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We report on calculations and experiments with strong shocks diffracting over rigid
ramps in argon. The numerical results were obtained by integrating the conservation
equations that included the Navier–Stokes equations. The results predict that if the
ramp angle θ is less than the angle θe that corresponds to the detachment of a
shock, θ < θe, then the onset of Mach reflection (MR) will be delayed by the initial
appearance of a precursor regular reflection (PRR). The PRR is subsequently swept
away by an overtaking corner signal (cs) that forces the eruption of the MR which
then rapidly evolves into a self-similar state. An objective was to make an experimental
test of the predictions. These were confirmed by twice photographing the diffracting
shock as it travelled along the ramp. We could get a PRR with the first exposure
and an MR with the second. According to the von Neumann perfect gas theory,
a PRR does not exist when θ < θe. A viscous length scale xint is a measure of the
position on the ramp where the dynamic transition PRR → MR takes place. It is
significantly larger in the experiments than in the calculations. This is attributed to
the fact that fluctuations from turbulence and surface roughness were not modelled
in the calculations. It was found that xint → ∞ as θ → θe. Experiments were done to
find out how xint depended on the initial shock tube pressure p0. The dependence was
strong but could be greatly reduced by forming a Reynolds number based on xint.
Finally by definition, regular reflection (RR) never interacts with a boundary layer,
while PRR always interacts; so they are different phenomena.

1. Introduction
Von Neumann (1943) studied the theory of reflecting shock waves. He solved the

problems of regular reflection (RR) and strong Mach reflection (MR) completely for
the special case of a perfect gas equation of state. As is well known (Hornung, Oertel
& Sandeman 1979; Hornung 1986) three criteria have been proposed to determine the
transition RR 
 MR between the two reflecting systems. These are the detachment
(e), the sonic (s) and the mechanical equilibrium (N) criteria. They are illustrated
in the shock polar (δ, P ) plane in figure 1 (Courant & Friedrichs 1948), where in
shock-fixed coordinates δ is the streamline deflection angle across the shock, and ∆p
is the pressure jump across it. For a perfect gas the occurrence of any of them will

† Permanent address: 8 Damour Avenue, East Lindfield, Sydney NSW 2070, Australia.
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Figure 1. Shock polar diagrams for regular and Mach reflection in an ideal gas. (a) Mechanical
equilibrium point θN; (b) arbitrary point in the bi-stable domain θe < θ < θN; (c) detachment point
θe; (d) θ < θe, where only the MR solution exists.

depend on a particular set of values of the shock system parameters (γ,Mi, θ), where
γ, is the ratio of specific heats, Mi is the Mach number of the incident shock (i), and
θ is the ramp angle (figure 2). Numerical values of θe, θs, and θN , corresponding to
the system parameters of the present study are listed in table 1.

Experimenters have found the following three difficulties with the perfect gas theory.
The von Neumann paradox: For some parameter domains, there are no physically

meaningful solutions to the MR theory, especially when the incident shock is weak.
Yet experiments detect an irregular reflection that resembles an MR, for example
Smith (1945), Bleakney & Taub (1949), Kawamura & Saito (1956), Henderson &
Siegenthaler (1980), Lock & Dewey (1989), Sasoh, Takayama & Saito (1992), Sasoh
& Takayama (1994), to mention only some of many papers. Recently, Colella &
Henderson (1990) concluded that the irregular reflection was basically different from
an MR, and named it a von Neumann reflection (VNR) see also Sasoh et al. (1992)
and Henderson & Menikoff (1997, 1998).

The bi-stable domain: From the polar-plane analysis of shock reflection it is known
that there is a restricted domain of parameters where RR and MR are both possible.
For given (γ,Mi) the domain is defined by θe < θ < θN (figure 1a–c). Recent papers
provide evidence that within this domain, the RR and MR systems are a bi-stable
system. If this is correct then a fluctuation of suitable form and amplitude could
force say an RR to change to an MR or vice versa. The bi-stability and or possibly
related phenomena such as hysteresis have been studied by Chpoun et al. (1995),
Vuillon, Zeitoun & Ben-Dor (1995), Ivanov et al. (1995a, b, 1996, 1997a, b), Fomin
et al. (1996), Henderson, Crutchfield & Virgona (1997), Skews (1997), Henderson &
Menikoff (1998).

The persistence of regular reflection: Another difficulty is that RR often appears
in experiments when according to the perfect gas theory only MR should do so.
Many of the references cited in the von Neumann paradox paragraph show signs
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Figure 2. Shock diffractions predicted by Eular and Navier–Stokes calculations. (a) Euler, parallax
assumption true; (b) N-S, parallax assumption, false; (c) negative boundary layer (bl) slope angle
ν in PRR node fixed coordinates. χ, Mach node trajectory angle; T , Mach node trajectory; e, s,
detachment and sonic points on r′ reflected shock, cs, corner signal.

θe (deg.) θs (deg.) θN (deg.)

53.776 53.924 57.021

Table 1. Shock reflection transition criteria when γ = 5/3, Mi = 2.33: θe, detachment; θs, sonic;
θN , mechanical equilibrium.

of this phenomenon, but see also Henderson & Lozzi (1975), Henderson & Gray
(1981), Hornung & Taylor (1982), Hornung (1986) and the low-density experiments
of Walenta (1983, 1987). In the present paper the main concern will be this persistence.
The bi-stable phenomenon will also be discussed but only so far as it influences the
persistence of RR. The von Neumann paradox will not be considered.

In our earlier paper (Henderson et al. 1997, referred to as HCV97) we presented
experimental data on strong shocks diffracting over rigid ramps. The experiments were
done at the University of Sydney, and it is important to note that the scale of the
experiments was about 0.040 m. This was the approximate distance that the incident
shock i had travelled along the sloping surface of the ramp when its diffraction
was photographed. Subsequently, the experiments were simulated numerically at the
Lawrence Berkeley National Laboratory by integration of the conservation equations
which included the Navier–Stokes (N-S) equations. It was clear from the data that
a scale of 0.040 m was too small to make an adequate experimental test of the
phenomena predicted by the calculations. The present authors decided to repeat the
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Sydney experiments by using one of the larger shock tubes at the SWRC at Tohoku
University. The ramp length scale was increased to 0.170 m.

Two sets of experimental data will be presented here. The first repeats the Sydney
experiments on the larger scale, and it shows that 0.040 m was indeed too small. For
example if the diffraction was photographed at 0.040 m one could observe a persistent
regular reflection, but if it were photographed at 0.170 m one could observe a Mach
reflection. Apart from the scale, the SWRC experiments were done for the same
parameters as at Sydney. Specifically, rigid steel ramps were used with the same ramp
angles θ, in argon gas with the same initial shock tube pressure p0 = 14.1 kPa, at
approximately the same room temperature T0 = 293.15±2 K, and also with the same
incident shock Mach number Mi = 2.33± 0.007. In the second set of experiments the
Reynolds number per metre (Re) was varied. If p0 is the initial shock tube pressure
then because Re ∝ p0, we could vary Re by a factor of about 7.6 by varying p0 by
the same factor. The results will show quite impressively the important effect that Re
has on the phenomena.

The objectives of this paper are to make an experimental check on the predictions
obtained from the calculations, and to explore the effects of the Reynolds number on
the shock diffraction.

2. Formulation of the diffraction problem
2.1. Constituitive relations

Argon was chosen to simplify the physics. The dependence of the shear viscosity µ
(hereafter the ‘viscosity’) on the temperature T , µ = µ(T ) was obtained by fitting an
empirical relation to the viscosity tables in Hilsenrath et al. (1960), thus

µ =
2.01572× 10−6T 1.5

171.691 + T
kg m−1s−1. (2.1)

The tables were also used to obtain the specific heat at constant pressure Cp,
the Prandtl number Pr, and the second virial coefficient of the equation of state
(EOS). Since the virial term is small for the thermodynamic states of interest, it
was sufficiently accurate to use the perfect gas EOS. Since both Pr = 0.67, and
Cp = 0.5203 kJ kg−1 K−1, can be taken as constants with negligible error, the thermal
conductivity k = k(T ) was calculated from the definition of Pr,

k =
Cp

Pr
µ, (2.2)

so k ∝ µ. Therefore the flow dissipation can be characterized by a single parameter.
It was convenient to choose the Reynolds number.

2.2. The conservation equations

These were the equations for the conservation of mass and energy, together with
the Navier–Stokes (N-S) equations for two-dimensional, unsteady, compressible flow.
They were presented in conservation form in HCV97. Occasionally it was of interest to
compare the results obtained by replacing the N-S equations with the Euler equations,
so both formulations were used.

2.3. Ramp boundary conditions

The ramp surface was assumed to be isothermal and always at room temperature,
T0 = 293.15± 2 K. The error is negligible for this assumption (Mark 1958). Further-
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Figure 3. Illustration of how the trajectory angle χ depends on the x-coordinate, while the self-similar
trajectory angle ψ does not depend on x when x > xint. Note that x3 > x2 > x1 > 0, implies that
χ3 > χ2 > χ1 = 0, where x3 > x2 > xint, and x1 < xint.

more the gas was assumed to be at rest on the ramp surface. We take the origin O of
a rectangular coordinate system (x, y) to be at the ramp apex, x to be in the positive
direction along the surface, y to be perpendicular to the surface, and (u, v) to be the
corresponding components of the gas velocity (figure 3). The boundary conditions for
the N-S formulation were thus

T0 = 293.15 K, u = 0 = v. (2.3)

These isothermal-non-slip conditions forced a laminar, heat-conducting boundary layer
to be on the ramp surface. For the Euler formulation, the surface was adiabatic, with
v = 0, and u unconstrained. They are adiabatic-slip boundary conditions.

3. The phenomena predicted by the calculations
3.1. The Euler calculations

These were done by Professor P. Colella of The University of California, Berkeley; his
data were presented in HCV97. There was no boundary layer in this case. The von
Neumann theory predicts that if θ < θe, a Mach reflection will appear at the instant
the incident shock passes the apex. It also predicts that the MR will be self-similar,
that is, it will grow uniformly with time. The Euler data support these predictions. In
particular the trajectory of the shock triple point T (Mach node) was a straight line
that passed through, or very close to, the ramp apex O. Experimentalists often assume

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

31
65

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000003165


278 L. F. Henderson, K. Takayama, W. Y. Crutchfield, S. Itabashi

that the trajectory has this property; it is called the parallax assumption (HCV97). They
measure the angle χ, which the trajectory makes with the ramp surface (figure 2a).

3.2. The Navier–Stokes calculations for θ < θe

3.2.1. The precursor regular reflection

The N-S results are very different from those from the Euler equation. It is
predicted that initially there will be a precursor regular reflection (PRR), followed by
a compressive disturbance, called ‘the corner signal (cs)’. In time the cs overtakes the
PRR and forces the eruption of the MR from the ramp surface (figure 2c). The PRR
is therefore unstable, but because it exists for a time, we shall say instead that it is
meta-stable. The trajectory T of the Mach node (shock triple point) is initially tangent
to the ramp, but curves away from it and rapidly becomes a straight line. The growth
of the MR becomes self-similar once the trajectory is straight. The N-S results also
show that the MR is not self-similar but only asymptotically self-similar. Nevertheless,
the detailed data demonstrate that an MR quickly becomes indistinguishable from
a self-similar system. The development of self-similarity slows down as θ → θe from
below.

The perfect gas (von Neumann) theory has no solutions for PRR when θ < θe. The
PRR solution provided by the N-S calculations depends on the presence of the boundary
layer on the ramp. If the origin of a rectangular Cartesian system (X,Y ) is fixed with
respect to the PRR node with X parallel to, and Y perpendicular to the ramp, then
the boundary layer will have a negative displacement height in these coordinates
(Mirels 1956; Mirels & Hamman 1962; Hornung et al. 1979; Hornung 1986). It also
has a negative slope angle ν < 0, say, at the PRR node which effectively relaxes the
local boundary condition by this amount (figure 2b). The existence (and persistence)
of the PRR when θ < θe observed in experiments is caused by the boundary layer
producing this relaxation. But for the perfect gas theory there is no boundary layer
(ν = 0) and no explanation for the PRR.

3.2.2. The viscous length scale xint

If the straight part of the trajectory is projected onto the ramp surface it will
intersect it at the point x = xint say; xint will be defined to be the viscous length scale
introduced into the flow by the boundary layer. It is a measure of the distance along
the ramp where the dynamic transition PRR→MR takes place (figure 3a).

The N-S results show the importance of xint for photographing ramp diffraction.
If the photograph is taken when x < xint a PRR will be observed, but if taken when
x � xint, an MR will be observed. If it is taken when x ≈ xint the diffracting system
may not be optically resolvable.

3.2.3. Dynamic transition

In more detail, the N-S results predict that the corner signal (cs) has a sonic
surface at its rear. The cs interacts with the reflected shock r, and forces it to bend
smoothly into a steeper shock r′, say (figure 2c). The local wave angle of r′ is steeper
in places than the wave angles corresponding to both the shock sonic point s, and
the detachment point e. As the cs overtakes the PRR node it smoothly sweeps away
the r shock causing it to shrink and finally to disappear. The steeper r′ shock then
begins to overtake the node and first its sonic point s, and then its detachment point
e, successively overtake. The Mach reflection erupts at or very near where the e point
overtakes. The r′ shock behaves like a bow shock detaching from a ramp whose angle
θ is too steep to permit the shock to be attached to the apex. Thus the blockage
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Argon; Mi = 2.327± 0.007; p0 = 14.1 kPa; T0 = 293.15± 2 K

θ (deg.) 34.6 38.6 44.0 50.5 52.0

Table 2. Parameter data for the 0.170 m scale shock tube experiments

caused by the ramp to the flow forces the detachment of r′. Additional support for this
conclusion comes from the following fact. Because Mi = 2.33, the flow Mach number
Mp of the argon is subsonic Mp = 0.891 < 1 along the shock tube in laboratory-frame
coordinates. Therefore, the part of the r′ shock that lies upstream of the ramp can
never become attached to the apex; it must always propagate away from it.

Conclusion: The flow is determined by two disturbances: first by the blockage of
the ramp which is dominant for the asymptotic flow; secondly by the boundary layer
which initially suppresses the onset of Mach reflection over the length scale xint. The
criterion for the transition is at or close to the perfect gas (inviscid) detachment point
e, which suggests that the process is dominated by the blockage, while the boundary
layer dominates the distance (and time) delay of the transition.

3.3. The Navier–Stokes calculations for θ → θe, with θ < θe

Here θ → θe from below. The cs slows down relative to the PRR node and has the
same velocity as the node for θ a little less than θe; at say θ = θob. From our earlier
paper, a curve of best fit through the numerical data is

xint =
0.057243

(53.6− θ)2
, (3.1a)

so xint → ∞ as θ → θob = 53.6◦. At this condition the cs has the same velocity as the
PRR node and the boundary layer stabilizers the PRR for all time. Referring to table
1, the hierarchy is θob < θe < θs < θN, so θe = 53.776◦ is the closest of the perfect gas
criteria to the numerical limit θob.

Taking the square root of equation (3.1a), and then re-arranging, we get

θ
√
xint = −0.23926 + 53.6

√
xint. (3.1b)

This will be more convenient because the right-hand side is now linear in
√
xint.

4. The larger-scale experiments
4.1. The shock tube

The experiments were done in a 0.1778 m × 0.1016 m shock tube with a 3 m long
driver section, and a 15 m long driven section. It has a fast opening valve instead of a
diaphragm which reduces the variation in Mi to ±0.3% for 1.5 6Mi 6 5. The shock
speed was measured by seven Kistler pressure transducers (model 603B) spaced along
the driven section. This section was evacuated to 0.1 kPa, and filled with argon to
the required initial pressure p0. Equilibrium for p0 was established after about three
minutes, and measured by a Tokyo Aircraft Instrument workshop test gauge, model
30021. It has 1000 graduations from 0 to 1.05 kg m−2 ≡ 105 kPa.

As noted already, the parameters of the experiments were as closely as possible the
same as those used in Sydney, except that the scale was 0.170 m instead of 0.040 m.
The parameter data are given in table 2.
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l
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Figure 4. Design of the solid steel ramps. H, tapped holes for mounting in the shock tube.
See table 3 for dimensions.

θ (deg.) 34.6 38.6 44.0 50.5 52.0

b (mm) 96.33 106.6 117.88 131.34 134.08
l (mm) 170.01 170.36 169.77 170.16 170.17
Ra (µm) 0.165 0.093 0.120 0.492 0.168
Ramax (µm) 0.8 0.4 0.8 3.2 0.8
L (mm) 0.25 0.25 0.25 0.25 0.8

Table 3. Dimensions and surface roughnesses of the ramps shown in figure 4.

4.2. The ramp design

Five ramps were made of solid steel S45C; the design is shown in figure 4. The ramps
spanned the shock tube, and the gaps at both ends were no more than 10 µm. The
sloping surfaces of the ramps were specified to have a high quality commercial finish.
Their dimensions and surface roughnesses (Ra), and maximum asperities (Ramax) are
presented in table 3.

The surface roughness was measured over a distance L using a Kosaka Laboratory
Ltd gauge, model SE-3AK. The average roughness Ra was found from

Ra =
1

L

∫ L

0

|y| dx. (4.1)

When not in use the ramps were coated with grease to prevent corrosion. The grease
was wiped off, and the surface swabbed with acetone before installing any ramp in
the shock tube.

4.3. The optical system

This was a double exposure interferometer (Takayama 1983). The light source was
a Lumonics HLS3 pulsed ruby laser. Its duration was about 30 ns, and the time
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(a) (b)

(c)

Figure 5. Double exposure holographic interferograms of a diffracting shock propagating over a
52◦ ramp in argon gas, where Mi = 2.33, p0 = 14.1 kPa. (a) Pre-cursor RR in early time exposure;
MR in later time (∆t = 120 ms). (b) No diffraction in early time exposure, pre-cursor RR in later
time (∆t = 50 ms); (c) MR in both early, and later time exposures (∆t = 50 ms).

interval between double pulses could be varied between 1 and 400 µs. The system was
calibrated with a graticule and displayed negligible distortion. Consequently, there
were no significant system errors in measuring the (x, y) coordinates of the Mach
node trajectory.

4.4. The experimental method

The optical system was operated to record double exposures of the shock system
as it travelled along a ramp. The double images were recorded on a holographic
film. This technique enabled us to take, for example, an early time image to capture
the predicted PRR, followed microseconds later by a second image to capture the
predicted MR. The experiments were repeated 15 to 20 times, and at different time
intervals, until enough data had been gathered to determine the Mach node trajectory
accurately. A travelling microscope was used to scan the images, and to measure
the (x, y) coordinates of the Mach node; the errors caused by the finite size of the
node image were about ±0.15 mm. The self-similar trajectory angle ψ, and the viscous
length scale xint were obtained from the (x, y) data.

5. Comparison of the Navier–Stokes results with experiment
5.1. The existence of precursor regular reflection

There are two exposures on the holographic film presented in figure 5(a). The first
shows a PRR at x = 0.0198 m < xint = 0.0321 m, while the second 120 µs later shows
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θ (deg.) 34.6 38.6 44.0 50.5 52.0

ψnum (deg.) 7.471 5.710 3.793 1.638 1.358
ψexp (deg.) 7.530 5.455 3.980 1.740 1.211
xintnum(m) 0.000368 0.000320 0.000814 0.005560 0.02760
xintexp(m) 0.00282 0.00616 0.00560 0.0114 0.0321

Table 4. Comparison of the numerical with the experimental data for the self-similar trajectory
angle ψ, and the dissipative length scale xint.

an MR at x = 0.1618 m > xint. The N-S results correctly predict a PRR followed by
an erupting MR. For added clarity, the next holographic interferogram (figure 5b),
captures the PRR by itself. This was done by taking the early time exposure before
the incident shock had reached the ramp, and the later one such that, 0 < x < xint.
In figures 5(a) and 5(b), the reflected shock (that is the union of r and r′ shown in
figure 2c) of the PRR appears to be curved everywhere. The x-coordinate of each of
the PRR nodes was respectively 0.0198 m and 0.0181 m. By the N-S calculations the
corner signal cs is less than 20 µm downstream of each node for these values of x.
The numerical results also show that the reflected shock is only straight for the part,
r, of the reflected shock that lies between the node and the cs. Our optical system
cannot resolve 20 µm; for example the smallest length of a Mach shock that can be
resolved is about 300 µm, although at this level the resolution may not be convincing.
By contrast the N-S calculations can resolve about 2 µm, or two orders of magnitude
better than the optics. So it is reasonable that the reflected shock should appear to
be curved everywhere in figures 5(a) and 5(b). In figure 5(c), both of the exposures
were for x > xint, so the same MR appears at two different times, as also predicted
by the N-S results.

Conclusion: Experiment confirms the prediction of the N-S calculations that a
PRR exists by the action of the boundary layer, and that it exists only temporarily
(meta-stability) before it is destroyed by eruption of the Mach reflection.

5.2. The experimental data

The experimental and numerical data for the (x, y) coordinates of the Mach node
trajectory are presented in figure 6. The χ data for the 52◦ ramp are plotted in figure
7, and the (ψ, θ) data in figure 8. Evidently the numerical ψ data agree well with
experiment, but the numerical xint data show some discrepancy. A summary of the ψ,
xint data is presented in table 4.

5.3. The parallax assumption and the χ(x) data

This assumption was defined in HCV97.
Parallax assumption: When a plane shock diffracts over a rigid ramp with θ < θe, a

self-similar Mach reflection is immediately obtained and its node trajectory is a straight
line that passes through the ramp apex.

The calculated trajectories presented in HCV97 showed that the node was initially
tangent to the ramp, then curved away from it and rapidly became a straight line.
From this geometry it is apparent that the angle χ depends on where it is measured
along the ramp, that is χ = χ(x) (figure 3b). For example, χ = 0◦ when the PRR
exists, but it grows monotonically from zero after the MR erupts. So χ = χ(x) is
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Figure 6. Comparison of the Navier–Stokes numerical data with experiment for the ramps listed
in table 3. (a) θ = 52◦, (b) θ = 50.5◦, (c) θ = 44◦, (d) θ = 38.6◦, (e) θ = 34.6◦. Other parameters are,
argon gas, p0 = 14.1 kPa; T0 = 293.15 K; Mi = 2.33.

not scale free. Thus the parallax assumption is wrong if a boundary layer is present.
The appropriate trajectory angle to measure is the self-similar angle ψ, which is
independent of any length or time scale (figure 3a, b). Clearly, the angle of parallax
error for χ is

ε = ψ − χ. (5.1)

Notice that asymptotically ε→ 0 and χ→ ψ.
The numerical and experimental data plotted in figure 7 confirm these results. Since

χ = tan−1 y/x, and since also xint is larger for experiment (table 4 and figure 6), then
for a given x > xint the numerical y must be larger than the experimental y. Thus the
numerical χ will also be the larger.

Conclusion: The N-S calculations correctly predict that the parallax assumption is
wrong when a boundary layer is present.

Corollary: The trajectory angle χ of the Mach node depends on where it is measured
along the ramp χ = χ(x); it is not scale free and not a useful quantity to measure.
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Figure 7. The Mach node trajectory angle χ versus x measured for the evolution of an MR on a
52◦ ramp in argon gas with Mi = 2.33, and p0 = 14.1 kPa: •, experimental data; curve is the N-S
numerical data.
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Figure 8. Experimental and N-S data for the self-similar Mach node trajectory angle ψ versus the
ramp angle θ, in argon gas with Mi = 2.33; p0 = 14.1 kPa; T0 = 293.15 K. •, Experimental data; �,
N-S data; curve is from equation (6.1), for the experimental data. Experimental error for ψ, ±0.1◦;
error negligible for θ.

5.4. The self-similar trajectory angle ψ data

The calculations in HCV97 showed that the Mach node trajectory asymptotes to a
straight line, and that the approach to the asymptote slows down as θ → θe from
below. If the calculations are terminated too soon the straight line slope would not
be found with sufficient accuracy. Previously the termination was done subjectively,
but for the numerical results reported here an objective method is used. The local
slope for any x-coordinate can be estimated by differencing adjacent points on the
trajectory. Since the shocks are resolved over two or three cells, the position of
the node is always slightly ambiguous. Hence the data are noisy even though the
calculation is free of noise. Values of the trajectory slope for the θ = 52◦ ramp as
it approaches its asymptotic value ψ are shown in figure 9(a). The trajectory can be
regarded as a straight line with negligible error when x > 0.025 m. The method was
used to find the other numerical values of ψ versus θ presented in table 4 and figure
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Figure 9. Study of the N-S numerical and asymptotic convergence for θ = 52◦, Mi = 2.33,
p0 = 14.1 kPa, and T0 = 293.15 K in argon gas. (a) Approximate slope of Mach node trajectory as
a function of the distance x along the ramp, ∆x = 8.14× 10−7 m; (b) slope of the asymptoting line
as a function of ∆x. The line is a least-squares linear fit to the data; (c) xint as a function of ∆x, the
line is a least-squares linear fit to the data.

8; the experimental data for ψ are also presented and their error is about ±0.1◦.
The latter data are too noisy to support accurate slope differencing (figure 6). The
differences between the numerical and the experimental data do not exceed ±0.26◦,
and there is no systematic discrepancy between them. The good agreement supports
the conclusion that ψ is well enough determined to be independent of both x and the
ramp length. For p0 = 14.1 kPa the (x, y) data were measured over ramp lengths of
0.12 m to 0.16 m. The ramp width is 0.1016 m so the aspect ratio is in the range 0.63
to 0.83; thus three-dimensional effects could be significant. Each ramp forms a right-
angled corner where it meets a shock tube wall, and there are shock/boundary-layer
interactions in the corners. Now the calculations are two-dimensional, but because the
numerical and experimental values of ψ are in good agreement, the experiments must
also be nearly two-dimensional. Hence the ramp width 0.1016 m is not a significant
length scale for the ψ measurements, which means that three-dimensional effects are
not significant either.

Conclusions: Slope differencing supports the conclusion that ψ can be accurately
found when x > 0.025 m, even for our least favourable case θ = 52◦. This is much
less than the ramp lengths 0.17 m.

The two-dimensional calculations are in good agreement with experiment, which
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implies that neither the ramp length nor its width are significant length scales in the
measurements of ψ.

5.5. The viscous length scale xint data

It is clear from the curve of best fit through the N-S data (3.1), that the xint → ∞
singularity is at θ = θob = 53.6◦ ≈ θe. In our study it will be convenient to take the
singularity to be at θe; it is certainly close to it. The linear form (3.1b) is compared
with the experimental data in figure 10. The same discrepancy evident in table 4 and
figure 6 is also evident there.

Using the same mathematical form, we found that a curve of best fit through the
experimental data was

xint =
1

(θN − θ)2
(5.2a)

or

θ
√
xint = −1 + θN

√
xint,

where in the present case θN = 57.021◦ by table 1 and xint is in m; therefore

θ
√
xint = −1 + 57.021

√
xint. (5.2b)

Equation (5.2b) is plotted in figure 10 and it is a good fit to the experimental data.
We now have the remarkable result that the N-S data places the xint → ∞ singularity
at θe, but the experimental data places it at θN . There are two possible sources of the
discrepancy, namely that our numerical method is deficient and or that our model of
the physics is deficient.

5.6. Refinements to the numerical method

Assuming that the calculations in HCV97 were not sufficiently accurate, we sought to
improve our methodology. Two methods were used. These were to monitor the slope
changes of the trajectory by differencing, and to extrapolate the finite difference step
∆x to zero. The slope difference refinement was discussed in § 5.4; here we discuss the
effect of the cell size refinement on ψ and xint.

In HCV97 we showed that the trajectory changed if the resolution changed. Here
we use an extrapolation technique to estimate the result if the calculations were fully
resolved, that is if ∆x → 0. When the solution is smooth, there is a global error
proportional to (∆x)2, but when it is discontinuous (as with shocks), it is proportional
to ∆x. In HCV97, the empirical evidence indicated that the calculations were first-
order convergent. Presumably, if they were done with ∆x small enough to fully
resolve the shocks and boundary layer, the convergence would be of second order.
The thickness of the incident shocks in argon was about four mean free paths (m.f.p.).
With the initial pressure p0 = 14.1 kPa and with room temperature T0 = 293.15 K,
m.f .p. = 0.6 µm, so the shock thickness was about 2.4 µm. Since our finest resolution
was 0.407 µm, the incident shock was close to being fully resolved on the finest grids.
The boundary layer begins under the incident shock. If it can be assumed that its
thickness is locally comparable to that of the shock, then it will also be close to full
resolution at 2.4 µm. On this basis, the error in the calculations should be of first
order down to about 2.4 µm, and in particular this should be true for the slopes ψ
and the intercepts xint. Therefore, it is expected that if several calculations differing
only in resolution are compared, there will be a linear relation with ∆x for ψ and
xint. Actually this was demonstrated down to our smallest cell size of 0.407 µm for
θ = 50.5◦ in HCV97. Figure 9(b) shows some asymptotic values of ψ for different
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resolutions ∆x when θ = 52◦. Also shown is the least-squares fit,

ψ → 0.0237− 4484∆x.

This straight line is an excellent fit to the data, as it should be if the numerical
method is first-order convergent. If the convergence remains of first order down
to ∆x = 0, then the fully resolved value of ψ = tan−1 0.237 = 1.358◦. Even if the
convergence becomes of second order below 2.4 µm, ψ should remain close to the first-
order value. The angle is also quite close to the value given by the Euler calculation
where χ = ψ = 1.45◦. In figure 9(c), the same type of calculation finds xint. The
straight line of best fit is

xint → 0.0276− 15293∆x,

so that xint = 0.0276 m, for the fully resolved calculation, while for experiment
xint = 0.0321 m (table 4). All the numerical data presented in table 4 have been
refined in this way.

Conclusion: The discrepancy for xint cannot be explained by insufficient resolution
in the calculations.

5.7. Deficiencies in the physical model

Dimensionality: Figure 3 shows how xint is obtained from ψ. Since the measurements
of ψ are not significantly affected by the ramp dimensions (§ 5.4), this suggests that
xint is not affected either. We shall assume that this is correct. However, if the ramp
width were modelled, it cannot be entirely ruled out that the numerical trajectories
in figure 6 could be shifted somewhat to the right by three-dimensional effects.

Turbulence: The N-S equations can only model a laminar boundary layer. There
are two sources of turbulence in the experiments. First, the incident shock produces
a turbulent boundary layer as it travels along the driven section of the shock tube.
Acoustic fluctuations radiate from it to every part of the flow downstream of the
shock. Secondly the Reynolds number per metre just outside the boundary layer
on the ramp is Re ≈ 107 m−1, when p0 = 14.1 kPa. Therefore at 1 cm behind the
PRR node Re ≈ 105, which implies that the boundary layer is turbulent. Turbulence
increases the heat transfer coefficient (h) and this can be estimated empirically (Wong
1977, p. 73). Making h non-dimensional with the Nusselt number (hx/k), the ratio of
the turbulent to laminar values of h is about 0.056Re0.3, or 1.8 when Re ≈ 105. So it
is plausible that turbulence contributes to the xint discrepancy.

Ramp surface roughness: The average roughness varies within 0.093 6 Ra 6
0.492 µm, and the asperities within 0.4 6 Ramax 6 3.2 µm (table 3). The smallest
cell size used in the calculations was 0.407 µm, which is about the same as Ra but
rather less than Ramax. If the initial boundary layer thickness is about the same as the
incident shock (2.4 µm), then Ra could be a significant length scale because it is of the
same order. Roughness experiments have been done by Takayama & Ben-Dor (1981),
and by Ben-Dor et al. (1987). Their smoothest surface had Ra = 51.7 µm which is two
orders of magnitude larger than our Ra. The model size was the same as the Sydney
experiments, 0.04 m. The gas was nitrogen and the values of p0 were generally less
than ours, although there was some overlap. Specifically, 0.00395 6 p0/pa 6 0.0658,
where pa is the pressure of the standard atmosphere. They measured χ and not ψ.
If p0 and Mi were held constant, while the roughness was varied, the results showed
that increasing roughness reduced the θ = θob where RR → MR was observed. This
implies that xint is increased by roughness and that Ra is a significant length scale.
Thus roughness can in part account for the xint discrepancy, but we did not model it.
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Figure 10. Comparison of the empirical formula for xint versus θ with experiment. �,
experimental data; full line from equation (5.2b), dashed line from equation (3.1b).
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Figure 11. Experimental data for the effect of the initial pressure p0 of the shock tube on the
dissipative length scale xint. (a) Dimensional data xint (mm) versus p0 (kPa). (b) Non-dimensional
data Reint versus p0/pa. —–, power law curve of best fit, equation (5.3); – – –, 〈Reint〉 = 3.28× 10−5.

Hypothesis: The discrepancy between the calculated and experimental values of
xint is caused by the fluctuations from the flow turbulence and the surface roughness,
neither of which were modelled in the calculations.

If the hypothesis is correct, xint should depend on the Reynolds number per metre.
Suppose that the system parameters (θ,Mi, T0) are held constant, then the ratios
T/T0, p/p0, ρ/ρ0, µ/µ0, are also constants; therefore for a perfect gas, Re ∝ ρ0 ∝ p0.

5.8. The variable pressure p0 experiments

A series of experiments was done with the θ = 52◦ ramp with Mi = 2.33± 0.07, and
T0 = 293.15 ± 2 K held constant while p0 was varied. The idea was to vary p0 by a
factor of 10, but engineering limitations of our shock tube limited it to about 7.6;
specifically 3.7 6 p0 6 28.2 kPa. The xint and ψ versus p0 data are presented in table
5. The (p0, xint) data are plotted in figure 11(a), and the (x, y) trajectory data for each
p0 are plotted in figure 12. A power law curve of best fit through the xint data is

xintp
9/8
0 = 650.185, (5.3)
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Figure 12. Experimental data on the effect of the initial pressure p0 on the Mach node trajectory
on the 52◦ ramp in argon gas with Mi = 2.33 and T0 = 293.15 K; �, p0 = 3.7 kPa experiments; 5,
p0 = 7.05 kPa; �, p0 = 9.50 kPa; ◦, p0 = 14.1 kPa; •, N-S numerical data for p0 = 14.1 kPa; 4,
p0 = 22 kPa; �, p0 = 28.2 kPa. Full lines are linear curves of best fit.

p0 (kPa) 3.7 6.00 7.05 9.5 14.1 22.0 28.2

p0/pa 0.0365 0.0592 0.0696 0.0938 0.139 0.217 0.278
xint (mm) 143 88.1 74.6 59.7 32.5 30.4 11.0
Reint × 10−5 3.60 3.59 3.58 3.58 3.11 4.54 2.11
ψ (deg.) 2.4 1.33 1.27 1.34 1.20 1.13 1.11

Table 5. Experimental data for the viscous length scale xint and the self-similar trajectory angle ψ
versus the initial shock tube pressure p0.

where xint is in mm and p0 is in kPa. In SI units the constant is 1541.83. Note that xint
increases rapidly as p0 decreases. Holograms for p0 = 3.7 kPa are presented in figure
13. The increase of xint for a smaller p0 is clear if figure 13(a) is compared with figure
5(a) where p0 = 14.1 kPa. Under the constraints on the experiments the kinematic
viscosity should be inversely proportional to p0, which suggests that xintp0 = constant.
But this not quite the same as for the experiment where the p0 exponent is 9/8.
However it does show that the rapid variation of xint with p0 can be greatly reduced
by forming the Reynolds number

Reint ≡ ρVxint

µ
(5.4)

where V is the resultant flow velocity of a point just outside the boundary layer. If
p0 is also made non-dimensional then (5.3) becomes

Reint(p0/pa)
1/8 = 2.479× 105. (5.5)

Hence Reint varies only slowly with p0/pa when θ = 52◦. The non-dimensional curve
of best fit is compared with experiment in figure 11(b). Note from figure 11(a, b) that
the scatter in the data is enhanced by reducing the variation with p0. This suggests that
other, smaller effects are being revealed. They may be those discussed in § 5.7, but we
do not have enough information to draw any conclusions. The self-similar trajectory
angle ψ increases when p0 decreases but the effect is small (table 5 and figure 12).
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(a)

(b)

Figure 13. Double exposure holographic interferograms of a diffracting shock propagating over a
52◦ ramp in argon gas, where Mi = 2.33, p0 = 3.7 kPa. (a) PRR for both exposures; (b) PRR for
the earlier exposure, and an MR for the later exposure.

This result is not surprising because ψ is an asymptotic quantity, so the boundary
layer effect should be negligible. The larger change in ψ near the smallest p0 = 3.7 kPa
occurs because xint = 0.143 m whereas the ramp length is 0.17 m and there is only
0.027 m available for measuring the trajectory. Thus the data are more scattered for
this small length (figure 12) and the measurements of ψ and xint are less accurate.
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Figure 14. Model designs for generating self-similar and steady-state shock wave interactions: (a)
supersonic wind tunnel model, steady state no bl; (b) supersonic wind tunnel model, steady state,
short bl; (c) self-similar cavity design, no bl; (d) self-similar, bifurcated (crossed) shock tube design,
no bl: bl, boundary layer; ss, plane of symmetry.

Conclusion: It is concluded that xint varies rapidly with p0 but only slowly with
Reint, while ψ varies only slightly with p0.

6. The regular⇐⇒Mach reflection transition criterion
6.1. Steady-state transition with no boundary layer

It is well known that two identical wedges can be arranged in a wind tunnel (or
shock tunnel) so that their incident shocks meet on the plane of symmetry (figure
14a). The RR⇔MR transition occurs without a boundary layer. It is convenient to
discuss the reflections in terms of the angle α which the incident shocks make with
respect to the on-coming flow. The angles αe > αN correspond to the detachment and
mechanical equilibrium criteria respectively. In earlier experiments αN was found to
be the criterion for the RR⇔MR transition (Henderson & Lozzi 1975; Hornung &
Kychakoff 1997; Hornung et al. 1979; Hornung & Robinson 1982).

Hysteresis: Hornung et al. (1979) predicted that the criterion for forward transition
RR→MR, would be αFtr = αe, but that for backward transition MR→ RR, it would
be αBtr = αN . However Hornung & Robinson found that αFtr = αBtr = αN , that is, no
hysteresis. Recently experiments by Chpoun et al. (1995) have found hysteresis, but
unlike Hornung & Robinson they used an open jet tunnel, and their results were
influenced by three-dimensional effects (Skews 1997; Ivanov et al. 1997b).

Ivanov et al. have made an extensive study of hysteresis. The results from their
numerical simulations using Euler codes were that forward transition was close to
αe while the backward one was close to αN . This was as predicted by Hornung et
al. The experiments by Ivanov et al. in two different types of wind tunnels produced
a more limited effect. In the tunnel with the larger acoustic fluctuations and with
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Mach numbers (M) of 4 and 5, transition was within 1◦ of αN when the aspect
ratio (g/w ≡ width/length) of the wedges was g/w > 1, but it differed from αe by
about 4.5◦. The hysteresis effect as measured by αFtr − αBtr varied by only 0.03◦ to
0.29◦. But hysteresis was actually more pronounced than indicated by these small
differences. For example, for RR→MR the MR appeared suddenly for a change in
α of only 0.1◦ and the Mach shock length became 5% to 6% of the wedge length.
The MR → RR transition was smoother. (Hornung et al. noticed the same effect.)
Hysteresis was certainly found in the tunnel with the smaller acoustic fluctuations,
and with M = 6. The difference αFtr − αBtr varied between 2◦ and 3◦, compared to the
numerical prediction of αFtr − αBtr ≡ αe − αN = 10.51◦. Their experiments and Euler
results support the conclusion that that both RR and MR are stable in the dual
domain. Specifically their hypothesis was that in the dual domain, (RR) is stable
with respect to small perturbations but unstable to large perturbations. Moreover, the
threshold amplitude decreases as α increases. There are no free-stream perturbations
in numerical simulations, which presumably allows regular reflection to exist up to αe.

Henderson & Lozzi (1975) reflected a shock off a flat plate near its leading edge
(figure 14b). The reflection occurred in the presence of a short boundary layer, and
transition was close to αN .

6.2. Self-similar transition with no boundary layer

Reflecting a plane shock from inside a symmetrical cavity (figure 14c) can produce
self-similar reflections. The experimental results show that there is an MR in the dual
domain and that αN is the transition criterion (Henderson & Lozzi 1975; Virgona
1993). For the cavity design, there are acoustic fluctuations from the boundary layer
on the walls of the driven section of the shock tube and the reflections propagate into
this disturbed flow. Consequently there are perturbations upstream and downstream
of the reflections. No RR or hysteresis has yet been reported in its dual domain.
The design has a very limited domain of parameters. Skews has shown that it is
practical to use a crossed shock tube design (figure 14d), and it should be more
flexible (Barbosa, Skews & Felthun 1997). At the time of writing, no transition data
are available from it.

In HCV97, we simulated self-similar reflection at a plane of symmetry with the
N-S equations. In order to remove the boundary layer, we used the adiabatic-slip
boundary conditions. The ramp surface could thus be considered to be equivalent to
a plane of symmetry. Since there was no PRR the results for ψ versus θ were close
to those of the Euler calculations for θ < θe. The computer cost was much less for
these calculations and we were able to explore the θe point. We found that the curve
had a discontinuity at θe. Specifically, there was an MR at (θe − 0.1)◦, and an RR
at (θe + 0.1)◦. Thus the N-S calculations show that the MR → RR transition occurs
at θe with these boundary conditions. (Note that for RR, θe and αe are related by
αe = (90 − θe)◦.) This result is contrary to the Euler calculations of Colella, and to
the results of the cavity experiments, both of which place the transition at θN . This
inconsistency was addressed in HCV97. Initially we set µ = 0 = k, thereby reducing
the N-S equations to Euler equations: an MR appeared, and after its Mach shock
had grown to about 5 µm, µ and k were set to their correct values. The MR continued
to grow. It was concluded that the MR was stable in the dual domain, but that it
did not appear spontaneously because the fluctuations were not modelled. The Euler
calculations of Ivanov et al. also placed the transition at αN which is consistent with
the results of Colella and experiment.

Conclusion: If in the dual domain self-similar reflection occurs without a boundary
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layer, then cavity experiments and Euler calculations show that MR is stable, but
N-S calculations show that RR is stable when there are no fluctuations. Thus for the
stated conditions both RR and MR may be stable in the dual domain.

6.3. Regular and persistent regular reflection

We distinguish between regular and persistent regular reflection. The difference is that
RR appears without a boundary layer, while PRR appears with a boundary layer.

Conclusion: Regular reflection occurs when a shock reflects off a plane of symmetry
with α 6 αN . It does not interact with any boundary layer and it is well described by
the von Neumann theory.

PRR does interact with a boundary layer. It is clear that because the von Neumann
theory ignores the boundary layer it cannot predict PRR. Thus RR and PRR are
different phenomena. It is plausible that they would become identical if Re → ∞. A
PRR is meta-stable over the length xint for all θ 6 θe, but it is stable for θe 6 θ 6 θN
and for θ > θN (§ 6.4). There is no PRR theory analogous to the von Neumann theory.

Conclusion: Persistent regular reflection occurs when a shock diffracts over ramp
with θ < 90◦; it is meta-stable for θ < θe and stable for θ > θe.

6.4. Self-similar transition with a boundary layer

The quadratic curve of best fit plotted through the (ψ, θ) data in figure 8 is

ψ = 27.1845− 0.718948θ + 0.00424671θ2 (6.1)

where θ and ψ are in degrees, and θ < θe. Many experimenters have found that
there is an ‘RR’ (or a PRR by our definition) when θ > θe (Bleakney & Taub 1949;
Kawamura & Saito 1956; Henderson & Lozzi 1975; Ben-Dor & Glass 1979, 1980).
Henderson & Lozzi conjectured that the PRR in the dual domain was actually an
unresolved double Mach reflection. But our results show that it is a PRR, so their
conjecture is wrong. The discontinuity in the (ψ, θ) curve at θe is caused by the corner
signal destroying the PRR and forcing the eruption of the MR (ψ > 0) when θ < θe,
but being unable to do so (ψ = 0) when θ > θe.

Suppose we ignore the discontinuity and extrapolate (6.1) into the dual domain
until ψ = 0; the extrapolation is shown as a dashed line in figure 8. Solving (6.1)
with ψ = 0 gives θ = 57.006◦, and 112.29◦. The first root differs from θN = 57.021◦
by only 0.012◦. The experimental data for θ < θe behave as though the discontinuity
does not exist. This is plausible because ψ is an asymptotic quantity so the ramp
blockage should be the dominant disturbance and not the boundary layer. Even so,
only PRR has ever been observed during ramp experiments in the dual domain,
so the discontinuity at θe must appear in the ψ experimental data as θ → θe. It
is difficult to measure the position of the discontinuity precisely. For by estimating
with (3.1a), xint increases to our ramp length (0.17 m) if θ increases from 52◦ to
53◦, while MR is unattainable for a 53.6◦ ramp because xint = ∞. Since the cavity
experiments show that MR is stable in the dual domain, it is concluded that MR is
suppressed on the ramp by the boundary layer. If MR could be induced by designing
vigorous fluctuations into the experiments, and by modelling the fluctuations in the
N-S calculations, then presumably the ψ data would lie on the dashed curve in figure
8. The self-similar MR→ PRR transition should then occur at θN as it does in both
the cavity experiments and Euler calculations. Furthermore the xint = ∞ singularity
should shift to θN; otherwise (5.2) is only valid for θ < θe.

The curve of best fit throught the N-S data (3.1b) does not agree with experiment
when θ < θe (table 4, figures 6, 10). This is attributed to our failure to model surface
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roughness and turbulence (§ 5.7). The N-S equations constrain the boundary layer to
be laminar, but because Re is so large, it is likely that it will be turbulent for most
of its length. If modelling these items could successfully remove the xint discrepancy
(figure 6, table 4), then the curve of best fit throught the numerical data would agree
with equation (5.2).

7. Conclusions

Shock diffraction over a ramp consists of two disturbances in the flow, namely the
ramp blockage and the boundary layer on its surface.

θ < θe: Experiment confirms the prediction of our Navier–Stokes calculations that
a precursor regular reflection appears initially on the ramp and is destroyed by an
overtaking corner signal forcing the eruption of a Mach reflection. Since the PRR
exists for only a limited time, it is meta-stable. A measure of where the dynamic
(unsteady) PRR→MR transition takes place is the viscous length scale xint, defined
in the text § 3.2.2, and figure 3. The length xint depends on the system parameters
(T0, P0, θ,Mi) and possibly also on the surface roughness Ra and the turbulence. It
increases rapidly as θ → θe from below and or as p0 decreases. The criterion for the
dynamic PRR→MR transition is close to the e-point on the r′ part of the reflected
shock (figure 2b). The results show that MR is not self-similar but only asymptotically
self-similar. Nevertheless with p0 = 14.1 kPa, MR becomes indistinguishable from a
self-similar system over a length scale of about 0.03 m, which is much smaller than
the ramp length (0.17 m).

θ = θe: By the N-S calculations the velocity of the corner signal becomes zero
relative to the PRR node as θ → θe from below; so xint → ∞, as θ → θe, and the
PRR becomes stable.

θe 6 θ 6 θN: Only PRR has been observed during ramp experiments in the dual
domain. Consequently there is a discontinuity at θe in the ψ versus θ curve because
there is PRR (ψ = 0) when θ > θe, and MR (ψ > 0) when θ < θe (figure 8). Therefore
the MR → RR transition is discontinuous at or near θe. Mach reflection has not
yet been observed on a ramp in the dual domain, although it certainly has been
for steady-state and self-similar reflections off planes of symmetry (§ § 6.1, 6.2). It is
conjectured that if MR could be induced on a ramp by designing an experiment to
have sufficiently large fluctuations, then presumably both the MR → RR transition
and the xint →∞ singularity would be shifted to θN .

By definition, RR has no boundary layer interaction. Examples are shock reflection
off a plane of symmetry in steady-state or self-similar experiments, or in Euler
calculations; RR is well described by the von Neumann theory. By contrast, PRR
only appears with boundary layer interaction, as on a ramp surface. It is approximately
described by the von Neumann theory for θ > θe, but not at all described for θ < θe.
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