)� γn,m({V ∈ G(n, m) : EV (P)� cn · δmin{s,m}−2s−4ε})� δε

for all δ > 0 small enough, depending on ε > 0, and the implicit constants in (2·8), which
depend on n. This completes the proof.

The final lemma clarifies the connection between a set K ⊂R
n with N (K , δ)� δ−s , and

(δ, s)-sets: the part of K which is not contained in the δ-neighourhood of a single (δ, s)-set
has small s-dimensional Hausdorff content. This “bad” part can easily be all of K , however:
the lemma is only useful if we have an a priori lower bound on Hs

∞(K ).

LEMMA 2·3. Let 0 � s � n, δ > 0, C � 1, and let K ⊂R
n be a bounded set with

N (K , δ)� Cδ−s . (2·9)

Then, for any L � 1, there exists a disjoint decomposition K = Kgood ∪ Kbad such that

(i) Hs
∞(Kbad)� L−1, and

(ii) Kgood is contained in the δ-neighbourhood of a (C L , δ, s)-set.

The implicit constant in (i) only depends on n.

Proof. Assume with no loss of generality that δ ∈ 2−Z. Let Dδ be the collection of dyadic
cubes Q ⊂R

n of side-length �(Q) = δ, and letD�δ be the collection of dyadic cubes Q ⊂R
n

of side-length �(Q)� δ. Finally, let

Dδ(K ) := {Qδ ∈Dδ : Qδ ∩ K �= Ø},
so |Dδ(K )|� Cδ−s by (2·9). A cube Q ∈D�δ is called heavy if

|{Qδ ∈Dδ(K ) : Qδ ⊂ Q}|� τC L

(
�(Q)

δ

)s

.

Here τ = τ(n) > 0 is a small constant to be specified later. Note that arbitrarily large cubes
cannot be heavy by the upper bound on |Dδ(K )|. Let Kbad ⊂ K be the set of points in K
which are contained in at least one heavy cube. Then Kbad is covered by the maximal heavy
cubes in D�δ, denoted M. The cubes in M are disjoint, and moreover

Hs
∞(Kbad)�

∑
Q∈M

�(Q)s � δs

τC L

∑
Q∈M

|{Qδ ∈Dδ(K ) : Qδ ⊂ Q}|� 1

τ L
.

This verifies condition (1). Define Kgood := K \ Kbad. By definition, no point in Kgood is
contained in a heavy cube. In other words, if Q ∈D�δ is arbitrary, then either Q ∩ Kgood =
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Ø, hence N (Kgood ∩ Q, δ) = 0, or alternatively Q is not a heavy cube. In this case

N (Kgood ∩ Q, δ)� N (K ∩ Q, δ)�n |{Qδ ∈Dδ(K ) : Qδ ⊂ Q}| < τC L

(
�(Q)

δ

)s

.

These estimates imply that if P ⊂ Kgood is a maximal δ-separated subset, then |P ∩
B(x, r)|�n τC L(r/δ)s for all x ∈R

n and r � δ. Thus P is a (C L , δ, s)-set if τ = τ(n) > 0
is small enough, and of course Kgood ⊂ P(δ).

3. Proofs of the main theorems

Here is the version of the pigeonhole principle that will be frequently employed:

LEMMA 3·1. Let {a1, a2, . . .} be a sequence of non-negative numbers, and write∑
a j =: A. Then there exists an index j ∈N such that a j � A/j2.

This principle will be typically employed so that we have a set K in an (outer) measure
space (X, μ) with μ(K ) > 0, and a cover U1, U2, . . . for K . Then, by the sub-additivity of
μ, and Lemma 3·1, we may infer that μ(U j )�μ(K )/j2 for some j ∈N.

3·1. Proof of Theorem 1·2
Write t := dimH K = dimP K . Recall that the aim is to prove

dimH πV (K ) = min{t, m} for γm,n a.e. V ∈ G(n, m).

To reach a contradiction, assume with no loss of generality that t > 0, and there exists
0 < u < min{t, m}, and a γn,m positive-measure subset G ⊂ G(n, m) such that

dimH πV (K ) < u, V ∈ G. (3·1)

Pick also 0 < s < t so close to t that still min{s, m} > u. Then Hs
∞(K ) > 0. Fix ε > 0. By

definition of dimP K = t and the countable sub-additivity of Hausdorff content, there exists
a bounded subset Kε ⊂ K which satisfies both Hs

∞(Kε) > 0 and dimB Kε � t + ε/2. We
replace K by Kε without changing notation. Then, the following holds for all δ > 0 small
enough, depending on ε and K = Kε :

N (K , δ)� δ−t−ε = [δs−t−ε] · δ−s . (3·2)

To fix the parameters, we will eventually need to pick s < t so close to t , and ε > 0 so small,
that

min{s, m} − 6(t + 2ε − s) > u. (3·3)

By (3·1), for every V ∈ G and δ0 > 0, there exists a collection of dyadic cubes QV on V of
side-lengths � δ0 with the properties

πV (K ) ⊂
⋃

Q∈QV

Q and
∑

Q∈QV

�(Q)u � 1. (3·4)

We will eventually need to choose δ0 > 0 small in a way which depends on ε, s, t, u, and
n. Also, δ0 will need to be smaller than the threshold for (3·2). The cubes in QV are
dyadic, so they can be further partitioned into collections QV ( j) of (disjoint) cubes of
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side-length 2− j � δ0. Write K j
V := {x ∈ K : πV (x) ∈⋃ QV ( j)} for the the part of K whose

πV -projection is covered by the intervals in Q j
V . In particular,

N (πV (K j
V ), 2− j )� 2 ju (3·5)

by (3·4). Since πV (K ) ⊂⋃ QV for V ∈ G, and Hs
∞(K ) > 0, we may use Lemma 3·1 to

find a dyadic scale 2− j (V ) � δ0 such that

Hs
∞(K j (V )

V )�K ,s j (V )−2. (3·6)

The choice of the index j (V ) ∈N a priori depends on V ∈ G, but we may practically elimi-
nate this dependence by another appeal to Lemma 3·1. Let G j := {V ∈ G : j (V ) = j}. Then,
the sets G j , 2− j � δ0, cover the γn,m positive-measure set G, so there exists a fixed index
j ∈N such that γn,m(G j )� j−2. We then record that (3·5)-(3·6) hold for every V ∈ Sj with
j (V ) = j . To simplify notation, write KV := K j

V for V ∈ G j .
Next, we write δ := 2− j � δ0, and apply Lemma 2·3 with constant C := δs−t−ε , and level

L := δ−ε . By (3·2), the main hypothesis (2·9) of Lemma 2·3 is satisfied. The conclusion is
that K = Kgood ∪ Kbad with the properties that

Hs
∞(Kbad)�n δε,

and Kgood is contained in the δ-neighbourhood of a single (δs−t−2ε, δ, s)-set P ⊂R
n . Since

Kgood ⊂ K is bounded, there is no loss of generality assuming that P ⊂ B(0, 1). We write
ε ′ := t + 2ε − s, and apply Lemma 2·2 to the set P and the parameter ε ′: there exists a subset
Gbad ⊂ G(n, m) with γn,m(Gbad)� δε′

such that whenever V ∈ G(n, m) \ Gbad and P ′ ⊂ P
has cardinality |P ′|� δ−s+ε′

, we have

N (πV (P ′), δ)� δ− min{s,m}+6ε′
. (3·7)

Fix V ∈ G, and recall from (3·6) that

Hs
∞(KV )� j−2 = (log 1

δ
)−2.

Since KV ⊂ K ⊂ Kgood ∪ Kbad, and Hs
∞(Kbad)� δε 	 (log 1

δ
)−2 (take the parameter δ0 � δ

so small that this works), we infer from the sub-additivity of Hs
∞ that

Hs
∞(KV ∩ P(δ))�Hs

∞(KV ∩ Kgood)� (log 1
δ
)−2, V ∈ G.

It follows that there exists a set PV ⊂ P ∩ KV (δ) of cardinality |PV |� δ−s(log 1
δ
)−2. In par-

ticular, if δ > 0 is small enough (which can be arranged by taking δ0 � δ small enough to
begin with), we have |PV |� δ−s+ε′

. Now, (3·7) implies that

N (πV (KV ), δ)� N (πV (PV ), δ)� δ− min{s,m}+6ε′
(3·8)

for all V ∈ G(n, m) \ Gbad. But γn,m(Gbad)� δε′ 	 (log 1
δ
)−2 � γn,m(G j ), so we infer that

(3·8) holds for some V ∈ G j . Recalling the choice of ε ′ = t + 2ε − s, and in particular that
min{s, m} − 6ε ′ > u by (3·3), we find that (3·8) contradicts (3·5) for any V ∈ G j (again: for
δ > 0 small enough). This contradiction completes the proof of Theorem 1·2.

3·2. Proof of Theorem 1·3
Write s := dimH K ∈ [0, n], and recall that the aim is to prove

dimP πV (K )� min{s, m} for γn,m a.e. V ∈ G(n, m). (3·9)
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If s = 0, this is clear, so we may assume that s > 0. We may also assume, using the countable
stability of dimH, that K is bounded, and then that K ⊂ B(0, 1). Pick s ′ < s, so

Hs ′
∞(K ) > 0. (3·10)

Pick also s ′′ > s, and write

ε := 2(s ′′ − s ′) > s ′′ − s ′. (3·11)

Using Lemma 2·1, pick a sequence of (Cδ, δ, s ′′)-sets {Pδ}, for δ ∈ 2−N, such that K is
strongly covered the Cnδ-neighbourhoods Pδ(Cδ). Here

Cδ �n,s,s ′′ (log 1
δ
)2.

In particular, Cδ � δ−ε for all 0 < δ � δ0, where δ0 > 0 only depends on n, s, s ′, and s ′′. For
every δ ∈ 2−N with δ < δ0, and for ε = 2(s ′′ − s ′) as in (3·11), let Gδ

bad ⊂ G(n, m) be the
exceptional set given by Lemma 2·2 (associated to Pδ) with γn,m(Gδ

bad)� δε , and such that

N (πV (P ′), δ)� δ− min{s ′′,m}+6ε, V ∈ G(n, m) \ Gδ
bad, (3·12)

whenever P ′ ⊂ Pδ satisfies |P ′|� δ−s ′′+ε . By the Borel–Cantelli lemma, the set

Gbad := {V ∈ G(n, m) : V ∈ Gδ
bad for infinitely many δ ∈ 2−N}

has γn,m(Gbad) = 0. Pick V ∈ G(n, m) \ Gbad. We claim that

dimP πV (K )� min{s ′′, m} − 6ε, (3·13)

which is evidently good enough to prove (3·9) (by letting s ′, s ′′ → s, and recalling that ε =
2(s ′′ − s ′)). If (3·13) fails, then, by definition of dimP, there exists a number t < min{s ′′, m},
and bounded sets FV,1, FV,2, . . . ⊂ V such that

πV (K ) ⊂
⋃
i∈N

FV,i ,

with the property that

dimB FV,i < t − 6ε, i ∈N.

In particular, by (3·10) and the sub-additivity of Hausdorff content, there exists a subset
KV ⊂ K with Hs ′

∞(KV ) > 0, and an index i ∈N, with the property that πe(KV ) ⊂ FV,i . As a
consequence,

lim sup
δ→0

log N (πV (KV ), δ)

− log δ
= dimB πV (KV )� dimB πV (FV,i ) < t − 6ε. (3·14)

The sets Pδ(Cnδ) strongly cover K , so they also strongly cover KV . In other words, every
point in KV is contained in infinitely many sets in Pδ(Cnδ). It follows from the “easier”
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Borel–Cantelli lemma (which only requires the sub-additivity of the Hausdorff content
Hs ′

∞) that ∑
δ∈2−N

δ<δ0

Hs ′
∞(Pδ(Cnδ) ∩ KV ) = ∞ (3·15)

for any δ0 ∈ 2−N. Eventually, we will need to pick δ0 > 0 small in a way depending on
s ′, s ′′, t, n, and the choice of V . Now, we may infer from (3·15) that there exists δ < δ0

such that

Hs ′
∞(Pδ(Cnδ) ∩ KV )� (log 1

δ
)−2. (3·16)

It is worth mentioning that we cannot arrange for (3·16) to hold for all δ > 0, but we can
have it for arbitrarily small δ > 0, which is good enough for our purposes. There will be a
few conditions on how small we want to take δ > 0 (hence δ0). The first one is that δ > 0
should be so small that V /∈ Gδ

bad; by the initial choice e /∈ Gbad, this is indeed true for all
δ > 0 small enough. A second condition is that δ should be taken so small that

N (πV (KV ), δ)� δ−t+6ε . (3·17)

This is also true by (3·14) for all δ > 0 sufficiently small. After these preliminaries and
comments, we infer from (3·16) that there exists a set PV ⊂ Pδ ∩ KV (Cnδ) of cardinality

|PV |� δ−s ′ · (log 1
δ
)−2.

In particular, if δ < δ0 is small enough, and recalling from (3·11) that s ′′ − ε < s ′, we have
|PV |� δ−s ′′+ε . Since V /∈ Gδ

bad, this means by (3·12) that

N (πV (KV ), δ)�n N (πV (PV ), δ)� δ− min{s ′′,m}+6ε .

Recalling that t < min{s ′′, m}, the inequality above contradicts (3·17), if δ > 0 is small
enough, and the proof of (3·13) is complete. As we pointed out after (3·13), this also
concludes the proof of Theorem 1·3.
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