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Abstract
We consider the problem of the unification modulo an equational theory associativity and commutativity
(ACh), which consists of a function symbol h that is homomorphic over an associative–commutative oper-
ator +. Since the unification modulo ACh theory is undecidable, we define a variant of the problem called
bounded ACh unification. In this bounded version of ACh unification, we essentially bound the number
of times h can be applied to a term recursively and only allow solutions that satisfy this bound. There is
no bound on the number of occurrences of h in a term, and the + symbol can be applied an unlimited
number of times. We give inference rules for solving the bounded version of the problem and prove that
the rules are sound, complete, and terminating. We have implemented the algorithm in Maude and give
experimental results. We argue that this algorithm is useful in cryptographic protocol analysis.
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1. Introduction
Unification is a method to find a solution for a set of equations. For instance, consider an equa-
tion x+ y ?= a+ b, where x and y are variables, and a and b are constants. If + is an uninterpreted
function symbol, then the equation has one solution {x �→ a, y �→ b}, and this unification is called
syntactic unification. If the function symbol + has the property of commutativity, then the equa-
tion has two solutions: {x �→ a, y �→ b} and {x �→ b, y �→ a}; this is called unification modulo the
commutativity theory.

Unification modulo equational theories play a significant role in symbolic cryptographic pro-
tocol analysis Escobar et al. (2007). An overview and references for some of the algorithms may
be seen in Escobar et al. (2011); Kapur et al. (2003); Narendran et al. (2015). One such equational
theory is the distributive axioms: x× (y+ z)= (x× y)+ (x× z); (y+ z)× x= (y× x)+ (z × x).
A decision algorithm is presented for unification modulo two-sided distributivity in Schmidt-
Schauß (1998). A sub-problem of this, unification modulo one-sided distributivity, is in greater
interest since many cryptographic protocol algorithms satisfy the one-sided distributivity. In their
paper, Tiden and Arnborg (1987) presented an algorithm for unification modulo one-sided dis-
tributivity: x× (y+ z)= (x× y)+ (x× z), and also it has been shown that it is undecidable if
we add the properties of associativity x+ (y+ z)= (x+ y)+ z and a one-sided unit element
x× 1= x. However, some counter examples Narendran et al. (2015) have been presented showing
that the complexity of the algorithm is exponential, although Tiden and Arnborg thought it was
polynomial-time bounded.
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For practical purposes, one-sided distributivity can be viewed as the homomorphism the-
ory, h(x+ y)= h(x)+ h(y), where the unary operator h distributes over the binary operator +.
Homomorphisms are heavily used in cryptographic protocol analysis. In fact, homomorphism is
a common property that many election voting protocols satisfy Kremer et al. (2010).

Our goal is to present a novel construction of an algorithm to solve unification modulo the
homomorphism theory over a binary symbol + that also has the properties of associativity and
commutativity (ACh), which is an undecidable unification problemNarendran (1996). Given that
ACh unification is undecidable but necessary to analyze cryptographic protocols, we developed an
approximation of ACh unification, which we show to be decidable.

In this paper, we present an algorithm to solve a modified general unification problem modulo
the ACh theory, which we call bounded ACh unification. We define the h-height of a term to be
basically the number of h symbols recursively applied to each other. We then only search for ACh
unifiers of a bounded h-height. We do not restrict the h-height of terms in unification problems.
Moreover, the number of occurrences of the + symbol is bounded neither in a problem nor in its
solutions. In order to accomplish this, we define the h-depth of a variable, which is the number
of h symbols on top of a variable. We develop a set of inference rules for ACh unification that
keep track of the h-depth of variables. If the h-depth of any variable exceeds the bound κ , then
the algorithm terminates with no solution. Otherwise, it gives all the unifiers or solutions to the
problem.

2. Preliminary
2.1 Basic notation
We briefly recall the standard notation of unification theory and term rewriting systems (TRSs)
from Baader and Nipkow (1998); Baader and Snyder (2001).

Given a finite or countably infinite set of function symbols F , also known as a signature, and a
countable set of variables V , the set of F-terms over V is denoted by T (F , V). The set of variables
appearing in a term t is denoted by Var(t), and it is extended to sets of equations. A term is called
ground if Var(t)= ∅. Let Pos(t) be the set of positions of a term t including the root position
ε Baader and Snyder (2001). For any p ∈ Pos(t), t|p is the subterm of t at the position p and t[s]p is
the term t in which t|p is replaced by s. A substitution is a mapping from V to T (F , V) with only
finitely many variables not mapped to themselves and is denoted by σ = {x1 �→ t1, . . . , xn �→ tn},
xi �= ti, where the domain of σ is Dom(σ ) := {x1, . . . , xn}. The range of σ , denoted as Range(σ ),
is defined as union of the sets {xσ }, where x is a variable in Dom(σ ). The identity substitution is a
substitution that maps all the variables to themselves. The application of substitution σ to a term
t, denoted as tσ , is defined by induction on the structure of the terms:

— xσ , where t is a variable x
— c, where t is a constant symbol c
— f (t1σ , . . . , tnσ ), where t = f (t1, . . . , tn) with n≥ 1

The restriction of a substitution σ to a set variables V , denoted as σ |V , is the substitution which
is equal to identity everywhere except over V ∩Dom(σ ), where it coincides with σ .

Definition 1 (More general substitution). A substitution σ is more general than substitution θ

if there exists a substitution η such that θ = ση, denoted as σ <∼ θ . Note that the relation <∼ is a
quasi-ordering, that is, reflexive and transitive.

Definition 2 (Unifier, most general unifier). A substitution σ is a unifier or solution of two terms
s and t if sσ = tσ ; it is a most general unifier if for every unifier θ of s and t, σ <∼ θ . Moreover,
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a substitution σ is a solution of a set of equations if it is a solution of each of the equations. If a
substitution σ is a solution of a set of equations �, then it is denoted by σ |= �.

A set of identities E is a subset of T (F , V)× T (F , V) and is represented in the form s≈ t. An
equational theory =E is induced by a set of fixed identities E and it is the least congruence relation
that is closed under substitution and contains E.

Definition 3 (E-unification problem, E-unifier, E-unifiable). Let F be a signature and E be
an equational theory. An E-unification problem over F is a finite set of equations � = {s1 ?=E

t1, . . . , sn
?=E tn} between terms. An E-unifier or E-solution of two terms s and t is a substitution

σ such that sσ =E tσ . An E-unifier of � is a substitution σ such that siσ =E tiσ for i= 1, . . . , n.
The set of all E-unifiers is denoted by UE(�) and � is called E-unifiable if UE(�) �= ∅. If E= ∅, then
� is a syntactic unification problem.

Let � = {s1 ?=E t1, . . . , sn
?=E tn} be a set of equations, and let θ be a substitution. We write

θ |=E � when θ is an E-unifier of �. Let σ = {x1 �→ t1, . . . , xn �→ tn} and θ be substitutions, and
let E be an equational theory. We say that θ satisfies σ in the equational theory E if xiθ =E tiθ for
i= 1, . . . , n. We write it as θ |=E σ .

Definition 4. Let E be an equational theory and X be a set of variables. The substitution σ is more
general modulo E on X than θ iff there exists a substitution σ ′ such that xθ =E xσσ ′ for all x ∈X .
We write it as σ <∼X

E θ .

Definition 5 (Complete set of E-unifiers). Let � be an E-unification problem over F and let
Var(�) be the set of all variables occurring in �. A complete set of E-unifiers of � is a set S of
substitutions such that each element of S is an E-unifier of �, that is, S⊆ UE(�), and for each θ ∈
UE(�) there exists a σ ∈ S such that σ is more general modulo E on Var(�) than θ , that is, σ <∼Var(�)

E
θ .

A complete set S of E-unifiers is minimal if for any two distinct unifiers σ and θ in S, one is
not more general modulo E than the other, that is, σ <∼Var(�)

E θ implies σ = θ . A minimal complete
set of unifiers for a syntactic unification problem � has only one element if it is not empty. It is
denoted bymgu(�) and can be called most general unifier of unification problem �.

Definition 6. Let E be an equational theory.We say that amulti-set of equations�′ is a conservative
E-extension of another multi-set of equations � if any solution of �′ is also a solution of � and any
solution of � can be extended to a solution of �′. This means for any solution σ of �, there exists θ

whose domain is the variables in Var(�′) \Var(�) such that σθ is a solution of �. The property of
conservative E-extension is transitive.

LetF be a signature, and l, r beF-terms. A rewrite rule is an identity, denoted as l→ r, where l
is not a variable and Var(r)⊆Var(l). A TRS is a pair (F , R), where R is a finite set of rewrite rules.
In general, a TRS is represented by R. A term u rewrites to a term v with respect to R, denoted
by u→R v (or simply u→ v), if there exists a position p of u, l→ r ∈ R, and substitution σ such
that u|p = lσ and v= u[rσ ]p. A TRS R is said to be terminating if there is no infinite reduction
sequences of the form u0 →R u1 →R . . .. A TRS R is confluent if, whenever u→∗

R s1 and u→∗
R s2,

there exists a term v such that s1 →∗
R v and s2 →∗

R v. A TRS R is convergent if it is both confluent
and terminating.
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2.2 ACh theory
The equational theory we consider is the theory of a homomorphism over a binary function sym-
bol + which satisfies the properties of ACh. We abbreviate this theory as ACh. The signature F
includes a unary symbol h, a binary symbol +, and other uninterpreted function symbols with
fixed arity.

The function symbols h and + in the signature F satisfy the following identities:

— x+ (y+ z)≈ (x+ y)+ z (associativity, A for short)
— x+ y≈ y+ x (commutativity, C for short)
— h(x+ y)≈ h(x)+ h(y) (homomorphism, h for short)

2.3 Rewriting systems
We consider two convergent rewriting systems R1 and R2 for homomorphism hmodulo ACh.

— R1 := {h(x1 + x2)→ h(x1)+ h(x2)} and
— R2 := {h(x1)+ h(x2)→ h(x1 + x2)}.

2.4 h-depth set
For convenience, we assume that our unification problem is in flattened form, that is, that every
equation in the problem is in one of the following forms: x ?= y, x ?= h(y), x ?= y1 + · · · + yn, and
x ?= f (x1, . . . , xn), where x and y are variables, yis and xis are pairwise distinct variables, and f is a
free symbol with n≥ 0. The first kind of equations is called VarVar equations. The second kind is
called h-equations. The third kind is called +-equations. The fourth kind is called free equations.

Definition 7 (Graph G(�)). Let � be a unification problem. We define a graph G(�) as a graph
where each node represents a variable in � and each edge represents a function symbol in �. To be
exact, if an equation y ?= f (x1, . . . , xn), where f is a symbol with n≥ 1, is in �, then the graphG(�)

contains n edges y
f→ x1, . . . , y

f→ xn. For a constant symbol c, if an equation y ?= c is in �, then the
graphG(�) contains a vertex y. Finally, the graphG(�) contains two vertices y and x if an equation
y ?= x is in �.

Definition 8 (h-Depth). Let � be a unification problem and let x be a variable that occurs in �.
Let h be a unary symbol and let f be a symbol (distinct from h) with arity greater than or equal to 1
and occurring in �. We define h-depth of a variable x as the maximum number of h-symbols along
a path to x inG(�), and it is denoted by hd(x, �). That is,

hd(x, �) :=max{hdh(x, �), hdf (x, �), 0},
where hdh(x, �) :=max{1+ hd(y, �) | y h→ x is an edge inG(�)} and hdf (x, �) :=max{hd(y, �) |
there exists f �= h such that y

f→ x is inG(�)}.

Definition 9 (h-Height). We define h-height of a term t as the following:

hh(t) :=

⎧⎪⎪⎨
⎪⎪⎩

hh(t′)+ 1 if t = h(t′)
max{hh(t1), . . . , hh(tn)} if t = f (t1, . . . , tn), f �= h
0 if t = x or c

where f is a function symbol with arity greater than or equal to 1.
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Definition 10 (h-Depth set). Let � be a set of equations. The h-depth set of �, denoted hds(�), is
defined as hds(�) := {(x, hd(x, �)) | x is a variable appearing in �}. In other words, the elements in
the h-depth set are of the form (x, c), where x is a variable that occurs in � and c is a natural number
representing the h-depth of x.

Maximum value of h-depth set  is the maximum of all c values and it is denoted by
MaxVal(), that is,MaxVal() :=max{c | (x, c) ∈  for some x}.

Definition 11 (ACh-unification problem, bounded ACh-unifier). An ACh-unification problem
over F is a finite set of equations � = {s1 ?=ACh t1, . . . , sn

?=ACh tn}, si, ti ∈ T (F , V), where ACh
is the equational theory defined above. A κ bounded ACh-unifier or κ bounded ACh-solution of
� is a substitution σ such that siσ =ACh tiσ , hh(siσ )≤ κ , and hh(tiσ )≤ κ for all i.

Notice that the bound κ has no role in the problem but in the solution.

3. Inference System IACh
3.1 Problem format
An inference system is a set of inference rules that transforms an equational unification problem
into other. In our inference procedure, we use a set triple �||||σ similar to the format presented
in Liu and Lynch (2011), where � is a unification problem modulo the ACh theory,  is an h-
depth set of �, and σ is a substitution. Let κ ∈N be a bound on the h-depth of the variables. A
substitution θ satisfies the set triple �||||σ if θ satisfies σ and every equation in �,MaxVal()≤
κ , and we write that relation as θ |= �||||σ . �||||σ is said to be in solved form if � is empty
andMaxVal()≤ κ . We also use a special set triple ⊥ for no solution in the inference procedure.
Generally, the inference procedure is based on the priority of rules and also uses don’t care non-
determinism when there is no priority, that is, any rule applied from a set of rules without priority.
Initially, � is the non-empty set of equations to solve,  is an empty set, and σ is the identity
substitution. The inference rules are applied until either the set of equations is empty with most
general unifier σ or ⊥ for no solution. Of course, the substitution σ is a κ bounded E-unifier of �.
An inference rule is written as �||||σ

�′||′||σ ′ . This means that if something matches the top of this rule,
then it is to be replaced with the bottom of the rule.

Let OV be the set of variables occurring in the unification problem � and let NV be
a new set of variables such that NV = V \OV . Unless otherwise stated, we assume that
x, x1, . . . , xn, and y, y1, . . . , yn, z are variables in V , v, v1, . . . , vn are in NV , and terms
w, t, t1, . . . , tn, s, s1, . . . , sn in T (F , V), and f and g are uninterpreted function symbols. A fresh
variable is a variable that is generated by the current inference rule and has never been used before.

For convenience, we assume that every equation in the problem is in one of the flattened forms
(see Section 2.4). If not, we apply flattening rules to put the equations into that form. These rules
are performed before any other inference rule. They put the problem into flattened form and all
the other inference rules leave the problem in flattened form, so there is no need to perform these
rules again later. It is necessary to update the h-depth set  with the h-depth values for each
variable during the inference procedure.

3.2 Inference rules
We present a set of inference rules to solve a unification problemmodulo associativity, commuta-
tivity, and homomorphism theory. We also present some examples that illustrate the applicability
of these rules.

3.2.1 Flattening
Firstly, we present a set of inference rules for flattening the given set of equations. The variable v
represents a fresh variable in the following rules:
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Flatten Both Sides (FBS)

{t1 ?= t2} ∪ �||||σ
{v ?= t1, v

?= t2} ∪ �||{(v, 0)} ∪ ||σ
if t1 and t2 /∈ V

Flatten Left + (FL)

{t ?= t1 + t2} ∪ �||||σ
{t ?= v+ t2, v

?= t1} ∪ �||{(v, 0)} ∪ ||σ
if t1 /∈ V

Flatten Right + (FR)

{t ?= t1 + t2} ∪ �||||σ
{t ?= t1 + v, v ?= t2} ∪ �||{(v, 0)} ∪ ||σ

if t2 /∈ V

Flatten Under h (FU)

{t1 ?= h(t)} ∪ �||||σ
{t1 ?= h(v), v ?= t} ∪ �||{(v, 0)} ∪ ||σ

if t /∈ V

We demonstrate the applicability of these rules using the example below.

Example 1. Solve the unification problem {h(h(x)) ?= (s+w)+ (y+ z)}.
We only consider the set of equations � here, not the full triple.

{h(h(x)) ?= (s+w)+ (y+ z)} FBS⇒
{v ?= h(h(x)), v ?= (s+w)+ (y+ z)} FL⇒
{v ?= h(h(x)), v ?= v1 + (y+ z), v1

?= s+w} FL⇒
{v ?= h(h(x)), v ?= v1 + (y+ z), v1

?= v2 +w, v2
?= s} FR⇒

{v ?= h(h(x)), v ?= v1 + v3, v1
?= v2 +w, v3

?= y+ z, v2
?= s} FR⇒

{v ?= h(h(x)), v ?= v1 + v3, v1
?= v2 + v4, v3

?= y+ z, v2
?= s, v4

?=w} FU⇒
{v ?= h(v5), v

?= v1 + v3, v1
?= v2 + v4, v3

?= y+ z, v2
?= s, v4

?=w, v5
?= h(x)}.

We see that each equation in the set {v ?= h(v5), v
?= v1 + v3, v1

?= v2 + v4, v3
?= y+ z,

v2
?= s, v4

?=w, v5
?= h(x)} is in the flattened form.

3.2.2 Update h-depth set
We also present a set of inference rules to update the h-depth set. These rules are performed
eagerly.

Update h (Uh)

{x ?= h(y)} ∪ �||{(x, c1), (y, c2)} ∪ ||σ
{x ?= h(y)} ∪ �||{(x, c1), (y, c1 + 1)} ∪ ||σ

If c2 < (c1 + 1)
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Example 2. Solve the unification problem: {x ?= h(h(h(y)))}.
We only consider the pair �|| since σ does not change at this step.

{x ?= h(h(h(y)))}||{(x, 0), (y, 0)} FU+⇒
{x ?= h(v), v ?= h(v1), v1

?= h(y)}||{(x, 0), (y, 0), (v, 0), (v1, 0)} Uh⇒
{x ?= h(v), v ?= h(v1), v1

?= h(y)}||{(x, 0), (y, 0), (v, 1), (v1, 0)} Uh⇒
{x ?= h(v), v ?= h(v1), v1

?= h(y)}||{(x, 0), (y, 0), (v, 1), (v1, 1)} Uh⇒
{x ?= h(v), v ?= h(v1), v1

?= h(y)}||{(x, 0), (y, 2), (v, 1), (v1, 1)} Uh⇒
{x ?= h(v), v ?= h(v1), v1

?= h(y)}||{(x, 0), (y, 2), (v, 1), (v1, 2)} Uh⇒
{x ?= h(v), v ?= h(v1), v1

?= h(y)}||{(x, 0), (y, 3), (v, 1), (v1, 2)},
where FU+⇒ represents the application of FU rule once or more than once.

It is true that the h-depth of y is 3 since there are three edges labeled h from x to y, in the graph
G(�).

Update +
1 Update Left + (UL)

{x1 ?= y1 + y2} ∪ �||{(x1, c1), (y1, c2), (y2, c3)} ∪ ||σ
{x1 ?= y1 + y2} ∪ �||{(x1, c1), (y1, c1), (y2, c3)} ∪ ||σ

If c2 < c1

2 Update Right + (UR)

{x1 ?= y1 + y2} ∪ �||{(x1, c1), (y1, c2), (y2, c3)} ∪ ||σ
{x1 ?= y1 + y2} ∪ �||{(x1, c1), (y1, c2), (y2, c1)} ∪ ||σ

If c3 < c1

Example 3. Solve the unification problem {z ?= x+ y, x1
?= h(h(z))}.

Similar to the last example, we only consider the pair �||,

{z ?= x+ y, x1
?= h(h(z))}||{(x, 0), (y, 0), (z, 0), (x1, 0)} FU⇒

{z ?= x+ y, x1
?= h(v), v ?= h(z)}||{(x, 0), (y, 0), (z, 0), (x1, 0), (v, 0)} Uh+⇒

{z ?= x+ y, x1
?= h(v), v ?= h(z)}||{(x, 0), (y, 0), (z, 2), (x1, 0), (v, 1)} UL⇒

{z ?= x+ y, x1
?= h(v), v ?= h(z)}||{(x, 2), (y, 0), (z, 2), (x1, 0), (v, 1)} UR⇒

{z ?= x+ y, x1
?= h(v), v ?= h(z)}||{(x, 2), (y, 2), (z, 2), (x1, 0), (v, 1)}.

Since there are two edges labeled h from x1 to z in the graph G(�), the h-depth of z is 2. The
h-depths of x and y are also updated accordingly.

Now, we resume the inference procedure for Example 1 and also we consider  because it will
be updated at this step.

{v ?= h(v3), v3
?= h(x), v ?= v1 + v2, v1

?= s+w, v2
?= y+ z}||

{(x, 0), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 0)} Uh⇒
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{v ?= h(v3), v3
?= h(x), v ?= v1 + v2, v1

?= s+w, v2
?= y+ z}||

{(x, 1), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 0)} Uh⇒
{v ?= h(v3), v3

?= h(x), v ?= v1 + v2, v1
?= s+w, v2

?= y+ z}||
{(x, 1), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 1)} Uh⇒
{v ?= h(v3), v3

?= h(x), v ?= v1 + v2, v1
?= s+w, v2

?= y+ z}||
{(x, 2), (y, 0), (z, 0), (s, 0), (w, 0), (v, 0), (v1, 0), (v2, 0), (v3, 1)}.

3.2.3 Splitting rule
This rule takes the homomorphism theory into account. In this theory, we cannot solve equation
h(y) ?= x1 + x2 unless y can be written as the sum of two new variables y= v1 + v2, where v1 and
v2 are inNV . Without loss of generality, we generalize it to n variables x1, . . . , xn.

Splitting

{x ?= h(y), x ?= x1 + · · · + xn} ∪ �||||σ
{x ?= h(y), y ?= v1 + · · · + vn, x1

?= h(v1), . . . , xn
?= h(vn)} ∪ �||′||σ

where n> 1, x �= y and x �= xi for any i, ′ = {(v1, 0), . . . , (vn, 0)} ∪ , and v1, . . . , vn are fresh
variables inNV .

Example 4. Solve the unification problem {h(h(x)) ?= y1 + y2}.
Still we only consider pair �||, since rules modifying σ are not introduced yet.

{h(h(x)) ?= y1 + y2}||{(x, 0), (y1, 0), (y2, 0)} FBS+⇒
{v ?= h(v1), v1

?= h(x), v ?= y1 + y2 }||{(x, 0), (y1, 0), (y2, 0), (v, 0), (v1, 0)} Uh+⇒
{v ?= h(v1), v1

?= h(x), v ?= y1 + y2 }|||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1)}, Splitting⇒
{v ?= h(v1), v1

?= v11 + v12, y1
?= h(v11), y2

?= h(v12), v1
?= h(x) }||

{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 0), (v12, 0)}, Uh+⇒
{v ?= h(v1), v1

?= v11 + v12, y1
?= h(v11), y2

?= h(v12), v1
?= h(x) }||

{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1)}, Splitting⇒
{v ?= h(v1), y1

?= h(v11), y2
?= h(v12), v1

?= h(x), x ?= v13 + v14, v11
?= h(v13),

v12
?= h(v14) }||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 0), (v14, 0)} Uh+⇒

{v ?= h(v1), y1
?= h(v11), y2

?= h(v12), v1
?= h(x), x ?= v13 + v14, v11

?= h(v13),
v12

?= h(v14) }||{(x, 2), (y1, 0), (y2, 0), (v, 0), (v1, 1), (v11, 1), (v12, 1), (v13, 2), (v14, 2)}.

3.2.4 Trivial
The trivial inference rule is to remove trivial equations in the given problem �.

{t ?= t} ∪ �||||σ
�||||σ
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3.2.5 Variable elimination
The variable elimination (VE) rule is to convert the equations into assignments. In other words,
it is used to find the most general unifier.

1 VE1

{x ?= y} ∪ �||||σ
�{x �→ y}||||σ {x �→ y} ∪ {x �→ y} if x and y are distinct variables

2 VE2

{x ?= t} ∪ �||||σ
�{x �→ t}||||σ {x �→ t} ∪ {x �→ t} if t /∈ V and x does not occur in t

The rule VE2 is performed last after all other inference rules have been performed. The rule
VE1 is performed eagerly.

Example 5. Solve unification problem {x ?= y, x ?= h(z)}.

{x ?= y, x ?= h(z)}||{(x, 0), (y, 0), (z, 0)}||∅ Uh⇒
{x ?= y, x ?= h(z)}||{(x, 0), (y, 0), (z, 1)}||∅ VE1⇒
{y ?= h(z)}||{(x, 0), (y, 0), (z, 1)}||{x �→ y} VE2⇒
∅||{(x, 0), (y, 0), (z, 1)}||{x �→ h(z), y �→ h(z)}.

The substitution {x �→ h(z), y �→ h(z)} is the most general unifier of the given problem {x ?=
y, x ?= h(z)}.

3.2.6 Decomposition (Decomp)
The decomposition rule decomposes an equation into several sub-equations if both sides’ top
symbol matches.

Decomp

{x ?= f (s1, . . . , sn), x
?= f (t1, . . . , tn)} ∪ �||||σ

{x ?= f (t1, . . . , tn), s1
?= t1, . . . , sn

?= tn} ∪ �||||σ
if f �= +

Example 6. Solve the unification problem {h(h(x)) ?= h(h(y))}.

{h(h(x)) ?= h(h(y))}||{(x, 0), (y, 0)}||∅ Flatten+⇒
{v ?= h(v1), v1

?= h(x), v ?= h(v2), v2
?= h(y)}||{(x, 0), (y, 0), (v, 0), (v1, 0), (v2, 0)}||∅ Uh+⇒

{v ?= h(v1), v1
?= h(x), v ?= h(v2), v2

?= h(y)}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||∅ Decomp⇒
{v ?= h(v1), v1

?= v2, v1
?= h(x), v2

?= h(y)}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||∅ VE1⇒
{v ?= h(v2), v2

?= h(x), v2
?= h(y)}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||{v1 �→ v2} Decomp⇒

{v ?= h(v2), v2
?= h(x), x ?= y}||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||{v1 �→ v2} VE2+⇒

∅||{(x, 2), (y, 2), (v, 0), (v1, 1), (v2, 1)}||{v1 �→ h(y), x �→ y, v �→ h(h(y)), v2 �→ h(y)},
where {x �→ y} is the most general unifier of the problem {h(h(x)) ?= h(h(y))}.
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3.2.7 AC unification
The AC unification rule calls an AC unification algorithm to unify the AC part of the problem.
Notice that we apply AC unification when no other rule except VE-2 can apply. In this infer-
ence rule, � represents the set of all equations with the + symbol on the right hand side. �

represents the set of equations not containing a + symbol. Unify is a function that returns one
of the complete set of unifiers returned by the AC unification algorithm. GetEqs is a function
that takes a substitution and returns the equational form of that substitution. In other words,
GetEqs({x1 �→ t1, . . . , xn �→ tn})= {x1 ?= t1, . . . , xn

?= tn}.

AC unification
� ∪ �||||σ

GetEqs(θ1)∪ �||||σ ∨ . . . ∨GetEqs(θn)∪ �||||σ
where Unify(�)= {θ1, . . . , θn}.

We illustrate the applicability of the AC unification rule using the example below. For
convenience, we only consider � from the problem.

Example 7. Solve the unification problem {x+ y ?= z + y1, x1
?= x2}, where x, y, z, x1, x2, and y1

are pairwise distinct.

{x+ y ?= z + y1, x1
?= x2} FBS⇒ {v ?= x+ y, v ?= z + y1} ∪ {x1 ?= x2} AC Unification⇒

{v ?= v1 + v2 + v3 + v4, x
?= v1 + v2, y

?= v3 + v4, z
?= v1 + v3, y1

?= v2 + v4} ∪ {x1 ?= x2} ∨
{v ?= v5 + z + y, x ?= v5 + z, y1

?= v5 + y} ∪ {x1 ?= x2} ∨
{v ?= z + v5 + y, x ?= z + v5, y1

?= v5 + y} ∪ {x1 ?= x2} ∨
{v ?= x+ v5 + z, y ?= v5 + z, y1

?= x+ v5} ∪ {x1 ?= x2} ∨
{v ?= x+ z + v5, y

?= z + v5, y1
?= x+ v5} ∪ {x1 ?= x2} ∨

{v ?= z + y1, x
?= z, y ?= y1} ∪ {x1 ?= x2} ∨

{v ?= y1 + z, x ?= y1, y
?= z} ∪ {x1 ?= x2},

where v1, v2, v3, v4, and v5 are new variables.

3.2.8 Occur check
Occur check (OC) checks if a variable on the left-hand side of an equation occurs on the other
side of the equation. If it does, then the problem has no solution. This rule has the highest priority.

OC

{x ?= f (t1, . . . , tn)} ∪ �||||σ
⊥ If x ∈ Var(f (t1, . . . , tn)σ )

where Var(f (t1, . . . , tn)σ ) represents set of all variables that occur in f (t1, . . . , tn)σ .

Example 8. Solve the following unification problem {x ?= y, y ?= z + x}.

{x ?= y, y ?= z + x}||{(x, 0), (y, 0), (z, 0)}||∅ VE1⇒
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{y ?= z + y}||{(x, 0), (y, 0), (z, 0)}||{x �→ y} OC⇒ Fail.
Hence, the problem {x ?= y, y ?= z + x} has no solution.

3.2.9 Clash
This rule checks if the top symbol on both sides of an equation is the same. If not, then there is no
solution to the problem, unless one of them is h and the other +.

Clash

{x ?= f (s1, . . . , sm), x
?= g(t1, . . . , tn)} ∪ �||||σ
⊥ If f /∈ {h, +} or g /∈ {h, +}

Example 9. Solve the unification problem {f (x, y) ?= g(h(z))}, where f and g are two distinct
uninterpreted function symbols.

{f (x, y) ?= g(h(z))}||{(x, 0), (y, 0), (z, 0)}||∅ Flatten+⇒
{v ?= f (x, y), v ?= g(v1), v1

?= h(z)}||{(x, 0), (y, 0), (z, 0), (v, 0), (v1, 0)}||∅ Uh+⇒
{v ?= f (x, y), v ?= h(v1), v1

?= h(z)}||{(x, 0), (y, 0), (z, 1), (v, 0), (v1, 0)}||∅ Clash⇒ Fail.
Hence, the problem {f (x, y) ?= g(h(z))} has no solution.

3.2.10 Bound check
The bound check (BC) is to determine if a solution exists within the bound κ , a given maximum
h-depth of any variable in �. If one of the h-depths in the h-depth set exceeds the bound κ , then
the problem has no solution. We apply this rule immediately after the rules of update h-depth set.

BC
�||||σ

⊥ IfMaxVal()> κ

Example 10. Solve the following unification problem {h(y) ?= y+ x}.
Let the bound be κ = 2.

{h(y) ?= y+ x}||{(x, 0), (y, 0)}||∅ FBS⇒
{v ?= h(y), v ?= y+ x}||{(x, 0), (y, 0), (v, 0)}||∅ Uh⇒
{v ?= h(y), v ?= y+ x}||{(x, 0), (y, 1), (v, 0)}||∅ Splitting⇒
{v ?= h(y), y ?= v11 + v12, y

?= h(v11), x
?= h(v12)||{(x, 0), (y, 1), (v, 0), (v11, 0), (v12, 0)}||∅ Uh+⇒

{v ?= h(y), y ?= v11 + v12, y
?= h(v11), x

?= h(v12)||{(x, 0), (y, 1), (v, 0), (v11, 2), (v12, 1)}||∅ Splitting⇒
{v ?= h(y), v11

?= v13 + v14, v11
?= h(v13), v12

?= h(v14), y
?= h(v11), x

?= h(v12)||
{(x, 0), (y, 1), (v, 0), (v11, 2), (v12, 1), (v13, 0), (v14, 0)}||∅ Uh+⇒
{v ?= h(y), v11

?= v13 + v14, v11
?= h(v13), v12

?= h(v14), y
?= h(v11), x

?= h(v12)||
{(x, 0), (y, 1), (v, 0), (v11, 2), (v12, 1), (v13, 3), (v14, 2)}||∅ BC⇒ Fail.

SinceMaxVal()= 3> κ , the problem {h(y) ?= y+ x} has no solution within the given bound.
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3.2.11 Orient
The orient rule swaps the left-side term of an equation with the right-side term. In particular,
when the left-side term is a variable but not the right-side term.

Orient

{t ?= x} ∪ �||||σ
{x ?= t} ∪ �||||σ

If t is not a variable

4. Proof of Correctness
We prove that the proposed inference system is terminating, sound, and complete.

4.1 Termination
Before going to present the proof of termination, we shall introduce a few notations which will be
used in the subsequent sections. For two set triples, �||||σ and �′||′||σ ′,

— �||||σ ⇒IACh �′||′||σ ′, means that the set triple �′||′||σ ′ is deduced from �||||σ by
applying a rule from IACh once. We call it one step.

— �||||σ ∗⇒IACh �′||′||σ ′, means that the set triple �′||′||σ ′ is deduced from �||||σ by
zero or more steps

— �||||σ +⇒IACh �′||′||σ ′, means that the set triple �′||′||σ ′ is deduced from �||||σ by
one or more steps

As we notice, AC unification divides �||||σ into the finite number of branches �1||1||σ1 and
so on �n||n||σn. Hence, for a triple �||||σ , after applying some inference rules, the result is a
disjunction of set triples

∨
i (�i||i||σi). Accordingly, we introduce the following notation:

— �||||σ =⇒ IACh

∨
i (�i||i||σi), where ∨

i (�i||i||σi) is a disjunction of triples, which
means that the set triple�||||σ becomes

∨
i (�i||i||σi) with an application of a rule once.

— �||||σ +=⇒ IACh

∨
i (�i||i||σi) which represents that �||||σ becomes

∨
i (�i||i||σi)

after applying some inference rules once or more than once.
— �||||σ ∗=⇒ IACh

∨
i (�i||i||σi) which indicates that �||||σ becomes

∨
i (�i||i||σi) after

applying some inference rules zero or more times.

4.1.1 Flattening
Here we prove the termination of the flattening procedure.

Consider a multi-set F(�), where each element of it is the number of function symbols of
an equation in �. In other words, for every equation E in the unification problem �, there is a
number k, the total number of function symbols in E, in the multi-set F(�). We define a measure
of �||||σ as the multi-set ordering F(�)mul on F(�). Note that F(�)mul is well-founded since
F(�) is a well-ordered set.

Lemma 1. Let �||||σ and �′||′||σ ′ be two triple sets such that �||||σ Flattening⇒ �′||′||σ ′.
Then, F(�)mul >F(�′)mul.
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Algorithm 1 Flattening
Input:

— An equation set �.

Output:

— Equation set �′ where each equation of it is in the flattened from (see Section 2.4).

Repeat until none of the flattening rules applied

1 Apply Flatten Both Sides
2 Apply Flatten Left +
3 Apply Flatten Right +
4 Apply Flatten Under h

End

Proof. We have to prove that F(�)mul is reducing in all the cases.
Flatten Both Sides:Here the equation {t1 ?= t2} is replaced by {v ?= t1, v

?= t2}, where t1 and t2 are
terms but not variables. Let k1 ≥ 0 be the number of function symbols in t1 and let k2 ≥ 0 be the
number of function symbols in t2. Now, the multi-set F({t1 ?= t2})= {k1 + k2} and the multi-set
F({v ?= t1, v

?= t2})= {k1, k2}. Hence, F(�)mul is reduced since the number (k1 + k2) is replaced
by two smaller numbers k1, and k2.
Flatten Left +: The equation {t ?= t1 + t2} is replaced by {t ?= v+ t2, v ?= t1}, where t1 is not a
variable. Let k1 be the number of function symbols in t, k2 be the number of function symbols
in t1, and k3 be the number of function symbols in t2. Then k2 ≥ 1 as t1 is not a variable. The set
F({t ?= t1 + t2})= k1 + k2 + k3 + 1. But the set F({t ?= v+ t2, v

?= t1})= {k1 + k3, k2}.
Hence, F(�)mul >F(�′)mul.

Flatten Right +: In this case, the equation {t ?= t1 + t2} is replaced by {t ?= t1 + v, v ?= t2}, where
t2 is not a variable. The argument is same as above except t2 is not a variable instead of t1.

Flatten Under h: The equation {t ?= h(t1)} is replaced by {t ?= h(v), v ?= t1}, where t1 is not a vari-
able. Let k1 be the number of function symbols in t and let k2 ≥ 1 be the number of number of
function symbols in t1. Then the multi-set F({t ?= h(t1)})= k1 + k2 + 1 since there is h symbol on
top of t1, where the multi-set F({t ?= h(v), v ?= t1})= {k1 + 1, k2}.
Hence, F({t ?= h(t1)})mul >F({t ?= h(v), v ?= t1})mul.

4.1.2 AChUnify
Here we show termination of the AChUnify (see Algorithm 2). First, we define a measure of
�||||σ for proving termination of Algorithm 2.

— Let Sym(�) be a multi-set of non-variable symbols occurring in �. The standard ordering
of |Sym(�)| based on natural numbers is a well-founded ordering on the set of equations.

— Let κ be a bound given by the user. Let hd(�) := {(κ + 1) − hd(x, �) | (x, hd(x, �)) ∈ hd(�)}
be a multi-set. Since every element of the set is a natural number, the multi-set order for
hd(�) is a well-founded ordering.

— Let k be the number of applications of the AC unification.
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Algorithm 2 AChUnify
Input:

— An equation set �, a bound κ ∈N, an empty set σ , and an empty h-depth set .

Output:

— A complete set of κ-bounded ACh unifiers {σ1, . . . , σn} or ⊥ indicating that the problem has
no solution.

Begin

1 Apply flattening (Algorithm 1) on �.
2 Repeat
(Apply VE1 exhaustively after each of the following rule applications)

(a) Apply Trivial exhaustively to eliminate equations of the form t ?= t.
(b) Apply the OC, i.e., If any variable on the left side occurs on the right then return ⊥.
(c) Apply the BC, i.e., ifMaxVal()> κ then return ⊥.
(d) If at least one of the h-depth updation rules, Uh, UL, or UR, is applicable then apply the

rule and go to (c) else go to next step.
(e) Apply the Orient exhaustively.
(f) If Splitting is applicable then apply the rule and go to (a).
(g) Apply the Clash, i.e., If the top symbols of the left and right sides of an equation do not

match then return ⊥.
(h) If Decomposition applicable then apply the rule and go to (a).
(i) If there is at least one variable x that occurs left side in at least two equations, x ?= y1 + · · · +

yn and x ?= z1 + · · · + zn, then apply the AC Unification and then go to (d) else go to next
step.

(j) Apply VE2 exhaustively and return the output.
End

End

— Let p be the number of non-solved variables in �.
— Letm be the number of equations of the form f (t) ?= x in �.
— Let n be the number of +-equations with x occurring on the left side, that is, x= x1 +

· · · + xn.

Then, we define the measure of �||||σ as the following:

MIACh(�,, σ )= (κ − k, n, |Sym(�)|, p,m, |�|, hd(�)).
Since each element in this tuple with its corresponding order is well-founded, the lexicographic
order on this tuple is well-founded as well.

Lemma 2. Let �||||σ be a set triple, and κ be a natural number (bound) given as an input to the
algorithm. Then, the maximum number of times the AC unification applied is κ .

Proof. The only time the AC unification is invoked on the problem is when there is at least one
non-solved variable in the problem. A variable x occurs at least in two equations as x ?= y1 + · · · +
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yn and x ?= z1 + · · · + zm. On each application of the AC unification, the lowest depth of non-
solved variables get solved, and there is no other rule that makes these variables non-solved again.
Hence, the maximum number of times the AC unification could be applied is the κ .

Lemma 3. Let �||||σ and �′||′||σ ′ be two set triples, where � and �′ are in flattened form such
that �||||σ ⇒IACh�

′||′||σ ′. ThenMIACh(�,, σ )>MIACh(�
′,′, σ ′).

Proof. We prove that on each of the inference rules decrease the measure.

Trivial. The cardinality of �, |�|, decreases while other components of the measure either stay the
same or decrease. Hence,MIACh(�,, σ )>MIACh(�

′,′, σ ′).

Decomposition. The number of f symbols decreased by one, and hence |Sym(�)| decreases while
p stays the same. Hence,MIACh(�,, σ )>MIACh(�

′,′, σ ′).

Update h-Depth Set. On application of one of the update rules, increases h-depth of a variable
x from n to n+ 1. However, κ-n> κ-(n+ 1). Which means that hd(�) decreases while the other
components stay the same. Hence,MIACh(�,, σ )>MIACh(�

′,′, σ ′).

Splitting. On the application of the splitting rule, n, the number of +-equations with x on the left
side decreased by one. So,MIACh(�,, σ )>MIACh(�

′,′, σ ′).

Orient. It is not difficult to see the fact thatm decreases.

Variable Elimination.Of course, the number of non-solved variables decreases in the application
of this rule.

AC Unification. The measure decreases as the first component of it does.

Theorem 4 (Termination). For any set triple �||||σ , there is a set triple �′||′||σ ′ such that
�||||σ ∗⇒IACh

∨
i (�i||i||σi) and none of the rules IACh can be applied on �i||i||σi.

Proof. By induction on Lemma 3 this theorem can be proved.

4.2 Soundness
In this section, we show that our inference system IACh is truth-preserving.

Lemma 5. Let �||||σ and �′||′||σ ′ be two set triples such that �||||σ ⇒IACh �′||′||σ ′ via
all the rules of IACh except AC unification. Let θ be a substitution such that θ |= �′||′||σ ′. Then
θ |= �||||σ .

Proof. Trivial. It is trivially true.

Splitting. Let θ be a substitution. Assume that θ satisfies {w ?= h(y), y ?= v1 + · · · + vn, x1
?=

h(v1), . . . , xn
?= h(vn)} ∪ �. Then we have that wθ

?= h(y)θ , yθ ?= (v1 + · · · + vn)θ , x1θ
?= h(v1)θ ,

. . . , xnθ
?= h(vn)θ . This implies that wθ

?= h(yθ), yθ ?= v1θ + · · · + vnθ , x1θ
?= h(v1θ) . . .xnθ

?=
h(vnθ). In order to prove that θ satisfies {w ?= h(y),w ?= x1 + · · · + xn}, it is enough to prove θ sat-
isfies the equation w ?= x1 + · · · + xn. By considering the right-side term x1 + · · · + xn and after
applying the substitution, we get (x1 + · · · + xn)θ

?= x1θ + · · · + xnθ
?= h(v1θ)+ · · · + h(vnθ).
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By the homomorphism theory, we write that h(v1θ)+ · · · + h(vnθ)
?= h(v1θ + · · · + vnθ). Then

h(v1θ + · · · + vnθ)
?= h(yθ) ?=wθ . Hence, θ satisfies w ?= x1 + · · · + xn.

Variable Elimination.
VE1. Assume that θ |= �{x �→ y}||||σ {x �→ y} ∪ {x �→ y}. This means that θ satisfies �{x �→ y}
and σ {x �→ y} ∪ {x �→ y}. Now, we have to prove that θ satisfies {x ?= y}, �, and σ . But θ satisfies
x �→ y means that xθ ?= yθ . � is �{x �→ y} but without replacing x with y. Since yθ ?= xθ , the
substitution θ satisfies y �→ x. Hence, we conclude that θ satisfies � and σ .

VE2. We have that θ satisfies � and σ {x �→ t} ∪ {x �→ t}. Now, we have to prove that θ satisfies
{x ?= t} and σ . By the definition of θ |= �, we have xθ ?= tθ and it is enough to prove that θ satisfies
σ . Let w �→ s[x] be an assignment in σ . After applying x �→ t on σ , the assignment y �→ s with
s|p = x, where p is a position, becomes y �→ s[t]p. We also know that θ satisfies σ {x �→ t} implies
that θ also satisfies w �→ s[t]p. Then by the definition, we write that yθ ?= s[tθ]p

?= s[xθ]p. This
means that θ satisfies the assignment w �→ s[x]. Hence, θ satisfies σ .
Decomposition. Assume that θ |= {x ?= f (t1, . . . , tn), s1

?= t1, . . . , sn
?= tn} ∪ �||||σ . This

means that θ satisfies {x ?= f (t1, . . . , tn), s1
?= t1, . . . , sn

?= tn} ∪ �. Now we have to prove that
θ satisfies {x ?= f (s1, . . . , sn), x

?= f (t1, . . . , tn)} ∪ �. Given that θ satisfies x ?= f (t1, . . . , tn) and
it is enough to show that θ also satisfies x ?= f (s1, . . . , sn). We write xθ ?= f (t1, . . . , tn)θ

?=
f (t1θ , t2θ , . . . , tnθ)

?= f (s1θ , s2θ , . . . , snθ) since s1θ
?= t1θ , . . . , snθ

?= tnθ . So, θ satisfies
x ?= f (t1, . . . , tn) and x ?= f (s1, . . . , sn). Hence, θ |= {x ?= f (s1, . . . , sn), x

?= f (t1, . . . , tn)}.

Lemma 6. Let �||||σ and �′||′||σ ′ be two set triples such that �||||σ =⇒ IACh

∨
i (�i||i||σi)

via AC unification. Let θ be a substitution such that θ |= �i||i||σi. Then θ |= �||||σ .

Proof. AC Unification.

� ∪ �||||σ
GetEqs(θ1)∪ �||||σ ∨ . . . ∨GetEqs(θn)∪ �||||σ

Given that θ |=GetEqs(θ1)∪ �||||σ ∨ . . . ∨GetEqs(θn)∪ �||||σ . This means that θ satisfies
GetEqs(θ1)∪ �||||σ , . . . ,GetEqs(θn)∪ �||||σ . Which implies that θ also satisfies � .

By combining Lemmas 5 and 6, we have

Lemma 7. Let �||||σ and �′||′||σ ′ be two set triples such that �||||σ =⇒ IACh

∨
i (�i||i||σi).

Let θ be a substitution such that θ |= �i||i||σi. Then θ |= �||||σ .

Then by induction on Lemma 7, we get the following theorem:

Theorem 8. Let �||||σ and �′||′||σ ′ be two set triples such that �||||σ ∗=⇒ IACh∨
i (�i||i||σi). Let θ be a substitution such that θ |= �i||i||σi. Then θ |= �||||σ .

We have the following corollary from Theorem 8:

Theorem 9 (Soundness). Let σ be a set of equations. Suppose that we get
∨

i (�i||i||σi) after
exhaustively applying the rules from IACh to �||||σ , that is, �||||σ ∗=⇒ IACh

∨
i (�i||i||σi),
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where for each i, no rules applicable to �i||i||σi. Let 	 = {σi | �i = ∅}. Then any member of 	

is an ACh-unifier of �.

4.3 Completeness
Here, we prove that our inference system never loses any solution.

Lemma 10. Let �||||σ be a set triple which is not in solved form, and θ be a substitution such that
θ |= �||||σ . Then there exists an inference �||||σ ⇒IACh

∨
i (�i||i||σi) and an i and θ0 whose

domain is the variables in Var(�i) \Var(�), such that θθ0 |= �i||i||σi.

Proof. Assume that �||||σ be a set triple that is not in solved form and θ be a substitution
such that θ |= �||||σ . Now, we consider various possible forms of � and prove that there is
an inference rule that can be applied and the solution θ can be extended.

1. {x ?= f (t1, . . . , tn), x
?= f (s1, . . . , sn)} ∪ �′||||σ , f �= +.

Here, we can apply decomposition to get {x ?= f (t1, . . . , tn), s1
?= t1, . . . , sn

?= tn} ∪
�′||||σ .

2. {x ?= h(y), x ?= x1 + · · · + xn} ∪ �′||||σ .
In this case, we can apply splitting to transform the set triple to {x ?= h(y), y ?= v1 + · · · +
vn, x1

?= h(v1), . . . , xn
?= h(vn)} ∪ �′||||σ . Since θ is a solution of {x ?= h(y), x ?= x1 + · · · +

xn} ∪ �′||||σ , we have that θ satisfies h(y)θ ?= (x1 + · · · + xn)θ . Now, considering the
rewrite system R1 which has the rewrite rule h(x+ y)→ h(x)+ h(y) and setting y ?= v1 +
· · · + vn, we have (x1 + · · · + xn)θ

?= (h(v1)+ · · · + h(vn))θ . Hence, θ can be extended to a
substitution giving values for the new variables.

3. {x ?= x1 + · · · + xn, x
?= y1 + · · · + ym} ∪ �′||||σ .

We apply AC unification on {x ?= x1 + · · · + xn, x
?= y1 + · · · + ym} and get a complete set

of AC unifiers and one of them corresponds to the substitution θ . The substitution θ can be
extended to a substitution giving values for new variables.

4. {t ?= x)} ∪ �′||||σ .
In this case, we apply the orient, and θ becomes the solution to this problem.

5. {t ?= t)} ∪ �′||||σ .
Here, we apply the trivial rule to eliminate the equation t ?= t. Of course, θ becomes solution
of �′||||σ .

6. {x ?= y)} ∪ �′||||σ .
We apply VE1 and θ becomes the solution to the resulting problem.

7. {x ?= t)} ∪ �′||||σ , where t /∈ V , x does not occur in t, and none of the other conditions
apply.
Here, we apply a sequence of VE2 steps until the set of equations empty.

By induction on Lemma 10, we get

Theorem 11. Let �||||σ be a set triple which is not in solved form, and θ be a substitution such
that θ |= �||||σ . Then there exists a sequence of inferences �||||σ +=⇒ IACh

∨
i (�i||i||σi) and

an i and θ0 whose domain is the variables in Var(�i) \Var(�), such that θθ0 |= �i||i||σi.

We get the following corollary from the above theorem:
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Table 1. Tested results with bounded ACh-unification algorithm

Unification problem Real time Solution # Sol. Bound

{h(y) ?= y+ x} 674ms ⊥ 0 10

{h(y) ?= y+ x} 15 880ms ⊥ 0 20

{h(y) ?= x1 + x2} 5ms Yes 1 10

{h(h(x)) ?= h(h(y))} 2ms Yes 1 10

{x+ y1
?= x+ y2} 3ms Yes 1 10

{v ?= x+ y, v ?=w+ z, s ?= h(t)} 46ms Yes 10 10

{v ?= x1 + x2, v
?= x3 + x4, x1

?= h(y), x2
?= h(y)} 100ms Yes 6 10

{h(h(x)) ?= v+w+ y+ z} 224ms Yes 1 10

{v ?= (h(x)+ y), v ?=w+ z} 55ms Yes 7 10

{f (x, y) ?= h(x1)} 0ms ⊥ 0 10

{f (x1, y1) ?= f (x2, y2)} 1ms Yes 1 10

{v ?= x1 + x2, v
?= x3 + x4} 17 ms Yes 7 10

{f (x1, y1) ?= g(x2, y2)} 0ms ⊥ 0 10

{h(y) ?= x, y ?= h(x)} 0ms ⊥ 0 10

Theorem 12 (Completeness). Let � be a set of equations. Suppose that we get
∨

i (�i||i||σi) after
applying the rules from IACh to �||||σ exhaustively, that is,
�||||σ ∗=⇒ IACh

∨
i (�i||i||σi), where for each i, none of the rules applicable on �i||i||σi. Let

	 = {σi | �i = ∅}. Then for any ACh-unifier θ of �, there exists a σ ∈ 	, such that σ <∼Var(�)
ACh θ .

5. Implementation
We have implemented the algorithm in the Maude programming language.1 The implementation
of this inference system is available.2 We chose the Maude language because it provides a nice
environment for expressing inference rules of this algorithm. The system specifications of this
implementation are Ubuntu 14.04 LTS, Intel Core i5 3.20 GHz, and 8 GB RAM with Maude 2.6.

We give a table to show some of our results. In the given table, we use five columns: unification
problem, real time, time to terminate the program in ms (milliseconds), solution either ⊥ for no
solution or yes for solutions, # Sol. for number of solutions, and bound κ . It makes sense that the
real time keeps increasing as the given h-depth κ increases for the first problem where the other
problems give solutions, but in either case the program terminates.

6. Conclusion
We introduced a set of inference rules to solve the unification problem modulo the homomor-
phism theory h over an AC symbol +, by enforcing a threshold κ on the h-depth of any variable.
Homomorphism is a property that is very common in cryptographic algorithms. So, it is impor-
tant to analyze cryptographic protocols in the homomorphism theory. Some of the algorithms and
details in this direction can be seen in Anantharaman et al. (2010, 2012); Escobar et al. (2011).
However, none of those results perform ACh unification because that is undecidable. We believe
that our approximation is a good way to deal with it. We also tested some problems and the results
are shown in Table 1.
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and Clarkson University.
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Notes
1 http://maude.cs.illinois.edu/w/index.php/The_Maude_System.
2 https://github.com/ajayeeralla/Unification_ACh.
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