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Abstract We define fractal interpolation on unbounded domains for a certain class of topological spaces
and construct local fractal functions. In addition, we derive some properties of these local fractal functions,
consider their tensor products, and give conditions for local fractal functions on unbounded domains to
be elements of Bochner–Lebesgue spaces.
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1. Introduction

The concept of fractal interpolation was first introduced in [4], and was subsequently
extended and investigated by numerous authors. (For an albeit incomplete list, refer to
the references provided in [14,17].) The more geometrically inspired definition given in
[4] was later replaced by a more analytic approach based on Read–Bajraktarević (RB)
operators; see, for instance, [10,13,14,17]. In this paper, we follow this latter approach.

Fractal interpolation is usually defined on compact Hausdorff spaces X which translate
to compact and thus bounded subsets when X ⊂ R

d is chosen. There are, however, situa-
tions where an unbounded domain may be warranted; one such scenario for d := 1 involves
sampling on the positive half line R

+ to describe the long-term asymptotic behaviour of
a system.

One can obtain fractal interpolation on unbounded domains D of R in two ways.
Firstly, one constructs a fractal interpolant f on a compact subset, say the unit interval
I, and then defines the pullback f ◦ j of f , where j is a homeomorphism mapping D
onto I. Or, secondly, one defines a (global) iterated function system (IFS) on unbounded
domains of R, which amounts to writing the domain for the fractal interpolant as the
union of bounded domains plus one unbounded domain. Both methods require that the
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unbounded domain is partitioned into one unbounded component and a finite number of
bounded components.

In order to have more flexibility in the construction, the recently rediscovered concept
of a local IFS (see [5] for the original definition and, for instance, [7,15,16] for extensions
and new results) can be used for fractal interpolation on unbounded domains. The more
general structure of a local IFS allows the definition of mappings from proper subsets
into a given compact subspace. The main focus of this paper lies in a construction of
so-called local fractal functions on unbounded domains that is based on the structure of
local IFSs.

The outline of this paper is as follows. After some preliminary comments in § 1 about
univariate fractal interpolation on unbounded domains in R, we briefly introduce in § 2
the concepts of the local IFS and local attractor. The next section provides the general
set-up for the construction of local fractal functions on unbounded domains in a certain
type of topological space X. Section 5 then deals with the construction itself using an
RB operator acting on the Banach space of bounded functions over X. We also present
a result that shows how Lagrange-type basis elements for these local fractal functions
can be constructed. The tensor product of local fractal functions defined on unbounded
domains is defined in § 6, and in § 7 we derive conditions for local fractal functions on
unbounded domains to be elements of Bochner–Lebesgue spaces. Finally, we show in § 8
that the graph of a local fractal function on an unbounded domain is a local attractor of
an associated local IFS.

Throughout, we use the following notation. The set of positive integers is denoted by
N := {1, 2, 3, . . .}. For an n ∈ N, we denote the initial segment {1, . . . , n} of N by Nn.
We write the closure of a set S as cl S and its interior as intS. As usual, we define
x+ := max{0, x}, x ∈ R.

2. Preliminary remarks

Let us consider some of the different ways to extend fractal interpolation from a compact
domain in R to an unbounded domain, say R

+
0 := [0,∞). To this end, let f be a continuous

fractal function supported on I := [0, 1] generated by the iterates of the RB operator
Φ : C0(I) → C0(I),

Φh = g +
n∑

i=1

si h ◦ u−1
i χui(I), (2.1)

where g ∈ C0(I) := {v ∈ C(I) : v(0) = 0 = v(1)} and ui : I → ui(I) =: Ii are homeomor-
phisms with I =

⋃
i∈Nn

Ii and int Ii ∩ int Ij = ∅, i 	= j. The si are real numbers with
modulus less than one. This class of RB operators is, for instance, investigated in [14].

2.1. Construction via pullbacks

Denote by R
+

0 := R
+
0 ∪ {∞} the extended real half-line, i.e., the Alexandroff compacti-

fication of R
+
0 . Any subset of R

+

0 which contains ∞ is called unbounded. Suppose that we
are given an arbitrary but fixed homeomorphism j : R

+

0 → I. We define the pullback of
f by j, f∗ := f ◦ j, which is a continuous function from the unbounded domain R

+

0 → R.
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Furthermore, since f is the fixed point of (2.1) and j a homeomorphism, one obtains the
following self-referential equation for f∗:

(f ◦ j)(x) = (g ◦ j)(x) +
n∑

i=1

si (f ◦ j)((ui ◦ j)−1(x))χ
(ui◦j)(R

+
0 )

(x).

If we denote the pullbacks of g and ui by j as g∗ and u∗
i , respectively, the above equation

can be rewritten as

f∗ = g∗ +
n∑

i=1

si f∗ ◦ (u∗
i )

−1 χ
u∗

i (R
+
0 )

. (2.2)

In other words, the pullback f∗ satisfies the same type of self-referential equation as
f . Note that (R

+

0 , d) is a complete metric space, where the metric d is defined by d :=
dI(b(x), b(y) with dI being any metric on I and b : R

+

0 → I any bijection.
The unbounded domain R

+

0 is partitioned into n subdomains Ri such that j(Ri) = Ii,
i ∈ Nn. However, there is only one subdomain Rk, k ∈ Nn, which contains ∞ and is
therefore unbounded; the remaining n − 1 subdomains are bounded.

Define g(∞) := limx→∞ g(x), provided this limit exists. Notice that since j(0), j(∞)
∈ ∂I and f ∈ C0(I), we have that f(∞) = 0.

Example 2.1. In Figure 1 below, we depict on the left-hand side a fractal function
generated by the above RB operator with g(x) := (1

2 − |x − 1
2 |)+, u1(x) := x

2 , u2(x) :=
x+1
2 , and s1 := 4

5 and s2 := − 3
5 . Choosing j(x) := (x + 1)−1, we display the pullback f∗

of f by j on the right-hand side of Figure 1.
Note the slow convergence of the pullback f∗ towards the asymptote y = 0, which

reflects the slow convergence of j towards zero as x → ∞.

The aforementioned example and an examination of (2.2) show that the asymp-
totic behaviour of the pullback f∗ is completely determined by the asymptotics of the
homeomorphism j.
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Figure 1. A fractal function supported on [0, 1] (left) and its pullback supported on R
+
0 (right).
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2.2. Construction via global IFSs

Recall that an IFS on a complete metric space (X, d) is a pair (X,F), where F is
collection of continuous functions {fi : X → X}i∈Nn

. In the case where F consists entirely
of contractions, the IFS (X,F) is called hyperbolic or contractive.

It is known that contractive IFSs have a unique attractor A ∈ H(X), the hyperspace
of non-empty compact subsets of X. This unique attractor is obtained as the fixed point
of the set-valued mapping F : H(X) → H(X) defined by

F(S) :=
⋃

i∈Nn

fi(S).

By a slight abuse of notation, we write F for the IFS (X,F), its collection of functions
{fi : X → X}i∈Nn

, and the above set-valued operator.
For more details about IFSs and proofs, we refer the interested reader to the original

papers [3,11] or the monographs [2,17].
Let us again consider a special case, namely, X := R

+
0 . To be even more specific, we

only consider the following exemplary set-up, which nevertheless, reflects the general
setting.

To this end, let u1 : R
+
0 → I, x �→ (2/π) tan−1 x, and u2 : R

+
0 → R

+
0 \ [0, 1), x �→ x + 1.

Then R
+
0 = u1(R+

0 ) ∪ u2(R+
0 ) and the RB operator (2.1) now reads

Φh = g + s1 h ◦ u−1
1 χu1(R

+
0 ) + s2 h ◦ u−1

2 χu2(R
+
0 )

= g + s1 h ◦ tan
(π

2
·
)

χI + s2 h( · + 1)χ[1,∞),

where g ∈ C1(R+
0 ) := {v ∈ C(R+

0 ) : v(0) = 0 = limx→∞ v(x)}. In the case where |s1|,
|s2| < 1, the fixed point of Φ is an element of C1(R+

0 ), i.e., a continuous fractal func-
tion defined on the unbounded domain R

+
0 . Note that as in the case of the construction

by pullback, there is only one unbounded component, namely, u2(R+
0 ). (If there were n

maps ui, then these maps would define n − 1 bounded and one unbounded component.)
The graph of such a continuous fractal function is displayed in Figure 2. The function g
has been chosen as

g(x) :=

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣x − 1

2

∣∣∣∣ − 1
2
, x ∈ [0, 2];

2
x

, x ≥ 2,

and s1 := 3
4 and s2 := 7

10 .
Notice that the rate of decay of f for large values of x is determined by that of g. For

this example, we have f ∈ O(x−1) as x → ∞.
Both procedures to extend fractal interpolation to unbounded domains result in having

the unbounded domain partitioned into one unbounded component and n − 1 bounded
components (in the case of n maps ui and R

+
0 ). If, for instance, R is used, there will be two

unbounded components and n − 2 bounded components. In the latter case, one may map
one unbounded component to the other, adding a little flexibility to the construction.

In the next section, we introduce the concept of a local IFS and then use it in § 4 to
construct fractal functions on unbounded domains. As we will see, the locality of the IFS
adds considerable flexibility to fractal interpolation on unbounded domains.
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Figure 2. A continuous fractal function supported on R
+
0 .

3. Local iterated function systems

The concept of local IFSs is a generalization of an IFSs and was first introduced in [5]
and reconsidered in [7]. Their properties have also been investigated in [15,16].

Definition 3.1. Suppose that {Xk : k ∈ Nm} is a family of non-empty subsets of a
Hausdorff space X. Further assume that for each Xk there exists a continuous mapping
fk : Xk → X, k ∈ Nm. Then the pair (X,Floc), where Floc := {fk : Xk → X}k∈Nm

, is
called a local IFS.

Note that if each Xk = X, then Definition 3.1 coincides with the usual definition of a
standard (global) IFS. However, the possibility of choosing the domain for each contin-
uous mapping fk different from the entire space X adds additional flexibility, as will be
recognized in the sequel. Also notice that one may choose the same Xk as the domain for
different mappings f ∈ Floc.

We can associate with a local IFS a set-valued operator Floc : P(X) → P(X), where
P(X) denotes the power set of X, by setting

Floc(S) :=
⋃

k∈Nm

fk(S ∩ Xk). (3.1)

By a slight abuse of notation, we use again the same symbol for a local IFS, its collection
of functions, and its associated operator.

There exists an alternative definition for (3.1). For given functions fk that are only
defined on Xk, one could introduce set functions (also denoted by fk) which are defined
on P(X) via

fk(S) :=

{
fk(S ∩ Xk), S ∩ Xk 	= ∅;
∅, S ∩ Xk = ∅, k ∈ Nm.

On the left-hand side of the above equation, fk(S ∩ Xk) is the set of values of the original
fk as in the previous definition. This extension of a given function fk to sets S which
include elements not in the domain of fk basically just ignores those elements. In the
following, we use this definition of the set functions fk.
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Definition 3.2. A subset A ∈ P(X) is called a local attractor for the local IFS (X,Floc)
if

A = Floc(A) =
⋃

k∈Nm

fk(A ∩ Xk). (3.2)

In (3.2) it is allowed that A ∩ Xk is the empty set. Thus, every local IFS has at least one
local attractor, namely A = ∅. However, it may also have many distinct ones. In the latter
case, if A1 and A2 are distinct local attractors, then A1 ∪ A2 is also a local attractor.
Hence, there exists a largest local attractor for Floc, namely the union of all distinct local
attractors. We refer to this largest local attractor as the local attractor of a local IFS
Floc. For more details about local attractors and their relation to the global attractor,
the interested reader may consult [7,15].

4. General set-up for unbounded domains

Let X be a topological space and suppose K ⊂ X is a compact subspace, i.e., an element
of the hyperspace K(X) of all compact subsets of X. We denote the family of connected
components of X \ K by C(X \ K). An element B ∈ C(X \ K) is called bounded if its
closure is compact, and unbounded otherwise. Define

K̂ := X \
⋃

{U ∈ C(X \ K) : U is unbounded} .

For the following, we require a result whose proof can be found in [8, Lemma 9].

Proposition 4.1. Let X be a connected, non-compact, locally connected, locally com-
pact Hausdorff space. Let K ⊂ X be a compact subspace. Then X \ K has only finitely

many unbounded components and K̂ is compact.

As an example of a topological space satisfying the conclusions of Proposition 4.1, we
mention X := R

s, s ∈ N. We also note that the existence of unbounded components is
connected to the existence of ends in topological spaces. The fact that X := R has two
unbounded components relates to X having two ends ±∞. For more details, we refer the
interested reader to [9, § 13.4].

We now list the assumptions for the remainder of this paper.

General set-up:

(i) X is a non-empty connected, non-compact, locally connected, locally compact
Hausdorff space.

(ii) K ⊂ X is a compact, connected subspace such that C(X \ K) contains no
bounded components. Denote by U(X \ K) := {Ui : i ∈ Nn}, n ∈ N, the finite
collection of unbounded components of X \ K.

(iii) {Kj : j ∈ Nm} is a family of (not necessarily distinct) compact, connected sub-
spaces of K. The collection of unbounded components of X \ Kj is denoted by
Uj(X \ Kj) := {Uj,k : k = 1, . . . , rj}, rj ∈ N, j ∈ Nm.
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(iv) Un is an n-element subset of
⋃Uj(X \ Kj). Let {V1, . . . , Vn} be the n elements

of Un.

(v) Let π : Nn → Nn be a fixed permutation.

(vi) For each i ∈ Nn and each j ∈ Nm, let ui : Vi → Uπ(i) and bj : Kj → K be
homeomorphisms.

(vii) The family of homeomorphisms

H := {bj : Kj → K : j ∈ Nm} ∪ {ui : Vi → Uπ(i) : i ∈ Nn} (4.1)

is required to satisfy the following two conditions:

(P1) K =
⋃m

j=1 bj(Kj) and ∀ j 	= j′ ∈ Nm : bj(int Kj) ∩ bj′(int Kj′) = ∅;
(P2) X \ K =

⋃n
i=1 ui(Vi) and ∀i 	= i′ ∈ Nn : ui(int Vi) ∩ ui′(int Vi′) = ∅.

Remark 4.2. In the case where K = ∅, m = 1, V1 = X, and π = id. The set of map-
pings {bj} = ∅ and the family H = {ui : X → X : i ∈ Nn} of homeomorphisms are only
required to satisfy condition (P2).

Remark 4.3. Note that the requirement on K implies that K̂ = K. Also, notice that∑
rj ≥ m, since every Kj has at least one unbounded component.

Example 4.4. In every topological vector space of dimension ≥ 2, in particular, in
every metric or normed space of dimension ≥ 2, the complement of a bounded set has
exactly one unbounded component [12].

5. Local fractal functions on unbounded domains

In this section, we define local fractal functions on X. These extend in a natural way
the (global) fractal interpolation functions first introduced in [2] and investigated in,
for instance, [10,13,14,17]. An, albeit incomplete, list of references for local fractal
functions is [7,15,16].

To this end, suppose that (Y, ‖ · ‖Y) is a Banach space. Denote by B(X,Y) the set

B(X,Y) := {f : X → Y : f is bounded}.

Recall that a function f : X → Y is called bounded (with respect to ‖ · ‖Y) if there exists
an M > 0 so that ‖f(x1) − f(x2)‖Y < M for all x1, x2 ∈ X. Under the usual definition of
addition and scalar multiplication of mappings, and endowed with the norm

‖f − g‖ := sup
x∈X

‖f(x) − g(x)‖Y,

(B(X,Y), ‖ · ‖) becomes a Banach space.
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For j ∈ Nm and i ∈ Nn, let vj : Kj × Y → Y and wi : Vi × Y → Y be mappings that are
uniformly contractive in the second variable, i.e., there exist �1, �2 ∈ [0, 1) so that for all
y1, y2 ∈ Y

‖vj(x, y1) − vj(x, y2)‖Y ≤ �1 ‖y1 − y2‖Y, ∀x ∈ Kj , (5.1a)

‖wi(x, y1) − wi(x, y2)‖Y ≤ �2 ‖y1 − y2‖Y, ∀x ∈ Vi. (5.1b)

Define an RB operator Φ : B(X,Y) → YX by

Φf(x) :=
m∑

j=1

vj(b−1
j (x), fj ◦ b−1

j (x))χbj(Kj)(x)

+
n∑

i=1

wi((u−1
i (x), fi ◦ u−1

i (x))χui(Vi)(x), (5.2)

where fi := f |Vi
and fj := f |Kj

denote the restrictions of f to Vi and Kj , respectively,
and χM denotes the characteristic function of a set M . Note that Φ is well defined, and
since f is bounded and each vj and wi is contractive in its second variable, Φf ∈ B(X,Y).

Moreover, by (5.1a) and (5.1b), we obtain for all f, g ∈ B(X,Y) the following inequality:

‖(Φf − Φg‖ = sup
x∈X

‖Φf(x) − Φg(x)‖Y

≤ sup
x∈X

‖v(b−1
j (x), fj(u−1

j (x))) − v(b−1
j (x), gj(b−1

j (x)))‖Y

+ sup
x∈X

‖w(u−1
i (x), fi(u−1

i (x))) − w(u−1
i (x), gi(u−1

i (x)))‖Y

≤ �1 sup
x∈X

‖fj ◦ b−1
j (x) − gj ◦ b−1

j (x)‖Y

+ �2 sup
x∈X

‖fi ◦ u−1
i (x) − gi ◦ u−1

i (x)‖Y

≤ max{�1, �2} ‖f − g‖. (5.3)

Above, we set v(x, y) :=
∑m

j=1 vj(x, y)χKj
(x) and w(x, y) :=

∑n
i=1 wi(x, y)χVi

(x) to
simplify notation.

These arguments lead immediately to the following theorem.

Theorem 5.1. Let (Y, dY) be a Banach space and let X, {Kj}, {Vi}, and H :=
{bj : Kj → K : j ∈ Nm} ∪ {ui : Vi → Uπ(i) : i ∈ Nn} be as in the general set-up. Let the
mappings vj : Kj × Y → Y, j ∈ Nm and wi : Vi × Y → Y, i ∈ Nn satisfy (5.1a) and (5.1b),
respectively. Then the RB operator Φ defined by (5.2) is a contraction on B(X,Y). Its
unique fixed point f satisfies the self-referential equation

f(x) :=
m∑

j=1

vj(b−1
j (x), fΦ,j ◦ b−1

j (x))χbj(Kj)(x)

+
n∑

i=1

wi((u−1
i (x), fΦ,i ◦ u−1

i (x))χui(Vi)(x), (5.4)

where fi := f |Vi
and fj := f |Kj

.
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Proof. It follows directly from (5.3) that Φ is a contraction on the Banach space
B(X,Y) and, by the Banach fixed point theorem, has a unique fixed point f in B(X,Y).
The self-referential equation for f is a direct consequence of (5.2). �

We refer to this unique fixed point as a bounded local fractal function with unbounded
domain X. Note that f depends on the form of Φ, i.e., the sets of functions {bj : j ∈ Nm},
{ui : i ∈ Nn}, {vj : j ∈ Nm}, and {wi : i ∈ Nn}. Unless necessary, we usually suppress
these dependencies.

Next, we would like to consider special choices for the mappings vj and wi. For this
purpose, suppose that pj ∈ B(Kj ,Y), qi ∈ B(Vi,Y), and that sj : Kj → R and ti : Vi → R

are bounded functions. Then, we define

vj(x, y) := pj(x) + sj(x) y, j ∈ Nm, (5.5)

wi(x, y) := qi(x) + ti(x) y, i ∈ Nn. (5.6)

The mappings vj and wi given by (5.5) and (5.6) satisfy conditions (5.1a) and (5.1b),
respectively, provided that the functions sj are bounded on Kj with bounds in [0, 1) and
the functions ti are bounded on Vi also with bounds in [0, 1). Then, for a fixed x ∈ Kj ,

‖vj(x, y1) − vj(x, y2)‖Y = ‖sj(x)(y1 − y2)‖Y ≤ ‖sj‖∞,Kj
‖y1 − y2‖Y

≤ s ‖y1 − y2‖Y.

Here, we denoted the supremum norm with respect to Kj by ‖ · ‖∞,Kj
, and set s :=

max{‖sj‖∞,Kj
: j ∈ Nm}. Similarly, we obtain for the wi the estimate

‖wi(x, y1) − wi(x, y2)‖Y ≤ t ‖y1 − y2‖Y,

with t := max{‖ti‖∞,Vi
: i ∈ Nn}.

For fixed sets of mappings {pj}, {qi} and functions {sj}, {ti}, the associated RB
operator (5.2) now has the form

Φf =
m∑

j=1

pj ◦ b−1
j χbj(Kj) +

m∑
j=1

(sj ◦ b−1
j ) · (fj ◦ b−1

j ) χbj(Kj)

+
n∑

i=1

qi ◦ u−1
i χui(Vi) +

n∑
i=1

(ti ◦ u−1
i ) · (fi ◦ u−1

i ) χui(Vi)

or, equivalently,

Φfj ◦ bj = pj + sj · fj , on Kj , ∀ j ∈ Nm,

Φfi ◦ ui = qi + ti · fi, on Vi, ∀ i ∈ Nn.
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To simplify notation, we set

p := (p1, . . . , pm) ∈ Bm
Y :=

m×
j=1

B(Kj ,Y),

q := (q1, . . . , qn) ∈ Bn
Y :=

n×
i=1

B(Vi,Y),

s := (s1, . . . , sm) ∈ Bm
R

:=
m×

j=1
B(Kj , R),

t := (t1, . . . , tn) ∈ Bn
R

:=
n×

i=1
B(Vi, R).

Thus, we have in summary the following result.

Theorem 5.2. Let (Y, dY) be a Banach space and let X, {Kj}, {Vi}, and H := {bj :
Kj → K : j ∈ Nm} ∪ {ui : Vi → Uπ(i) : i ∈ Nn} be as in the general set-up. Let p ∈ Bm

Y ,
q ∈ Bn

Y, s ∈ Bm
R

and t ∈ Bn
R
.

Define a mapping Φ : Bm
Y × Bn

Y × Bm
R
× Bn

R
× B(X,Y) → B(X,Y) by

Φ(p)(q)(s)(t)f =
m∑

j=1

pj ◦ b−1
j χbj(Kj) +

m∑
j=1

(sj ◦ b−1
j ) · (fj ◦ b−1

j ) χbj(Kj)

+
n∑

i=1

qi ◦ u−1
i χui(Vi) +

n∑
i=1

(ti ◦ u−1
i ) · (fi ◦ u−1

i ) χui(Vi). (5.7)

If max{max{‖sj‖∞,Kj
: j ∈ Nm},max{‖ti‖∞,Vi

: i ∈ Nm}} < 1, then the operator
Φ(p)(q)(s)(t) is contractive on B(X,Y) and its unique fixed point f satisfies the
self-referential equation

f =
m∑

j=1

pj ◦ b−1
j χbj(Kj) +

m∑
j=1

(sj ◦ b−1
j ) · (fΦ,j ◦ b−1

j ) χbj(Kj)

+
n∑

i=1

qi ◦ u−1
i χui(Vi) +

n∑
i=1

(ti ◦ u−1
i ) · (fΦ,i ◦ u−1

i ) χui(Vi) (5.8)

or, equivalently,

fj ◦ bj =pj + sj · fj , on Kj , ∀ j ∈ Nm,

fi ◦ ui =qi + ti · fi, on Vi, ∀ i ∈ Nn,

where fi := f |Vi
and fj := f |Kj

.

Proof. The statements follow directly from the preceding arguments and
Theorem 5.1. �

As above, we refer to f as a bounded local fractal function with unbounded domain X.

Remark 5.3. The local fractal function f generated by the operator Φ defined by
(5.7) depends not only on the families of subsets {Kj : j ∈ Nm} and {Vi : i ∈ Nn}, but
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also on the four tuples of bounded mappings p ∈ Bm
Y , q ∈ Bn

Y, s ∈ Bm
R

, and t ∈ Bn
R
. The

fixed point f should therefore be written more precisely as f(p, q, s, t). However, for the
sake of notational simplicity, we usually suppress this dependence for both f and Φ when
not necessary.

The following result found in [10], and in more general form in [13], is the extension
to the present setting of local fractal functions on unbounded domains.

Theorem 5.4. Suppose that the tuples s and t are fixed. The mapping Θ : Bm
Y × Bn

Y →
B(X,Y), (p, q) �→ f(p, q) defines a linear isomorphism.

Proof. Let α, β ∈ R, let p, p̃ ∈ Bm
Y , and q, q̃ ∈ Bn

Y.
Injectivity follows immediately from the fixed point equation (5.8) and the uniqueness

of the fixed point: (p, q) = (p̃, q̃) ⇐⇒ f(p, q) = f(p̃, q̃).
Linearity in (p, q) follows from (5.8), the uniqueness of the fixed point, and injectivity:

f(α(p, q) + β(p̃, q̃)) =
m∑

j=1

(αpj + βp̃j) ◦ b−1
j χbj(Kj) +

n∑
i=1

(αqj + βq̃j) ◦ u−1
i χui(Vi)

+
m∑

j=1

(sj ◦ b−1
j ) · (fΦ,j(αp + βp̃)(αq + βq̃) ◦ b−1

j ) χbj(Kj)

+
n∑

i=1

(ti ◦ u−1
i ) · (fΦ,i(αp + βp̃)(αq + βq̃) ◦ u−1

i ) χui(Vi)

and

αf(p, q) + βf(p̃, q̃) =
m∑

j=1

(αpj + βp̃j) ◦ b−1
j χbj(Kj)

+
n∑

i=1

(γqj + δq̃j) ◦ u−1
i χui(Vi)

+
m∑

j=1

(sj ◦ b−1
j ) · (αfΦ,j(p)(q) + βf(p̃)(q̃)) ◦ b−1

j χbj(Kj)

+
n∑

i=1

(ti ◦ u−1
i ) · (αfΦ,j(p)(q) + βf(p̃)(q̃)) ◦ u−1

i χui(Vi).

Hence, f(α(p, q) + β(p̃, q̃)) = αf(p, q) + βf(p̃, q̃).
For surjectivity, we define pj := f ◦ bj − sj · f , j ∈ Nm and qi := f ◦ ui − ti · f , i ∈ Nn.

Since f ∈ B(X,Y), we have p ∈ Bm
Y and q ∈ Bn

Y. Thus, f(p, q) = f . �

We denote the image of Bm
Y × Bn

Y under Θ by Fm,n(X,Y) and remark that Fm,n(X,Y)
is an R-vector space.

Consider now the special case X := R =: Y and suppose that p and q are tuples of
polynomials. Set ordp :=

∑m
j=1 ord pj and ord q :=

∑n
i=1 ord qi, where ord denotes the
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order of a polynomial. Since each polynomial of order d is uniquely determined by d real
values, there exits a canonical bijection between the set Πd of polynomials of order d and
R

d. These observations imply the following corollary of Theorem 5.4.

Corollary 5.5. Suppose that X := R =: Y and that p ∈ m×
j=1

Πμj
and q ∈ n×

i=1
Πνi

.

Then there exists a linear isomorphism ι : R
ord p × R

ord q → Fm,n(X,Y). Moreover,
dim Fm,n(X,Y) = ordp + ord q.

We remark that in the case when μj := d, j ∈ Nm, and νi := e, i ∈ Nn, the sets
m×

j=1
Πd

and
n×

i=1
Πe, respectively, coincide with the set of all piecewise polynomials on

⋃m
j=1(j,Kj)

and
⋃n

i=1Vi, respectively.
The linear isomorphism ι : R

ord p × R
ord q → Fm,n(X,Y) allows the construction of a

basis for Fm,n(X,Y). To this end, choose in each Kj and Vi, respectively, ord pj and
ord qi many points. Denote the sets of these points by Xj := {xj

κ : κ ∈ {1, . . . , ord pj}},
and Ξi := {ξi

λ : λ ∈ {1, . . . , ord qi}, respectively. Let

pj =
ord pj∑
κ=1

pj(xj
κ)Lj

κ

be the Lagrange representation of pj . Here, Lj
κ denotes the Lagrange interpolant.

Similarly, we have

qi =
ord qi∑
λ=1

qi(ξi
λ)Li

λ,

with the appropriate interpretation of the symbols. Then, Theorem 5.4 and Corollary 5.5
imply the following representation of a bounded local fractal function f in terms of its
fractal Lagrange interpolants:

f =
m∑

j=1

ord pj∑
κ=1

pj(xj
κ)Lj

κ +
n∑

i=1

ord qi∑
λ=1

qi(ξi
κ)Li

λ,

where L∗
• denotes j(L∗

•, L
∗
•).

6. Tensor products of bounded local fractal functions with unbounded
domains

In this section, we define the tensor product of bounded local fractal functions with
unbounded domains, thus extending the previous construction to higher dimensions.

For this purpose, we follow the notation of the previous section, and assume that Y
is a Banach space, and that X, X̃, K, K̃, {Kj}, {K̃j}, {Vi}, {Ṽi}, H := {bj : Kj →
K : j ∈ Nm} ∪ {ui : Vi → Uπ(i) : i ∈ Nn} and H̃ := {b̃j : K̃j → K̃ : j ∈ Nm} ∪ {ũi : Ṽi →
Ũπ̃(i) : i ∈ Nn} are as in the general set-up.
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Furthermore, we assume that (Y, ‖ · ‖Y) is a Banach algebra, i.e., a Banach space that
is also an associate algebra for which multiplication is continuous:

‖y1y2‖Y ≤ ‖y1‖Y ‖y2‖Y, ∀ y1, y2 ∈ Y.

Let f ∈ B(X,Y) and f̃ ∈ B(X̃,Y). The tensor product of f with f̃ , written f ⊗ f̃ : X ×
X̃ → Y, with values in Y is defined by

(f ⊗ f̃)(x, x̃) := f(x)f̃(x̃), ∀ (x, x̃) ∈ X × X̃.

As f and f̃ are bounded, the inequality

‖(f ⊗ f̃)(x, x̃)‖Y = ‖f(x)f̃(x̃‖Y ≤ ‖f(x)‖Y ‖f̃(x̃)‖Y,

implies that f ⊗ f̃ is bounded. Under the usual addition and scalar multiplication of
functions, the set

B(X × X̃,Y) := {f ⊗ f̃ : X × X̃ → Y : f ⊗ f̃ is bounded}

becomes a complete metric space when endowed with the metric

d(f ⊗ f̃ , g ⊗ g̃) := sup
x∈X

‖f(x) − g(x)‖Y + sup
x̃∈X̃

‖f̃(x̃) − g̃(x̃)‖Y.

Now let Φ : B(X,Y) → B(X,Y) and Φ̃ : B(X̃,Y) → B(X̃,Y) be contractive RB operators
of the form (5.2). We define the tensor product of Φ with Φ̃ to be the RB operator
Φ ⊗ Φ̃ : B(X × X̃,Y) → B(X × X̃,Y) given by

(Φ ⊗ Φ̃)(f ⊗ f̃) := (Φf) ⊗ (Φ̃ f̃).

It follows that Φ ⊗ Φ̃ maps bounded functions to bounded functions. Furthermore, Φ ⊗ Φ̃
is contractive on the complete metric space (B(X × X̃,Y), d). To see this, note that

sup
x∈X

‖(Φf)(x) − (Φg)(x)‖Y + sup
x̃∈X̃

‖(Φf̃)(x̃) − (Φg̃)(x̃)‖Y

≤ � sup
x∈X

‖f(x) − g(x)‖Y + �̃ sup
x̃∈X̃

‖f̃(x̃) − g̃(x̃)‖Y

≤ max{�, �̃} d(f ⊗ f̃ , g ⊗ g̃),

where we used (5.3) and denoted the uniform contractivity constant of Φ̃ by �̃.
The unique fixed point of the RB operator Φ ⊗ Φ̃ will be called a tensor product bounded

local fractal function with unbounded domain and its graph a tensor product bounded local
fractal surface over an unbounded domain.
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7. Bochner–Lebesgue spaces Lp(X, Y)

We may construct local fractal functions on spaces other than B(X,Y). (See also [7,15].)
In this section, we derive conditions under which local fractal functions over unbounded
domains are elements of the Bochner–Lebesgue spaces Lp(X,Y) for p > 0.

To this end, assume that X is a closed subspace of a Banach space X and that X :=
(X, Σ, μ) is a measure space. Recall that the Bochner–Lebesgue space Lp(X,Y), 1 ≤ p ≤
∞, consists of all Bochner measurable functions f : X → Y such that

‖f‖Lp(X,Y) :=
(∫

X

‖f(x)‖p
Y dμ(x)

)1/p

< ∞, 1 ≤ p < ∞,

and

‖f‖L∞(X,Y) := ess supx∈X ‖f(x)‖Y < ∞, p = ∞.

For 0 < p < 1, the spaces Lp(X,Y) are defined as above, but instead of a norm, a metric
is used to obtain completeness. More precisely, define dp : Lp(X,Y) × Lp(X,Y) → R by

dp(f, g) := ‖f − g‖p
Y.

Then (Lp(X,Y), dp) becomes an F -space. (Note that the inequality (a + b)p ≤ ap + bp

holds for all a, b ≥ 0.) For more details, refer to [1,18].

Theorem 7.1. Let (Y, dY) be a Banach space and let X, {Kj}, {Vi}, and H :=
{bj : Kj → K : j ∈ Nm} ∪ {ui : Vi → Uπ(i) : i ∈ Nn} be as in the general set-up. Assume
that X := (X, Σ, μ) is a measure space and that the families {bj} and {ui} are
μ-measurable diffeomorphisms. Further assume that Jbj

:= sup{‖Db−1
j ‖Kj

} < ∞ and

Jui
:= sup{‖Du−1

i ‖Vi
} < ∞, where D denotes the derivative. Suppose p ∈ m×

j=1
Lp(Kj ,Y),

q ∈ n×
i=1

Lp(Vi,Y), s ∈ m×
j=1

Lp(Kj , R), and t ∈ n×
i=1

Lp(Vi, R).

The operator Φ : Lp(X,Y) → R
X , p ∈ (0,∞], defined by (5.7) is well defined and maps

Lp(X,Y) into itself. Moreover, if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

Jbj
‖sj‖p

Lp(Kj ,R) +
n∑

i=1

Jui
‖ti‖p

Lp(Vi,R) < 1, p ∈ (0, 1)

⎛⎝ m∑
j=1

Jbj
‖sj‖p

Lp(Kj ,R) +
n∑

i=1

Jui
‖ti‖p

Lp(Vi,R)

⎞⎠1/p

< 1, p ∈ [1,∞)

max{‖sj‖L∞(Kj ,R) : j ∈ Nm} + max{‖ti‖L∞(Vi,R) : i ∈ Nn} < 1, p = ∞,

then Φ is contractive on Lp(X,Y). Its unique fixed point f is called a fractal function of
class Lp(X,Y) on the unbounded domain X.
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Proof. Note that under the hypotheses on the functions pj , qi and sj , ti as well as the
mappings bj , ui, Φf is well defined and an element of Lp(X,Y). It remains to be shown
that, under the stated conditions, Φ is contractive on Lp(X,Y).

For this purpose, first consider the case 1 ≤ p < ∞. If g, h ∈ Lp(X,Y), then

‖Φg − Φh‖p
Lp(X,Y) =

∫
X

‖Φg(x) − Φh(x)‖p
Y dμ(x)

≤
∫
X

∥∥∥∥ m∑
j=1

(sj ◦ b−1
j )[(gj ◦ b−1

j ) − (hj ◦ b−1
j )]χbj(Kj)

∥∥∥∥p

Y

dμ

+
∫
X

∥∥∥∥ n∑
i=1

(ti ◦ u−1
i )[(gi ◦ u−1

i ) − (hi ◦ u−1
i )]χui(Vi)

∥∥∥∥p

Y

dμ

≤
m∑

j=1

Jbj

∫
Kj

|sj |pR ‖gj − hj‖p
Y dμ +

n∑
i=1

Jui

∫
Vi

|ti|pR ‖gi − hi‖p
Y dμ

≤
( m∑

j=1

Jbj
‖sj‖p

Lp(Kj ,R) +
n∑

i=1

Jui
‖ti‖p

Lp(Vi,R)

)
‖g − h‖Lp(X,Y).

The case 0 < p < 1 follows now in very much the same fashion. We again have after
substitution and rearrangement

dp(Φg,Φh) = ‖Φg − Φh‖p
Lp(X,Y)

≤
m∑

j=1

Jbj

∫
Kj

|sj |pR ‖gj − hj‖p
Y dμ +

n∑
i=1

Jui

∫
Vi

|ti|pR ‖gi − hi‖p
Y dμ

≤
( m∑

j=1

Jbj
‖sj‖p

Lp(Kj ,R) +
n∑

i=1

Jui
‖ti‖p

Lp(Vi,R)

)
dp(g, h).

Now let p = ∞. Then

‖Φg − Φh‖L∞(X,Y) = ess supx∈X ‖Φg(x) − Φh(x)‖Y

≤ ess supx∈bj(Kj)

∥∥∥∥ m∑
j=1

sj ◦ b−1
j · (g − h) ◦ b−1

j )
∥∥∥∥

Y

+ ess supx∈ui(Vi)

∥∥∥∥ n∑
i=1

ti ◦ u−1
i · (g − h) ◦ u−1

i )
∥∥∥∥

Y

≤ (
max{‖sj‖L∞(Kj ,R) : j ∈ Nm} + max{‖ti‖L∞(Vi,R) : i ∈ Nn}

)
× ‖g − h‖L∞(X,Y).

These calculations prove the claims. �
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8. The local IFS associated with the RB operator

In this section, we associate with the RB operator (5.2) a local IFS and show that the
graph of the unique fixed point of Φ is a local attractor of this local IFS.

To this end, let

X� :=

{
K�, � ∈ {1, . . . , m};
V�−m, � ∈ {m + 1, . . . , m + n}.

With the sets X� we associate continuous mappings f� : X� → X by setting

f� :=

{
b�, � ∈ {1, . . . , m};
u�−m, � ∈ {m + 1, . . . , m + n}.

In addition, define mappings g� : X� × Y → Y by

g� :=

{
v�, � ∈ {1, . . . , m};
w�−m, � ∈ {m + 1, . . . , m + n},

and h� : X� × Y → X� × Y by

h�(x, y) := (f�(x), g�(x, y)), � ∈ Nm+n.

Assume that the functions vj and wi are continuous as functions X → Y . Then the
mappings g� and therefore the mappings h� are continuous. We define Hloc := {h� : X� ×
Y → X� × Y }�∈Nm+n

.
Hence, the pair (X × Y,Hloc) is a local IFS. As X × Y is locally compact, the set-valued

mapping Floc : 2X×Y → 2X×Y , defined by

Floc(S) :=
⋃

�∈Nm+n

h�(S ∩ (X� × Y )),

is continuous [6, Theorem 1].

Proposition 8.1. The graph G of the fixed point f of the RB operator (5.2) is an
attractor of the local IFS (X × Y,Hloc).

Proof. We have

Floc(G) =
⋃

�∈Nm+n

h�(G ∩ (X� × Y )) =
⋃

�∈Nm+n

h�({(x, f(x)) : x ∈ X�})

=
⋃

�∈Nm+n

{(f�(x), g�(x, f(x))) : x ∈ X�}

=
⋃

j∈Nm

{(bj(x), vj(x, f(x))) : x ∈ Kj} ∪
⋃

i∈Nn

{(ui(x), wi(x, f(x))) : x ∈ Vi}

=
⋃

j∈Nm

{(bj(x), f(bj(x))) : x ∈ Kj} ∪
⋃

i∈Nn

{(ui(x), f(ui(x))) : x ∈ Vi}
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=
⋃

j∈Nm

{(x, f(x)) : x ∈ bj(Kj)} ∪
⋃

i∈Nn

{(x, f(x)) : x ∈ ui(Vi)}

=
⋃

�∈Nm+n

{(x, f(x)) : x ∈ f�(X�)} = G. �
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