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SUMMARY

The term ‘data mining’ can be used to describe any process where useful information is extracted from data with a large

background of ‘noise’. In the context of a genome project, several stages involve data mining. Amongst the sequence data,

‘signals ’ need to be detected that indicate the presence of interesting features. Often this involves differentiating between

transcribed and non-transcribed bases to predict coding regions. After detection, defining the roles of these sequences

involves sifting through multiple lines of evidence. If these roles are accurately reflected in genome annotation, they can

be used by researchers to frame queries and interrogate the data further.
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INTRODUCTION

High throughput approaches to understanding para-

site biology are increasing, their costs are decreasing,

and there has been an explosion in the amount of

genomic data available. Deriving useful biological

information from data containing high background

‘noise ’ is the next challenge. In a typical genome

project, several stages could be considered as in-

volving ‘mining’ the data. After generating sequence

data, the usual next step is to annotate it, a process

whereby useful biological descriptions are applied

to the genome. A focus of annotation often is the

gene content of an organism. A variety of ‘signals ’

amongst the millions of sequenced bases can indicate

the presence of genes. When the genes have been

defined, putative functions can be ascribed and this

requires multiple lines of evidence to be drawn

upon.

When the data are submitted to databases, it is

often these biological descriptions that have been

applied in the form of annotations that researchers

encounter first. They provide not only a mechanism

for researches to focus searches on genes that interest

them but also a framework upon which ‘big picture’

analyses can be built. Good genome annotation re-

flects the collective knowledge of many scientists

but distributed over the entire genome. By provid-

ing tools and database infrastructure, this diffuse

knowledge can be harnessed; the data can be in-

terrogated and new hypotheses built.

This review will describe some of the many

approaches that are commonly referred to as data

mining. The annotation process that is normally

carried out by genome centres will be discussed as

well as some of the tools and methods that can be

employed to focus on regions of a genome, or subsets

of genes that are of interest to any user of genome

data.

GENE PREDICTION

Describing the genes is the focus of most genome

annotation and is often likened to solving a puzzle.

In reality, this oversimplification detracts from the

fact that gene prediction is an inexact science.

Against a background of millions of non-coding

bases, signals need to be detected that indicate

protein-coding potential. The hunt for genes takes

into account numerous signals of this kind. The first

of these are open reading frames (ORFs). Literally,

they are a length of DNA that contains a contiguous

run of codons, starting with a start codon (usually

ATG in eukaryotes) and ending with one of the

three stop codons. By taking into account no infor-

mation, other than the spaces between stop codons

(vertical bars in Fig. 1A), sequences that might

encode proteins can be spotted. Fig. 1B shows that

many of these ORFs were later annotated as coding

sequences. Confusion sometimes surrounds the use

of the terms ‘coding sequence’ (annotated as a CDS

in the language of the EMBL database), ‘gene’ and

‘ORF’. The latter is most easily addressed first ; its

frequency is a property of the underlying sequence –

and not necessarily a reflection of the number of

genes. For example, stop codons are more frequent

in AT-rich genomes and ORFs are less frequent

but this does not mean that AT-rich genomes

necessarily have fewer coding sequences. An ORF

simply indicates the presence of a potential protein-

coding sequence; larger ORFs are, however, more

likely to encode proteins. The difference between a

CDS and a gene is also distinct: genes contain coding
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sequences in addition to other, untranslated se-

quences (UTRs). The precise boundaries of a gene

are usually hard to determine so annotation normally

is applied only to coding sequences. It is normally

assumed that the presence of a CDS indicates that

a fully functional gene is present, albeit without the

exact coordinates being defined. With this in mind,

references to genes in the context of genome anno-

tation are in fact usually a reference to its CDS.

The fact that not all ORFs encode proteins pres-

ents a problem: which ones are real? When cis-

spliced genes are considered, the problem is further

compounded: open reading frames are fragmented

into sections. Careful manual inspection can identify

some spliced genes but the process is difficult and

laborious. Computer algorithms invariably need to

be employed to bring varying levels of automation

to the process. A common principle behind them is

that they look at the properties of known genes and

build a model of what a typical gene looks like. The

algorithms then search the genome for other se-

quences that share properties with the model. Often

a particular type of statistical model, known as a

Hidden Markhov Model (Krogh, 1998; Mount,

2001) is used, and it usually is built by looking at the

properties of at least 100 genes, which constitute a

training set. The training set may not always contain

known genes, in which case putative genes are chosen

based on either strong similarity to other species–for

instance, it may be possible to find highly conserved

ribosomal proteins – or, long ORFs may be selected.

Running a gene-finder against the training set

refines its accuracy to include other possible genes

that appear correct upon manual inspection. By

adding these additional gene predictions to the

training set the performance of the gene finder can

be iteratively improved.

Unfortunately, gene-finding algorithms suffer

from variable performance across different genomes.

For some species, obtaining a training set is diffi-

cult. For others, the underlying model might, for

example, put undue emphasis on a particular aspect

of a gene’s structure, such as possible splice donor

or acceptor sites. The most reliable gene predictions

are, therefore, those that have been manually in-

spected. This is most easily done using a tool that

allows multiple lines of evidence to be reviewed in

the context of the sequence. Artemis (Rutherford

et al. 2000; Berriman & Rutherford, 2003) is a

freely available computer program (http://www.

sanger.ac.uk/Software/Artemis/) that is particularly

well-suited to the task and runs on most computer

operating systems.

Researchers using genome annotation should be

aware of how annotations are generated to assess

their validity correctly and to decide what level of

inference can be made from them. Fig. 2 illustrates

how the predicted exon structure of a gene can vary

depending on the computer tool used to create it.

The first three lines show the results from the gene-

finding tools used in the Plasmodium falciparum

genome project (Gardner et al. 2002), namely Phat

(Pretty Handy Annotation Tool (Cawley, Wirth &

Speed, 2001)),Genefinder (PhilGreen, unpublished)
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Fig. 1. A six-frame translation of the genome sequence of Leishmania major reveals the position of possible genes. Two

horizontal grey lines represent the top and bottom strands of the DNA sequence. Above and below the sequence the

forward and reverse reading frames are depicted with vertical bars indicating the position of stop codons. The gaps

between stop codons (A) agree well with the positions of final annotated protein coding sequences (B).
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and Glimmer (Salzberg et al. 1999). Although they

broadly agree which bases are coding sequences, the

final gene structure produced by a human annotator

(Fig. 2, ‘Pf Annotation’), has incorporated ad-

ditional information and is in fact a combination

of all three. In the absence of manual review, each

prediction falls far short of predicting the precise

coordinates of the exon boundaries.

Much of the additional information used to create

a gene comes from an in-depth and careful review of

multiple evidence. For instance, the base compo-

sition of the DNA sequence itself can often provide

essential clues. This is epitomised in the case of theP.

falciparum genome (Fig. 3), where the G+C content

is used to aid annotation.P. falciparum has a very low

average G+C content (approximately 19.4%) but

there is considerable variability between the coding

regions (23.7% G+C) and the introns/intergenic

regions (13.5% G+C). Therefore a comparison of

the sequence against a graph of G+C content reveals

the positions of likely exons (an example peak is in-

dicated in Fig. 3A). Many organisms exhibit a bias in

their use of a specific codon for the same amino acid.

Like G+C content, codon bias presents another

‘signal ’ to be mined from a genome. The genome of

Leishmania major is an exemplary case. A plot for

each reading frame (Fig. 3B), showing the correlation

between codon usage frequencies of putative codons

in a moving window with the codon usage of known

genes in that organism, can indicate with high con-

fidence the positions of previously unknown genes.

SEQUENCE COMPARISONS

Probably the most common tools for data mining

involve comparisons between sequences. They are

indispensable for ascribing functions to sequences

and lie at the heart of bioinformatics. In similarity

searches, a sequence is systematically compared to

every sequence in a database. The comparison is

performed by creating alignments, where every pair

of residues between two sequences is compared.

Similar residues receive scores and miss-matched

residues incur a penalty. Gaps are inserted, with

additional penalty scores incurred, in such a way as

to maximise the score between the two sequences.

The most commonly used sequence similarity search

tools are BLAST (Altschul et al. 1990) and FASTA

(Pearson & Lipman, 1988), which differ in the type

of the alignment that they perform. FASTA per-

forms a global alignment; it aligns a query sequence

along it entire length against a target sequence,

which is particularly suited to evaluating the overall

similarity between two sequences. BLAST performs

a local alignment; it aligns only the most similar

regions between two sequences and is therefore

particularly suited for identifying domains.

In many cases, the results of similarity searches

may be ambiguous; numerous sequences may be

identified to which the query sequence could be

related. In these situations, a multiple alignment

can be performed using tools such as Clustal W

(Thompson, Higgins & Gibson, 1994). Multiple

alignments can be especially effective in revealing

important, conserved residues between sequences.

In particular, they will quickly highlight whether a

query sequence is indeed related to or represents

an outlier. Motif and domain databases take this

principle further and allow features that are con-

served across multiple sequences to be rapidly

searched, making them particularly suited to data

mining. One of the least complicated systems uses

a simple syntax (Bucher & Bairoch, 1994) to define

specific residues as a ‘signature’ for a particular

family. For instance, many ATP- or GTP-binding

proteins contain alanine or glycine followed by

any four residues, a glycine, a lysine and then either

serine or threonine. They can searched for in data-

bases such as Prosite (http://ca.expasy.org/prosite/),

where they would be represented as: [AG]-x(4)-

G-K-[ST]. Though very sensitive, these types of

motifs are too inflexible to describe diffuse features

FullPhat  (+)

FullPhat  (--)
Genefinder  (+)

Genefinder  (--)
GlimmerM  (+)

GlimmerM  (--)
Pf Annotation  (+)

Pf Annotation  (--)

456kb 458kb 460kb 463kb 465kb

Fig. 2. A comparison of gene predictions in Plasmodium falciparum. The results of three gene-finding algorithms, in

the forward (+) and reverse (x) directions are compared against the annotation from the P. falciparum Genome Project

(Pf Annotation). Image taken from PlasmoDB (http://plasmodb.org).
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or extended and complex domains. Other methods

overcome these problems by capturing the prob-

ability in which individual amino acids occur in a

multiple alignment. ‘Profiles ’ accomplish this with

a probability matrix – a probability is assigned to all

20 amino acids for every position in the sequence.

The method is extended with the use of Profile

HMMs (Eddy, 1998). Essentially, the major differ-

ence between Profiles and Profile HMMs is the

way in which they treat inserted gaps in multiple

alignments. A large searchable collection of Profile

HMMs can be found in the protein families database,

Pfam (http://www.sanger.ac.uk/Software/Pfam/).

The benefits of comparing sequences reach

far beyond small-scale or gene-by-gene similarity

searches. Large sequences can also be used and in

extreme cases whole chromosomes or even genomes

can be searched against each other. Although com-

putationally intensive, these kinds of searches are

increasingly becoming within the realms of the desk-

top computer user. The Artemis Comparison Tool

(ACT) is one such example freely available (http://

www.sanger.ac.uk/Software/ACT/) and is compat-

ible with most computer operating systems. Fig. 4

shows the application in use to compare the genomes

of P. falciparum and P. knowlesi. The genomes are
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Fig. 3. Variation in the base composition of a genome can indicate the likely position of coding sequences. The position

of exons in P. falciparum corresponds with peaks in G+C content in the genome (A). In L. major, reading-frame

specific peaks in the correlation with known codon usage can indicate the presence of a coding sequence (B).
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compared directly against each other with red bars

connecting regions that are similar between them.

Not only are homologous genes highlighted, entire

regions that appear to have common evolutionary

ancestry are revealed by the conservation of gene

order, as well as the conservation of individual se-

quences. The term ‘synteny’ has been adopted to

describe this phenomenon; a deviation from its

original definition (Passarge, Horsthemke & Farber,

1999) where it simply described genes from a single

organism that are located on the same chromosome.

Considered on a more global scale, comparing

synteny across genomes has become a fast way to

focus upon specific regions of interest within a

genome. Breaks in synteny are particularly apparent

when tools such as ACT are used to view conserved

regions. For instance, when a y90 kb region of the

P. falciparum genome (Fig. 4, top) is compared with

a homologous region of P. knowlesi (Fig. 4, bottom),

‘equivalent’ genes are seen in both genomes as well

as an insertion of three predicted genes in P. falci-

parum. Of these three, ebl-1 (Fig. 4, (Peterson,

Miller & Wellems, 1995), has a putative role in the

invasion of red blood cells by the parasite. This

highly visual method therefore highlights differences

between genomes and, when closely related species

are compared, it is likely that differences may include

genes (or regulatory elements) that contribute to

differences between parasite, such as different path-

ology or different host-parasite interactions. In some

cases the difference can be quite subtle. Fig. 5 shows

how structure of individual genes themselves can

be probed. Here, P. falciparum and P. knowlesi are

compared. The similarity hits from the first exon

of the P. falciparum gene have been highlighted to

show that they are homologous to a large first exon in

a P. knowlesi gene as well as a small second exon – the

P. knowlesi gene contains an additional intron.

MINING THE DESCRIPTIONS OF GENES

Increasingly important to a data ‘miner’ is the ability

to interrogate the descriptions applied to genes and

their products. During the process of manual anno-

tation, new information is learnt about each gene

encountered. An ability to tap into this resource –

diverse knowledge that has been applied piecemeal to

the genome – is, therefore, highly desirable. Classi-

fication of gene products according to their inferred

role plays an important part in being able to recon-

struct aspects of parasite biology just from gene

descriptions.

Enzyme Commission (EC) numbers (http://www.

chem.qmw.ac.uk/iubmb/enzyme/) can be used

P. falciparum

P. knowlesi

EBL-1

Fig. 4. A comparison of a y90 kb region of Plasmodium falciparum with an homologous region of P. knowlesi.

A screen-shot from the Artemis Comparison Tool (ACT) is shown. Both sequences are translated into forward and

reverse reading frames and the positions of annotated genes are indicated by boxes. Vertical bars connect regions

of similarity between the two genomes, which have been identified using tblastx.
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during annotation to describe in detail the reaction

that an enzyme catalyses. Therefore, when every EC

number annotation to a genome is considered, entire

biochemical pathways can be constructed. To aid

pathway construction, powerful tools exist. For

instance, the Kyoto Encyclopedia of Genes and

Genomes (KEGG, http://www.genome.ac.jp/kegg/)

includes many known biochemical pathways, pre-

drawn as templates showing the EC numbers for

each possible reaction. If a list of EC numbers is

provided, KEGG highlights the pathways that can

be preformed, on the pre-drawn templates. For in-

stance, Fig. 6 shows a map of pyrimidine metabolism

drawn by KEGG. Shown as shaded boxes, are EC

numbers that had been annotated to the P. falci-

parum genome. The diagram shows an unbroken

chain of steps required for de novo pyrimidine bio-

synthesis. Pathway analysis of this kind can also be

very useful for highlighting omissions or errors in

genome annotation.When gaps appear in pathways it

can focus annotation efforts on finding a gene that

was perhaps missed in an earlier search. Alterna-

tively, a single EC number on a large pathway may

indicate an incorrect classification of a gene during

annotation.

It should be remembered that no classification

system is perfect. It is by definition an abstraction

of a subject. In particular, EC numbers will never

classify a pathway that is novel to biology – only

pathways that have been characterized in other

organisms. Pathways, drawn with EC numbers, will

normally only show the potential reactions that could

be performed by a cell ; the fact that certain subsets

of metabolism become active or inactive during the

various stages of a parasite’s life cycle may easily be

missed.

EC numbers represent a hierarchical classification

system; categories can be divided into subcategories

and further subdivided to provide more and more

detailed descriptions. However, EC numbers have

limited scope – they only describe enzyme catalysed

reactions. More recently, a new system has emerged

as a powerful way to describe gene products that

is not limited to enzymes, namely Gene Ontology

(GO) (Ashburner et al. 2000; Harris et al. 2004). GO

provides a vocabulary of descriptions that cover the

molecular function of a gene product, any biological

process that the product is involved in, such as

‘transcription’, as well as the location of gene prod-

uct in terms of its subcellular localisation, or location

within a complex, such as a ribosome. The provision

andmaintenance of such a vocabulary as a centralised

resource allows biologists to use a consistent language

for sharing and communicating knowledge about

788400 789600 790400 791200 792000 792800 793600 794400 795

5200 16000 16800 17600 18400 19200 20000 20800 21600

Fig. 5. A comparison of gene structures in Plasmodium falciparum and P. knowlesi using ACT. In P. knowlesi, the

position of an additional intron is indicated with an arrow.
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what gene products do. In the context of datamining,

controlled vocabularies become essential. If one data-

base uses the description ‘translation’ and another

uses the phrase ‘protein synthesis’, it is hard for a

biologist to find equivalent genes from each database.

For a computer, the job is even harder.

One of the strengths of GO is that the terms in the

vocabulary are organized into a type of hierarchy.

As with the EC number classification system, each

‘category’ is subdivided into progressively more

specific sub-categories. However, in GO, the terms

may belong to more than one broader category.

For instance, the term ‘DNA helicase activity’ can

be found within the category ‘DNA binding activity’

and within ‘helicase activity’. In this way, a re-

searcher querying a database can find the same

gene products using differently ‘phrased’ queries.

Furthermore, researchers can pick terms from dif-

ferent levels with the structure of GO, to expand or

narrow their queries to those genes in which they

are really interested.

A number of tools now exist for finding genes of

interest using GO terms. Recently, GeneDB (http://

www.genedb.org) was established (Hertz-Fowler &

Peacock, 2002; Hertz-Fowler et al. 2004) as a curated

database, allowing annotated genes to be easily ac-

cessed based on their sequence or descriptions. GO

terms are included with each gene and, using Amigo

(Gene Ontology Consortium, http://www.godata-

base.org), can be rapidly queried from the GeneDB

homepage. For instance, Fig. 7 shows Amigo in use

to query genes in GeneDB that have the annotation

‘glycolysis’, or any narrower description that falls

within the description of ‘glycolysis ’. The results

have been filtered (by selecting the ‘datasource’;

circled in Fig. 7A) to show only those genes that are

found in P. falciparum. Clicking on any term takes

the user to a results page (Fig. 7B) where every gene

annotated to the selected GO term is displayed with

a link to the database that annotated it.

In addition to finding genes of interest, GO is a

useful tool for gaining an overview of a genome.

These summaries are not limited to genome snap-

shots in the form of pie-charts and histograms. GO

terms provide information on the clustering of

certain types of genes to specific areas in a geno-

me – for instance, chromosome 5 of P. falciparum

appears to encode more apicoplast-targeted proteins

than other P. falciparum chromosomes (Hall et al.

2002). The interpretation of clustered genes can

be taken even further when data from functional

genomics is considered. For instance, genes clustered

by their expression profiles may convey almost no

information to a biologist when only the gene names

are used. However, if the associated GO terms for

each gene are examined – and GO descriptions are

easy for computers to understand – the biological

significance of the expression pattern can be more

readily determined (Áshburner et al. 2000).

DISCUSSION

Information is mined from data throughout a typi-

cal genome project. The initial stages usually are

carried out by genome centres and include using

a variety of methods to try to accurately predict the

position, structure and functions of genes. These

ascribed functions can then form the framework for

other researchers to interrogate the data. However,

given the rapid rate in which new genome sequences

are emerging, it may appear unlikely that annotations

will ever keep pace. The most accurate annotations
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Fig. 6. A map of pyrimidine metabolism in Plasmodium falciparum. Those EC numbers present in the P. falciparum

genome annotation are shown shaded. Screenshot from the Kyoto Encyclopedia of Genes and Genomes (KEGG,

http://www.genome.ad.jp/kegg/kegg2.html/).
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do require careful human intervention. However,

when the cost of producing genome sequences is

considered, the effort is worthwhile to maximise

its utility. Feedback from the research community

to the databases that house genome data is one

important way to improve the accuracy of data.

Database curators can never take the place of the

expert biologist for annotating those specific genes

on which his or her research is focused. For this

reason, input is strongly encouraged at databases

like GeneDB, which have feedback forms to facili-

tate community involvement. Furthermore, many

of the tools used by the genome centers – such as

Artemis – are available to the laboratory user, so it

is possible to have the same view of a sequence as

the original annotator.

Fortunately, as the repertoire of sequenced

genomes increases, the investment required ot

make full use of the data can be reduced. Firstly,

related sequences may not need to be sequenced to

completion. Furthermore, with a finished genome

(one with no gaps between contigs) as a reference,

synteny can be used to ‘assemble’ the contigs of

a partially sequenced genome. Sequencing closely

related species will also accelerate the prediction

of genes, and their annotation. For instance, gene

prediction from Trypanosoma vivax (http://www.

genedb.org/genedb/tvivax/) has been automated by

searching for orthologues sequences in the manually

annotated genome of T. brucei and transferring

selected annotation between the two. Furthermore, if

the species for sequencing are carefully chosen, the

function and organisation of genes that are usually

intractable to study in one species can be annotated

by making references to close relatives.

ACKNOWLEDGEMENTS

I am grateful to Christiane Hertz-Fowler for helpful
discussions whilst preparing this manuscript.

A

B

Fig. 7. Querying Gene Ontology annotations using AmiGO. Searches can be filtered to select a specific organism (A).

Clicking on a term, takes the user to a results page (B), showing all the genes annotated to the GO term and links

to GeneDB.
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