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The interaction between an incident shock wave and a Mach-6 undisturbed hypersonic
laminar boundary layer over a cold wall is addressed using direct numerical simulations
(DNS) and wall-modelled large-eddy simulations (WMLES) at different angles of
incidence. At sufficiently high shock-incidence angles, the boundary layer transitions
to turbulence via breakdown of near-wall streaks shortly downstream of the shock
impingement, without the need of any inflow free-stream disturbances. The transition
causes a localized significant increase in the Stanton number and skin-friction coefficient,
with high incidence angles augmenting the peak thermomechanical loads in an
approximately linear way. Statistical analyses of the boundary layer downstream of the
interaction for each case are provided that quantify streamwise spatial variations of the
Reynolds analogy factors and indicate a breakdown of the Morkovin’s hypothesis near
the wall, where velocity and temperature become correlated. A modified strong Reynolds
analogy with a fixed turbulent Prandtl number is observed to perform best. Conventional
transformations fail at collapsing the mean velocity profiles on the incompressible
log law. The WMLES prompts transition and peak heating, delays separation and
advances reattachment, thereby shortening the separation bubble. When the shock leads
to transition, WMLES provides predictions of DNS peak thermomechanical loads within
±10 % at a computational cost lower than DNS by two orders of magnitude. Downstream
of the interaction, in the turbulent boundary layer, the WMLES agrees well with DNS
results for the Reynolds analogy factor, the mean profiles of velocity and temperature,
including the temperature peak, and the temperature/velocity correlation.

Key words: aerodynamics, shock waves, transition to turbulence

1. Introduction

Airframes and propulsion systems of high-speed aerospace vehicles are subject to large
wall heating rates and drag forces caused by viscous friction and shock waves (Leyva
2017; Urzay 2018; Candler 2019). However, the mechanisms responsible for these extra
thermomechanical loads are complex and multiscale.

The model problem considered in the current study concerns the interaction between
an oblique shock and an undisturbed hypersonic laminar boundary layer. In recent years,
the related problem of interaction between shock waves and turbulent boundary layers has

† Email address for correspondence: jurzay@stanford.edu
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received considerable attention (Dupont et al. 2005; Dupont, Haddad & Debiève 2006;
Dussauge, Dupont & Debiève 2006; Loginov, Adams & Zheltovodov 2006; Pirozzoli
& Grasso 2006; Dupont et al. 2008; Sandham & Lüdeke 2009; Touber & Sandham
2009; Gaitonde 2013; Bermejo-Moreno et al. 2014; Adler & Gaitonde 2018). In contrast,
studies of the effects of incident shock waves on the transition of laminar boundary
layers have remained comparatively more elusive. The basic triple-deck theory of weak
shock waves interacting with laminar boundary layers was formulated first by Lighthill
(1950), who quantified the upstream extent of the pressure disturbance on the wall
surface. More recently, several efforts in characterizing shock waves interacting with
transitional boundary layers have been undertaken (Vanstone et al. 2013; Sandham et al.
2014; Schülein 2014; Davidson & Babinsky 2015; Polivanov, Sidorenko & Maslov 2015;
Willems, Gülhan & Steelant 2015; Lash et al. 2016; Currao et al. 2020). A recent
review paper by Knight & Mortazavi (2017) summarizes important studies in this area.
These studies have shed light upon realistic interaction cases under finite shock strength,
including the overheating caused by transition of the post-interaction boundary layer.

Despite this progress, and similarly to other problems in high-speed aerodynamics
involving transitional phenomena, it becomes difficult to computationally recreate the
particular free-stream conditions in wind tunnels used for experiments, because they
typically involve noise radiation that has a profound effect on the solution. Since it
is currently challenging to provide complete measurements of the full structure of
free-stream disturbances in wind tunnels, early simulations by Sandham et al. (2014) and
Yang et al. (2017b) were conducted using a random perturbation field at the inflow of
the computational domain, with the magnitude of the perturbations tuned to achieve a
good match with the Stanton number experimental measurements made by Sandham et al.
(2014), Schülein (2014) and Willems et al. (2015).

The sensitivity of the transition process to the free-stream disturbances is greatly
reduced as the shock incidence angle increases, in which case an absolute instability
engendered in the separation bubble dominates the transition process (Hildebrand et al.
2018). Experiments at shock incidence angles higher than the ones considered in Sandham
et al. (2014), Schülein (2014) and Willems et al. (2015) have been recently addressed
by Currao et al. (2020) in an experimental investigation performed concurrently with
the present study. They studied the interaction between a Mach-5.8 laminar hypersonic
boundary layer and a shock generated by a 10◦ wedge. The measurements of the wall
pressure and heat flux showed that the transition to turbulence is characterized by spanwise
stationary fluctuations. Currao et al. (2020) proposed that these modulations were related
to Görtler-like streamwise vortices that grew exponentially along the concave streamlines
above the post-interaction boundary layer near the interaction zone.

A relevant global stability analysis of shock waves interacting with laminar boundary
layers was conducted by Robinet (2007) in a study that employed a three-dimensional
disturbance overlaid on a two-dimensional laminar boundary layer. It was found that
for sufficiently strong shocks, the boundary layer became globally unstable to stationary
disturbances with a finite spanwise wavenumber, in such a way that the eigenfunction
had a purely exponential growth in time at each point in space without leading to any
oscillations. The mechanism of instability was further analysed by Hildebrand et al.
(2018), who showed that the interactions between streamwise vortices in the separation
bubble created by an oblique shock impinging on a Mach-5.9 laminar boundary layer over
an adiabatic wall are responsible for transition. Furthermore, the results in Hildebrand
et al. (2018) indicated that, for shock incidence angles larger than the critical value β =
12.9◦ (equivalent to a critical wedge angle α = 4.5◦), transition occurred due to round-off
errors in the absence of any inflow disturbances, and that transition was accompanied
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FIGURE 1. Schematics of the model problem: an oblique shock wave impinging on an
undisturbed hypersonic laminar boundary layer.

by the formation of stationary streaky footprints in the wall heat flux. However, the
exact value of the critical shock incidence angle is expected to generally depend on
dimensionless flow parameters, including the Reynolds and Mach numbers, and on the
wall-to-free-stream temperature ratio, with additional thermochemical parameters being
also required in regimes involving higher enthalpies.

The focus of the present study is on the interaction of an incident oblique shock with
a Mach-6 undisturbed laminar boundary layer overriding a cold isothermal flat plate.
The main features of the flow are sketched in figure 1, and the set-up resembles the
experimental one outlined in Sandham et al. (2014). However, in contrast to Sandham et al.
(2014), these simulations are concerned with shocks impinging at sufficiently high angles
for transition to not rely on the presence of inflow disturbances. Specifically, the range of
shock incidence angles considered here is 13.2◦ ≤ β ≤ 15.7◦, which correspond to a range
of wedge angles 5.0◦ ≤ α ≤ 8.0◦. It will be shown below that, while transition is readily
achieved near the upper end of this interval of wedge angles without the aid of free-stream
disturbances, the transition process becomes utterly slow near the lower end, and does not
lead to completion within the computational domain. Note however that the range of values
of wedge angles tested here are smaller than the α = 10◦ wedge angle considered in the
experimental investigation recently performed by Currao et al. (2020). It should be stressed
that increasing the wedge angle does not come at reduced computational cost. Specifically,
as the incidence angle increases, the overshoot in the skin-friction coefficient at transition
increases, thus leading to an increasingly thinner viscous sublayer and, consequently, more
stringent grid-resolution requirements. Similarly, the larger the wedge angle is, the longer
the separation bubble becomes upstream of the interaction region, thereby taxing the size
of the computational domain.

In the present configuration, at sufficiently high incidence angles, a fully turbulent,
highly supersonic boundary layer ensues downstream of the shock, as sketched in figure 1.
Whereas compressible turbulent boundary layers are substantially more complicated
than their incompressible counterparts, insight into their structure has been gained over
the years by developing transformations that seek to convert velocity profiles from
compressible turbulent boundary layers into the well-known log law for incompressible
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turbulent boundary layers (Trettel 2019). In addition, Morkovin (1962) proposed that,
for edge Mach numbers less than 5, any difference between compressible turbulent
boundary layers and incompressible boundary layers can be accounted for by incorporating
the variations of mean quantities, because flow dilatation plays a second-order effect.
Many velocity transformations and scaling laws, which are verified by both experiments
and DNS data (e.g. Fernholz & Finley 1980; Guarini et al. 2000; Pirozzoli, Grasso
& Gatski 2004; Trettel & Larsson 2016), have been developed on the basis of the
Morkovin hypothesis, including the van Driest transformation (van Driest 1956) for
adiabatic boundary layers, which converts the compressible mean velocity profile into the
incompressible log law. However, these theories do not appear to perform adequately in
non-adiabatic compressible boundary layers, and most particularly, in the practical case
of boundary layers overriding cold walls (Duan, Beekman & Martin 2010). Specifically,
the colder the wall temperature is relative to the free-stream stagnation temperature,
the stronger the gradients of temperature are in the boundary layer as a result of
the competition between the aerodynamic heating caused by the recovery of thermal
energy, and the flow cooling induced by the wall. This well-known phenomenon leads
to a non-monotonic temperature profile, whose maximum is observed in the present
simulations to be located near or below the buffer layer, thereby leading to relatively large
density gradients near the wall.

Beyond fundamental investigations of the problem, a relevant engineering question that
often arises is whether the aforementioned physical processes, which are all concealed
in the boundary layer, can be predicted with reasonable accuracy without incurring an
exceedingly high computational cost. This question becomes particularly relevant when
attempting to simulate high-speed flows around entire flight systems, since their resolution
often renders impractical the utilization of direct numerical simulations (DNS). Typical
strategies involve utilization of coarser grids while relying on reduce-order models to
partially account for the effects of the near-wall turbulence. Recent advances in numerical
algorithms, computer hardware and the related computer science have led to successful
predictions of complex multi-physics turbulent flows in aerospace applications by using
wall-modelled large-eddy simulations (WMLES), but most of these breakthroughs have
been limited to systems operating at subsonic and low-supersonic speeds (Bose & Park
2018). While notable attempts to employ WMLES have been recently made in supersonic
and hypersonic flows (Kawai & Larsson 2012; Bermejo-Moreno et al. 2014; Larsson
et al. 2015; Marco & Komives 2018; Mettu & Subbareddy 2018; Iyer & Malik 2019),
this research area is still in its infancy, particularly in relation to aspects connected
with hypersonic transitional phenomena (Yang et al. 2017b) and thermochemical effects
(Di Renzo & Urzay 2019). The present study contributes to this progress by utilizing
a relatively simple, yet challenging configuration for benchmarking wall models in
hypersonic flows.

In this study the equilibrium wall model described in Yang et al. (2017b) (see also
Kawai & Larsson 2012) is employed with the goal of predicting the DNS results at
reasonable cost. The comparisons between WMLES and DNS include metrics such as the
location of transition and peak thermomechanical loads, the spatial extent of the separation
bubble resulting from the adverse pressure gradient imposed by the shock, the first- and
second-order flow statistics near the wall in the transitional and turbulent zones, and the
physical processes responsible for the intense friction and overheating of the wall near the
shock-impingement region.

The main research questions addressed by this study are as follows. (a) What
are the physical mechanisms responsible for heat and friction augmentation near
the shock-impingement region? (b) Do the classic Reynolds analogies, the Morkovin

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.935


Shock-induced heating and transition to turbulence 909 A8-5

Laminar
boundary layer

ShockW
ed

ge

Turbulent
boundary layer

Cold isothermal plate
Tw = 4.5T1

Ma1 = 6.0

Pr = 0.72

Re1,δ1
 = 6830

Re1,x = 3.1 × 105

Re1,ximp
 = 2.7 × 106

Re1,x = 4.4 × 106
xe

xs

x1

y x

z

ximp (Tw = 0.55T0)

(Undisturbed inf low)

Computational domain

α

δ1

FIGURE 2. Schematics of the computational domain.

hypothesis and the velocity log law hold in DNS and WMLES despite the high Mach
numbers and cold wall temperatures? (c) Can WMLES predict the thermomechanical
overloads at transition and the structure of the ensuing turbulent boundary layer? The
configuration analysed in this study differs fundamentally from those in the literature
of fully turbulent boundary layers in that it allows probing relevant quantities along the
streamwise direction through very dissimilar flow environments ranging from laminar, to
shock-induced transitional, and to fully turbulent farther downstream.

The remainder of the paper is organized as follows. The computational set-up is
outlined in § 2, including the numerical method, boundary conditions and grid resolutions
employed in the simulations, along with a brief summary of the equilibrium wall model.
Simulation results are described in § 3, including predictions of boundary-layer statistics
in the transitional and turbulent zones. Conclusions are provided in § 4. In addition,
four appendices are included that provide code verification and validation exercises
(appendix A), wall-model formulation (appendix B), a discussion of the performance
of the wall model in the laminar portion of the boundary layer (appendix C) and a
supplementary grid-resolution study for WMLES (appendix D).

2. Computational set-up

This section focuses on a description of the computational set-up. A sketch of the
computational domain is provided in figure 2 that supplements the discussion. Details
are outlined below about numerical solver, boundary conditions, computational grids and
wall-model parameters employed in the simulations.

2.1. Numerical solver and boundary conditions
The simulations presented in this study are conducted using the finite-volume
compressible solver charLES, which computes the solution on arbitrary polyhedral
meshes. Specifically, charLES utilizes a low-dissipation spatial discretization based on
principles of discrete entropy preservation (Tadmor 2003; Chandrashekar 2013), in
which the fluxes are constructed to globally conserve entropy in inviscid shock-free
flows, and to conserve the kinetic energy in inviscid low-Mach-number flows. Artificial
diffusivity is employed in order to suppress oscillations in the vicinity of shock waves.
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Conserved quantities (i.e. mass, momentum and total energy) are explicitly integrated
in time using a three-stage strong-stability-preserving Runge–Kutta scheme (Gottlieb,
Shu & Tadmor 2001). The spatial and temporal schemes converge to second order
and third order with respect to the nominal mesh spacing and time step, respectively.
Additional discussions regarding the solver discretization and its capabilities can be found
in Lozano-Durán, Bose & Moin (2020), Lakebrink et al. (2019), Bres et al. (2018),
and Lehmkuhl et al. (2018). A set of validation and verification exercises for charLES
is provided in appendix A that includes hypersonic laminar boundary layers, evolution
of small amplitude disturbances in a high-Mach-number channel flow, along with a
hypersonic flow around the boundary-layer transition (BOLT) subscale vehicle geometry.

The formulation of the problem is described in Yang et al. (2017b). Briefly, the
charLES code integrates the conservation equations of mass, momentum and total energy.
Favre-filtered versions of these equations are employed for large-eddy simulation (LES)
cases, with the subgrid-scale (SGS) tensor and SGS energy flux being modelled using the
constant-coefficient Vreman model (Vreman 2004), with model constant 0.07, along with
a constant SGS turbulent Prandtl number Prsgs = 0.90. The conservation equations are
supplemented with Sutherland’s law for the dynamic viscosity under a constant molecular
Prandtl number Pr = 0.72 (with Sutherland’s model constants satisfying Tref = T1 and
S/T1 = 1.69, with T1 being the temperature of the inflow free stream), the ideal gas
equation of state and the assumption of calorically perfect gas with γ = 1.4.

The geometry and operating conditions are explained in Schülein (2014), Sandham et al.
(2014) and Willems et al. (2015). Specifically, air at Mach Ma1 = U1/a1 = 6.0, based on
the inflow free-stream velocity U1 and speed of sound a1, flows over an isothermal flat plate
held at temperature Tw = 4.5T1, as schematically shown in figure 2. In these conditions,
in which Tw is smaller than the free-stream stagnation temperature T0 (i.e. Tw/T0 = 0.55),
the plate behaves as a cold one that receives heat from the flow. The resulting temperature
profile in the wall-normal direction is non-monotonic, which is challenging to resolve
with WMLES-like coarse grid resolution near the wall, as sketched in figure 1. A wedge
held above the plate is responsible for generating the shock wave that impinges on the
boundary layer. In this work four wedge angles α = 5◦, 6◦, 7◦ and 8◦ are studied, while
keeping all other parameters constant. However, the wedge is not explicitly included in the
computational domain, and, therefore, the expansion fan generated by its trailing edge is
not considered. Instead, the shock wave emanating from the leading edge of the wedge is
imposed by appropriate jump boundary conditions, as described below.

The Cartesian coordinate system {x, y, z} used for the analysis is shown in figure 2, with
x = 0 corresponding to the leading edge of the plate. At the inlet of the computational
domain, the Reynolds number is Re1,δ�

1
= U1δ

�
1/ν1 = 6830 based on the inflow values

of the displacement thickness δ�
1 and of the free-stream velocity U1 and kinematic

viscosity ν1. The Reynolds number based on the distance x1 = 46δ�
1 from the leading

edge of the plate to the inlet plane is Re1,x1 = U1x1/ν1 = 314 252. Correspondingly, the
similarity solution for compressible laminar boundary layers is imposed at the inlet.
In addition, periodic boundary conditions are used in the spanwise direction, while a
characteristic non-reflecting boundary condition, with reference pressure chosen equal to
the free-stream pressure, is applied at the outlet at a downstream distance xe such that (xe −
x1)/δ

�
1 = 600, where the Reynolds number based on the inflow free-stream conditions

is Re1,xe = U1xe/ν1 = 4 410 887. Note that the dimensionless streamwise distance from
the edge of the plate, (x − x1)/δ

�
1, and the Reynolds number based on the streamwise

coordinate, Re1,x = U1x/ν1, can be used interchangeably for quantifying the streamwise
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distance in the plots below by using the relation

Re1,x =
(

x − x1

δ�
1

)
Re1,δ�

1
+ Re1,x1 . (2.1)

Different free-stream conditions emerge downstream of the recompression shock, denoted
below by the subscript ‘2’, as in U2, ρ2, T2, a2 and ν2. These quantities are useful,
for instance, when examining the turbulent boundary layer ensuing downstream of the
interaction, and they are utilized later in the text for defining the post-interaction values of
the Reynolds number Re2,x = U2x/ν2 and Mach number Ma2 = U2/a2.

For a given wedge angle α, the shock is made to emanate downwards from the top
boundary of the domain at a streamwise position xs such that the point of inviscid
intersection between the shock and the plate is located at a streamwise distance, ximp,
is given by (ximp − x1)/δ

�
1 = 350 in all cases, where the Reynolds number is Re1,ximp =

U1ximp/ν1 = 2 704 752, as indicated in figure 2. For x > xs, an oblique flow entering the
domain is prescribed at the top boundary using the Rankine–Hugoniot jump conditions
for pressure, density and velocities at the corresponding shock strength determined by the
wedge angle α, while the discretized fluxes at the boundary cell faces are obtained by
solving a Riemann problem with a Harten–Lax–van Leer-contact solver. The similarity
solution for the compressible laminar boundary layer is imposed at the top boundary for
x < xs, including the vertical displacement velocity.

The simulations were initialized using the similarity solution for the laminar
compressible boundary layer in the absence of an incident shock, and were evolved for 50
flow-through times. Cumulative statistics were calculated based on an on-the-fly analysis
of the solution at every time step during six and eight flow-through times in DNS and
WMLES, respectively. In the notation below, f̄ and f̃ denote, respectively, Reynolds and
Favre averages of f , whereas f ′ = f − f̄ and f

′′ = f − f̃ are the corresponding fluctuations.

2.2. Computational grids
The dimensions of the computational domain are 600δ�

1 × 75δ�
1 × 45δ�

1 in the streamwise,
wall-normal, and spanwise directions, respectively. The Cartesian grid used for DNS is
6000 × 600 × 400 (1440 million cells) and is stretched in the wall-normal direction using
a hyperbolic tangent clustering with a ratio of Δytop/Δyw = 10. The resolution of the
DNS grid utilized here is comparable to the grid resolution employed in other studies
on spatially evolving compressible turbulent boundary layers, including Sandham et al.
(2014), Adams (2000), Volpiani, Bernardini & Larsson (2018), Pirozzoli, Bernardini &
Grasso (2010) and Pirozzoli & Bernardini (2011). In addition, the DNS grid resolution
employed here leads to reasonable agreement of statistical quantities such as the skin
friction and the velocity-temperature relation with well-established correlations.

Two different uniform Cartesian meshes are used for the WMLES to study the effects
of grid resolution in the main text. The baseline WMLES grid is 1024 × 270 × 144
(40 million cells), whereas the coarse WMLES grid employs a coarser resolution in the
wall-normal direction and is 1024 × 192 × 144 (28 million cells) in order to assess the
effects of varying the matching location between the wall model and the outer LES. The
near-wall resolution in viscous units is listed in table 1 for all cases. In the baseline
WMLES cases, the boundary layer was resolved with five points across the inlet plane
(four points in the coarse WMLES), 27 points across the outlet plane (nine points in the
coarse WMLES), and 11 points across the wall-normal plane intersecting the streamwise
location of maximum wall heat flux (seven points in the coarse WMLES) or, equivalently,
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Wedge
angle α

[◦]

DNS
Δx+ × Δy+ ×

Δz+ [−]

WMLES
Δx+ × Δy+ ×

Δz+ [−]

WMLES coarse
Δx+ × Δy+ ×

Δz+ [−]

5 4.09 × 0.98 × 4.60 20.37 × 9.70 × 10.91 20.24 × 13.49 × 10.79
6 5.63 × 1.35 × 6.33 23.27 × 11.08 × 12.47 24.45 × 16.30 × 13.04
7 6.51 × 1.56 × 7.32 27.80 × 13.24 × 14.90 28.74 × 19.16 × 15.33
8 7.46 × 1.79 × 8.40 31.75 × 15.12 × 17.01 33.17 × 22.11 × 17.69

TABLE 1. Minimum grid spacing near the wall in viscous units νw/uτ at the outlet of the
computational domain. In this notation, νw is the time- and spanwise-averaged kinematic
viscosity at the wall and uτ = √

τw/ρw is the friction velocity based on time- and
spanwise-averaged values of the wall shear stress τw and density at the wall ρw.

at the streamwise location of maximum Stanton number St, the latter being formally
defined in § 3.

2.3. Wall-model parameters
In the WMLES cases the equilibrium wall model described in appendix B (see also Kawai
& Larsson 2012; Yang et al. 2017b) is utilized within a wall-modelled layer adjacent to
the wall. Briefly, the equilibrium wall model consists of localized, RANS-like, steady
one-dimensional versions of the wall-parallel momentum equation and the stagnation
energy equation for a calorically perfect gas, with eddy-viscosity closures for the turbulent
transport of momentum and energy, the latter relying on the assumption of a constant
turbulent Prandtl number of 0.90. A van Driest damping function with constant A+ = 17
is employed to exponentially suppress the eddy viscosity for y+ � A+ in favour of the
molecular viscosity. Friction scaling is employed for the van Driest damping function,
since mean density variations introduced by semi-local scaling have little effect because
of the moderate wall-cooling levels utilized here. In addition, the ideal gas equation of
state is utilized in the wall model to relate the density ρ with the temperature T , in such a
way that the pressure across the wall-modelled layer remains equal to the pressure at the
matching location y = hwm.

The equations of the wall model are subject to non-slip and isothermal (T = Tw)
boundary conditions at the wall, and to the instantaneous filtered values of the wall-parallel
velocity, temperature and pressure at the matching location. The outputs of the wall model
are the local values of the wall shear stress τw and wall heat flux qw, which are employed
as boundary conditions for the LES conservation equations of the bulk flow.

The thickness of the wall-modelled layer hwm employed in these simulations is
equivalent to a single cell of the WMLES grid. Whereas Kawai & Larsson (2012) have
shown that this choice may lead to a log-layer mismatch, the results in Yang, Park & Moin
(2017a) indicate that temporal filtering alleviates this problem. In this work the approach
proposed by Yang et al. (2017a) is used because of its simplicity of implementation in
unstructured grid environments.

Since the wall model does not incorporate streamwise variations of any quantity, the
upstream propagation of elliptic effects within the wall-modelled region – for instance,
due to the shock-induced adverse pressure gradient – can only occur through the boundary
conditions applied at the matching location. As shown in figure 3, for both WMLES
resolutions, the Mach number Mawm based on the time- and spanwise-averaged values of
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Re1,x (×106)

FIGURE 3. Distribution of the WMLES local Mach number Mawm = [ρ̄(ū2 + v̄2)/(γ P̄)]1/2 at
the matching location y = hwm for the case α = 7◦, based on the time- and spanwise-averaged
values of the local velocity, density and pressure. The vertical dashed line denotes the inviscid
shock-impingement location on the wall.

the streamwise velocity and local speed of sound at the matching location is everywhere
less than 0.5 in the laminar portion for the case α = 7◦. This is also the case for
the other values of the wedge angle treated here. These considerations indicate that
the wall-modelled layer is fully subsonic on average, and that the resolved field near the
matching location is the one supporting the propagation of elliptic effects. Note that, had
the wall-modelled layer been thick enough to bear the sonic line inside, no propagation of
elliptic effects close to the wall would have been accounted for in the WMLES.

In figure 4 the matching location expressed in viscous units, h+
wm, plunges at Re1,x � 106

for the case α = 7◦ because the flow separates there, and increases rapidly near the inviscid
shock-impingement location Re1,ximp due to the sharp rise of the skin-friction coefficient,
as shown below in § 3. Whereas the time- and spanwise-averaged value of h+

wm remains
everywhere around or below the damping constant A+ in the baseline WMLES shown in
figure 4(a), its maximum value overtakes A+ by a factor of four. As a consequence, based
on the averaged h+

wm, it may be tempting to disregard the effects of the eddy viscosity
built in the wall model in the baseline WMLES. Nonetheless, it is shown in § 3 that the
baseline WMLES without eddy viscosity in the wall-model equations (i.e. μt,wm = 0) does
not lead to satisfactory results neither in the transitional nor in the turbulent portions of
the boundary layer. Despite the fact that the eddy-viscosity hypothesis is questionable in
transitional scenarios, these considerations highlight its dynamical relevance in regions
where local overshoots in h+

wm occur.
In both baseline and coarse WMLES cases, the equilibrium wall model is applied

everywhere along the surface of the plate, including the laminar portion of the boundary
layer. Two important aspects are worth remarking with regards to this choice that are
discussed in the remainder of this section.

It is shown in appendix C that the WMLES adequately captures the velocity and
temperature profiles in the laminar boundary layer, which remains mostly steady and two
dimensional until it becomes highly disturbed in the interaction region. The wall model
performs correctly there because its conservation equations are equivalent to the steady
laminar boundary-layer equations very close to the wall, where advection is negligible.
This can be understood by examining the distribution of h+

wm in figure 4. The values of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.935


909 A8-10 L. Fu, M. Karp, S. T. Bose, P. Moin and J. Urzay

102

101

100

Max

Min

Average

Max

Min

Average

1 2

A+ = 17 A+ = 17

Re1,x

h+
wm

3 4

102

101

100

1 2

Re1,x

3 4
(×106) (×106)

(b)(a)

FIGURE 4. Distribution of the WMLES matching location h+
wm scaled in wall units for the

case α = 7◦, minimum (dashed line), maximum (dot–dashed line), along with the time-
and spanwise-averaged value (solid line). The vertical dashed line denotes the inviscid
shock-impingement location on the wall. Included are the data for (a) baseline and (b) coarse
WMLES cases.

h+
wm in both WMLES remain much smaller than A+ in the laminar region, thereby yielding

negligible values of the eddy viscosity in the wall model. Since order-unity values of h+
wm in

the laminar region are equivalent to very small values of hwm relative to the boundary-layer
thickness, namely hwm/δ�

1 = O(Re−7/4
1,x1

) � 1, the constant molecular stress predicted by
the wall model in the first approximation for y+

wm/A+ � 1 (i.e. see (B 1) in appendix B)
is equivalent to the y/δ� → 0 limit of the steady laminar boundary-layer equations in the
absence of streamwise pressure gradient.

That the wall model performs correctly in the laminar portion of this flow can also
be understood by noticing that the scenarios sought for transition in this study are not
the classical ones in which unstable eigenmodes grow relatively slowly along the entire
portion of the laminar boundary layer, eventually producing transition far downstream in
a way that is rather well understood, at least for calorically perfect gases flowing over
smooth flat surfaces in the absence of incident shocks (Mack 1984). Instead, the physical
processes leading to transition in the present study are spatially localized downstream of
the shock on the leeward side of the separation bubble, and are triggered by the absolute
instability of the separation bubble without participation of any intentional disturbances
at the inflow (Hildebrand et al. 2018). As a result, in the present study there are lesser
consequences derived from the fact that neither the coarse grid resolution in WMLES
nor the equilibrium wall model itself can appropriately support the growth of eigenmodes
along the lengthy laminar portion of the boundary layer upstream of the shock. The task
of the wall model there is limited to providing the velocity and temperature profiles within
the fully viscous wall-modelled layer.

In this work the computational cost of using WMLES was ∼150 times less than
DNS. Specifically, typical DNS cases took 25 million core hours at Argonne’s Mira
supercomputer, whereas only 150 000 core hours were required on average for each
WMLES case on the same machine. Furthermore, it is also shown in § 3 that
non-wall-modelled LESs at the resolutions listed in table 1 provide completely wrong
predictions in the transitional and fully turbulent zones of the boundary layer, which
underscores the positive role of the wall model in warranting acceptable predictions.
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3. Numerical results

In this section the analysis begins by a quantification of the effect of the shock incidence
angle on the peak thermomechanical loads. Next, a detailed analysis of the DNS flow field
is conducted, followed by comparisons between DNS and WMLES, particularly near the
shock-impingement region. This section concludes with a description of the DNS statistics
in the turbulent boundary layer ensuing downstream of the reattachment zone along with
associated comparisons with WMLES.

A number of considerations in this section are based on the skin-friction coefficient
Cf and the Stanton number St as main figures of merit. These two parameters require
information about the inviscid free stream flowing above the boundary layer. However, in
the present problem, the aerothermodynamic state of the inflow free stream is different
from that of the free stream found downstream of the recompression shock. These changes
imperil a proper simultaneous scaling of Cf and St in both the laminar (i.e. pre-interaction)
and turbulent (i.e. post-interaction) boundary layers. As a result, two different definitions
of the skin-friction coefficient and Stanton number are used depending on where the
free-stream conditions are based, namely

Cf ,1 = 2τw

ρ1U2
1

(3.1)

and

St1 = qw

ρ1U1cp
(
Taw,1 − Tw

) , (3.2)

for conditions based on the inflow free stream, and

Cf ,2 = 2τw

ρ2U2
2

(3.3)

and

St2 = qw

ρ2U2cp
(
Taw,2 − Tw

) , (3.4)

for conditions based on the free stream found downstream of the recompression shock.
In (3.2), Taw,1 = T1[1 + r1(γ − 1)Ma2

1/2] is the adiabatic wall temperature based on a
recovery factor r1 = Pr1/2 = 0.85 corresponding to laminar boundary layers (van Driest
1956). Instead, in (3.4), Taw,2 = T2[1 + r2(γ − 1)Ma2

2/2] is the adiabatic wall temperature
based on a recovery factor r2 = Pr1/3 = 0.90 appropriate for turbulent boundary layers
(Volpiani et al. 2018). In all expressions, cp is the constant-pressure specific heat of the
gas, whereas τw and qw are time- and spanwise-averaged values of the wall shear stress
τw = μw(∂u/∂y)w and the wall heat flux qw = λw(∂T/∂y)w, respectively, where T is the
temperature, λw is the thermal conductivity evaluated at the wall temperature, u is the
streamwise velocity and μw is the dynamic viscosity evaluated at the wall temperature.

3.1. Effects of the shock incidence angle on peak thermomechanical loads
The DNS distributions of Cf ,1 and St1 as a function of the streamwise Reynolds number
Re1,x are provided in figure 5 for the wedge angles considered here. Initially all the curves
collapse on the laminar correlation obtained from the similarity solution, as expected
by the scaling with the pre-interaction free-stream values used in (3.1) and (3.2). The
characteristic shapes of Cf ,1 and St1 include an early drop in the laminar zone due to
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FIGURE 5. Direct numerical simulation results of (a) skin-friction coefficient and (b) Stanton
number as a function of the local Reynolds number Re1,x and the wedge angle α. In this
figure the van Driest turbulent correlation for the skin-friction coefficient Cf ,2 is calculated
based on post-interaction free-stream conditions, with a virtual origin equated to the leading
edge of the plate, and is then re-scaled by a factor of ρ2U2

2/ρ1U2
1 obtained by the DNS

solution to refer the skin-friction coefficient to the pre-interaction free stream, Cf ,1. Similarly,
the van Driest turbulent correlation for the Stanton number St2 is calculated from Cf ,2 using the
Reynolds analogy factor 2St2/Cf ,2 = Pr−2/3, and is then re-scaled by a factor of ρ2U2(Taw,2 −
Tw)/[ρ1U1(Taw,1 − Tw)] obtained by the DNS solution to refer the Stanton number to the
pre-interaction free stream, St1.

boundary-layer separation and a sudden overshoot downstream of the shock-impingement
region because of transition. The separation of the laminar boundary layer causes a
change of sign in Cf ,1 due to the flow reversal and a decrease in St1 due to the resulting
weaker temperature gradient at the wall. In contrast, transition to turbulence leads to large
spikes in Cf ,1 and St1, whose magnitude increase with the wedge angle. An additional
discussion of this important phenomenon is provided in § 3.2 upon examining flow
structures participating in the augmentation of the local thermomechanical loads.

The case α = 5◦ behaves distinctly from the others. While overshoots are observed for
higher wedge angles, the α = 5◦ case is characterized by a modest rise in Cf ,1 and St1,
both of which stay far below the other cases. This is attributed to the fact that transition
did not occur within the computational domain in the DNS of the 5◦ case. Instead, the
slight increments in Cf ,1 and St1 downstream of the shock are mainly produced by the
variation of the free-stream aerothermodynamic state across the shock and its impact on
τw and qw, whereas the normalization used for Cf ,1 and St1 involves only the pre-interaction
free-stream aerothermodynamic state, as indicated above.

Based on the above considerations, figure 5 suggests that the critical wedge angle for the
onset of shock-induced transition is somewhere between 5◦ and 6◦. For the transitioning
cases α = 6◦, 7◦ and 8◦, the values of Cf ,1 and St1 downstream of transition do not agree
well with the turbulent correlation of van Driest as expected, since both Cf ,1 and St1 are
based on the pre-interaction values of the free stream, as mentioned above. In addition,
the van Driest turbulent correlation for the Stanton number makes use of the Reynolds
analogy factor Pr−2/3 = 1.24 traditionally used to approximate a Reynolds analogy for
boundary layers with non-unity Prandtl numbers. It is shown in § 3.4 that agreement with
the van Driest turbulent correlations for the skin-friction coefficient and Stanton number
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FIGURE 6. Direct numerical simulation (solid lines), baseline WMLES (dotted lines) and
coarse WMLES (dashed lines) peak values of the (a) skin-friction coefficient and (b) Stanton
number as a function of the wedge angle α. Since the boundary layer did not transition in the
DNS of the α = 5◦ case, its data points are purposely disconnected from the DNS data points
corresponding to the transitioning cases α = 6◦, 7◦ and 8◦.

is obtained using the definitions (3.3) and (3.4) along with the modified Reynolds analogy
factor of 1.16 proposed by Chi & Spalding (1966).

Qualitative comparisons between the DNS Stanton numbers for α = 6◦, 7◦ and 8◦ in
figure 5 with the experimental measurements by Currao et al. (2020) for α = 10◦ show that
(i) the minimum value of St1 is in the separated region in both DNS and experiments, and
(ii) a monotonic increase of St1 occurs near the reattachment in both DNS and experiments,
after which transition of the boundary layer takes place simultaneously with an overshoot
in St1. Downstream of the transition zone, St1 decays in both DNS and experiments,
although the decay in the latter is much more substantial because of the expansion fan
emanating from the trailing edge of the wedge.

Small changes in the wedge angle have profound consequences on the flow field.
In particular, the DNS results for Cf ,1 and St1 in figure 5 indicate that increasing the
wedge angle leads to earlier boundary-layer separation, longer separation bubbles and
higher overshoots of Cf ,1 and St1 near the shock-impingement region as a result of earlier
transition. The dependency of the peak values Cf ,1 and St1 on the wedge angle α is shown
in figure 6. The trend in the DNS results is nearly linear, such that a 1◦ increase in α causes
approximately a 30 % increase in the average peak thermomechanical load acting on the
plate. Comparisons between DNS and WMLES predictions of peak values of Cf ,1 and St1
in figure 6 are deferred to § 3.3.

3.2. Flow field ensued by the incidence of the shock on the boundary layer
The separation of the laminar boundary layer upstream of the shock-impingement region
is induced by the adverse pressure gradient created by the incident oblique shock wave,
whose effect is communicated upstream along the subsonic flow close to the wall. The
time- and spanwise-averaged profiles of static pressure on the wall showing the footprint
of the shock wave are provided in figure 7 for the transitioning cases. The curves are
composed of three plateaus (from left to right) that correspond, respectively, to the laminar
zone, the separation bubble and the turbulent zone downstream of the recompression
shock. Note that the third plateau may not be present in experiments subjected to expansion
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FIGURE 7. Direct numerical simulation (black solid lines), baseline WMLES (green dotted
lines) and coarse WMLES (blue dot–dashed lines) results for time- and spanwise-averaged
profiles of the wall pressure for wedge angles of (a) α = 6◦, (b) α = 7◦ and (c) α = 8◦. The
black dashed lines indicate the dimensionless post-interaction static pressure P2/P1 calculated
assuming inviscid flow.

Wedge angle α [◦] U2/U1 P2/P1 T2/T1

6 DNS 0.956 4.850 1.642
WMLES 0.958 4.845 1.650
WMLES coarse 0.957 4.844 1.634
Inviscid theory 0.957 4.714 1.600

7 DNS 0.945 6.050 1.807
WMLES 0.944 5.936 1.814
WMLES coarse 0.946 5.932 1.796
Inviscid theory 0.948 5.848 1.724

8 DNS 0.933 7.253 1.958
WMLES 0.926 7.270 2.040
WMLES coarse 0.929 7.252 2.007
Inviscid theory 0.939 7.172 1.856

TABLE 2. Comparison of the free-stream velocity, pressure and temperature ratios across the
interaction zone for the transitioning cases.

effects from the trailing edge of the wedge (Currao et al. 2020). In the present simulations,
approximately five-, six- and seven-fold overall increase in the pressure is observed across
the interaction region for the cases α = 6◦, 7◦ and 8◦, respectively, mostly in agreement
with the inviscid theory. Similar agreements between DNS and the inviscid theory are
observed for velocity and temperature ratios in table 2.

A side view of the resulting separation bubble for the case α = 7◦ can be approximately
identified as the dark triangle-shaped region at the foot of the incident shock in figure 8(a),
where the gas heats up by the reversing flow deceleration and its density reaches small
values. Despite the high temperatures of the gas in the separation bubble, the wall heat flux
is relatively small in this region, since the velocity gradients involved in the recirculating
flow are small in comparison with those present in the laminar and turbulent portions of
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FIGURE 8. Direct numerical simulation instantaneous contours for the case α = 7◦ including
(a) sideways view of the density field, (b) zoomed view of the post-recompression-shock
region, (c) plane view of the same region at y+ = 100 based on outflow conditions, along with
(d) time-averaged contours of the Stanton number St1 along the wall. The streamwise locations
indicated by the triangles are averaged in time and along the spanwise coordinate.

the boundary layer. Experimental flow visualizations by Currao et al. (2020) show flow
features qualitatively similar to those revealed by the density field in figure 8(a).

In addition to the separation bubble, figure 8(a) indicates that the structure of the flow
ensuing from the interaction consists of a separation shock emanating from the point
of flow reversal, an expansion fan radiated from the crest of the separation bubble as
the supersonic overriding flow turns downwards around it, and a recompression shock
created at the point of reattachment. The incident and separation shocks intersect along a
horizontal line in the spanwise direction above the separation bubble, perpendicularly to
the plane of figure 8(a). The result is a regular reflection that shifts the effective interaction
region downstream by approximately 75δ�

1 with respect to the inviscid shock-impingement
location ximp. There, the effective incidence angle β of the shock impinging on the
boundary layer is closer to β ≈ 11◦ than to the theoretical value β = 14.8◦ corresponding
to the weak solution of an oblique shock created by an α = 7◦ wedge. As a consequence,
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FIGURE 9. Direct numerical simulation results for the case α = 7◦ including time- and
spanwise-averaged profiles of (a) streamwise velocity and (b) temperature. The profiles are
extracted at the streamwise locations (x − x1)/δ

�
1 = 380 (solid lines; location within the

separation bubble) and (x − x1)/δ
�
1 = 445 (dashed lines; location near peak heating). In (b) a

peak in the temperature profile at the station (x − x1)/δ
�
1 = 445 develops very close to the wall,

as shown in the inset.

the effective incidence angle of the shock is always smaller than the theoretical one
predicted by the inviscid solution unless the incident shock is sufficiently weak to prevent
separation.

In the cases α = 6◦, 7◦ and 8◦, the boundary layer transitions to turbulence on
the leeward side of the separation bubble, shortly downstream of the time- and
spanwise-averaged streamwise coordinate for reattachment. A zoomed side view of this
region is provided in figure 8(b). Dynamic visualizations of the flow in this region show a
persistent flapping motion of the shear layer formed between the low-speed recirculating
flow within the separation bubble and the high-speed flow above. This flapping motion, in
conjunction with early streaks generated shortly upstream of the reattachment point, lead
to the onset of broadband turbulence at the same location where the maximum value of
the Stanton number occurs, as observed in figure 8(c) and further discussed below.

The DNS distribution of the time-averaged Stanton number shown in figure 8(d) for
the case α = 7◦ suggests the presence of quasi-stationary streaky thermal footprints
of the flow onto the wall near the transition region. These structures have a spanwise
wavelength of approximately 5δ�

1. These structures do not vanish by increasing the
averaging time interval, as corroborated by similar streaky thermal patterns observed
experimentally using infrared thermography by Currao et al. (2020). It should be noted
that the variation of the time-averaged Stanton number along the spanwise direction is
expected in the transitional region since this is the signature of the underlying instability
mechanism, which is characterized by a non-zero spanwise wavenumber along with a
purely exponential growth in time at each point in space (Hildebrand et al. 2018).

The spanwise- and time-averaged velocity and temperature profiles in the transitional
region at station (x − x1)/δ

�
1 = 380 within the separation bubble are indicated by the

solid lines in figure 9. The overall flow overriding the separation bubble corresponds to an
inflectional shear layer. The temperature attains a maximum at y/δ�

1 = 2.15 and attenuates
towards the wall due to the cold-wall boundary condition.

The lack of monotonicity in the temperature profile in figure 9(b) in the transitional
region has important consequences on the cross-correlations between velocity and
temperature fluctuations in the boundary layer. To visualize this, consider the
time-averaged spatial fluctuations of the streamwise and wall-normal velocities in the
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FIGURE 10. Direct numerical simulation results for the case α = 7◦ including solid contours
of the time-averaged fluctuations of streamwise velocity (denoted by 〈u〉t) at (x − x1)/δ

�
1 = 380

within the separation bubble. The solid (dashed) lines indicate positive (negative) time-averaged
fluctuations of the wall-normal velocity with contour spacing of 0.03 in dimensionless units (in
panel (a)), as well as positive (negative) time-averaged temperature fluctuations with contour
spacing of 0.05 in dimensionless units (in panel (b)).

cross-stream plane shown in figure 10(a). Similarly to the stationary spanwise structures
of the Stanton number observed in figure 8(d), the spatial inhomogeneity of the velocity
fluctuations in the spanwise direction is stationary, since both are signatures of the
underlying instability mechanism. Four sets of high- and low-speed streaks are observed
in figure 10(a), with maximum magnitudes in the region of strong shear (3 � y/δ�

1 � 5).
The time-averaged spatial fluctuations of the streamwise and wall-normal velocities
are anti-correlated along the span, where the interaction between the mean shear and
streamwise vortices results in streamwise velocity streaks. The time-averaged spatial
fluctuations of the temperature and streamwise velocity on the cross-stream plane are
shown in figure 10(b). Two clearly distinguished regions are observed there: a first region
above the wall-normal location of maximum mean temperature (y/δ�

1 = 2.15), where the
fluctuations of u and T are anti-correlated, and a second region below the aforementioned
wall-normal location, where the fluctuations of T flip their sign and become positively
correlated with the fluctuations of u. This sign change is in agreement with the lift-up
effect, since positive wall-normal velocity shifts hot gas away from the wall for the portion
y/δ�

1 > 2.15 of the temperature profile that has a negative gradient, whereas the opposite
happens for the portion y/δ�

1 < 2.15 of the temperature profile that has a positive gradient.
Similar considerations as those made above also apply downstream of the separation

bubble. In particular, the dashed lines in figure 9 show the time- and spanwise-averaged
velocity and temperature profiles for the downstream station (x − x1)/δ

�
1 = 445 deep in

the transitional zone where the Stanton number attains its maximum value. In figure 9(b)
the temperature profile arrives at the wall with a positive slope because of a spike that is not
visible in this vertical scale but is revealed later in § 3.4 by zoomed-up views near the wall.
The corresponding time-averaged spatial fluctuations of the streamwise and wall-normal
velocities on the cross-stream plane are shown in figure 11(a). The signature of the four
sets of streamwise streaks that were observed upstream in figure 10(a) is still visible here.
However, the structures are now distorted by harmonic interactions along the span (e.g.
see z/δ�

1 ≈ 5 and 40), and the magnitude of the fluctuations is much smaller compared
with the upstream values shown in figure 10(a). The time-averaged spatial fluctuations
of the temperature and streamwise velocity in figure 11(b) are almost anti-correlated
along the entire cross-section except for a very thin region close to the wall below the
temperature peak, where the positive temperature gradient induces a change in the sign
of the correlation. As a result, the non-monotonicity of the mean temperature caused by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.935


909 A8-18 L. Fu, M. Karp, S. T. Bose, P. Moin and J. Urzay

10

8

6

4

2

0 5 10 15 20 25 30 35 40 45

10

8

6

4

2

0 5 10 15 20 25 30 35 40 45

(a) (b)

–0.2

–0.1

0

0.1

0.2
(〈u〉t – u‾) /U1

y/δ1

z/δ1 z/δ1

FIGURE 11. Direct numerical simulation results for the case α = 7◦ including solid contours
of the time-averaged fluctuations of streamwise velocity (denoted by 〈u〉t) at (x − x1)/δ

�
1 =

445 near peak heating. The solid (dashed) lines indicate positive (negative) time-averaged
fluctuations of the wall-normal velocity with contour spacing of 0.02 in dimensionless units
(in panel (a)), as well as positive (negative) time-averaged temperature fluctuations with contour
spacing of 0.05 in dimensionless units (in panel (b)).

the wall coldness has a fundamental effect that leads to the breakdown of Morkovin’s
hypothesis below the wall-normal location of the maximum temperature. This aspect is
further analysed in § 3.4.

The late stages of transition are visualized in figure 12 using instantaneous isosurfaces
of the second invariant Q of the velocity-gradient tensor for the case α = 7◦. The
isosurfaces are coloured by the root-mean-square (r.m.s.) temperature and the incident
shock is superimposed. The four large-scale spanwise structures discussed above are
seen lingering between the reattachment and peak-heating location [400 � (x − x1)/δ

�
1 �

440]. Downstream of the peak-heating location, a breakdown into much smaller scales
is observed. For the case α = 7◦, the boundary layer ensuing from the shock-induced
transition approaches the outflow in a turbulent state approximately at a post-interaction
free-stream Mach number Ma2 = 4.2 and a post-interaction momentum-based Reynolds
number Re2,θ = 2850.

3.3. Comparisons between DNS and WMLES near the shock impingement
The DNS distributions of Cf ,1 and St1 as a function of the streamwise Reynolds number
Re1,x are compared in figure 13 with those obtained using WMLES. In all cases, WMLES
underpredicts the size of the separation bubble with respect to DNS. In addition, WMLES
delays separation (i.e. the streamwise coordinate at separation predicted by WMLES is
always larger than that predicted by DNS). A good agreement is however observed between
DNS and WMLES in the distributions of Cf ,1 and St1 upstream and within the separation
zone.

An additional aspect revealed by figure 13 is that WMLES prompts transition and
peak heating with respect to DNS in all cases (i.e. transition starts always earlier along
the streamwise coordinate in WMLES). The discrepancies between WMLES and DNS
become clearly evident in the case α = 5◦. Specifically, the skin friction and Stanton
number in WMLES rise to values significantly larger than the DNS. Closer examination
of the solution in terms of the temperature contours in figure 14(a) shows that the
post-interaction boundary layer undergoes transition in both baseline and coarse WMLES,
whereas no transition is observed in DNS within the present computational domain.
At larger wedge angles, α = 6◦, 7◦ and 8◦, both DNS and WMLES predict transition
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FIGURE 12. Direct numerical simulation instantaneous three-dimensional visualization of shock-induced transition in the case α = 7◦, including
isosurfaces of the second invariant Q of the velocity-gradient tensor coloured by the magnitude of the dimensionless root-mean-square temperature.
The value of Q on the isosurfaces is set to Q = 0.3a2

1/δ
�
1

2, with a1 being the speed of sound in the free stream at the inflow. The triangles mark key
locations based on time and spanwise-averaged quantities.
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FIGURE 13. (a,c,e,g) Skin-friction coefficient and (b,d, f,h) Stanton number as a function of the
local Reynolds number Re1,x for wedge angles (a,b) α = 5◦, (c,d) α = 6◦, (e, f ) α = 7◦ and
(g,h) α = 8◦. Black solid and dotted lines denote, respectively, the laminar correlation and the
van Driest turbulent correlation (see figure 5 caption for details on the calculation of the turbulent
correlation). Blue, yellow and red lines denote, respectively, DNS, baseline WMLES and coarse
WMLES.
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to turbulence shortly downstream of the impingement by the shock, although WMLES
always does it slightly in advance with respect to DNS, as shown in figure 14(b–d).

Apparently, the incorrect transition predicted by WMLES at α = 5◦, when the shock
has a relatively modest effect, is caused by numerical errors, which spuriously influence
the dynamics of the post-interaction boundary layer in absence of competing disturbances
of physical origin (see § 1 for a discussion about the influences of inflow disturbances on
transition when the shock angle is small). In contrast, at higher incidence angles, α = 6◦,
7◦ and 8◦, when the shock has a stronger effect, the WMLES prediction of transition is
reasonable, albeit spatially advanced with respect to DNS. That the transition predicted by
WMLES at α = 6◦, 7◦ and 8◦ at both grid resolutions is not the result of a confabulation of
numerical and modelling mishaps, is evidenced, for instance, by the correct spatial trend
of the transition front moving upstream as α increases in figure 14, or by the increase of
the peak thermal load with α in figure 6(b) in a manner that resembles the DNS.

The distribution of the mean pressure along the wall is predicted reasonably well by
WMLES, as shown in figure 7. Mismatches of 10 % are observed in the transitional region
and near the separation point. In addition, both WMLES and DNS agree well with the
post-interaction pressure, velocity and temperature anticipated by the inviscid solution, as
observed in table 2.

The effect of the WMLES grid resolution is most significant in the transitional region.
Specifically, a decrease in the WMLES grid resolution leads to shallower rises of wall
pressure, Cf ,1, and St1 in the transitional region, along with smaller peak values of Cf ,1 and
St1. Comparisons between DNS and WMLES peak values of Cf ,1 and St1 as a function
of the wedge angle α in figure 6 indicate that improved agreement is obtained with the
DNS results as the WMLES grid resolution is increased. Farther downstream of transition
and peak heating, where the boundary layer becomes turbulent, only moderate differences
are observed between the two resolutions, and the values of Cf ,1 and St1 predicted by
WMLES nearly collapse on those of DNS. Overall, the baseline WMLES is closer to the
DNS results in the transitional region than the coarse WMLES. Additional results are
provided in appendix D, where the WMLES grid is coarsened isotropically in the three
directions for α = 7◦.

A more detailed comparison is made between the DNS and WMLES flow fields in
figure 14 by examining the instantaneous temperature contours on a plane parallel to
the wall at y/δ�

1 = 1.65. In the case α = 5◦ shown in figure 14(a), the flow in the DNS
contains organized streaks in the post-interaction region that persist downstream without
undergoing breakdown. In contrast, the boundary layer in both WMLES cases involves
unstable narrower streaks, and eventually transitions to turbulence. In the cases α = 6◦,
7◦ and 8◦, the discrepancies are less significant, with both DNS and WMLES leading to
transition. However, in those cases, narrower streaks are observed as the grid resolution
of the WMLES is increased, although these structural discrepancies do not translate into
severe mismatches neither in the location of breakdown nor in the location of peak heating.
The latter, indicated by red triangles in figure 14 for each case, serves as an accurate
indicator of full breakdown to turbulence in both DNS and WMLES.

Further insights into the performance of the baseline WMLES are gained in figure 15
by comparing its time- and spanwise-averaged profiles of velocity and temperature near
transition and peak heating with those from DNS for the case α = 7◦. There, the shear
layer, which separates the recirculating flow and the downwards high-speed inviscid
stream at the foot of the incident shock, is much closer to the wall in the WMLES,
since the reattachment occurs noticeably more upstream in WMLES than in DNS (see
figure 8(b) for spatial localization of the shear layer). The corresponding profiles of the
r.m.s. of the fluctuations of temperature and streamwise velocity are presented in figure 16.
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FIGURE 14. Direct numerical simulation and WMLES instantaneous temperature contours
on a plane parallel to the wall at y/δ�

1 = 1.65 for (a) α = 5◦, (b) α = 6◦, (c) α = 7◦ and
(d) α = 8◦. The streamwise locations indicated by triangles have been averaged in time and
spanwise direction.
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FIGURE 15. Direct numerical simulation (solid lines) and baseline WMLES (dot–dashed lines)
of time- and spanwise-averaged profiles of (a) streamwise velocity and (b) temperature at several
stations along the x-axis for α = 7◦. In panel (a) the velocity is plotted as 10(ū/U1) + (x −
x1)/δ

�
1, whereas in panel (b) the temperature is plotted as (3/2)(T̄/T1) + (x − x1)/δ

�
1. Also

included are the solutions of the equilibrium wall model (green lines) within the wall-modelled
region y ≤ hwm.

The maximum values of those quantities occur in the shear layer in both WMLES and
DNS. The turbulent heat fluxes in the streamwise and wall-normal directions, along with
the Reynolds stress, are also maximized by the turbulent transport in the shear layer,
as shown in figure 17. In all these profiles it is observed that WMLES provides an
acceptable prediction of features such as shear-layer thickness, maximum shear, maximum
values of r.m.s. fluctuations of temperature and streamwise velocity, and maximum
values of turbulent heat fluxes and Reynolds stress. However, the WMLES profiles are
clearly shifted in space near the shock impingement owing to different separation and
reattachment locations.
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FIGURE 16. Direct numerical simulation (solid lines) and baseline WMLES (dot–dashed lines)
of r.m.s. profiles of (a) streamwise velocity and (b) temperature at several stations along the

x-axis for α = 7◦. In panel (a) the velocity is plotted as 36
√

u′2/U1 + (x − x1)/δ
�
1, whereas in

panel (b) the temperature is plotted as 6
√

T ′2/T1 + (x − x1)/δ
�
1.

In summary, mismatches between the WMLES and DNS statistics in the transitional
region are mostly dominated by the erroneous spatial advance in the reattachment
predicted by WMLES. However, the root cause of this discrepancy cannot be
straightforwardly isolated. This can be understood by noticing that the spatial advance in
the reattachment in WMLES is coupled with the spatial delay predicted in separation,
the latter engendering a separation shock at an erroneous angle. In addition, as the
boundary layer approaches separation, its velocity profile becomes more contorted and
critically more under-resolved by the WMLES grid. The separation shock in WMLES then
intersects the main shock, which is refracted towards the boundary layer at an erroneous
angle. The resulting accumulation of errors is germane to the present configuration
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FIGURE 17. Direct numerical simulation (solid lines) and baseline WMLES (dot–dashed
lines) of (a) streamwise turbulent heat flux, (b) wall-normal turbulent heat flux and
(c) Reynolds stress at several stations along the x-axis for α = 7◦. The data is plotted as
20ρu′′T ′′/(ρ1U1T1) + (x − x1)/δ

�
1 in panel (a), as 150ρv′′T ′′/(ρ1U1T1) + (x − x1)/δ

�
1 in panel

(b), and as 1000ρu′′v′′/(ρ1U2
1) + (x − x1)/δ

�
1 in panel (c).

that involves widely different, interacting flow structures communicated by an adverse
pressure gradient, and is not as severely observed in WMLES predictions of less complex
configurations such as shock-free flat-plate turbulent boundary layers or turbulent channel
flows. These considerations highlight the closely coupled contributions of all these
phenomena in setting the overall performance of WMLES in the present problem.

In order to isolate the role of the equilibrium wall model and its eddy viscosity in
predicting the spatial distributions of the skin-friction coefficient and Stanton number,
two tests are performed in figure 18 for the case α = 7◦ using the baseline WMLES
grid. In the first test, the equilibrium wall model is replaced by a non-slip boundary
condition. The resulting curves are denoted by the tag ‘LES without wall model’ in
figure 18. Negligible changes are observed in the laminar portion upstream of the
shock-impingement zone, which indicates that the wall model does not have any significant
effect there. In contrast, in the post-interaction boundary layer, the skin-friction coefficient
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FIGURE 18. (a) Skin-friction coefficient and (b) Stanton number as a function of the local
Reynolds number Re1,x in DNS (solid lines), baseline WMLES (thick dot–dashed lines), baseline
WMLES with eddy viscosity set to zero in the wall-model equations (thin dot–dashed lines), and
no-slip LES performed on the baseline WMLES grid but without the wall model (dashed lines).
All results in this figure correspond to the case α = 7◦.

is significantly overpredicted while the Stanton number is underpredicted by a factor of
two. In conclusion, without the wall model, the predictions of the transitional and turbulent
portions of the boundary layer are largely degraded due to deficient physical modelling and
to numerical errors enabled by the coarse LES mesh.

In the second test, the equilibrium wall model is activated but its eddy viscosity μt,wm,
defined in (B 3) in appendix B, is turned off. The resulting curves are denoted by the tag
‘WMLES without eddy viscosity in the wall-model equations’ in figure 18. By turning off
the eddy viscosity, the wall model provides only the viscous continuations of the velocity
and temperature profiles within the wall-modelled region. In this case, the performance of
the equilibrium wall model also deteriorates significantly. In particular, despite the fact that
the average matching location h+

wm is within the damped spatial range of the wall-normal
coordinate (i.e. see figure 4), the results in figure 18 suggest that μt,wm plays an important
role in the prediction of Cf and St not only in the turbulent boundary layer ensuing
downstream of the interaction, as expected, but also in the transitional zone near the shock
impingement. Note that these considerations do not imply neither that the eddy-viscosity
model (B 3) is the correct one to use in the transitional zone, nor that the eddy-viscosity
hypothesis is appropriate for transitional flows, but that the eddy-viscosity model (B 3)
appears to have a beneficial effect on the solution compared to setting μt,wm = 0. This
effect is particularly relevant in transitional spots of large skin friction, where the local
instantaneous values of h+

wm can be as high as four times the van Driest damping constant,
as shown in figure 4.

3.4. The turbulent boundary layer far downstream of the impingement by the shock
While §§ 3.2 and 3.3 were focused on the transitional region, this section analyses the
turbulent boundary layer downstream of the interaction region for the cases α = 6◦, 7◦

and 8◦. Table 3 summarizes relevant parameters characterizing the state of the turbulent
boundary layer at a representative streamwise location (x − x1)/δ

�
1 = 580, on which most

of the statistical analysis outlined below is based.
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Wedge angle α [◦] Re2,θ Re2,τ Ma2 Tw/T2

6 2796 595 4.5 2.7
7 2846 682 4.2 2.5
8 2912 788 4.0 2.3

TABLE 3. Conditions corresponding to the turbulent boundary layer at (x − x1)/δ
�
1 = 580 far

away downstream of the recompression shock. The table includes the post-interaction Reynolds
number based on the momentum thickness Re2,θ , the Reynolds number based on the wall-friction
velocity Re2,τ , the post-interaction Mach number Ma2 and the ratio of the wall temperature and
the post-interaction free-stream temperature Tw/T2.

The physical characteristics of the ensuing turbulent boundary layer are determined by
the post-interaction values of the free-stream Mach number Ma2, the momentum-based
Reynolds number Re2,θ (or the friction Reynolds number Re2,τ ), and the ratio of the wall
temperature to the free-stream temperature Tw/T2. In the three cases shown in table 3,
Ma2 is smaller than the inflow free-stream value Ma1 = 6 because of the net deceleration
of the free stream as it crosses the incident shock and the train of shocks and expansion
fans induced by the impingement. Similarly, the net heating of the free stream across the
interaction zone leads to temperature ratios Tw/T2 smaller than the corresponding inflow
value Tw/T1 = 4.5. In the turbulent boundary layer the overall consequences of increasing
the wedge angle are a decrease in Ma2, an increase in Re2,θ (or Re2,τ ), and a decrease
in Tw/T2.

As indicated by the third plateau of the wall pressure shown in figure 7, the turbulent
boundary layer far downstream of the impingement by the shock is one under negligible
mean streamwise gradient of static pressure. The wall-normal gradient of the static
pressure is similarly weak, since the wall pressure in that third plateau is well described
by the free-stream static pressure calculated from an inviscid interaction, as expected from
the moderate values of Ma2. The remainder of this section is dedicated to assessments of
analogies and hypotheses traditionally developed for zero-pressure-gradient compressible
boundary layers, such as Reynolds analogies, mean velocity transformations and
Morkovin’s hypothesis.

The three different wedge angles considered in table 3 unfold in dimensionless space
as three different sets of values of Re2,θ , Ma2 and Tw/T2. Although the sensitivity of the
solutions to the particular value of Re2,θ is expected to be small at the relatively large
values of Re2,θ considered here, some of the statistics of the different metrics described
below do not collapse among the three turbulent boundary layers because of additional
dependencies of the solution on Ma2 and Tw/T2. Notable exceptions that remain relatively
robust to changes of the wedge angle within the range tested here are the skin-friction
coefficient Cf ,2 and the Stanton number St2 downstream of the recompression shock
when scaled with post-interaction free-stream values, as defined in (3.3) and (3.4). This
is elicited by the improved collapse of the turbulent portion of the profiles observed
in figure 19, as opposed to the significant dispersion in figure 6 when pre-interaction
free-stream conditions are employed instead. These considerations suggest that the effects
of the variations of α on the wall shear stress and wall heat flux in the turbulent portion of
the boundary layer can be approximately scaled out despite the different values of Re2,θ ,
Ma2 and Tw/T2 in each case. In figure 19(b) the agreement between the van Driest turbulent
correlation for St2 and the DNS solution is greatly enhanced by using the Reynolds
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Wedge angle α [◦] DNS WMLES WMLES coarse

6 1.157 1.170 1.146
7 1.127 1.153 1.129
8 1.125 1.192 1.152

TABLE 4. The Reynolds analogy factor, 2St2/Cf ,2, for DNS, baseline WMLES and coarse
WMLES, calculated at station (x − x1)/δ

�
1 = 580 for various wedge angles.

analogy factor 2St2/Cf ,2 = 1.16 proposed by Chi & Spalding (1966) based on correlation
of experimental data for turbulent boundary layers with Mach numbers less than 5 and
near-adiabatic wall boundary conditions. This is in contrast to the traditional Reynolds
analogy factor 2St2/Cf ,2 = Pr−2/3 = 1.24 utilized in figure 5(b) for boundary layers with
non-unity Prandtl numbers, which leads to significant mismatch between the van Driest
turbulent correlation for St2 and the DNS solution. That the Reynolds analogy factor
2St2/Cf ,2 = 1.16 proposed by Chi & Spalding (1966) is a more accurate model of the
DNS results presented here can be seen in table 4. Both DNS and WMLES results settle
increasingly earlier on a value of the Reynolds analogy factor as the wedge angle increases,
as observed in figure 20, because the boundary layer transitions correspondingly earlier
along the streamwise coordinate. The differences between the Reynolds analogy factors
predicted by WMLES and DNS, and between them and the value 1.16 experimentally
correlated by Chi & Spalding (1966), are small and remain within a 5 % error for all the
conditions tested here. However, as the wedge angle increases, the DNS results predict a
slight decrease in the mean value of the Reynolds analogy factor, whereas the trend of
the WMLES results is less clear. As observed in previous experimental studies collected
by Cary (1970) and discussed in Bradshaw (1977), increasing the wall cooling leads to
a slight decrease in the Reynolds analogy factor below that proposed by Chi & Spalding
(1966). Although the behaviour of the DNS results observed in table 4 as the wedge angle
is increased is reminiscent of an increase in wall cooling, it should be mentioned that
the ratio Tw/T0, with T0 being the stagnation temperature, is mostly the same in both
DNS and WMLES within a 0.1 % error, and is independent of the wedge angle, since the
wall temperature is fixed and the stagnation temperature of the free stream is constant
across the interaction region. As a result, the decrease in the Reynolds analogy factor
2St2/Cf ,2 observed as the wedge angle increases in the DNS cannot be easily reconciliated
with the observations made by Cary (1970), and may instead be attributed to the intrinsic
dependency of the solution on the parameters Re2,θ , Ma2 and Tw/T2 listed in table 3, which
differ slightly among the three cases.

For all three cases, figure 21 indicates that the present DNS results best match with the
temperature-velocity relation proposed by Duan & Martin (2011), which is nonetheless
based on correlation of DNS data of a different configuration involving temporally
evolving turbulent boundary layers. In contrast, the Crocco–Busemann formula for Pr = 1
(Busemann 1931; Crocco 1932), and the Walz relation that accounts for Pr /= 1 (Walz
1962, 1966), depart from the DNS data by amounts of order 10 % and 5 %, similarly to
previous observations by Zhang et al. (2014) and Duan et al. (2010).

In figure 21 the model for the temperature-velocity relation proposed by Duan &
Martin (2011) requires a calibration parameter θ = 0.8259, which was connected later
through analysis by Zhang et al. (2014) with the Reynolds analogy factor multiplied by the
Prandtl number, namely θ = 2St2Pr/Cf ,2. Evaluation of the latter using the DNS results in
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α = 6° van Driest turbulent correlation
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FIGURE 19. (a) Skin-friction coefficient and (b) Stanton number as a function of the
post-interaction local Reynolds number Re2,x = U2x/ν2 for α = 6◦ (black lines), α = 7◦
(blue lines) and α = 8◦ (red lines), including DNS (solid lines) and the van Driest turbulent
correlations (dashed lines). In this figure the van Driest turbulent correlation for the skin-friction
coefficient Cf ,2 is calculated based on post-interaction free-stream conditions, with a virtual
origin equated to the leading edge of the plate. Similarly, the van Driest turbulent correlation for
the Stanton number St2 is calculated from Cf ,2 using the Reynolds analogy factor 2St2/Cf ,2 =
1.16 from Chi & Spalding (1966).

table 4 indicates that 2St2Pr/Cf ,2 differs from the model parameter θ = 0.8259 by small
amounts of order 0.9 % (for α = 6◦), 1.7 % (for α = 7◦) and 1.9 % (for α = 8◦), thereby
corroborating the analysis made by Zhang et al. (2014).

The comparisons between the mean temperature-velocity relations from DNS and
WMLES presented in figure 22 for the case α = 7◦ show an encouraging agreement
over the entire range of velocities. This is despite the fact that a significant portion of
the momentum of the turbulent boundary layer is unresolved by the LES grid. However,
the equilibrium wall model correctly captures the DNS mean temperature-velocity
relations within the wall-modelled region even in the coarser WMLES case. Some
understanding of the structure of the mean streamwise velocity profile can be gained
by transforming it in such a way as to resemble as much as possible the mean velocity
profile of an incompressible turbulent boundary layer. This is the objective of the velocity
transformations shown in figure 23, which includes those proposed by van Driest (1956)
and Trettel & Larsson (2016), the latter being a revision of the former to account for
both viscosity and density variations in boundary layers over non-adiabatic walls. Both
transformations reveal the presence of viscous- and log-like layers in the transformed
velocity profiles. A lack of collapse among the transformed mean velocity profiles
corresponding to the three different wedge angles in figure 23 is clearly noticeable in the
outer layer, where the sensitivity of the wake parameter to changes in the post-interaction
Mach numbers and heating rates appears to be significant.

Neither one of the two transformations employed in figure 23 lead to collapse of the
log-layer mean velocity profile on the incompressible log law. Specifically, figure 23
indicates that, for the three angles tested here, the effective Kármán constant of the
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FIGURE 20. Direct numerical simulation (blue solid lines), baseline WMLES (green dotted
lines) and coarse WMLES (red dashed lines) distributions of the Reynolds analogy factor
as a function of the post-interaction local Reynolds number Re2,x = U2x/ν2 for (a) α = 6◦,
(b) α = 7◦ and (c) α = 8◦, along with the reference value 1.16 (black dot–dashed line) proposed
by Chi & Spalding (1966).

transformed mean velocity profile is smaller than the nominal Kármán constant 0.41 of
the incompressible log law.

The transformed mean velocity profiles obtained by the WMLES agree well with those
of the DNS for the most part, as suggested by the comparisons provided in figure 24 for
α = 7◦. However, discrepancies are observed in the first and second grid points of the LES
grid, where the WMLES are expected to be influenced by numerical errors. The two other
angles α = 6◦ and 8◦ lead to similar conclusions and are not included here for brevity. The
differences caused by coarsening the resolution of the WMLES grid in the wall-normal
direction are small and do not degrade the agreement between DNS and WMLES in any
significant way.

The good agreement shown in figure 13 between the Stanton numbers predicted by DNS
and WMLES in the turbulent boundary layer downstream of the recompression shock for
the transitioning cases α = 6◦, 7◦ and 8◦ must rely on the correct WMLES prediction of the
mean temperature profile near the wall. This is corroborated by the comparison between
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FIGURE 21. Direct numerical simulation relation between the time- and spanwise-averaged
profiles of temperature and velocity at (x − x1)/δ

�
1 = 580 for a wedge angle of (a) α = 6◦,

(b) α = 7◦ and (c) α = 8◦. Also included are the model relations from Walz (1962), Busemann
(1931), Crocco (1932) and Duan & Martin (2011). The values used for normalization are the edge
velocity U2 and edge temperature T2 for the corresponding angle.

the mean temperature profiles obtained from DNS and WMLES provided in figure 25(a)
for α = 7◦. Although discrepancies of order 10 % are observed between the DNS and
WMLES mean temperature profiles at wall-normal distances y+ corresponding to the log
and outer layers of the transformed mean velocity profile, the wall model captures correctly
the mean temperature profile in the buffer zone and in the viscous sublayer. There, the
temperature reaches its maximum value because of the heat generated by friction. This
maximum value is not directly resolved by the LES grid but modelled successfully by the
equilibrium wall model, thereby yielding a correct approximation of the magnitude and
sign of the wall heat flux. The comparisons of the mean temperatures pertaining to the
two other angles α = 6◦ and 8◦ lead to similar conclusions and are not included here for
brevity.

The Morkovin hypothesis appears to provide unsatisfactory results in the present
configuration. First, whereas the Morkovin hypothesis establishes perfect anticorrelation
between T ′′ and u′′ (Morkovin 1962), both DNS and WMLES unisonally indicate
that T ′′ and u′′ in the present configuration are not fully anticorrelated, as shown in
figure 25(b) for α = 7◦. Away from the wall, this non-perfect anticorrelation is explained
by the approximately 10 % fluctuations observed in the stagnation temperature across
the boundary layer. In addition, as anticipated in figures 10 and 11, the sign of the
temperature/streamwise velocity correlation changes near the wall at the wall-normal
location where the maximum of the mean temperature is attained. A similar change of
sign in the temperature/wall-normal velocity correlation is also observed in figure 25(c)
for α = 7◦ at the same location. The WMLES results provide excellent predictions for the
correlations of the temperature with the streamwise and wall-normal velocities across the
entirety of the resolved portion of the turbulent boundary layer.

The turbulent Prandtl number Prt shown in figure 25(d) for α = 7◦ varies between 0.7
and 1.0 across the boundary layer in both DNS and WMLES, whereas a peak value of 1.5
appears to be attained at the maximum temperature location. Although not shown here for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.935


909 A8-32 L. Fu, M. Karp, S. T. Bose, P. Moin and J. Urzay

3.0

2.8

2.6

2.4

2.2

2.0

DNS

WMLES coarse (external)

WMLES coarse (within wall-modelled layer)

WMLES (external)

WMLES (within wall-modelled layer)

1.8

1.6

1.4

1.2

1.0
0 0.2 0.4 0.6 0.8 1.0

T‾
/ T

2

u‾/U2

FIGURE 22. Direct numerical simulation (black solid line), baseline WMLES (red dot–dashed
line) and coarse WMLES (blue dot–dashed line) relations between the time- and
spanwise-averaged profiles of temperature and velocity at (x − x1)/δ

�
1 = 580 for α = 7◦,

including the solution predicted within the wall-modelled region y ≤ hwm (blue and red solid
lines).

brevity, similar conclusions about the temperature/velocity correlations and the turbulent
Prandtl number also hold for the other two wedge angles α = 6◦ and 8◦.

That the strong Reynolds analogy (SRA), proposed by Morkovin (1962) to relate in a
directly proportional way the r.m.s. values of the streamwise velocity fluctuations and the
temperature fluctuations, is not a good approximation in the present configuration is shown
in figure 26(a), where departures of ∼50 % from SRA behaviour are observed. Over the
years, the SRA has been improved in different studies that account for wall heat transfer
and stagnation-temperature fluctuations. For instance, Gaviglio (1987) proposed a revised
SRA (referred to as GSRA below) by assuming that the characteristic length scales of
the fluctuations of temperature and velocity are similar. In a different approach, Huang
et al. (1995) proposed another revised SRA (referred to as HSRA below) by including the
local turbulent Prandtl number on the basis of a mixing-length model. Using the DNS
flow fields for α = 6◦, 7◦ and 8◦, figure 26(b,c) provides an evaluation of the GSRA and
HSRA expressions found in Gaviglio (1987) and Huang et al. (1995), respectively, in such
a way that the total validity of the corresponding relation would imply a unity value on
the vertical axis across the entire boundary layer. While the classical SRA in figure 26(a)
fails to reproduce the DNS data, as also observed previously by Duan et al. (2010) and
Zhang et al. (2014), the discrepancies are greatly reduced for all wedge angles by using
the GSRA. However, the performance of the HSRA can be greatly enhanced by setting the
Prandtl number in the HSRA relation to Prt = 0.9, as shown in figure 26(d).
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FIGURE 23. Transformed mean streamwise velocity as a function of the wall-normal coordinate
for α = 6◦, 7◦ and 8◦ at (x − x1)/δ

�
1 = 580 using the transforms by (a) van Driest (1956) and

(b) Trettel & Larsson (2016). The figure includes DNS results for α = 6◦ (black solid lines), 7◦
(blue solid lines) and 8◦ (red solid lines), along with the incompressible profiles in the viscous
sublayer (black dotted line) and log layer (dashed lines). In panel (b), y� = ρ̄(τw/ρ̄)1/2 y/μ̄
represents a semi-locally scaled wall-normal coordinate.
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FIGURE 24. Transformed mean streamwise velocity as a function of the wall-normal coordinate
for α = 7◦ at (x − x1)/δ

�
1 = 580 using the transforms by (a) van Driest (1956) and (b) Trettel

& Larsson (2016). The figure includes DNS (black solid lines), baseline WMLES (red dashed
and solid lines), coarse WMLES (blue dashed and solid lines), along with the incompressible
profiles in the viscous sublayer (black dotted line) and log layer (dashed lines). In panel (b),
y� = ρ̄(τw/ρ̄)1/2 y/μ̄ represents a semi-locally scaled wall-normal coordinate.
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FIGURE 25. Direct numerical simulation (black solid lines), baseline WMLES (red dashed
lines) and coarse WMLES (blue dashed lines) wall-normal profiles of (a) time- and
spanwise-averaged temperature, (b) temperature/streamwise-velocity correlation coefficient,
(c) temperature/wall-normal-velocity correlation coefficient and (d) turbulent Prandtl number,
all profiles being obtained for α = 7◦ at (x − x1)/δ

�
1 = 580. In panel (a) the mean temperature

predicted by the equilibrium wall model within the wall-modelled region y ≤ hwm is indicated
by the blue and red solid lines. In all panels, the horizontal dashed lines indicate the wall-normal
location of the maximum mean temperature.

The predictive capabilities of the WMLES to recreate the SRA relations is assessed in
figure 27 for the representative wedge angle of 7◦. Good agreement between DNS and
WMLES is observed for the SRA and HSRA in figure 27(a,b). However, the WMLES
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FIGURE 26. Direct numerical simulation wall-normal distributions of the (a) SRA by Morkovin
(1962), (b) modified strong Reynolds analogy GSRA by Gaviglio (1987), (c) modified strong
Reynolds analogy HSRA by Huang, Coleman & Bradshaw (1995) based on the local turbulent
Prandtl number, and (d) modified strong Reynolds analogy HSRA by Huang et al. (1995) based
on a constant turbulent Prandtl number equal to 0.9. The blue, red and black lines denote,
respectively, the results for α = 6◦, 7◦ and 8◦ at (x − x1)/δ

�
1 = 580. The vertical dotted lines

indicate unity ratios, and correspondingly, total validity of the proposed analogy. In the labels,
Ma = [ρ̃(ũ2 + ṽ2)/(γ P̃)]1/2 denotes the local Mach number, and T̃0 indicates the Favre average
of the local stagnation temperature T0 = T[1 + (γ − 1)(ρ|v|2/(2γ P)] based on the modulus
of the streamwise velocity vector |v|. In addition, δ is the local boundary layer thickness at
(x − x1)/δ

�
1 = 580 defined as the height where ū = 0.99U2.
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FIGURE 27. Direct numerical simulation (black solid lines), baseline WMLES (red dot–dashed
lines) and coarse WMLES (blue dashed lines) wall-normal distributions of the (a) SRA by
Morkovin (1962), (b) modified strong Reynolds analogy HSRA by Huang et al. (1995) based on
the local turbulent Prandtl number, and (c) modified strong Reynolds analogy HSRA by Huang
et al. (1995) based on a constant turbulent Prandtl number equal to 0.9. All profiles correspond
to the case α = 7◦ at (x − x1)/δ

�
1 = 580. The vertical dotted lines indicate unity ratios, and

correspondingly, total validity of the analogy. In the labels, Ma = [ρ̃(ũ2 + ṽ2)/(γ P̃)]1/2 denotes
the local Mach number, and T̃0 indicates the Favre average of the local stagnation temperature
T0 = T[1 + (γ − 1)(ρ|v|2/(2γ P)] based on the modulus of the streamwise velocity vector |v|.
In addition, δ is the local boundary layer thickness at (x − x1)/δ

�
1 = 580 defined as the height

where ū = 0.99U2.

deviates significantly from the DNS in the outer portion of the boundary layer when the
HSRA is used with Prt = 0.9, as shown in figure 27(c). These errors are commensurate
with the errors incurred by the WMLES in predicting the turbulent Prandtl number
calculated a posteriori from the DNS results.

A comparison between profiles from DNS at several streamwise stations, (x − x1)/δ
�
1 =

420, 460 and 500 in the transitional region, and 570 in the fully turbulent region, is
presented in figure 28 for the representative wedge angle of 7◦. The correlation between
the streamwise velocity fluctuation u′′ and the temperature fluctuation T ′′ is presented
in figure 28(a), the HSRA based on the local turbulent Prandtl number is shown in
figure 28(b), and the turbulent Prandtl number is given in figure 28(c). While significant
variations of these metrics are observed upstream deep in the transitional region, as
expected for HSRA and Prt because of their lack of clear physical meaning there, the
variations among different streamwise stations tend to decrease as the turbulent portion
of the boundary layer is approached, or equivalently, as the local Reynolds number Re2,x

increases.
The streamwise and wall-normal r.m.s. velocities, normalized with semi-local inner

scalings, are presented in figure 29 for α = 6◦, 7◦ and 8◦. Similarly to the transformed
mean velocities in figure 23, a collapse of the curves corresponding to the three wedge
angles is observed except in the outer layer, where the changes in Ma2, Re2,θ and Tw/T2
across the three cases may have an appreciable effect. Additional results from supersonic
channel flow simulations by Modesti & Pirozzoli (2016) at lower Mach numbers overlaid
on figure 23 corroborate the common observation that the streamwise and wall-normal
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FIGURE 28. Direct numerical simulation wall-normal profiles at several streamwise stations
for α = 7◦, including (a) temperature/streamwise-velocity correlation coefficient, (b) modified
strong Reynolds analogy HSRA by Huang et al. (1995) based on the local turbulent Prandtl
number and (c) turbulent Prandtl number. In the labels, Ma = [ρ̃(ũ2 + ṽ2)/(γ P̃)]1/2 denotes
the local Mach number, and T̃0 indicates the Favre average of the local stagnation temperature
T0 = T[1 + (γ − 1)(ρ|v|2/(2γ P)] based on the modulus of the streamwise velocity vector
|v|. In addition, δ is the boundary layer thickness defined at (x − x1)/δ

�
1 = 580 as the height

where ū = 0.99U2.

r.m.s. velocities close to the wall do not depend significantly on the Mach number when
scaled with appropriate inner units.

Despite the reasonable agreements between WMLES and DNS outlined throughout this
section, figure 30 shows that the core assumption of constant stress layer, represented
by the momentum equation (B 1) of the equilibrium wall model, is not strictly satisfied
within the wall-modelled layer for any of the three angles α = 6◦, 7◦ and 8◦. Specifically,
the evaluation of the mean shear stress τ̄ provided in figure 30 using the DNS shows that
the total stress τ̄ varies by amounts of order 10 % across the wall-modelled layer. These
variations increase as the wedge angle decreases, or equivalently, as the friction Reynolds
number decreases. In addition, as shown in figure 30, the ratio of the total and wall shear
stresses, τ̄ /τw, is not bounded by unity when the stresses are defined consistently with the
Favre-averaged streamwise momentum equation. Instead, it features a maximum within
the wall-modelled layer that was also observed in early computational work at lower Mach
numbers by Gatski & Erlebacher (2002).

4. Conclusions

In this study DNS and WMLES are employed to investigate the problem of an oblique
shock wave impinging on a Mach-6 undisturbed laminar boundary layer over a cold
wall that has a temperature of 55 % of the free-stream stagnation temperature. The
incident shock leads to boundary-layer separation far upstream of the shock-impingement
region. If the angle α of the wedge used to generate the incident shock is sufficiently
large, and more particularly, if α ≥ 6◦ in the present DNS, the incident shock causes
boundary-layer transition via breakdown of near-wall streaks shortly downstream of the
impingement zone even in the absence of inflow free-stream disturbances. The transition
causes a localized significant increase in the Stanton number and skin-friction coefficient.
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FIGURE 29. (a) Streamwise and (b) wall-normal turbulence intensities at the streamwise
location (x − x1)/δ

�
1 = 580 for α = 6◦, 7◦ and 8◦, defined in terms of the density-weighted

velocity scale u∗ = √
τw/ρ̄, and plotted as a function of the semi-locally scaled wall-normal

coordinate y� = ρ̄(τw/ρ̄)1/2 y/μ̄. Also included is the reference data of channel case CH15C
from Modesti & Pirozzoli (2016) corresponding to Re2,τ = 1015 and Ma = 1.5.
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FIGURE 30. Direct numerical simulation wall-normal profiles of time- and spanwise-averaged
shear stress τ̄ normalized with its value on the wall τw at (x − x1)/δ

�
1 = 580 for wedge angles

α = 6◦, 7◦ and 8◦. The dashed, dotted and solid lines denote the distributions of the viscous
shear stress μ(T̃)(∂ ũ/∂y), the turbulent shear stress −ρu′′v′′ and the total stress −ρu′′v′′ +
μ(T̃)(∂ ũ/∂y). The vertical lines denote the matching location in the baseline WMLES (red lines)
and in the coarse WMLES (blue lines).
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Increasing incidence angles lead to earlier transition, longer separation bubble, and
higher peak values of wall heat transfer and wall shear stress. Specifically, the peak
thermomechanical loads increase approximately linearly with the wedge angle.

In the DNS transition and peak heating occur downstream of the shock on the leeward
side of the separation bubble, where stationary streaks are visible in the Stanton number
contours that give rise to broadband turbulence downstream upon reattachment of the
overriding shear layer to the wall. The turbulent boundary layer ensuing downstream from
the interaction has a Mach number within the range 4.0 to 4.5 depending on the wedge
angle. Conventional transformations fail to collapse the mean velocity profiles on the
incompressible log law. The Reynolds analogy factor of the turbulent boundary layer is
close to the value 1.16 proposed by Chi & Spalding (1966). The Morkovin’s hypothesis of
perfect anticorrelation between velocity and temperature breaks down profusely near the
wall in the viscous sublayer, below the wall-normal coordinate y+ ∼ 4−5 corresponding
to the maximum temperature, where the correlation becomes positive. A modified strong
Reynolds analogy based on that proposed by Huang et al. (1995), but with a calibrated
turbulent Prandtl number of 0.9, becomes the most appropriate relation between the r.m.s.
fluctuations of velocity and temperature.

The DNS data is used as a benchmark to test predictions from WMLES. In particular,
an equilibrium wall model is employed along the entire plate (including the laminar
zone) to partially model the effects of near-wall turbulence. For all considered wedge
angles, WMLES prompts transition and peak heating, delays separation and advances
reattachment, thereby shortening the separation bubble. The WMLES results depart
strongly from DNS at the lowest wedge angle tested here, which is below the threshold
α ≥ 6◦ mentioned above. In this case, DNS does not show transition, whereas WMLES
predicts a spurious transition driven by numerical errors that remain unchallenged because
of the absence of competing physical disturbances, since no inflow perturbations are
employed in any of the cases analysed in this study. In contrast, at higher angles, the effects
of the shock on the boundary layer, including the absolute instability that is triggered in the
separation bubble, are sufficiently strong to override the numerical errors, and WMLES
predicts transition in reasonable agreement with DNS. Specifically, WMLES correctly
captures the advancement of the transition front along with the increase of the peak
thermal load as the wedge angle increases. In the transitioning cases, WMLES provides
predictions of peak skin friction and Stanton number within ±10 % error with respect to
DNS, but at a significantly reduced computational cost by a factor of approximately 150.

In the turbulent boundary layer ensuing downstream of the shock impingement,
WMLES reproduces a number of key DNS statistics, including the Reynolds analogy
factor, the outer portion of the temperature-velocity correlation profile, the mean
velocity-temperature relation and the profiles of mean velocity and temperature.
Furthermore, the WMLES results reproduce the value and location of the maximum
temperature resulting from viscous heating, which is concealed in the wall-modelled layer.
These considerations remain mostly unaltered after coarsening the WMLES grid by a
factor of 1.4 in the wall-normal direction.

Although it is traditionally asserted that WMLES is inadequate for transitional flows,
numerical experiments performed in this work show that turning off the wall model
everywhere leads to a severe degradation of the WMLES predictions with regards to
transition and peak thermomechanical loads in the interaction region. Similarly, turning
off the eddy-viscosity model in the momentum and energy conservation equations of the
wall model has a significant negative impact not only in the turbulent boundary layer,
as expected, but also in the transitional zone where spots rendering large skin friction
develop, thereby suggesting that the eddy viscosity in the wall model has a beneficial effect
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on the predictions of transition. It should be stressed that the transitional aspects of the flow
considered in this study depart considerably from shock-free, unmolested boundary layers
on flat plates that take long distances for eigenmodes to grow from inflow disturbances and
trigger transition. In those, the WMLES grid, and the wall model itself, cannot faithfully
support the spatiotemporal dynamics associated with the long growth of the disturbances.
In contrast, in the present configuration, transition occurs rather compactly in space due
to the sudden flow distortion caused by the shock, and does not necessitate any long
spatiotemporal development of disturbances along the laminar portion of the boundary
layer. As a result, the WMLES grid only needs to warrant a reasonable resolution of
the steady two-dimensional laminar boundary layer upstream of the interaction with four
to five grid points across the wall-normal dimension. These considerations suggest that
WMLES may perform comparatively better in this type of problem than in shock-free
transitional boundary layers. In addition, high-Mach-number flows necessarily entail hot
boundary layers. Correspondingly, the matching location in WMLES can be easily set
near the buffer zone or within the viscous sublayer in the turbulent boundary layer ensuing
downstream of the shock, while still leading to a drastic reduction in computational cost
relative to DNS.
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Appendix A. Code validation and verification

This appendix presents examples employed to verify and validate the charLES code in
the context of hypersonic flows. The results shown below pertain to hypersonic laminar
boundary layers and channels, along with the hypersonic flow around the BOLT subscale
vehicle geometry.

A.1. Mach-6 laminar boundary layer
Figure 31 shows comparisons between the similarity solution for a compressible boundary
layer at a free-stream Mach number Ma∞ = 6 and inflow Reynolds number Reδ�

o
= 6830

and results obtained using the present code in two-dimensional numerical simulations.
The computational domain is 300δ�

o × 25δ�
o in the streamwise and wall-normal directions,

respectively, which corresponds to 1500 × 150 cells. The results show that the code
reproduces reasonably well the similarity solution for the streamwise velocity component
U and the 99 % boundary-layer thickness δ99.
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FIGURE 31. Comparisons between two-dimensional numerical simulations of a Mach-6
hypersonic laminar boundary layer and the similarity solution for (a) the streamwise velocity
evaluated at (x − xo)/δ

�
o = 150, and (b) the streamwise evolution of the 99 % boundary-layer

thickness.

A.2. Mach-6 laminar channel flow stability
A verification exercise is performed in this section using a fully developed laminar
channel with isothermal walls, for which an analytical solution exists. All quantities are
normalized with the following reference scales: the half-channel height h, the centreline
streamwise velocity Uc and the wall temperature Tw. The centreline Mach number is
Ma∞ = 6, whereas the Reynolds number is Reh = 1000. The verification is conducted
by injecting an eigenfunction, obtained from a spatial stability analysis, at the inlet
of the computational domain and comparing the resulting spatial decay rate with the
prediction of linear stability theory. The disturbance frequency is ωh/Uc = 0.5, for which
the spatial wavenumber of the eigenfunction is αh = 0.9877 + 0.1998i. The domain
size is (Lx/h, Ly/h) = (10, 2). Three grid resolutions are studied: (Nx , Ny) = (50, 50),
(Nx , Ny) = (100, 100) and (Nx , Ny) = (200, 200). The chosen disturbance amplitude is
small enough to ensure that the nonlinear terms remain inactive.

The base flow profiles for velocity and temperature at the station x/h = 10 are shown
in figure 32(a,b). Colours indicate the two-dimensional numerical solution obtained on
different grids, whereas the dashed lines correspond to the analytical solution. The
streamwise evolution of the maximum value of the magnitude of the vertical component
of the perturbation velocity, normalized by its value at the inflow, is shown in figure 32(c),
showing good agreement with the prediction from linear stability theory. The profiles
of the magnitude of the vertical component of the perturbation velocity at streamwise
stations, x/h = 0, 5 and 10, are shown in figure 32(d) confirming the invariance of the
eigenfunction shape with downstream distance consistent with linear stability theory.

A.3. Mach-6 hypersonic flow over BOLT
Comparisons between experiments and the three-dimensional numerical solution provided
by charLES for the Mach-6 hypersonic flow over the BOLT subscale vehicle geometry are
outlined in this section. This case is thoroughly described by Wheaton et al. (2018) and
Thome, Knutson & Candler (2019), and, therefore, the details are omitted here. Briefly,
the temperature, velocity, density and Mach number in the free stream are T∞ = 52 K,
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FIGURE 32. Results of the solver verification for hypersonic laminar channels: (a) base
flow streamwise velocity at x/h = 10; (b) base flow temperature at x/h = 10; (c) maximum
magnitude of the vertical velocity at y/h = 0 normalized with its inflow value; and (d) vertical
velocity profiles normalized by their maximum values at each streamwise station.

U∞ = 864 m/s, ρ∞ = 3.8 × 10−2 kg/m3 and Ma∞ = 6, respectively, whereas the wall
temperature is Tw = 300 K and the unit Reynolds number is Re∞ = 9.9 × 106 m−1.

A 1/3-scale model of the BOLT vehicle considered here is meshed with an unstructured
grid consisting of 518M Voronoi elements. The grid is stretched with a stretching ratio of
40 near the wall and it becomes gradually isotropic away from the wall. In the vicinity
of the nose, the ratio of the nose radius to the minimum grid spacing in the wall tangent
direction is 32, indicating sufficient resolution to resolve the locally large curvature of
the vehicle edges. The simulations are compared with experiments performed in the
Boeing-AFOSR Mach-6 Quiet Tunnel (BAM6QT) at Purdue University, which is known
to have a very low level of free-stream disturbances (Schneider 2008; Berridge et al. 2018).
For this reason, the simulations employ an undisturbed laminar inflow.

Figure 33 shows good agreement between the Stanton number distribution obtained
from the simulations using charLES and from the experiments reported in Berridge et al.
(2018) and Thome et al. (2019). The streaky structures in the Stanton number distribution,
caused by cross-flow instabilities, are predicted by the simulations, particularly near the
centreline, where the boundary layer is lifted by the stationary streamwise vortices with
mushroom-like structures. Further quantitative comparisons are provided in figure 34
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FIGURE 33. Spatial distribution of the Stanton number over the surface of the BOLT subscale
vehicle: (a) simulations and (b) experiments (Berridge et al. 2018; Thome et al. 2019). In the
notation, Lr represents the streamwise length of the vehicle.

by the spanwise profiles of the Stanton number at four streamwise stations. Two sets
of experimental data points are provided that correspond to each side of the surface
around the vehicle centreline. Although the overall agreement between simulations and
experiments is satisfactory, it is noted by Thome et al. (2019) and Wheaton et al. (2018) that
the experimental results are influenced by uncertainties associated with surface roughness,
thermal inertial of the vehicle model, and imperfect alignment with the free stream.

Appendix B. The equilibrium wall model

The equilibrium wall model integrates the momentum and total-energy conservation
equations

d
dy

[
(μ + μt,wm)

du||
dy

]
= 0, (B 1)

d
dy

[
(μ + μt,wm)u||

du||
dy

+ cp

(
μ

Pr
+ μt,wm

Prt,wm

)
dT
dy

]
= 0, (B 2)

within a layer spanning from the wall to a matching location, where appropriate boundary
conditions are applied, as indicated below. In this formulation, y is the wall-normal
coordinate, u|| is the total wall-parallel velocity including both the streamwise and
spanwise components, T is the static temperature, cp is the specific heat at constant
pressure, Pr = 0.72 is the molecular Prandtl number, μ is the molecular dynamic viscosity
and the subscript ‘wm’ indicates variables in the wall model. The molecular viscosity μ is
a function of the temperature, with the exact dependence being provided in § 2. In addition,
the eddy viscosity μt,wm is specified according to the mixing-length model

μt,wm = κρy

√
τw

ρ
D, (B 3)

where κ = 0.42 is the Kármán constant, ρ is the density and τw is the local wall shear
stress. The damping function D is given by

D =
[

1 − exp
(

− y+

A+

)]2

, (B 4)
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FIGURE 34. Spanwise profiles of the Stanton number obtained from the simulations (green
circles) and experiments (red and blue triangles; Berridge et al. 2018; Thome et al. 2019) at
four streamwise stations corresponding to (a) x/Lr = 0.64, (b) 0.73, (c) 0.82 and (d) 0.91. The
blue and red triangles denote experimental data extracted on each side of the surface around the
centreline of the BOLT vehicle z/Lr = 0. In the notation, Lr represents the streamwise length of
the vehicle.

where the superscript ‘+’ indicates lengths in wall units and the constant A+ = 17. The
density and the temperature are related by the equation of state

P = ρRgT, (B 5)

where Rg is the gas constant and P is the static pressure, the latter of which is modelled
as a constant across the wall-modelled region and matches with the LES outside. Lastly,
Prt,wm = 0.9 is the eddy Prandtl number and is the same for all WMLES cases in this work.
Note that the model does not include the wall-normal velocity component, streamwise
pressure gradient nor time variations of momentum and energy, and does not account for
energy transfer by pressure work.

Equations (B 1) and (B 2), along with (B 3)–(B 5) are numerically integrated on a
one-dimensional grid between 0 ≤ y ≤ hwm bounded by the wall at y = 0 and by a
LES/wall-model matching location at y = hwm. Specifically, the wall-model solution
matches with the LES solution at y = hwm corresponding to the first LES grid point from
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FIGURE 35. Direct numerical simulation (solid lines) and WMLES (dot–dashed line) of
(a) streamwise velocity and (b) temperature profiles at (x − x1)/δ

�
1 = 6 in the laminar region

of the boundary layer upstream of the separation location.

the wall. The boundary conditions for the wall model at the wall y = 0 are

u|| = 0, T = Tw, (B 6a,b)

where Tw is the wall temperature. The corresponding boundary conditions at the matching
location y = hwm are

u|| = Ũ||, T = T̃, P = P̄, (B 7a–c)

where Ũ||, T̃ and P̄ are the resolved LES values of wall-parallel velocity, static temperature
and static pressure. The time-filtering approach proposed by Yang et al. (2017a) is
employed for calculating the boundary conditions (B 7a–c) at the matching location.

Appendix C. WMLES performance in the laminar region

The performance of WMLES in predicting the laminar portion of the boundary layer
upstream of the separation bubble is illustrated in figure 35, where profiles of streamwise
velocity and temperature from DNS and WMLES are compared at a representative
location close to the inlet, i.e. (x − x1)/δ

�
1 = 6. Approximately five points across the

boundary layer at this station prove to be sufficient resolution for the WMLES to capture
the steady laminar profiles there.

While the equilibrium wall-model formulation is fundamentally different from the
conservation equations of the laminar boundary layer, good agreement is obtained due
to the fact that the turbulent eddy viscosity is negligible in the boundary layer at this
early station, including within the wall-modelled region, because h+

wm � A+ close to the
inlet, as shown in figure 4. As a result, the role of the wall model in the laminar portion
of the boundary layer is limited to providing viscous approximations of the velocity and
temperature profiles very close to the wall.

Appendix D. Grid-resolution study of WMLES

Results for WMLES on a grid coarsened by factors of two in every direction
(isotropic grid coarsening) relative to the baseline grid are shown in figure 36 for
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FIGURE 36. Grid-resolution study for the case α = 7◦ including the WMLES baseline grid
(red line), an isotropically coarsened WMLES grid (green line), along with the DNS grid (blue
line), and the laminar (black line) and turbulent (dotted line) correlations for (a) skin-friction
coefficient and (b) Stanton number as a function of the streamwise distance Reynolds number.

the case α = 7◦. The comparisons suggest a clear trend of convergence toward DNS.
Specifically, as the WMLES is increasingly coarsened, the size of the separation bubble
is increasingly underpredicted, the separation is increasingly delayed, and the transition
occurs increasingly farther upstream.
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