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Dynamics of red blood cells in oscillating
shear flow
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We present a three-dimensional computational study of fully deformable red blood
cells of the biconcave resting shape subject to sinusoidally oscillating shear flow. A
comprehensive analysis of the cell dynamics and deformation response is considered
over a wide range of flow frequency, shear rate amplitude and viscosity ratio. We
observe that the cell exhibits either a periodic motion or a chaotic motion. In the
periodic motion, the cell reverses its orientation either by passing through the flow
direction (horizontal axis) or by passing through the flow gradient (vertical axis).
The chaotic dynamics is characterized by a non-periodic sequence of horizontal and
vertical reversals. The study provides the first conclusive evidence of the chaotic
dynamics of fully deformable cells in oscillating flow using a deterministic numerical
model without the introduction of any stochastic noise. In certain regimes of the
periodic motion, the initial conditions are completely forgotten and the cells become
entrained in the same sequence of horizontal reversals. We show that chaos is
only possible in certain frequency bands when the cell membrane can rotate by
a certain amount, allowing the cells to swing near the maximum shear rate. As
such, the bifurcation between the horizontal and vertical attractors in phase space
always occurs via a swinging inflection. While the reversal sequence evolves in an
unpredictable way in the chaotic regime, we find a novel result that there exists a
critical inclination angle at the instant of flow reversal which determines whether a
vertical or horizontal reversal takes place, and is independent of the flow frequency.
The chaotic dynamics, however, occurs at a viscosity ratio less than the physiological
values. We further show that the cell shape in oscillatory shear at large amplitude
exhibits a remarkable departure from the biconcave shape, and that the deformation
is significantly greater than that in steady shear flow. A large compression of the
cells occurs during the reversals which leads to over/undershoots in the deformation
parameter. We show that due to the large deformation experienced by the cells, the
regions of chaos in parameter space diminish and eventually disappear at high shear
rate, in contradiction to the prediction of reduced-order models. While the findings
bolster support for reduced-order models at low shear rate, they also underscore the
important role that the cell deformation plays in large-amplitude oscillatory flows.
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1. Introduction
Erythrocytes, commonly known as red blood cells (RBCs), are the primary

constituent of human blood. Each cell is composed of a viscous liquid drop of
haemoglobin solution encapsulated by a thin elastic membrane. As such, these cells
fall under the broad class of soft deformable objects, and their behaviour in flow
leads to a rich and complex problem of fluid/structure interaction which, despite
a great amount of research over several decades, lacks a clear understanding (see,
e.g. Freund (2014) and Viallat & Abkarian (2014) for recent reviews). Early studies,
e.g. by Goldsmith & Marlow (1972) and Fischer, Stohr-Liesen & Schmid-Schonbein
(1978), have established that in a simple shear flow, an isolated cell exhibits either
a rigid-body-like tumbling (TB) or a liquid-drop-like tank treading (TT) in which
the cell membrane and the interior fluid rotate while the cell deforms and maintains
an inclination with the flow direction. Recent advances in experimental techniques
have revealed additional fine dynamics. Abkarian, Faivre & Viallat (2007) observed
that during the TT motion, which occurs above a threshold shear stress, the cell
axis also oscillates about a mean angle, resulting in a swinging motion (SW) of the
cell. In the same study, an intermittent motion consisting of several swinging cycles
interrupted by one or multiple tumble(s) was also observed. These observations have
spurred complementary research in computational and analytical modelling. The SW
dynamics has been predicted by several three-dimensional (3D) computational models
for RBCs and RBC-like deformable bodies (e.g. Kessler, Finken & Seifert 2008; Sui
et al. 2008; Bagchi & Kalluri 2009; Walter, Salsac & Barthes-Biesel 2011; Yazdani
& Bagchi 2011, 2013) and by reduced-order analytical models (e.g. Abkarian et al.
2007; Skotheim & Secomb 2007; Kessler, Finken & Seifert 2009; Noguchi 2009;
Abreu & Seifert 2012; Gao, Hu & Castaneda 2012). In contrast, the existence of the
intermittent dynamics has remained controversial despite the success of reduced-order
models in predicting such dynamics (e.g. Abkarian et al. 2007; Skotheim & Secomb
2007; Noguchi 2009; Abreu & Seifert 2012). Indeed, many reduced-order models
suffer from the drawback of assuming a fixed cell shape, while large deformation
is a hallmark of RBCs in flow. Refinement of these models continues to date to
improve their reliability by incorporating, e.g. some amount of deformation (Noguchi
2009, 2010; Vlahovska et al. 2011). Very recently, Cordasco & Bagchi (2014) have
predicted the intermittent dynamics using, for the first time, a 3D computational
model of fully deformable cells.

While there has been a great deal of research on RBC dynamics in steady
shear flows, only a handful of studies exists for unsteady flow conditions. In vivo,
RBCs are subject to unsteady conditions due to the pulsatile nature of blood flow
and the vasomotion of the blood vessels. Nakajima et al. (1990) experimentally
studied cell deformation in a sinusoidally varying shear flow, and observed that
the deformation during the retarding phase of the imposed flow is higher than that
during the accelerating phase. Watanabe et al. (2006) also experimentally studied
cell deformation at high shear stress and in a low-frequency range (1–5 Hz). They
observed that the deformation response lagged behind the imposed shear stress by
an amount that was independent of the forcing frequency. The authors also found
that the maximum deformation was less than that of a cell subjected to a steady
shear flow of the same strength. Using a reduced-order model, and supported by
experiments, Dupire, Abkarian & Viallat (2010), hereafter referred to as DAV, showed
that the cells could perform either a regular periodic motion or chaotic dynamics.
In the periodic motion, the cell reversed its orientation in response to the flow
reversals either by passing through the horizontal (flow direction) axis or by passing
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through the vertical (flow gradient) axis. The chaotic dynamics was manifested as
a non-periodic sequence of horizontal and vertical reversals, and was proposed to
occur near the resonance of flow frequency and the natural frequency of the cell. A
resonant behaviour was also predicted by Kessler et al. (2009) using a reduced-order
model. By including a phenomenological model of cell deformation, Noguchi (2010)
predicted similar non-periodic dynamics to those observed by DAV in certain ranges
of oscillation frequency, and periodic reversals at low frequencies. Additionally, he
found that multiple limit cycles were possible at high frequency depending on the
initial conditions.

Computational studies of RBC dynamics in oscillating shear flow using direct 3D
models of fully deformable cells or cell-like bodies have been rare. Zhao & Bagchi
(2011) considered capsules of resting ellipsoidal and spherical shapes in sinusoidally
oscillating shear flow and observed rigid-body-like orientation reversals at low shear
rates and deformation-driven reversals at high shear rates. The authors further
noted that the dynamics was highly sensitive to the initial conditions, suggesting
the possibility of chaos. Matsunaga et al. (2015) considered spherical capsules
subjected to oscillating shear flows and observed a large overshoot in time-dependent
deformation compared with a steady shear flow. However, neither Zhao & Bagchi
(2011) nor Matsunaga et al. (2015) considered the resting biconcave discocyte shape
of the RBC in their models. Furthermore, both Zhao & Bagchi (2011) and Matsunaga
et al. (2015) assumed that the initial shape of the capsule was stress-free, while the
model of Matsunaga et al. (2015) lacked membrane bending resistance which is
needed to generate a stress-free state that is different from the resting shape. The
notion that the resting biconcave shape is not the stress-free state of the RBC has
gained much credence due to several recent studies, e.g. by Dupire, Socol & Viallat
(2012), Li, Vlahovska & Karniadakis (2013), Tsubota, Wada & Liu (2013) and Peng,
Mashayekh & Zhu (2014). Cordasco & Bagchi (2014) showed that the intermittent
dynamics of the cells observed in steady shear flow experiments, as well as predicted
by reduced-order models, could also be predicted by 3D computational models of
fully deformable cells if the stress-free state was assumed to be an oblate spheroid.
Zhao & Bagchi (2011) and Matsunaga et al. (2015) did not predict many interesting
dynamics, such as the occurrence of chaos and the presence of multiple stable limit
cycles, that were observed in experiments performed using RBCs in oscillating shear
flows and predicted by the reduced-order models by DAV and Noguchi (2010).
Evidently, our understanding of the RBC dynamics in oscillatory shear flow requires
further improvement.

In this article, we present a 3D computational study of fully deformable RBCs of
the biconcave resting shape with an appropriate stress-free state as they are subjected
to a sinusoidally oscillating shear flow. We provide a comprehensive investigation
of the cell dynamics and an analysis over a wide range of flow frequency, shear
rate amplitude and viscosity contrast between internal and external fluids. Our
study provides the first conclusive evidence of the chaotic dynamics of the cells in
oscillating flow, as observed in experiments and predicted by reduced-order models,
but using a fully deformable and deterministic cell model without the introduction of
any stochastic noise. We further show that chaos is suppressed at higher shear rates
due to a large deformation experienced by the cells. Therefore, while our full model
confirms the earlier findings at low shear rates, it also underscores the important
role that the cell deformation plays at higher shear rates. Specifically, we show that
the cell deformation is much larger and is manifested in the form of more complex
shapes in oscillating shear flows when compared with steady shear flows of a similar
strength.
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FIGURE 1. (a) Schematic of an RBC of the biconcave resting shape subjected to a
sinusoidally oscillating zero-mean linear shear flow. The angles θ and φ are the major axis
inclination with respect to the flow direction, and the membrane phase. (b) Comparison of
the numerical results (symbols) and the exact analytical result (dashed line) of Matsunaga
et al. (2015) for a spherical capsule in oscillating shear flow. The analytical result is valid
in the limit of high ν. The filled symbols are the present numerical simulations, and the
unfilled symbols are from Matsunaga et al. (2015):@, Ca= 0.1;E, Ca= 1; λ= 1 in all
cases.

2. Numerical method and problem set-up
We perform 3D numerical simulations of deformable RBCs suspended in a

sinusoidally oscillating zero-mean simple shear flow u= {γ̇ y, 0, 0}, where

γ̇ (t)= γ̇a sin(2πν̃t) (2.1)

is the instantaneous shear rate, t is time, γ̇a is the amplitude and ν̃ is the frequency.
The axis of revolution of the RBC lies in the shear plane (figure 1). The numerical
methodology is described in detail in our previous work, e.g. Yazdani & Bagchi
(2013) and Cordasco & Bagchi (2014). Here, we provide a summary of the method
for the sake of completeness. The cell is modelled as a viscous liquid drop enclosed
by a zero-thickness elastic membrane having the experimentally observed biconcave
discocyte shape as the resting shape. The interior and suspending fluids are assumed
to be incompressible and Newtonian with viscosity λµo and µo respectively. The
membrane is assumed to possess a resistance against shear deformation, area dilatation
and bending. The shear deformation and area dilatation are modelled following Skalak
et al. (1973) using an in-plane strain energy function as

WE = Gs

4
[(I2

1 + 2I1 − 2I2)+CI2
2], (2.2)

where Gs is the membrane shear elastic modulus, I1 = ε2
1 + ε2

2 − 2 and I2 = ε2
1ε

2
2 − 1

are the strain invariants of the Green strain tensor, and ε1 and ε2 are the principal
stretch ratios. The parameter C limits the surface area dilatation. The area dilatation
of an RBC is nearly zero; this requires the use of a very high value of C which
leads to numerical instability. Based on our previous extensive numerical experiments
(e.g. Yazdani & Bagchi 2011; Cordasco, Yazdani & Bagchi 2014), we found that
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C = 1000Ca limits the surface area change without causing a numerical instability.
Hence, this is the value of C used in the present study. However, this expression of
C should not be used to infer that it is the area dilatation modulus. A finite-element
method is used to obtain the membrane tension resulting from the shear deformation
and area dilatation. The bending resistance is modelled following Helfrich’s
formulation for bending energy (Zhong-can & Helfrich 1989),

WB = Eb

2

∫
S
(2κ − co)

2 dS, (2.3)

where Eb is the bending modulus, κ is the mean curvature, co is the spontaneous
curvature and S is the surface area. An expression for a bending force density derived
from (2.3) was used in the numerical implementation. The fluid motion interior and
exterior to the cell is obtained by solving the Navier–Stokes equations with negligible
inertia. A combination of spectral and finite-difference schemes is used for the flow
solver. The coupling between the flow and the membrane deformation is performed
using a front-tracking/immersed-boundary method. The computational domain is a
cubic box of length 2πao, where ao is the radius of a sphere having the same
volume as the cell. The domain is discretized by 1203 points, and the cell surface is
discretized using 20 480 triangular elements. The dimensionless time is denoted by
t∗ = tγ̇a.

The relevant dimensionless parameters for the present study are the ratio of the peak
viscous force to the membrane elastic force Ca= γ̇a µo ao/Gs, the viscosity ratio λ and
the dimensionless frequency of the flow oscillation ν= ν̃/γ̇a. The ranges of Ca and λ
considered here are 0.03–0.5 and 0.1–5 respectively, corresponding to a shear rate of
approximately 0.3–300 s−1. The shear rate is typical of a microcirculatory flow, and
the physiological λ is approximately 5. The dimensionless frequency range considered
is 1/ν = 5–120.

The stress-free state of the cell is assumed to be an oblate spheroid of reduced
volume V0 = Vobl/(A3/2/3

√
4π) = 0.997, where Vobl is the spheroid volume and

A = 134.1 µm2 is the surface area of a normal RBC. The biconcave resting shape
is generated numerically from the spheroid by deflation until the desired volume
Vcell = 94.1 µm3 of a normal RBC is reached. The cell deflation is obtained
by imposing a small inward velocity normal to the membrane starting from a
quasi-spherical oblate of reduced volume 0.997 but with its surface area the same as
that of a normal RBC. The solution is unique and is a function of the spontaneous
curvature and dimensionless bending stiffness. The numerical scheme is stable as
long as a sufficiently small deflation velocity is used. Further details on the deflation
process were given in Cordasco et al. (2014). The final shape agrees well with the
experimental shape as given in Fung (1993) and has a reduced volume of 0.644, the
same as that of a normal RBC. From numerical experiments we find that c0 = 4.0
gives the experimental shape. It should be emphasized that the resting biconcave shape
is generated under the balance of membrane shear resistance and bending resistance.
The membrane shear modulus and bending stiffness used in the simulations are
approximately 2.5× 10−6 N m−1 and 6× 10−19 J respectively.

The cell dynamics is identified using two angles within the shear plane: the
inclination angle θ of the RBC major axis with respect to the flow direction and the
phase angle φ of a marker point on the cell surface with respect to the long axis of
the cell (figure 1). For a full TT, φ is displaced by 2π. In a steady shear flow, TT
can be accompanied by an SW, in which case θ oscillates about a mean, and the
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FIGURE 2. Grid convergence tests. The continuous lines are for 1203 Eulerian and 20 480
Lagrangian resolutions, the dashed lines are for 1803 and 49 152, and the dotted lines are
for 2403 and 49 152. Panels (a) and (b) consider two examples taken from regular periodic
dynamics.

SW period is half of the TT period. For a tumble, φ oscillates about a mean, but
θ varies by 2π in a full rotation. The initial inclination angle is denoted by θo. The
volume of the cell is preserved; the total change in cell volume is less than 0.1 %
(see Cordasco & Bagchi (2014) and the supplementary material therein for details).

Comparison of our numerical results with the exact analytical result and numerical
results of Matsunaga et al. (2015) is shown in figure 1(b). Matsunaga et al. extended
the small-deformation theory of Barthes-Biesel & Rallison (1981) in the limit
of high ν. The maximum Taylor deformation parameter was predicted to be
Dmax

12 = 5/(4πν(2λ + 3)). The numerical results agree well with the analytical result
at the high-ν limit. The two results deviate at lower frequencies, with the numerical
results becoming less sensitive to ν, as also noted by Matsunaga et al. (2015).
Additionally, our numerical results at lower frequencies also agree very well with the
numerical results of Matsunaga et al. (2015).

To illustrate that the RBC dynamics observed here are not numerical artefacts,
we present a grid and domain size independence study. The grid independence
is tested by considering three different Eulerian resolutions as 1203, 1803 and
2403, and two different Lagrangian resolutions as 20 480 and 49 152 triangular
elements on the cell surface. Figure 2(a,b) shows two sample cases for which
periodic oscillatory dynamics is observed. Trajectories for different resolutions are
observed to coincide, and therefore grid independence is established for periodic
dynamics. The influence of domain size is tested by doubling the domain size.
The results are presented in figure S1 in the supplementary material available at
http://dx.doi.org/10.1017/jfm.2016.409. For the regular periodic dynamics as shown in
S1(a–c), there is nice overlap in the results for the two domains.

The grid and domain size effects on the chaotic dynamics are presented later
in § 3.1.2.

3. Results and discussion
3.1. Dynamical behaviour

Simulations are performed over a wide range of Ca, λ and ν. Often, the dynamics
is dependent on the initial orientation angle θo, which is also varied. Generally, the
cell dynamics is observed to be either periodic or chaotic. In what follows, we first
illustrate the dynamics under varying ν, followed by some analysis of the chaotic
dynamics. Then, the influence of viscosity ratio, shear rate and cell deformation is
considered.
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FIGURE 3. (Colour online) Cell dynamics at high dimensionless frequency (1/ν= 5, Ca=
0.04, λ = 0.85). (a) Time history of cell inclination θ for various initial orientations as
θo = 0 (black), π/4 (red), π/2 (blue), 3π/4 (green). Horizontal reversals (HRs) occur for
θo = 0 and π/4, and vertical reversals (VRs) occur for θo =π/2 and 3π/4. (b) The θ–φ
phase-space plot showing the limit cycles associated with HRs (black and red) and VRs
(green and blue). (c,d) Snapshots from our simulations showing VRs and HRs respectively
over one half flow cycle for 1/ν = 30, Ca = 0.1, λ = 0.1. The major axis of the cell
oscillates about the flow gradient (y) axis in VRs and about the flow direction (x-axis) in
HRs. Animations are provided as supplementary movies 1 and 2.

3.1.1. Periodic dynamics
The cell dynamics at high ν is shown in figure 3 where 1/ν = 5 is considered. At

such high ν, the dynamics is observed to be periodic, but dependent on the initial
orientation θo. Cells settle into a back-and-forth motion: the cell major axis oscillates
either about the flow direction (x-axis, θ = 0) or about the flow gradient axis (y-axis,
θ = π/2). The former is termed as horizontal reversal (hereafter referred to as HR)
and the latter as vertical reversal (VR). For some θo, the initial conditions can be felt
for a long time before the cells settle into either of the two periodic motions.

Representative snapshots of VRs and HRs are shown in figures 3(c) and 3(d)
respectively for a half flow cycle. Animations are provided as supplementary movies.
For a VR, the cell rotates in the same direction as the flow rotation with almost no
phase lag with respect to the flow. The cell crosses the vertical axis during the flow
acceleration to orient its axis from the compressional to the extensional direction, and
remains aligned in the extensional quadrant during the deceleration phase. In contrast,
for an HR, there is a large phase lag, and the cell may rotate in a direction opposite
to the flow rotation.

The oscillation of the whole cell is accompanied by a back-and-forth motion of
the cell membrane. The combined motion can be described by a phase-space plot in
terms of θ and φ, as shown in figure 3(b). In this plot, the HRs and VRs appear
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FIGURE 4. (Colour online) The effect of decreasing the dimensionless frequency, 1/ν =
22: (a,b) H-entrainment, Ca= 0.04, λ= 0.85, θo = 0 (red line), π/6 (green), π/2 (black),
5π/6 (blue); (c,d) non-coalescing HR, Ca= 0.1, λ= 0.3, θo= 44π/180 (solid black line),
45π/180 (solid red), 46π/180 (solid blue), −44π/180 (solid green), −45π/180 (dashed
black), −46π/180 (dash–dot red).

as two distinct non-intersecting limit cycles. The occurrence of two limit cycles was
reported earlier by DAV in their experiments and reduced-order modelling. Here, we
successfully capture these limit cycles using a 3D fully deformable cell model.

Figure 3 also shows that the cell sweeps a larger angle while in a VR than in an HR.
As will be shown later, this difference has a significant effect on the appearance of
the chaotic dynamics and also on the cell deformation in oscillating flow. In contrast,
the amount of membrane displacement is less in a VR than in an HR. This is because
the cell experiences a higher torque while in the vertical orientation; since a part of
the torque is also used to displace the cell membrane, a larger variation in φ occurs
in an HR. Furthermore, in an HR, a greater amount of membrane movement occurs
when cell rotation and flow rotation are in opposite directions than when they are in
the same direction.

The results in figure 3 are for Ca= 0.04 and λ= 0.85, for which cell deformation
is small, and, hence, the dynamics can be clearly illustrated. The effect of cell
deformation is given in a later section.

Although deformation is small and inertia is negligible, the coalescing trajectories
presented in figure 3, and also in subsequent figures, represent a major difference
between the dynamics of an RBC and a rigid ellipsoid. It is well known from Jeffery’s
(1922) solution that a rigid axisymmetric ellipsoid in an oscillating shear flow would
result in an infinite number of non-coalescing trajectories that are dependent on the
initial orientation. Chaotic rotation is, however, possible for long triaxial ellipsoidal
particles (Yarin, Gottlieb & Roisman 1997).

Decreasing the dimensionless frequency has a profound effect on the cell dynamics.
As 1/ν is gradually increased from 5, a VR becomes unstable and transforms to an
HR. At 1/ν = 22, as shown in figure 4(a,b), the initial conditions are completely
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FIGURE 5. (Colour online) The effect of decreasing ν: (a,b) 1/ν = 40; the dynamics
appears as an H-entrainment with SWs occurring near the peak shear rate; (c,d) 1/ν= 60;
multiple SWs occur along with VRs or HRs depending on θo. For all panels, Ca= 0.1,
λ= 0.1; θo = 0 (black), π/4 (red), π/2 (blue), −π/4 (green).

forgotten and the cells settle into one trajectory exhibiting only the HR. Consequently,
in θ–φ phase space, trajectories with different initial conditions merge into a single
stable limit cycle. Such a behaviour is known as frequency entrainment in the study
of forced nonlinear oscillators (Jordan & Smith 2007), and is closely related to the
synchronization or mode-locking phenomenon. Here, we identify such dynamics as
H-entrainment.

For a certain range of parameters, we observe that cells with different initial
conditions settle into HR, but their trajectories do not coalesce anymore. Such cases
are shown in figure 4(c,d), where it can be noticed that even small differences in the
initial conditions result in clearly different but stable trajectories. Consequently, the
θ–φ phase plot shows multiple stable but non-coalescing attractors of similar shape
and locations. Such multiple stable limit cycles were predicted by the reduced-order
model of Noguchi (2010). Interestingly, figure 4(c,d) shows that cells with small
differences in their initial conditions exhibit distinctly different trajectories with
non-periodic dynamics during the initial part of the simulations, but eventually settle
into a periodic HR. As will be shown later, in a particular parameter range, the
non-periodic behaviour continues over a long time resulting in chaotic dynamics.

The dynamics with HRs continues as ν is further reduced. At sufficiently reduced
ν, the dynamics appears as a combination of SWs and HRs. A swing occurs when
the instantaneous shear rate γ̇ is greater than the threshold shear rate for the TB–
TT transition in a steady shear flow, and an HR occurs when γ̇ is less than the
threshold. Such cases are shown in figure 5(a,b) for 1/ν = 40. Also noticeable here
is the entrainment of different trajectories into a horizontal limit cycle. When ν is
reduced even further, e.g. for 1/ν = 60 as shown in figure 5(c,d), multiple swings
are possible near the peak shear rate. Furthermore, both VRs and HRs now emerge
depending on θo.
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FIGURE 6. Angular oscillation amplitude 1θ as a function of ν for λ = 0.1 (@) and 1
(A). Here, Ca = 0.1 is constant. Simulation results are shown by continuous lines and
filled symbols, while the DAV model is shown by dotted lines and unfilled symbols.

It is of interest to quantitatively compare the results from our simulation and the
DAV model. Since the latter is for shape-preserving cells, we restrict the comparison
to Ca= 0.1 for which the deformation is not large. To obtain the results for the DAV
model, we use the same parameters as used in their paper. The values of Ca used
in the simulations are converted to dimensional shear rates using the definition of Ca
and the values of Gs and ao as given in § 2. The dimensional frequency in the DAV
model is also related to the dimensionless frequency as noted in § 2. The quantity of
interest is the amplitude of angular oscillation 1θ , which is plotted in figure 6 as a
function of ν. Keeping in mind the limitations of the DAV model, it can be said that
good agreement between the model and our simulation is observed at low shear rates.
Additionally, both the DAV model and the simulation predict higher 1θ in VRs than
in HRs. Furthermore, with decreasing ν, 1θ first increases but then saturates. At high
ν, 1θ is restricted by flow oscillation. At very low ν, SW occurs over longer times.
The maximum inclination of the cell is then limited by SW as in a steady shear flow,
resulting in the observed saturation of 1θ .

3.1.2. Chaotic dynamics
As noted in the introduction, in their experiments, DAV first observed that RBCs

exhibited chaotic behaviour. As opposed to the periodic dynamics presented in the
last section, the chaotic dynamics is characterized by an irregular (i.e. non-periodic)
sequence of horizontal reversals, vertical reversals and swinging of the cells. In
experiments, usually many factors are present including thermal and background noise
that may cause such chaotic motion to occur. It is of interest, therefore, to investigate
whether chaotic motion occurs in the absence of such external noise. Similar chaotic
dynamics is observed in our simulations, as shown in figure 7(a). An SW occurs
near the peak γ̇ , and VRs and HRs occur near the instances of flow reversals, as is
evident in the close-up view shown in figure 7(b). In order to investigate whether the
observed aperiodic trajectories are indicative of chaotic dynamics, we consider five
simulations with very close θo (differing by one degree or less) and let the motion
evolve for a long time. Although chaotic dynamics arises from a fully deterministic
set of equations as is the case in our simulations, it is highly sensitive to the initial
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FIGURE 7. (Colour online) Chaotic dynamics, Ca= 0.1, λ= 0.1, 1/ν= 22; (a) θ versus t∗
showing the aperiodic behaviour for different initial orientations θo= 0 (black), π/4 (red),
π/2 (blue), −π/4 (green); (b) close-up of two cases shown in (a); the cell dynamics is
an irregular sequence of SWs, VRs and HRs; (c) θ versus t∗ showing widely diverging
trajectories resulting from small differences in θo as 0 (black), π/1800 (blue), −π/1800
(green), π/180 (magenta), −π/180 (red). The arrow indicates where the trajectories start
to diverge.

conditions and should exhibit a diverging behaviour with even small variations in
initial conditions. As is evident in the time series plots in figure 7(c), the trajectories
are nearly identical during the early time in the simulations, but they begin to diverge
after several flow reversal cycles. Eventually, the trajectories become widely different
from each other. This is indeed a signature of a chaotic regime encountered in
deterministic nonlinear systems. It is also observed that two trajectories can nearly
coincide in some time intervals, while they can be widely apart at other times. This
is also a well-known characteristic of so-called strange attractors.

We now establish the grid and domain size independence for the chaotic dynamics,
as shown in figure 8. We consider 1803 Eulerian resolution and 49 152 Lagrangian
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FIGURE 8. (Colour online) Grid convergence test for the chaotic dynamics. The dashed
lines are for 1803 Eulerian resolution and 49 152 Lagrangian resolution, and the dotted
lines for 2403 and 49 152. The colours indicate different initial orientations as in figure 7.
Here, only the trajectories for 1803 and 2403 are plotted to avoid clutter. The trajectories
for 1203 Eulerian resolution and 20 480 Lagrangian resolution have already been given in
figure 7. Trajectories at higher resolutions show similar irregular aperiodic behaviour to
that shown in figure 7. It should be noted that for the chaotic dynamics, the trajectories
should not coincide for two different resolutions as this is the fundamental nature of
chaotic dynamics.

resolution, and 2403 Eulerian resolution and 49 152 Lagrangian resolution respectively.
The results with 1203 Eulerian resolution and 20 480 Lagrangian resolution have
already been given in figure 7. As noted before, the chaotic trajectories are
characterized by aperiodic and irregular sequences of HRs, VRs and SWs. The
chaotic trajectories are evident at higher resolutions as well. Further, for small
differences in initial orientations, widely divergent trajectories are observed for all
resolutions, which is also another indication of chaos.

The domain size independence for the chaotic dynamics is shown in figure S1(d)
in the supplementary material, clearly establishing that both the original and the
increased domains show chaotic trajectories.

Further support for the existence of chaos is obtained by considering additional
simulations where the sensitivity to other parameters, namely Ca, λ and ν, is
considered with small differences. Again, small variations of these parameters lead
to widely different trajectories over a long time. These results are not presented for
brevity.

The θ–φ phase plot for the chaotic dynamics is shown in figure 9(a), which appears
as an irregular sequence of vertical and horizontal attractors in the form of staircases.
Over certain time windows, a clockwise or counterclockwise rotation of the cell is
possible; however, over a long time, no preference in rotational direction exists. A
close-up of the phase plot is shown in figure 9(b), which demonstrates that SWs
appear as inflections at the top left and bottom right corners of the H-attractors where
the vertical and horizontal limit cycles intersect. Therefore, the bifurcation between the
vertical and horizontal limit cycles occurs via a swing. It should be noted that for the
periodic dynamics, e.g. as shown previously in figure 3(a), the vertical and horizontal
attractors do not intersect. The intersection of V- and H-attractors in the phase space is
fundamental to the emergence of the chaotic dynamics, and will be further elucidated.

In figure 9(c), all attractors for the chaotic cases shown in figure 7 are plotted
together in a periodic domain. It is observed that the trajectories are quite dense,
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FIGURE 9. (Colour online) Chaotic dynamics: (a) θ–φ phase plot for the trajectories
shown in figure 7 illustrating irregular sequences of V- and H-attractors; (b) a close-up
of a part of a trajectory in (a) showing that bifurcation occurs via a swing; (c) attractors
are plotted together by shifting in θ and φ, showing dense trajectories characteristic of
strange attractors.

similar to the so-called strange attractors (e.g. Lorenz). Because of the dense
trajectories, the bifurcation between the V- and H-attractors occurs unpredictably,
resulting in chaotic motion.

Further evidence of chaos is obtained by computing the Lyapunov exponents and a
return map. A positive Lyapunov exponent indicates an exponentially diverging nature
of the initially close trajectories and, hence, is a true signature of chaos. To compute
the Lyapunov exponent, we assume that the cell motion is described by the angles θ
and φ, and construct the vector 1X(t) = Xi(θ, φ) − Xj(θ, φ) for two initially close
trajectories. The Lyapunov exponent λi is defined as

|1X(t)| = |1X(0)| eλit. (3.1)

We plot |1X(t)| on a logarithmic scale in figure 10(a). Positive values of λi in
the range 0.04–0.013 are observed, further confirming the existence of chaos.
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FIGURE 10. (Colour online) Signature of chaos in cell dynamics: (a) |1X(t)| (see text
for definition) is plotted for several initially close trajectories; the Lyapunov exponent is
obtained as the slope of the curves; (b) return map constructed from several runs; each
point represents θ (C) or φ (E) obtained at consecutive flow reversals (‘n’ and ‘n+ 1’).

In comparison, DAV reported a Lyapunov exponent of 0.013. It should be noted
that a small positive value of the Lyapunov exponent is sufficient to attain diverging
trajectories, and, hence, chaos. The magnitude only determines the rate of divergence.
Figure 10(b) presents a return map which is constructed using the values of θ and φ
obtained at two consecutive flow reversals (denoted by ‘n’ and ‘n+ 1’ in the figure).
An ordered return map consisting of dense points outlining a curve is observed here,
which is also an indication of chaos. In contrast, a periodic behaviour would be
represented by a single pair of θ and φ, and a random process would appear as
uniformly distributed points.

As an additional validation of the computational results, we have computed the
Lyapunov exponent for the higher resolutions of 1803 and 2403 Eulerian grids and
49 152 Lagrangian mesh, where the exponent is computed to be 0.01–0.02, which is
in agreement with the values obtained for 1203 and 20 480 resolutions in figure 7. As
noted above, DAV reported the Lyapunov exponent 0.013, which is close to the lower
bound of the range observed in our simulations.

Additionally, for the increased domain size (figure S1), the Lyapunov exponent
for the chaotic dynamics is approximately 0.035, which falls in the range of values
(0.013–0.04) obtained for the original domain, as noted above.

It should be noted that the chaotic dynamics is observed here at λ less than
physiological values.

We have performed simulations over an extended time of t∗> 800. These results are
presented in the supplementary material for both the chaotic (figures S9(b) and S11)
and non-chaotic cases (figures S12). The nature of the dynamics (e.g. chaotic or
periodic) remains unchanged even over the longer time. The simulation time for
these cases represents not only an extended dimensionless time, but also a long
physical time. Our simulations show that chaos occurs even without the noise that is
typically present in experiments. Chaos will continue for an infinitely long time and
trajectories will continue to diverge at a rate determined by the Lyapunov exponent.
As long as the Lyapunov exponent is positive, as is observed in our simulations, chaos
will occur. Further, our results (e.g. figure 4a) suggest that the initial transience from
start-up could decay within a relatively short time compared with the duration of a
simulation, as short as t∗<30. It also depends on specific parameters, like Ca, λ and ν.
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FIGURE 11. (Colour online) (a) Estimation of θcr from time series of θ for the chaotic
cases; θ over a small time window is shown for a chaotic case (1/ν = 22, Ca = 0.1,
λ = 0.1) for four different values of θo. For HRs, θγ̇=0 < θcr, and for VRs, θγ̇=0 > θcr.
(b) A close-up of (a). The flow reversal (γ̇ = 0) occurs at t∗ = 330. (c) A plot of |θγ̇=0|
for VRs (A), HRs (E) and chaotic dynamics (u) over a range of ν for fixed Ca = 0.1,
λ= 0.1. The emergence of various dynamics with respect to varying ν is indicated. Here,
1φ is the amount of membrane rotation during a half flow cycle.

The simulations presented here are performed over sufficiently long time so that the
initial transience is gone. As noted above, we have extended our simulation over a
long time for several representative cases, as shown in figures S9(b), S11 and S12 in
the supplementary material, that clearly establish that the dynamics persists over long
times.

3.2. Analysis
We now provide further analysis of the chaotic dynamics. Specifically, we address the
transition between the H- and V-attractors, which is seen as a hallmark of chaos.

Based on a posteriori analysis, we find that a VR occurs if the inclination angle
θ at the instant of flow reversal, namely θγ̇=0, exceeds a critical value θcr, and an
HR occurs when θγ̇=0 is less than θcr. In figure 11(a,b) we plot θ over a small time
window for a chaotic case with four different values of θo. It is observed that a small
variation in θ at the instant of flow reversal can switch the limit cycle from a VR to
an HR, and vice versa. One can use the time series of θ for the chaotic cases to obtain
an estimate of θcr. Since for the chaotic cases the V- and H-limit cycles intersect each
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other, θcr is the maximum of θγ̇=0 that can be attained in an HR, or the minimum of
θγ̇=0 that can be attained in a VR. Therefore, by careful observation through many
long time series in the chaotic regime one can obtain θcr with a reasonable accuracy.
For the cases in figure 11(a), we obtain θcr = 0.124π. As shown in figure 11(c) (by
red symbols), the same value of θcr is obtained when the frequency is halved. For
another instance of Ca= 0.1 and λ= 0.3, θcr = 0.105 in the range 1/ν = 25–60. This
observation suggests that θcr is independent of ν, but depends on Ca and λ.

As noted above, a VR occurs if θγ̇=0 > θcr and an HR ensues if θγ̇=0 < θcr. As a
further illustration, we plot in figure 11(c) the values of θγ̇=0 for the periodic dynamics
over a wide range of ν but fixed Ca = 0.1 and λ = 0.1. For the periodic dynamics
exhibiting two limit cycles, θγ̇=0 >θcr for the VR and θγ̇=0 <θcr for the HR, resulting
in two non-intersecting trajectories. Therefore, a cell cannot transition between the
horizontal and vertical limit cycles, and chaos is not possible in such cases. For the
cases showing only the horizontal limit cycles, only one value of θγ̇=0 exists that is
less than θcr.

Figure 11(c) also shows the occurrence of various dynamical regimes over a
range of ν. It is also noted in the figure that in the chaotic regimes, the membrane
displacement 1φ in a half flow cycle occurs in integer multiples of π. Previously,
in figure 9, it was noted that when the chaotic dynamics is present, one or multiple
SWs occur when γ̇ (t) is above the threshold for TB–TT transition in steady shear
flow, and the bifurcation between the V- and H-limit cycles occurs via an SW. Hence,
for the chaotic dynamics to appear, the cell must also swing. Since a swing is
accompanied by some amount of membrane displacement, chaos cannot occur for
very small values of Ca or large values of λ for which membrane displacement is
suppressed. For the same reason, chaos cannot occur at a very high ν. It should be
noted that θcr still exists, as shown in figure 11(c). At very high frequencies there
is only a small angular oscillation of the cell axis, and thus the angle at the instant
of flow reversal is very well above or below θcr for vertical or horizontal reversals
respectively. Swinging is necessary for chaos to occur, as illustrated in figure 9(b).
The frequency of cell swinging is twice the TT frequency (see, e.g. Abkarian et al.
2007). Thus, the flow frequency at which chaos occurs must be close to the natural
TT frequency of the cell. In other words, a flow frequency close to the natural TT
frequency of the cell acts as a resonator. For a full TT, the membrane displacement
is 360◦, i.e. 1φ = 2π. For the oscillating flow, the flow direction reverses every half
flow cycle. Therefore, in TT motion, the membrane rotates in one direction for every
half cycle. Hence, to act as a resonator, the flow frequency should be such that the
membrane rotates by an amount of π or an integer multiple of π in every half cycle.
That is, the membrane displacement 1φ, therefore, occurs in integer multiples of
π. Thus, the value of ν at which chaos occurs is close to the TT frequency in a
steady shear flow, as also predicted by the DAV model. Chaotic horizontal or vertical
reversals occur about θcr, which is the bifurcation angle when the flow reverses. When
the cell membrane rotates by nearly 1φ = nπ, the membrane never comes back to
exactly the same point and therefore the swinging angle at the instant of flow reversal
is never quite the same, although it is always close to the critical angle. As a result,
the RBC cannot synchronize with the flow and therefore irregular reversals occur,
and with each flow cycle the location of a point in θ–φ phase space at the same
shear rate is never the same. Therefore, the instantaneous θ(t) is sometimes above
θcr and sometimes below, but not in any regular sequence, leading to the bifurcation.
In simple terms, the flow frequency must be such as to allow for the membrane to
traverse from one side of the cell to the other (half a TT cycle) before the flow
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FIGURE 12. (Colour online) Analysis of H-entrainment for the cases shown in figure 5(a).
Here, (a,b) show the locations of the same marker point on the cell membrane at an early
time t∗ = 10 and at a later time t∗ = 120 respectively, for different initial orientations θo
as indicated; (c) shows a time sequence of contour-averaged membrane strain energy for
θo = 0 (black), π/4 (red), π/2 (blue), −π/4 (green).

reverses for chaos to occur. Thus, chaos occurs when the forcing frequency of the
flow is close to the natural TT frequency of the RBC, which also causes 1φ ≈ nπ.

When the membrane is not able to make an nπ rotation in a half flow cycle,
periodic dynamics in the form of HR and VR or only HR occur. For example,
1φ ≈ 1.7π in figure 5(a,b), where only HR is observed.

It may be noted that in order to calculate θcr, one has to consider the chaotic
trajectories as described above. However, once the value of θcr for a specific Ca and
λ is found, it is applicable to other frequency ranges.

Some insights can be obtained by considering the strain energy variation of the cell
membrane over time. For this, we consider the entraining trajectories shown previously
in figure 5(a), where the cells started with different θo exhibit different dynamics
during the early time, but settle about the same horizontal limit cycle over a long
time. To elucidate the entrainment process, the locations of the same marker point on
the membrane are shown in figures 12(a) and 12(b) at an early time and a later time
respectively for different values of θo. At the early time, the same marker point ends
up in different φ locations for different θo. At the later time, the marker points for
all values of θo are located at the same φ. This observation implies a reorganization
of the membrane over time in which a net membrane displacement occurs in each
flow cycle, but the amount of displacement is dependent on θo. A redistribution of
the membrane strain energy also occurs, as shown in figure 12(c), where the strain
energy W averaged over the cell contour is plotted for various values of θo. During
the early time, cells with different values of θo have different waveforms of W, but
at later times, all W curves merge, and the cells are locked into one stable attractor.

For the VR and HR also, the strain energy is observed to attain symmetric
waveforms with respect to the flow cycle, although the nature of the waveforms in
the two cases is different. In contrast, for the chaotic dynamics, the waveform is
aperiodic.
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FIGURE 13. Effect of ν on phase lag Φ: simulation results (—@—) and DAV model
(- -A- -). Here, λ= 1, Ca= 0.1.

Unlike a rigid ellipsoid in the absence of inertia, a deformable cell lags in its
response to flow variation. We define the phase lag between the flow and the cell
inclination as Φ = 2πν̃(tγ̇a − tθ=0), where tγ̇a and tθ=0 are respectively the time
instances when γ̇ = γ̇a and when θ = 0. Figure 13 shows that Φ generally decreases
with decreasing ν, but non-monotonically with a sawtooth pattern. A monotonic
decrease occurs in the frequency ranges where periodic dynamics is observed. As
noted previously in figure 11(c), the chaotic regimes appear in the frequency space
between the regimes of periodic dynamics. The decreasing trend of Φ occurs until
a chaotic regime is encountered. Within a chaotic regime, Φ does not show any
consistent trend as the cells cannot synchronize with the flow. As ν is further
decreased so that the RBC exits the chaotic regime to assume a periodic dynamics,
a decreasing trend is re-established, followed by a jump in Φ. The computed trend
of Φ is compared with the DAV model in figure 13, which shows a good agreement
between the two.

3.3. Effect of λ
We now vary both λ and ν but keep Ca fixed at 0.1. The cell dynamics can be
best described using a λ–ν phase plot, as shown in figure 14. Different dynamics as
already described in the previous sections also appear as λ is varied. Namely, we
observe dynamics with two limit cycles characterized by periodic VRs and HRs, a
single limit cycle characterized by H-entrainment, multiple limit cycles representing
non-coalescing HRs and chaotic dynamics. Different regimes appear as banded regions
in the λ–ν space. Chaotic regimes occur between regions of periodic dynamics. As λ
is increased, chaotic regimes occur at reduced ν, as a result of the slower membrane
movement. In addition, at higher λ near physiological values, chaos is no longer
observed as membrane rotation is suppressed; instead, a rigid-body-like oscillation is
observed.

We also compare our simulation with the phase diagram obtained by the DAV
model in figure 14. Both the simulation and the DAV model predict very similar
regimes in phase space at small deformation of the cell, as seen in the figure which
is for Ca = 0.1. Some minor differences may be noted; e.g. the non-coalescing HR
dynamics is not predicted by the DAV model. Moreover, the chaotic regimes persist
at higher λ in the DAV model than in the simulations.

Suppression of chaos at higher λ can also be understood in terms of the critical
inclination θcr. Figure 15(a) shows that θcr decreases with increasing λ. As a result, the
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FIGURE 14. (Colour online) Effect of λ. Different dynamics are shown in a λ–ν phase
plot. (a) Simulation results; (b) DAV model. Chaotic dynamics (s); periodic dynamics:
HR and VR (p), H-entrainment (u), non-coalescing HR (q), rigid-body-like oscillations
(♦). Here, Ca= 0.1.

RBC is unable to hop between V- and H-limit cycles, thereby reducing the possibility
of chaos.

The oscillation amplitude 1θ is also observed to decrease with increasing λ, as
shown in figure 15(b), as long as λ is approximately less than the threshold value
for the TB–TT transition in steady shear flows. For λ above the threshold, 1θ tends
to increase abruptly with increasing λ as the rigid-body-like oscillation ensues.

The effect of λ on the phase lag Φ is shown in figure 15(c). In general, a decrease
in Φ is observed with increasing λ. At high λ, the phase lag approaches zero as the
cell dynamics approaches that of a rigid body. For λ. 1 and for some ν, a sawtooth-
like trend is observed because of the appearance of the chaotic regimes between the
regimes of periodic motion in the phase space.

Both 1θ and Φ predicted by the DAV model show similar qualitative trends to
those in the simulations. This is shown in figure 15(b,c), where results from the DAV
model are shown along with our simulation results.

3.4. Effect of Ca
The effect of Ca is shown in figure 16 using a Ca–1/ν phase-space plot. As before,
the dynamical regimes observed are HR and VR characterized by two stable limit
cycles, H-entrainment with a single limit cycle, non-converging HR resulting in
multiple limit cycles and chaos. It should be noted that ‘non-converging’ trajectories
are indeed periodic, unlike the chaotic cases. However, they are ‘non-converging’
because cells with different initial conditions do not merge in to identical trajectories,
although they exhibit periodicity. At a very low Ca, a rigid-body-like oscillation is
observed at reduced ν. As ν is increased and Ca is held constant, regimes with
H-entrainment followed by HR and VR appear. At this low Ca, no chaotic dynamics
is observed since the membrane rotation is suppressed. As Ca is increased to allow
some amount of membrane rotation, regions with the chaotic dynamics appear which
are preceded and followed by regions of H-entrainment. Qualitative similarity between
the simulation results and the DAV model is also noticed at smaller values of Ca.
However, at higher Ca, there is a disagreement between the two. Whereas the DAV
model predicts a persistence of the chaotic dynamics at high shear rate, and even
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FIGURE 15. (Colour online) (a) Effect of λ on θcr: u represents θcr, @ represents θγ̇=0

for HR andA represents θγ̇=0 for VR. (b,c) Effect of λ on the oscillation amplitude 1θ
and phase lag Φ. The continuous red lines with filled symbols are the simulation results.
The dotted black lines with unfilled symbols are the DAV model: 1/ν = 15 (@), 30 (A),
50 (C).

a broadening of the chaotic region, the simulation results suggest that the chaotic
regions narrow and become fully suppressed at Ca & 0.5. The difference arises, as
is evident, due to the assumption of a fixed shape of the cells in the DAV model.
Hence, cell deformation suppresses the chaotic behaviour at large shear rates.

Due to the large deformation at high Ca, it is sometimes difficult to establish
whether a cell is undergoing a VR or an HR. In fact it appears that at high Ca,
the cell reversals are driven by deformation, as shown in figure 16(c). Here, the
cell gets elongated along the first quadrant near the peak shear. There is a phase
lag between the cell and the flow reversal. As the flow reverses, the extensional
and compressional directions are interchanged, and the cell is compressed along
the rim and elongated along the dimple. As the reverse flow is fully established,
the cell elongates completely in the second quadrant. Often, an asymmetry in cell
deformation between successive reversals is observed which is a result of different
portions of the strain energy barrier encountered by the membrane during the first
and second halves of a flow cycle. This behaviour contrasts with the redistribution of
the phase of membrane rotation to a symmetric one, which was noted earlier for the
H-entrainment occurring at low to moderate Ca. At higher Ca, θ and φ often do not
fully entrain, and the effect of the initial conditions is preserved even after a long
time, resulting in the non-converging trajectories.

The effect of Ca on θ(t) is shown in figure 17(a–c). At moderate dimensionless
frequency (1/ν = 30 in the figure), increasing Ca results in a greater phase lag while
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FIGURE 16. (Colour online) The effect of Ca is shown by Ca–1/ν phase plots.
(a) Simulation; (b) DAV model; @, VR and HR; E, H-entrainment; C, chaos; 1,
non-converging HR; ♦, rigid-body-like oscillation. (c) Sequence of cell deformation for
Ca = 0.5, 1/ν = 44. In the upper row, the cell axis moves from the first to the second
quadrant. The reverse motion is shown in the lower row. For all data, λ= 1.

reducing the amplitude of oscillation. At a small Ca, the phase lag is nearly zero
as the RBC exhibits a rigid-body-like motion. As Ca is increased, the phase lag is
also observed to increase due to a greater amount of membrane rotation. Moreover,
the θ(t) waveform changes from a peaked shape to a more flattened curve as the
RBC performs a partial swinging. At reduced frequencies (1/ν = 60 and 75 in the
figure), the cell has more time to respond before the flow reverses. At a small Ca
it can sweep a large angle resembling a partial TB. At moderate Ca, SW occurs
as γ̇ approaches its peak, and an inflection is observed in the θ–φ phase plot. At
even higher Ca, SW is suppressed and the inflection in the θ–φ curve vanishes.
Figure 17(d,e) shows the Ca effect on the oscillation amplitude 1θ and the phase lag
Φ. At small Ca, 1θ increases with decreasing ν following a rigid-body-like motion.
At higher Ca, 1θ initially increases with decreasing ν but then reaches a saturation
since the maximum inclination that a cell can attain is limited by the steady flow
results. The phase lag increases with increasing Ca, as the cell reversals become
increasingly driven by deformation.

3.5. Deformation
As noted above, at higher shear rates, a significant amount of deformation occurs
as the cell reverses its orientation in response to the flow reversals. To quantify the
cell deformation in the shear plane, we consider a quantity similar to the Taylor
deformation parameter, defined as D12 = (L − B)/(L + B), where L and B are the
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FIGURE 17. (Colour online) Effect of Ca. (a–c) Time series of θ and θ–φ phase plot for
1/ν = 30, 60, 75 respectively; Ca = 0.03 (black thin continuous line), 0.05 (black thick
dashed line), 0.1 (blue dash-dot line), 0.2 (green dashed line), 0.5 (red continuous line).
(d) Amplitude of angular oscillation 1θ for various values of Ca. (e) Phase lag Φ as a
function of Ca.

maximum and minimum distance of the cell surface from the centroid in the shear
plane. We note that L and B may not be perpendicular to each other as the cell
assumes a complex shape, as in figure 16(c). Figure 18(a) compares the time series of
D12 in steady and oscillatory shear flows (1/ν= 30 and 60) for Ca= 0.5. In the steady
shear flow, D12 shows a small oscillation which arises due to the swinging motion
of the cell. In contrast, a significantly larger oscillation is observed in the oscillating
shear flow which is due to the orientation reversals of the cell. Most strikingly, D12 in
oscillating flows exhibits large overshoots and/or undershoots compared with that in
a steady flow. Instantaneous cell shapes are shown in figure 18(c) for a steady shear
flow and in figure 18(d,e) for oscillating flows. Significantly more deformed shapes
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FIGURE 18. (Colour online) Cell deformation in the shear plane. (a,b) Time sequence of
D12, L and B at Ca= 0.5, λ= 1 in a steady shear flow (thick black line) and in oscillating
shear flows at 1/ν = 30 (dashed red line) and 60 (thin blue line). (c–e) The cell shapes
at steady shear flow, and at oscillating shear flows at 1/ν = 30 and 60 respectively.

are observed in the latter cases. In particular, the cell can take on very complex
shapes during the orientation reversals, resulting in the overshoots and undershoots
in D12. Instantaneous L and B are plotted in figure 18(b), which shows that L and B
in the oscillating flows are generally lower than those in the steady flow. The result
implies that the cell elongation in an oscillating flow is less but the cell compression
is higher than their counterparts in the steady flow. An overshoot in D12 occurs when
both L and B reach their minima; at this instance, the cell shape becomes compressed
but remains biconcave, e.g. at t∗ = 63 in figure 18(d). For some ν, e.g. 1/ν = 30 in
the figure, instantaneous B could be higher than that in the steady flow and shows
a cusp-like jump. Consequently, an undershoot in D12 occurs. This happens when
the cell assumes a quad-concave shape during flow reversals, thereby significantly
deviating from the biconcave shape, e.g. at t∗ = 66 in figure 18(d).

We find that undershoots in D12 occur more frequently during VRs than HRs.
This is illustrated in figure 19, where D12 is shown for 1/ν = 35, 40 and 44,
which correspond to H-entraining, chaos and VR respectively. For 1/ν = 35, only
overshoots are observed, while for 1/ν = 40 and 44, both overshoots and undershoots
are observed. The cell shapes are shown in figure 19(b) for the chaotic case near
an instance of a reversal. They further support the previous observation that an
overshoot occurs when the cell shape becomes compressed but remains biconcave
(e.g. at t∗ = 84), and an undershoot occurs when the cell assumes a quad-concave
shape, thereby significantly deviating from the biconcave shape (e.g. at t∗ = 88).
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FIGURE 19. (Colour online) (a) Time series of D12 at Ca= 0.3, λ= 1 in a steady shear
flow (thick black line) and in oscillating shear flows at 1/ν = 35 (thin black line), 40
(dash-dot red line) and 44 (dashed green line), corresponding to H-entrainment, chaotic
dynamics and VR respectively. (b) Cell shapes for the chaotic case at 1/ν = 40 near a
reversal; t∗= 84 and 88 respectively correspond to an overshoot and an undershoot in D12.

In several prior studies (e.g. Watanabe et al. 2006; Noguchi 2010), cell deformation
was reported using an off-shear plane deformation parameter D13 = (L − Z)/(L + Z),
where Z is the maximum distance of the cell surface from the centroid in the direction
perpendicular to the shear plane. Figure 20(a) shows the time series of D13 in steady
and oscillating shear flows. In the steady flow, D13 oscillates due to cell swinging.
A larger variation occurs in oscillating flows due to the increased cell deformation.
Strikingly, D13 is positive in the steady flow, but it can assume negative values in the
oscillating flows. The negative D13 occurs when the cell reverses its orientation, and
is due to the greater amount of compression, which also results in large undershoots,
particularly during a VR. It should be noted that for the relatively low ν chosen in
this figure (1/ν = 60), the cell executes a swing near the peak γ̇ . Consequently, D13
in steady flow nearly overlaps with that in oscillating flow at peak shear for V- and
H-reversals with a phase offset.

Figure 20(b) shows a phase-space plot of D13 versus θ for the periodic dynamics.
It shows that a greater amount of variation in D13 occurs in a VR as the cell sweeps
a wider angle. There is an overlap in the deformation phase plot between the HR,
the VR and the steady flow, as illustrated by the oblong loops occurring near the
maximum D13. The looping structure is indicative of swinging and is illustrative of
the deformation dependence of the cell on the instantaneous orientation and phase
of membrane rotation. Such a complex looping component has not been reported
previously.

Figure 20(c) shows a phase-space plot for a set of chaotic dynamics. An interesting
butterfly-shaped pattern is observed here which comprises dense but non-overlapping
trajectories arising due to a lack of synchronization between the cell and the imposed
shear.

Figure 21 shows the amplitude of D13, defined as 1D13=max{D13}−min{D13}, and
the time average deformation 〈D13〉 as functions of Ca for different frequencies. Also
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FIGURE 20. (Colour online) Cell deformation in an off-shear plane. (a) Time sequence of
D13 at Ca= 0.1, λ= 0.1 in a steady shear flow (thick black line) and in oscillating shear
flow at 1/ν= 60 for HR (dashed blue line) and VR (dash-dot red line). (b) A phase-space
plot of D13–θ for the cases shown in (a). (c) Phase-space plot for the chaotic dynamics
at Ca = 0.1, λ = 0.1, 1/ν = 25. The result for steady flow is shown by the thick black
line.

plotted is the result for the steady flow at the same Ca. In general, 1D13 increases
with increasing Ca and decreasing ν. It is also evident from the figure that 1D13
is higher in a VR than in an HR due to a higher sweep angle, as already noted
before. Further, except at a high ν, 1D13 is higher than those in steady flows. At
high frequencies, 1D13 is lower than in steady shear because D13 is limited by the
fast flow reversal and the cell does not have enough time to fully deform.

The average deformation 〈D13〉 is always higher in steady shear since the cell is
always in the extensional quadrant and it undergoes much less compression compared
with that in oscillating shear. Moreover, 〈D13〉 for an HR is higher than that for a
VR, since instantaneous D13 can be negative for the latter case. As expected, 〈D13〉
increases with decreasing ν. Interestingly, however, a non-monotonic trend is observed
with respect to Ca at moderate to high frequencies: 〈D13〉 first increases but then
decreases with increasing Ca. The origin of this trend is again the large compression
of the cell that occurs during flow reversals. At moderate to high frequencies, the cell
spends a significant fraction of a flow cycle in this compressed state which becomes
more severe as Ca is increased, resulting in a decrease in the average deformation.
However, at low frequencies, the cell spends significantly more time in the TT/SW
mode in the extensional quadrant before reversing its direction and thus resulting in
a monotonic increase in 〈D13〉 with increasing Ca.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.409


Red blood cell dynamics in oscillating flow 509

0

0.05

0.10

0.15

0.20

0.25

 0

0.02

 0.04

0.06

 0.08

0.10

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

(a) (b)

Ca Ca

FIGURE 21. (Colour online) Dependence of (a) 1D13 and (b) 〈D13〉 on Ca for various
frequencies as 1/ν = 5 (@), 22 (A), 30 (×), 44 (♦), 50 (E), 60 (C), 75 (D). Solid lines
represent HR and dashed lines VR. The result for the steady shear flow is shown by the
thick black line.

3.6. Off-shear plane drift
In all of our simulations, only the initial (at t∗ = 0) orientation of the axis of
revolution of the cell is aligned along the shear plane. No restriction is imposed
on the orientation as the simulation evolves in time. Since the simulations are fully
three-dimensional, the axis may drift out of the shear plane depending on the specific
parameters chosen. For the most part of the parameter space that is considered here,
the cell axis naturally remains aligned in the shear plane. Figure 22 shows two
sample cases: a chaotic dynamics case and a rigid-body-like oscillation case. For the
chaotic dynamics, the cell axis naturally remains aligned in the shear plane without
any significant drift, as seen in the figure. For the rigid-body-type oscillation, which
occurs at very small values of Ca or very large λ, there is a significant off-plane
drift. It was shown in our previous works, namely Cordasco & Bagchi (2013) and
Cordasco et al. (2014), that the off-plane drift is suppressed if some amount of
membrane displacement is allowed. In contrast, a significant drift occurs when the
membrane rotation is suppressed. As proven in the previous sections, all of the
interesting dynamics presented here, namely the chaotic dynamics, HR, VR and
entrainment, require a significant amount of membrane displacement. Consequently,
the off-plane drift is suppressed for most of the cases presented here.

Furthermore, in Cordasco & Bagchi (2013), the stress-free state of the cell was
taken to be the natural biconcave shape. Later, in Cordasco et al. (2014), we compared
the dynamics of the cell under two different stress-free states – a nearly spherical
shape as in the present work and the natural biconcave shape as in Cordasco & Bagchi
(2013). We showed that the nearly spherical shape of the stress-free state retains the
TT motion over a larger parameter space than the biconcave stress-free state. This is
consistent with the experimental observation of Dupire et al. (2012). Cordasco et al.
(2014) presented a phase diagram that showed that the cell with the nearly spherical
stress-free state performs TT motion with its axis aligned in the shear plane at shear
rates well below Ca∼ 0.1, at which the cell with the biconcave stress-free state would
tumble. Hence, the present results are consistent with our previous study provided that
the quasi-spherical stress-free state is considered.
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FIGURE 22. (Colour online) The off-shear plane drift is shown using the tilt angle ψ for
two sample runs: for a cell at low Ca exhibiting a rigid-body-like oscillation (solid red
line, Ca= 0.05) and the chaotic dynamics (dashed blue line, Ca= 0.1). The tilt angle is
defined as ψ = tan−1(z/

√
x2 + y2), where x, y, z are the coordinates of a point on the axis

of revolution of the RBC. The cell exhibits a significant off-plane drift for the rigid-body-
like motion, but stays aligned in the shear plane for the chaotic motion.

3.7. Influence of reduced volume and stress-free state
In order to assess the contribution of the reduced volume to the onset of the chaotic
dynamics, we have performed an extensive number of simulations using oblate
capsules of reduced volumes 0.997–0.644; the last value corresponds to the reduced
volume of the RBC. The initial shape is taken to be the stress-free state. Some of
these results are given in the supplementary material in figures S2–S6, and S13, S14,
and table 1 there. The major conclusions from the oblate capsule simulations are as
follows. Chaotic dynamics is not observed for oblate capsules for reduced volumes as
low as 0.766. Specifically, for reduced volumes 0.997–0.965, only periodic dynamics
in terms of horizontal and vertical reversals is observed (figures S3 and S4). Similar
entrainment dynamics is also observed for the oblate capsules (figure S2). For reduced
volumes 0.872–0.766, a unidirectional flipping motion is also observed in addition
to periodic dynamics (figure S5). When the reduced volume is close to that of the
RBC (i.e. 0.644), an irregular sequence of swinging and tumbling occurs which is
indicative of the onset of chaos (figure S13). Thus, chaos occurs for oblate capsules
as the reduced volume approaches that of the RBC.

The amount of membrane rotation 1φ over one half period of the imposed flow as
a function of the reduced volume is presented in table 1 in the supplementary material.
The results suggest that for larger reduced volume, 1φ is much larger than nπ, and
as the reduced volume approaches that of the RBC, 1φ approaches nπ. It should,
however, be noted that a membrane rotation of nπ is not a sufficient condition for
chaos to occur. As shown above, chaos occurs in narrow bands in parameter space,
and only when several conditions are met. The cell must be swinging, and must not
deform significantly. Further, the swinging must occur near the instant of flow reversal.

It should also be noted that as the reduced volume of the oblate approaches that
of the RBC, the shape no longer remains an oblate. Instead, the shape naturally
transitions to biconcave due to the presence of the membrane bending. This is shown
in figure S14. Thus, at these reduced volumes, it is sufficient just to consider the
RBC rather than the oblate.

We have also performed additional simulations with initially spherical capsules
under varying surface area dilation. For an extensible surface, we take the area
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dilation parameter C = 1. For a nearly inextensible surface, we take C = 1000Ca, as
already discussed in § 2. One sample result is given in figure S6 in the supplementary
material. Additional analysis of the initially spherical capsules can be found in Zhao
& Bagchi (2011). The initially spherical capsules show only symmetric oscillations
in response to the altering flow directions. No chaotic dynamics is observed for
the initially spherical capsules either. For the initially spherical capsules, no chaotic
dynamics is possible as there is no swinging dynamics for such capsules in a steady
shear flow. As noted in §§ 3.1.2 and 3.2, the swinging dynamics is necessary for
chaos to occur as it acts as a bifurcation between HR and VR.

In order to assess the influence of the asphericity of the stress-free shape, we
performed additional simulations in which the biconcave resting shape was taken as
the stress-free state. We refer to this configuration as biconcave stress-free (BCSF,
V0= 0.644) as opposed to the nearly spherical stress-free state (SSF, V0= 0.997) used
so far. These results are presented in the supplementary material (figures S7–S9).
Interestingly, we find the same behaviour for the BCSF case, namely the regular
HR, VR, H-entrainment and the chaotic dynamics. Hence, the stress-free state (BCSF
or SSF) does not qualitatively alter the observed dynamics. Moreover, the reduced
volume determines whether chaotic dynamics can be present or not.

4. Conclusion
A 3D computational study on the dynamics of fully deformable RBCs in oscillatory

shear flow has been presented. Simulations performed over a wide range of
dimensionless frequency, viscosity ratio and shear rate amplitude show that the
RBC reverses its orientation in response to the alternating flow direction by passing
through either the flow axis resulting in horizontal cell reversals or the flow gradient
axis resulting in vertical reversals. The dynamics are often periodic and, hence, the
cell settles into a periodic sequence of either horizontal or vertical reversals depending
on the initial orientation. In many cases, the initial conditions are completely
forgotten and the cells become entrained in the same sequence of horizontal
reversals. Additionally, within a certain parameter range, small differences in the initial
orientations can result in periodic yet distinct horizontal reversals. For low forcing
frequencies, the cell dynamics appears as a combination of horizontal or vertical
reversals near the instant of flow reversals along with one or multiple swings near
the maximum shear rate. Different dynamical regimes observed in our simulations are
schematically presented in figure 23. The peak shear rate and dimensional frequency
considered here are approximately in the ranges of 0.3–300 s−1 and 0.0025–60 Hz
respectively. This falls within the physiological range, as a nominal human heart rate
is 1 Hz and the vasculature can fluctuate at higher or lower frequency.

Chaotic dynamics, as previously observed in experiments and predicted by
reduced-order models, is also observed in our simulations. The present study is
the first to conclusively show the chaotic dynamics of RBCs in oscillatory shear flow.
Such dynamics is characterized by a non-periodic sequence of swings, and horizontal
and vertical reversals, and is obtained in our study with a fully deterministic numerical
model without the introduction of any stochastic noise such as thermal fluctuations.
The chaotic dynamics, however, occurs at a viscosity ratio less than the physiological
value. We further present strong evidence that such dynamics is chaotic in nature by
calculating the positive Lyapunov exponents which illustrate the divergent trajectories
of RBCs with initially very close orientations over long times.

We provide a detailed analysis of the chaotic dynamics of the RBC. In the
chaotic regime, while the sequence of the horizontal and vertical reversals remains

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.409


512 D. Cordasco and P. Bagchi

RBC dynamics in oscillatory shear flow

Periodic Chaotic

Horizontal/vertical
reversals (two limit

cycles)

Horizontal entrainment
(one limit cycle)

Horizontal non-converging
(multiple limit cycles)

FIGURE 23. The major dynamical regimes of RBC motion observed.

unpredictable, we have presented a novel finding that the occurrence of a vertical
or horizontal reversal depends only on whether a critical angle is exceeded at the
instant of flow reversal. Remarkably, the chaotic trajectories consistently show a
bifurcation about this angle. We found that the critical angle is independent of ν. We
emphasize that the emergence of the chaotic behaviour is coupled to the occurrence
of the swinging dynamics that is well known in steady shear flows. The bifurcation
between the horizontal and vertical attractors in the phase space occurs unpredictably,
but always via a swinging inflection.

An analysis of the time evolution of the membrane strain energy further reveals
that in the periodic regime the phase of membrane rotation redistributes to a periodic
and symmetric waveform with respect to the flow oscillation, while in the chaotic
regime the membrane rotation remains asynchronous. The chaotic dynamics occurs
at particular frequencies when the membrane is able to rotate over one half of
the cell contour (or an integer multiple thereof) during a half flow cycle. This
observation confirms that chaos appears near the resonance of the flow frequency
and the TT frequency. The periodic dynamics ensues when the flow frequency
is not an integer multiple of the TT frequency. This further results in a banded
structure of the phase space which maps the dynamical regimes over a range of
dimensionless frequency, viscosity ratio and shear rate amplitude. When compared
with the results obtained using reduced-order models, our simulations produce very
similar phase-space diagrams at low values of the viscosity ratio and shear rate
amplitude, but differences exist at high viscosity ratio and high shear rate. At high
viscosity ratio, chaos vanishes due to the suppression of the membrane movement,
while at high shear rate, large deformation of the cells causes a suppression of the
chaotic dynamics. Our simulations, which resolve large deformation of the cells,
show that the regions of chaos in the parameter space diminish at high shear rate
amplitude. This finding contradicts the prediction of reduced-order models that the
chaotic region should widen with increasing shear rate and hence underscores the
important role of cell deformation in capturing the accurate dynamics of RBCs in
large-amplitude oscillatory shear flow.

We further show that the deformation experienced by RBCs in oscillatory shear
is significantly greater than that experienced in steady shear flow due to a large
compression that occurs as the cell reverses its orientation in response to the
alternating flow direction. The compression results in large over/undershoots in
the deformation parameter which are particularly prominent for vertical reversals.
Matsunaga et al. (2015) considered a spherical capsule in oscillatory shear flow, and
observed that at low frequency the capsule experienced an overshoot in deformation.
In this respect, there is a qualitative similarity between the present result on RBC
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deformation and that of Matsunaga et al. We have also made some quantitative
comparisons with their result by performing additional simulations for spherical
capsules, and the agreement is found to be very good. However, the focus of the
present study is the RBC with biconcave resting shape, unlike the spherical capsule
considered by Matsunaga et al. (2015). Thus, a quantitative comparison between the
RBC results and the spherical capsule results is not expected. Furthermore, as noted by
Matsunaga et al. (2015), the deformation overshoot for spherical capsules is apparent
at high values of λ. While a spherical capsule can tank-tread at a very high viscosity
ratio, an RBC can only exhibit tumbling. Because the rotation of the membrane is
inhibited at high viscosity ratio, the chaotic reversals cannot occur for an RBC and
the dynamics lose their rich complexity. Furthermore, at very high frequencies the
RBC cannot perform chaotic reversals because there is simply not enough time for
significant membrane TT or cell rotation to occur. For these reasons, we have chosen
to focus on the complex and interesting dynamics that can only occur for an RBC at
a low viscosity ratio and below a certain frequency for which significant membrane
tank treading is allowed. We note that there are very few experimental results on
RBCs in oscillatory shear flow. The work of DAV is at low shear amplitude, so the
cells do not deform significantly. Watanabe et al. (2006) considered high-amplitude
shear, but at very low frequency. Moreover, they did not look at the side view
(i.e. along the vorticity direction). Thus, there is no experimental study showing the
deformed cell shapes as shown in figures 16 and 19. However, a recent experimental
study by Lanotte et al. (2014) showed highly deformed poly-lobe cell shapes in
high-shear steady flows – somewhat similar to the complex shape observed here. It
is expected that the present study will motivate further experimental study on cell
deformation in high-amplitude oscillatory shear flow to validate such complex shapes.
Nonetheless, comparison with the DAV experimental study is mentioned throughout
§ 3 wherever possible. In particular, the two dynamical states, namely the chaotic
regime and the periodic VR and HR, as observed here, were also observed in DAV.
Most importantly, the Lyapunov exponent obtained in the present study is in the same
range as that reported by DAV.

While the above findings bolster support for reduced-order models at low shear rate,
they also emphasize some critical differences at higher shear rate which occur due
to the large cell deformation. Most importantly, we find that a full modelling of the
fluid stress exerted on the cell at high shear rate results in large departures from the
biconcave shape which quite interestingly lead to the suppression of chaos in contrast
to the predictions of the analytical model.

An interesting parallel can be drawn between the RBC chaotic dynamics and the
chaotic dynamics of drops. Young et al. (2008) found that a chaotic transition between
a compact drop and elongated drop can occur in oscillatory flows by way of a period-
doubling bifurcation. There are some similarities comparing this work and our work
in that chaos can be found near the transition between two stable states – in our case
the two stable states are the HR and VR. They found that the period doubling was
due to the resonance between the periodicity of the external forcing and the tumbling
motion of the drop. We also find a resonance phenomenon related to the swinging of
RBCs and the imposed flow frequency which determines whether the cell will reverse
horizontally or vertically in a stable or chaotic manner.

Evidence of the chaotic motion for RBC dynamics has only emerged recently. Ours
is the only full 3D simulation that demonstrates the chaotic dynamics in oscillating
flow. As such, it is yet to be seen how this unique dynamics could be used in
applications. One potential application could be the use of oscillating shear flow for
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measuring RBC physical properties, such as membrane elastic moduli, haemoglobin
viscosity and the stress-free state. By introducing the additional parameter, namely
the flow frequency, more accurate measurements could be obtained in oscillating
shear flow than in steady shear flow. It is also possible that the results presented here
could be useful in designing oscillating shear flow experiments in specific frequency
regimes where the RBC dynamics can be controlled, and chaotic motion can be
avoided. Although the chaotic dynamics is observed here under non-physiological
conditions (e.g. single isolated cell and reduced viscosity ratio), such dynamics could
be triggered in physiological flows due to the influence of the neighbouring cells.
The collective motion of all cells then determines the flow fluctuations of the whole
blood observed in microcirculation, which has significant impacts on platelet and
leukocyte margination and adhesion, and solute dispersion. These topics are beyond
the scope of the current paper. The current paper should be viewed as the first
detailed groundwork on this novel dynamics.
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