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Abstract: We study the orbital evolution of a three-planet system with masses in the super-Earth
regime resulting from the action of tides on the planets induced by the central star which cause orbital
circularization. We consider systems either in or near to a three-body commensurability for which adjacent
pairs of planets are in a first-order commensurability. We develop a simple analytic solution, derived from a
time averaged set of equations, that describes the expansion of the system away from strict commensurability
as a function of time, once a state where relevant resonant angles undergo small amplitude librations
has been attained. We perform numerical simulations that show the attainment of such resonant states
focusing on the Kepler 60 system. The results of the simulations confirm many of the scalings predicted by
the appropriate analytic solution. We go on to indicate how the results can be applied to put constraints
on the amount of tidal dissipation that has occurred in the system. For example, if the system has been in
a librating state since its formation, we find that its present period ratios imply an upper limit on the time
average of 1/Q′, With Q′ being the tidal dissipation parameter. On the other hand if a librating state has
not been attained, a lower upper bound applies.
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Introduction

The Kepler mission has discovered an abundance of confirmed
and candidate planets orbiting close to their host stars (Batalha
et al. 2013). Many of these are in tightly packed planetary
systems. A significant number of these contain pairs that are
close to first-order resonances. Lissauer et al. (2011) found
Kepler candidates in short-period orbits in multiresonant
configurations. The four planet system KOI-730 exhibits the
meanmotion ratios 8 :6 :4 : 3 andKOI-500 is a (near-) resonant
five-candidate system with two three-body mean motion
resonances 2n2−5n3+3n4*0 and 2n3−6n4+4n5*0, with
ni being the mean motion of planet i. More recently Steffen
et al. (2013) confirmed the Kepler 60 system which has three
planets with the inner pair exhibiting a 5 :4 commensurability
and the outer pair a 4 :3 commensurability. The case when the
period ratio between consecutive pairs is 2 : 1 is termed a
Laplace resonance. This configuration occurs in the Solar
system for the Galilean satellites Io, Europa and Ganymede.
The configuration of the Kepler 60 system can be regarded as
a generalization of this case to the situation where the 2 :1
resonances are replaced by alternative first-order resonances.
Tightly packed resonant planetary systems are of interest

on account of what their dynamics can tell us about their
origin. In particular, the formation of resonant chains
is believed to require convergent migration induced by
interaction with the protoplanetary disc (e.g. Cresswell &

Nelson 2006). In addition tidal interaction with the central
star leading to orbital circularization can be significant in
producing tidal heating and determining post formation
evolution (Papaloizou 2011; Batygin & Morbidelli 2012;
Lithwick & Wu 2012). From this it is potentially possible to
estimate tidal quality factors which are in turn related to the
composition and state of the planetary interiors. We remark
that systems with observed adjacent pairs of first-order
resonances may have avoided a form of long-term orbital
instability, associated with higher order many body resonances
that could cause evolution away from them in other systems
(Migaszewski et al. 2012).
Migration due to tidal interaction with the disc is a possible

mechanism through which planets end up on short-period
orbits, as in situ formation implies very massive discs (e.g.
Ward 1997; Raymond et al. 2008). When several protoplanets
in the super-Earth mass range are considered, resonant chains
are readily produced that contain multi-body resonances
(Cresswell & Nelson 2006). Terquem & Papaloizou (2007)
adopted a scenario for forming hot super-Earths in which a
population of cores that formed at some distance from the
central star migrated inwards due to interaction with the disc.
These collided and merged as they went. This process could
produce planetary systems located inside an assumed disc inner
edge, on short-period orbits with mean motions of neighbour-
ing planets that frequently exhibited near commensurabilities.
Note that the extent of radial migration is not specified

International Journal of Astrobiology 14 (2): 291–304 (2015)
doi:10.1017/S1473550414000147 © Cambridge University Press 2014

https://doi.org/10.1017/S1473550414000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550414000147


and does not need to be large in order to produce
commensurabilities. Later evolution due to circularization of
the orbits induced by tidal interaction with the central star,
together with later close scatterings and mergers, caused the
system to move away from commensurabilities to an extent
determined by the effectiveness of these processes.
The GJ 876 system, which contains a 1 :2 :4 Laplace

resonance, has been studied by (e.g. Correia et al. 2010;
Gerlach & Haghighipour 2012; Marti et al. 2013). Gerlach &
Haghighipour (2012) give a detailed account of the history of
the system and show that it is dynamically full. Marti et al.
(2013) remark that such a resonant system occupies small
islands of stability. Papaloizou & Terquem (2010) considered
the system around HD 40307 (Mayor et al. 2009) for which
the pairs consisting of the innermost and middle planets and
the middle and outermost planets are near but not very close
to a pair of 2 :1 resonances. In spite of this it was found
that secular effects produced by the action of the resonant
angles coupled with the action of tides from the central
star could cause the system to increasingly separate from
commensurability.
In this paper, we study the evolution of a three-planet system

with masses in the super-Earth regime that is close to a three-
body resonance under the influence of tidal effects. We develop
a simple analytic model that describes the evolution of
the system, derived from a time averaged set of equations,
that describes the increasing departure of the system from
commensurability with time once a state where resonant angles
undergo small amplitude librations has been attained. We give
analytic expressions from which this evolution can be obtained
for pairs of general first-order resonances when either four
resonant angles or three resonant angles are in a state of small
amplitude libration. This can be regarded as a generalization
of the treatment of two planet resonances given in Papaloizou
(2011).
We perform numerical simulations to study how a three-

body resonance is attained as a result of the operation of
circularization tides as well as confirm many of the scalings.
Unlike in Papaloizou & Terquem (2010), we do not suppose
that the initial system is already in a three-body resonance as
a result of disc-induced migration, but start with the initial
orbital configuration reported for the Kepler 60 system as an
example to provide focus. We go on to indicate how the results
can be applied to put constraints on the amount of tidal
dissipation that has occurred in the system.
The plan of the paper is as follows. In the section ‘Model and

basic equations’, we describe the multi-planetary systemmodel
and give the basic equations used. We describe the incorpor-
ation of orbital circularization resulting from tides due to
the central star and discuss the possible relevance of migration
induced through interaction with the protoplanetary disc
when that was present, although it is not included in our
modelling.
We go on to develop a simple analytic model for a system

in a three-planet resonance undergoing circularization in
the section ‘Semi-analytic model for a system in a three-planet
resonance undergoing circularization’. This is based on

adopting a time-averaged Hamiltonian for which contribu-
tions from a maximum of four resonant angles are retained.
These are associated with the first-order resonances between
the inner pair and the outer pair of planets in the three-planet
system. Dissipative effects due to orbital circularization are
then added. These cause secular evolution of the period ratios
of the system.
We consider the case when all four angles undergo small

amplitude libration in the subsection ‘The case when four
angles undergo small amplitude libration’. In this case we
obtain a solution for which the generalized three-body Laplace
relation is maintained throughout the evolution while the
period ratios increasingly depart from strict commensurability.
We then go on to consider the case when only three of the
resonance angles undergo small amplitude libration in the
subsection ‘The case when three angles undergo small
amplitude libration’. In this case, the evolution is qualitatively
similar. However, the generalized three-body Laplace relation
is not maintained, being replaced by a different relation
between the period ratios which depends on details of the
configuration.
In order to confirm predictions of the analytic model related

to how the evolution timescale scales with planet masses and
tidal dissipation we carry out numerical simulations of a three-
planet systemwith masses in the super-Earth regime and which
starts out close to a three-planet resonance in the section
‘Numerical simulations’. In order to provide a focus, in most
cases the initial orbital parameters were taken to be those
announced for the Kepler 60 system (Steffen et al. 2013)
together with the assumption of zero eccentricities. Thus we do
not strictly model the actual system but rather consider it for
the purpose of demonstrating the application of the analytical
formulation.
Finally, we discuss our results and their application in

providing constraints on tidal dissipation, focusing again on
the Kepler 60 system, and conclude in the section ‘Discussion
and conclusion’.

Model and basic equations

We consider a system of N=3 planets moving under their
mutual gravitational attraction and that due to the central star.
The equations of motion are

d2ri
dt2

= −GMri
|ri|3

−
∑N
j=1=i

Gmj(ri − rj)
|ri − rj|3

− Γ+ Γi + Γr, (1)

where M, mi, mj and rj denote the mass of the central star, the
mass of planet i, the mass of planet j, the position vector of
planet i and the position vector of planet j, respectively. The
acceleration of the coordinate system based on the central star
(indirect term) is

Γ =
∑N
j=1

Gmjrj
|rj |3

, (2)

Tidal interaction with the central star is dealt with through
the addition of a frictional damping force taking the form
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(see e.g. Papaloizou & Terquem 2010)

Γi = − 2

|ri|2te,i
dri
dt

· ri
( )

ri, (3)

where te,i is the timescale over which the eccentricity of an
isolated planet damps. Thus it is the orbital circularization time
(see below).
Relativistic effects are included through Γr (see Papaloizou

& Terquem 2001). Note that in the formulation above,
eccentricity damping causes radial velocity damping, which
results in energy loss at constant angular momentum. As
a consequence, it causes both the semi-major axis and the
eccentricity to be reduced.

Orbital migration

It is likely that systems of close orbiting planets were not
formed in their present locations but were formed further out
and then migrated inwards while the protoplanetary disc was
still present (see e.g. Papaloizou & Terquem 2006; Nelson &
Kley 2012 for reviews of orbital migration). However, the rate
and extent of such migration are unclear mainly because of
uncertainties regarding the effectiveness of coorbital torques
(e.g. Paardekooper &Mellema 2006) which can be sensitive to
the detailed local disc structure. We note that convergent disc
migration leads naturally to multiple systems in resonant
chains of the type considered here (e.g. Cresswell & Nelson
2006; Papaloizou & Terquem 2010). Note that if they start
out close to resonance, these configurations may be produced
with the system as a whole undergoing little net radial
migration.
As we are mainly interested in the post-formation evolution

of the system, we shall assume that although migration may
have played a role in evolving the system into a configuration
that is close to commensurability, during or just subsequent
to planet formation, the protoplanetary disc has dispersed.
This has the consequence that migration torques, orbital
circularization and changes to the orbital inclination arising
through disc–planet interaction are then absent. Dissipative
effects are assumed to arise only through orbital circularization
occurring as a result of tidal interaction of the planets with the
central star.

Orbital circularization due to tides from the central star

The circularization timescale due to tidal interaction with the
star was obtained from Goldreich & Soter (1966) in the form

tse,i =
4mia

13/2
i Q′

63G1/2M3/2R5
pi

, (4)

where mi and ai are the mass and the semi-major axis of planet
i, respectively. Here M is the mass of the central star and Rpi

is the radius of planet i. The quantity Q′=3Q/(2k2), where Q
is the tidal dissipation function and k2 is the Love number.
For Solar system planets in the terrestrial mass range,
Goldreich & Soter (1966) give estimates for Q in the range
10–500 and k2*0.3 which correspond to Q′ in the range
50–2500. However, Ojakangas & Stevenson (1986) argue that,

in the context of their episodic tidal heating model for Io,
Q can attain values of around unity at the solidus
temperature. This is because the response to tidal forcing
becomes more like that of a fluid with high viscosity than an
elastic solid. The rate of dissipation is accordingly larger. The
value of Q is expected to be a function of tidal forcing
frequency as well as temperature that can attain a minimum
value *1 (see Ojakangas & Stevenson 1986 and references
therein). Although this parameter must be regarded as being
very uncertain for extrasolar planets, we should accordingly
consider that Q may be of order unity under early post-
formation conditions where they may be near to the solidus
temperature.
We remark that, in our formulation, tidal interaction with

the star does not change the angular momentum of a single
orbit but causes its energy to decrease. The physical basis for
this is that the planets rapidly attain pseudo-synchronization
(e.g. Ivanov & Papaloizou 2007), after which they cannot store
significant angular momentum changes through modifying
their intrinsic angular momenta. For the low-mass planets
considered here, we neglect tides induced on the central star
(see e.g. Barnes et al. 2009; Papaloizou &Terquem 2010). Thus
the orbital angular momentum and inclination are not changed
by the application of Γi in equation (1).

Semi-analytic model for a system in a three-planet
resonance undergoing circularization

We develop a semi-analytic model that shows how a three-
planet system undergoes orbital evolution driven by tidal
circularization. The coupling between the planets occurs
because resonant angles are assumed to librate. But note that
there may be significant deviations from exact commensura-
bility. We begin by formulating equations governing the
system without dissipation, which is Hamiltonian; we then go
on to add in effects arising from orbital circularization.

Coordinate system

We adopt Jacobi coordinates (e.g. Sinclair 1975) for which the
radius vector of planet i, ri, is measured relative to the centre
of mass of the system comprised of M and all other planets
interior to i, for i=1, 2, 3. Here i=1 corresponds to the
innermost planet and i=3 to the outermost planet.

Hamiltonian for the system without dissipation

The Hamiltonian, correct to second order in the planetary
masses, can bewritten for the systemwithout dissipation, in the
form:

H =
∑3
i=1

1
2
mi|ṙi|2 − GMimi

|ri|
( )

−
∑3
i=1

∑3
j=i+1

Gmimj
1
|rij| −

ri·rj
|rj|3

( )
.

(5)
Here Mi=M+mi and rij= ri− rj.
Assuming that the planetary system is strictly coplanar,

the equations governing the motion within a fixed plane,
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about a dominant central mass, may be written in the form
(see e.g. Papaloizou 2003; Papaloizou & Szuszkiewicz 2005)

Ėi = −ni
∂H
∂λi

, (6)

L̇i = − ∂H
∂λi

+ ∂H
∂ϖi

( )
, (7)

λ̇i = ∂H
∂Li

+ ni
∂H
∂Ei

, (8)

ϖ̇i = ∂H
∂Li

. (9)

Here and in what follows until stated otherwise, mi is replaced
by the reduced mass so that mi�miM/(M+mi). The orbital
angular momentum of planet i is Li and the orbital energy
is Ei. The mean longitude of planet i is λi=ni(t− t0i)+ϖi,
with ni =

���������
GMi/a3i

√
= 2π/Pi being the mean motion, and t0i

denoting the time of periastron passage. The semi-major
axis and orbital period of planet i are ai and Pi, respectively.
The longitude of periastron is ϖi. The quantities λi, ϖi Li and
Ei can be used to describe the dynamical system described
above.
However, we note that for motion around a central point

mass M we have

Li = mi

����������������
GMiai(1− e2i )

√
, (10)

Ei = −GMimi

2ai
, (11)

where Mi=M+mi, and ei the eccentricity of planet i. Thus by
a simple transformation, we alternatively adopt λi, ϖi, ai or
equivalently ni, and ei as dynamical variables. We comment
that the difference between taking mi to be the reduced mass
rather than the actual mass of planet i when evaluating Mi in
the expressions for Li and Ei is third order in the typical planet
to star mass ratio and thus it may be neglected in the analysis
below.

Averaged Hamiltonian

The Hamiltonian may quite generally be expanded in a
Fourier series involving linear combinations of the five angular
differences ϖ1 − ϖ2,ϖ2 − ϖ3 and λi−ϖi, i=1, 2, 3.
Here we are interested in the effects of first order p+1:p and

q+1:q commensurabilities associated with the outer and
inner pairs of planets, respectively. In this situation, we expect
that any of the four angles Φ1=(q+1) λ2−qλ1−ϖ1,
Φ2=(q+1)λ2−qλ1−ϖ2, Φ3=(p+1)λ3−pλ2−ϖ2 and Φ4=
(p+1)λ3−pλ2−ϖ3 may be slowly varying. Following standard
practice (see e.g. Papaloizou & Szuszkiewicz 2005; Papaloizou
& Terquem 2010), high-frequency terms in the Hamiltonian
are averaged out. In this way, only terms in the Fourier
expansion involving linear combinations of Φ1, Φ2, Φ3 and
Φ4 as argument are retained.
Working in the limit of small eccentricities that is

applicable here, terms that are higher order than first in the

eccentricities can also be discarded. The Hamiltonian may
then be written in the form:

H = E1 + E2 + E3 +H12 +H23, (12)
where

Hij = −Gmimj

aj
ejCi,j cos (Φi+j−1) − eiDi,j cos (Φ2i−1)
[ ]

,

(13)
with

Ci,j= 1
2

(
xi,j

dbk1/2(x)
dx x=xi,j+ (2k + 1)bk1/2(xi,j) − (2k + 2)xi,jδk,1

)
,

∣∣∣∣
(14)

Di,j = 1
2

(
xi,j

dbk+1
1/2 (x)
dx x=xi,j + 2(k + 1)bk+1

1/2 (xi,j)
)
.

∣∣∣∣ (15)

Here the integer k=q for the inner pair (i=1, j=2) and k=p
for the outer pair (i=2, j=3) with bk1/2(x) denoting the usual
Laplace coefficient (e.g. Brouwer & Clemence 1961; Murray
& Dermott 1999) with the argument xi,j=ai/aj.

Incorporation of orbital circularization due to tidal interaction
with the central star

Using equations (6)–(9) together with equation (12), we may
first obtain the equations of motion without the effect of
circularization due to tidal interaction with the central star.
Having obtained the former, the effect of the latter may be
added in (see e.g. Papaloizou 2003). Following this procedure,
we obtain

de1
dt

= m2a1n1D12

a2M1
sinΦ1 − e1

tse,1
, (16)

de2
dt

= − n2
M2

m1C12 sinΦ2 − a2
a3

m3D23 sinΦ3

( )
− e2
tse,2

, (17)

de3
dt

= −m2n3C23

M3
sinΦ4 − e3

tse,3
, (18)

ṅ1 = − 3qn21m2a1
M1a2

C12e2 sinΦ2 −D12e1 sinΦ1( ) + 3n1e21
tse,1

, (19)

ṅ2 = 3(q+ 1)n22m1

M2
C12e2 sinΦ2 −D12e1 sinΦ1( )

− 3pn22m3a2
M2a3

(C23e3 sinΦ4 −D23e2 sinΦ3) + 3n2e22
tse,2

,

(20)

ṅ3=3(p+ 1)n23m2

M3
C23e3 sinΦ4 −D23e2 sinΦ3( ) + 3n3e23

tse,3
, (21)

Φ̇1= (q+ 1)n2 − qn1 + n1
e1

m2a1
M1a2

D12 cosΦ1, (22)
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Φ̇2 = (q+ 1)n2 − qn1

− n2
e2

m1

M2
C12 cosΦ2 − m3a2

M2a3
D23 cosΦ3

[ ]
, (23)

Φ̇3 = ( p+ 1)n3 − pn2

− n2
e2

m1

M2
C12 cosΦ2 − m3a2

M2a3
D23 cosΦ3

[ ]
, (24)

Φ̇4 = (p+ 1)n3 − pn2 − n3
e3

m2

M3
C23 cosΦ4. (25)

At this point, we note that in the analysis below we use
equations (16)–(25) to calculate perturbations to the orbital
elements and resonant angles correct to first order in the typical
planet to central star ratio. For this purpose from now on we
adopt the actual mass of planet i formi, rather than the reduced
mass and replace Mi by M, as any associated corrections
will be second order. Similarly the difference between
using actual or reduced masses when evaluating the circular-
ization times may be neglected as any corrections to those will
also be correspondingly small. Accordingly mi will be
identified as being the actual mass of planet i everywhere
from now on.
The terms involving the circularization times tse,i are

associated with effects arising from the tides raised by the
central mass on planet i. Notably, the terms /e2i /t

s
e,i in

equations (19)–(21) arise on account of the orbital energy
dissipation occurring as a result of circularization at the lowest
order in ei, and the disturbing masses, for which this appears.
We shall assume throughout that such terms, through being
retained, can be of lower order than those proportional to
the disturbing masses, mi. However, we shall assume that
expressions that are of second or higher order in the ratio of
these quantities may be neglected.

Energy and angular momentum conservation

In the absence of circularizing tides tse,i � 1( )
, the total energy

E;H and angular momentum L=L1+L2+L3 are conserved.
When circularizing tides act, the total angular momentum is
conserved but energy is lost according to

dH
dt

=
∑3
i=1

2e2i Ei

tse,i
. (26)

Equation (26) follows from the averaged equations, with
H being the unperturbed Hamiltonian, provided the relative
commensurabilities are assumed to be satisfied to within the
order of the perturbing masses and relative corrections of
the order of the squares of the perturbing masses are neglected.

The case when four angles undergo small amplitude libration

In practice, we find that a quasi-stationary solution is possible
for which Φ1 and Φ3 librate about angles close to zero and Φ2

and Φ4 librate about angles close to π. We describe this in this
section. We begin by relating the resonance angles to the
eccentricities.

Specification of the resonance angles in terms of the
eccentricities

We assume that the system governed by equations (16)–(25)
undergoes very slow secular evolution on a time scale very
much longer than either the characteristic circularization time
or the characteristic timescales associated with perturbations
being of the order of M(nimi)

−1. We suppose that under these
conditions a quasi-steady state exists, for which the time
derivatives of the eccentricities may be neglected. From
equation (16) we obtain

e1 =
m2a1n1D12t se,1

a2M
sin Φ1 ; γ1 sinΦ1. (27)

Similarly from equation (18) we obtain

e3 = −m2n3C23t se,3
M

sinΦ4 ; γ3 sinΦ4, (28)

and from equation (17) we obtain

e2 =
n2t se,2
M

m3a2D23

a3
sinΦ3 −m1C12 sinΦ2

( )
; −γ22 sinΦ2 + γ23 sinΦ3. (29)

For the case when all the resonant angles are stationary or
undergo small amplitude librations, equations (23) and (24)
give the generalized three-body Laplace resonance condition
(p+q+1)n2−qn1− (p+1)n3=0. Using equations (19)–(21),
we find that the time derivative of this condition implies that

β1e1 sinΦ1 + β22e2 sinΦ2 + β23e2 sinΦ3 + β3e3 sinΦ4

= n1qe21
tse,1

+ n3( p+ 1)e23
tse,3

− n2(q+ 1+ p)e22
tse,2

, (30)

where

β1 = −D12
(q+ 1) (p+ q+ 1)n22m1

M
+ q2n21m2a1

a2M

( )
,

β22 = − β1C12

D12
,

β23 = D23
p(p+ q+ 1)n22m3a2

a3M
+ (p+ 1)2n23m2

M

( )
,

and

β3 = − β33C33

D33
. (31)

Now we use equations (27)–(30) to eliminate the angles Φi

in favour of the eccentricities ei. After having done this we
determine the rate of change of the separation of the system
from precise commensurability. To do this we begin using
equations (19) and (20) to obtain

d
dt

(q+ 1)n2 − qn1
( )= α1e1 sinΦ1 + α22e2 sinΦ2 + α23e2 sinΦ3

+ e3α3 sinΦ4 + 3n2(q+ 1)e22
tse,2

− 3qn1e21
tse,1

, (32)
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where

α1 = −3D12
(q+ 1)2n22m1

M
+ q2n21m2a1

a2M

( )
, α22 = − α1C12

D12
,

α23 = 3D23
p(q+ 1)n22m3a2

a3M
, and α23 = − α23C23

D23
. (33)

We can now use the specification of the resonant angles
in terms of the eccentricities given through equations (27)–(30)
in equation (32) which will then express the rate of change
of the mean motion separation from resonance of planets 1
and 2 in terms of the eccentricities and semi-major axes in
the form

d
dt

(q+ 1)n2 − qn1
( ) = −A1

n1e21
tse,1

− A2
n2e21
tse,2

− A3
n3e23
tse,3

, (34)

where

A1 = − α1tse,1
n1γ1

+ 3q+ β1t
s
e,1

n1γ1
− q

( ) (α23γ22 + α22γ23)
(β22γ23 + β23γ22)

, (35)

A2 =− 3(q+ 1) − tse,2
n2

(α23β22 − α22β23)
(β22γ23 + β23γ22)

+ (p+ q+ 1) (α23γ22 + α22γ23)
(β22γ23 + β23γ22)

,

(36)

A3 = − α3tse,3
n3γ3

+ β3t
s
e,3

n3γ3
− ( p+ 1)

( ) (α23γ22 + α22γ23)
(β22γ23 + β23γ22)

. (37)

Note that we can use the definitions of the coefficients αi, αij,
βi, βij, γi, γij given by equations (27)–(29), (31) and (33) to
substitute for them, in terms of the semi-major axes and the
circularization times, in equation (34).

Specification of the eccentricities in terms of the deviation
from commensurability

In order to complete the calculation of the orbital evolution
away from commensurability, we need to specify the eccentri-
cities as a function of the semi-major axes. To do this we
use equations (22)–(25) together with the assumption that
the angles Φi are close to their equilibrium values. Later we
shall present numerical simulations for which Φ1 and Φ3

are close to zero and Φ2 and Φ4 are close to π. Accordingly,
we adopt those values for the Φi while setting their time
derivatives to be zero. Equations (22)–(25) then specify the
eccentricities through

e1 = − n1
((q+ 1)n2 − qn1)

m2a1
Ma2

D12, (38)

e2 = − n2
((q+ 1)n2 − qn1)

m1

M
C12 +m3a2

Ma3
D23

( )
, (39)

e3 = − n3
(( p+ 1)n3 − pn2)

m2

M
C23. (40)

When all four angles librate, we have the generalized
three-planet Laplace resonance condition that
(p+1)n3−pn2=(q+1)n2−qn1 (see above). This state ap-
plies to systems slightly more widely spaced than would

be the case for precise commensurability, so that
(p+1)n3−pn2=(q+1)n2−qn1;Δ21 is negative, the period
ratios exceed the commensurable values and the eccentricities
will be positive.
We remark that for the alternative librating state for which

Φ1 and Φ3 are close to π, and Φ2 and Φ4 are close to zero,
equations (38)–(40) hold with a reversal of sign. Thus that
situation applies when (p+1)n3−pn2=(q+1) n2−qn1;Δ21 is
positive, so that the period ratios are smaller than the
commensurable values, ensuring again that the eccentricities
will be positive. Bearing inmind this proviso, as it depends only
on the squares of the eccentricities obtained from equations
(38)–(40), the analysis presented below can be applied to both
librational states.
We are now able to use equation (34) together with

equations (38)–(40) to obtain an equation governing the
evolution of Δ21 in the form

Δ2
21
dΔ21

dt
=− A1n31

tse,1

m2a1D12

Ma2

( )2

−A2n32
tse,2

m1

M
C12 +m3a2

Ma3
D23

( )2

− A3n33
tse,3

m2C23

M

( )2

, (41)

where after eliminating the αi, αij, βi, βij, γi, γij using equations
(27)–(29), (31) and (33) as indicated above, we may write

A1 =3(q+ 1) (q+ 1) n
2
2m1a2

n21m2a1
+ q

( )

− (q+ 1)A ( p+ q+ 1) n
2
2m1a2

n21m2a1
+ q

( )
, (42)

A2 = −3(q+ 1) − B+ (p+ q+ 1)A, (43)
A3 = −3p(q+ 1) n

2
2m3a2
n23m2a3

+ pA ( p+ q+ 1) n
2
2m3a2

n23m2a3
+ p+ 1

( )
, (44)

with

B = − 3Mm2X
n22a2D

, (45)

and

A = Y
D
, (46)

with

X = p2q2m3Ma1a2n21n
2
2 + ( p+ 1)2q2m2Ma1a3n21n

2
3

+ ( p+ 1)2(q+ 1)2m1Ma2a3n22n
2
3, (47)

Y = 3M2 q2m2m3a1n21 + (q+ 1)(q+ 1+ p)m1m3a2n22
( )

, (48)

and

D = ( p+ q+ 1)2m1m3M2a2n22 + ( p+ 1)2m1m2M2a3n23

+ q2m2m3M2a1n21. (49)

296 John C. B. Papaloizou

https://doi.org/10.1017/S1473550414000147 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550414000147


Time-dependent evolution of the separation from resonance

Equation (41) governs the time-dependent evolution of
Δ21=(q+1)n2−qn1=(p+1)n3−pn2 as a function of time.
We first remark that each of the three contributions to the
right-hand side of equation (41) is readily seen to be non-
negative and so Δ21 decreases monotonically with time. When
Δ21<0, this means that |Δ21| will subsequently increase
with time, corresponding to an increasing departure from
strict resonance. The expression of the conservation of the total
angular momentum of the system can be used to enable each
of the ni to be expressed in terms of Δ21 which may then be
found by integration. However, when the system still remains
close to resonance, the situation may be simplified by noting
that the relative period separation from resonance may
increase significantly while the mean motions themselves
change negligibly. Under these conditions the right-hand side
of equation (41) may be approximated as being constant. To
simplify notation, we define a quantity T by writing this
equation as

Δ2
21
dΔ21

dt
= −n31/(3T). (50)

Under the assumption of a constant right-hand side, the
solution is given by

Δ21

n1
= − (t− t0)

T

( )1/3

, (51)

where t0 is a constant of integration. This is such that at
a putative time t= t0, Δ21=0. |Δ21| is then monotonically
increasing for t> t0. We remark that corresponding tendency
for the departure of the relative period ratio from strict
commensurability to increase / t1/3, for systems comprising
two planets close to resonance, has been noted by Papaloizou
(2011), Lithwick & Wu (2012) and Batygin & Morbidelli
(2012).

The case when three angles undergo small amplitude libration

We have considered quasi-stationary solutions for which
the angles Φ1 and Φ3 librate about angles close to zero
and Φ2 and Φ4 librate about angles close to π. In this case,
the generalized three-body Laplace resonance condition
(p+1)n3−pn2=(q+1)n2−qn1 applies. However, we can also
consider the possibility that this relation is relaxed with only
three of the angles in a state of libration, whereas the fourth
circulates. This situation is of interest as it was found by
Papaloizou & Terquem (2010) to occur in simulations of
the tidal evolution of the HD40307 system away from a 4 :2 :1
resonance (p=q=1).
There are two possible choices for the circulating angle

that allow secular evolution without the generalized three-body
Laplace resonance condition holding, namely Φ2 or Φ3. We
shall consider both these cases below assuming that liberating
angles remain close to the same values as in the previous case,
although it is relatively simple to generalize the discussion to
other examples. We proceed by closely following the analysis
of the previous section, noting that terms involving the
circulating angle are omitted as this is assumed to make no

contribution to the time-averaged dynamics. Thus equations
(27)–(29) hold but with the contribution from the circulating
angle set to zero. They then suffice to determine the three
remaining angles in terms of the eccentricities without having
to add the constraint given by equation (30) which expresses
the fact that the generalized three-body Laplace resonance
condition holds for all time.
However equation (32) for d((q+1)n2−qn1)/dt still holds but

again with the contribution from the circulating angle omitted.
Using this with the modified forms of equations (27)–(29)
described above being used to eliminate the librating angles in
favour of the eccentricities, we obtain

d
dt

(q+ 1)n2 − qn1
( ) = −B1

n1e21
tse,1

− B2
n2e22
tse,2

− B3
n3e23
tse,3

, (52)

where

B1 = 3(q+ 1)2 n
2
2m1a2

n21m2a1
+ 3q(q+ 1), (53)

B2 = −3(q+ 1) + Z (54)
and

B3 = −3p(q+ 1) n
2
2a2m3

n23a3m2
. (55)

Here, either

Z = 3q2n21a1m2

n22a2m1
+ 3(q+ 1)2 (56)

if Φ2 librates, or alternatively, Z=−3p(q+1) if Φ3 librates.
In order to complete the determination of the evolution,

as before we may use equations (22)–(25) to specify the
eccentricities in terms of the semi-major axes. However, as
above, we must omit the equation derived from setting the
time derivative of the circulating angle to zero as well as
contributions potentially arising from the circulating angle in
the remaining equations. One then finds that equations (38)
and (40) can be taken over unaltered. On the other hand,
equation (39) has to be replaced by

e2 = − n2
Δ
F2, (57)

where either F2=m1C12/M with Δ=(q+1)n2−qn1=Δ21,
when Φ2 librates, or F2=m3a2D23/(Ma3) with
Δ=(p+1)n3−pn2=Δ32 when Φ3 librates.

The relation between Δ32 and Δ21

As the generalized three-body Laplace relation is no longer
satisfied, we must find an alternative means of relating
Δ32=(p+1)n3−pn2 and Δ21=(q+1)n2−qn1. This can be
done by writing down the equation for the time derivative of
Δ32 obtained from equations (19)–(21). Proceeding in the
same manner as for dΔ21/dt, we can write this in terms of the
semi-major axes and eccentricities in the form:

dΔ32

dt
= −K1

n1e21
tse,1

− K2
n2e22
tse,2

− K3
n3e23
tse,3

, (58)
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where

K1 = − 3p(q+ 1)n22a2m1

n21a1m2
, (59)

K2 = 3p+ S2, (60)
and

K3 = 3p( p+ 1) + 3p2n22a2m3

n23a3m2
. (61)

Here, either

S2 = −3p(q+ 1), (62)
if Φ2 librates, or alternatively,

S2 = 3( p+ 1)2n23a3m2

n22a2m3
+ 3p2, (63)

if Φ3 librates. Equations (52) and (58) together with the
conservation of angular momentum determine the evolution
of the system. This is qualitatively similar to the case when
the strict generalized three-body Laplace resonance applies.
Here we focus on the relation between Δ32 and Δ21 which
can be obtained by dividing equation (58) by equation (52).
This gives

dΔ21

dΔ32
= B1n1e21/t

s
e,1 + B2n2e22/t

s
e,2 + B3n3e23/t

s
e,3

K1n1e21/t
s
e,1 + K2n2e22/t

s
e,2 + K3n3e23/t

s
e,3

. (64)

Equations (38), (40) and (57) can be used to specify the
eccentricities. Equation (64) then determines the ratio Δ32/Δ21.
This depends on the ratios of the circularization times for the
different planets. When the circularization time is proportional
to a power of the semi-major axis and the system is close to
resonance, such that the ratios of the semi-major axes of the
different planets can be taken to be fixed, we can approximate
the ratio as being constant. As an example, we consider the case
when Φ3 librates and te,3�∞. This is the case that was found
by Papaloizou & Terquem (2010) to occur in their simulations
of the tidal evolution of the HD40307 system. It is also a
reasonable limit to consider as circularization is reasonably
expected to be significantly less effective for the outermost
planet. In this case, we obtain

Δ21

Δ32
= D1

D2
, (65)

where

D1 = (q+ 1)2n22a2m1

n21a1m2
+ q(q+ 1) − (q+ 1)( p+ 1)W , (66)

and

D2 = − p(q+ 1)n22a2m1

n21a1m2

+ p( p+ 1) + (( p+ 1)2n23a3m2)/(n22a2m3)
( )

W , (67)
where

W = m3n2a22D23

m2n1a1a3D12

( )2 n2tse,1
n1tse,2

( )
Δ21

Δ32

( )2

. (68)

Equation (65) is seen to provide a cubic equation for the ratio,
x=Δ32/Δ21. This is readily seen to have one positive real root
that is appropriate for the assumptions we have made. This has
a particularly simple form when the ratio of the circularization
times, tse,1/t

s
e,2, is assumed to be small. Then as x vanishes in the

limit that this approaches zero, we see that the denominator on
the right-hand side of equation (65) must vanish in this limit.
This gives an expression for x through

x2 = p ( p+ 1) + ( p+ 1)2n23a3m2)/(n22a2m3)
p(q+ 1)

( )

× m2
3n2a

3
2D

2
23t

s
e,1

m1m2n1a1a23D
2
12t

s
e,2

( )
. (69)

Thus when three angles librate as considered above, when
the circularization times scale as a power of the semi-major
axes, x can also be approximately constant during the
evolution as was indicated by Papaloizou & Terquem (2010).
However, the magnitude of the constant depends on the ratios
of the circularization times for different planets. It is
accordingly uncertain, although the above discussion shows
that x�0 when the circularization time for the innermost
planet is very much shorter than the corresponding time for the
next innermost planet which is in turn very much shorter than
the corresponding time for the outermost planet.
Once the value of x has been determined, the evolution of the

system can be obtained by solving equation (52) in the same
way as for the case when the strict generalized three-body
Laplace resonance condition holds. As in that case, we
find that the deviation from exact commensurability increases
/ t1/3. However, as we consider simulations of cases where the
four angles ultimately librate with the Laplace resonance
holding, below, we shall not consider the case of three angle
libration in any further detail in this paper.

Comparison with previous work

Batygin&Morbidelli (2012) have considered the evolution of a
three-planet system under orbital circularization towards a
librating state. They considered systems for which three angles
circulated and one librated.Most of the analytic discussion and
all of the numerical work in this paper are concerned with
systems where four angles librate. However, systems for which
only three angles librate were considered in the subsections
‘The case when three angles undergo small amplitude libration’
and ‘The relation between Δ32 and Δ21’ above.
Batygin & Morbidelli (2012) give equations governing the

evolution of such a system once it has attained a librating state
although no analytic solutions were subsequently discussed.
However, solutions of the kind considered in the subsections
‘The case when three angles undergo small amplitude libration’
and ‘The relation between Δ32 and Δ21’ are readily obtained
from their equation (47). These give three equations for the
quantities m1

���
a1

√
,m2

���
a2

√
and m3

���
a3

√
. These can be readily

converted into two equations for Δ21 and Δ32 as defined above.
The ratio of these equations will then lead to the equivalent of
equation (64) above.
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Numerical simulations

In this section, we give the results of numerical simulations of
three planet systems close to a three-planet resonance under the
influence of tidal circularization due to the central star. We
focus on systems with parameters with initial conditions
near to, or corresponding to those appropriate to the Kepler 60
system. Thus the initial conditions were taken to correspond to
the tabulated orbital elements given by Steffen et al. (2013)
with the added stipulation that the initial eccentricities are
zero. In doing this we remark that the actual eccentricities
cannot be strictly zero with the consequence that we model a
system that is close to rather than identical to the actual system.
This should be adequate for illustrating the general theory and
determining the characteristic evolutionary time scales.
As values for the masses are not available, in order to

estimate plausible values, unless specified otherwise, we use the
fiducial mass–radius relation (see Lissauer et al. 2011)

m/M⊕ / (Rp/R⊕)2.06. (70)

We use equation (4) to calculate the circularization time. In
order to implement this we need to specify the tidal parameter
Q′. We note that according to equation (4), tse,i/Q′ρ̄5/3, where

ρ̄5/3i is the mean density of planet i. Quoted standard deviations
in the radii amount to about 3% for the inner two planets and
6% for the outermost planet. To within these limits, using the
masses calculated from equation (70), we may take the mean
density, ρ̄i = 2.4 g cm−3 ; ρ̄, for each of the planets. Then, if
we choose Q′=CQ′(ρ̄ /2.4)

−5/3 for planet i, with CQ′ being a
constant we can scale our results to apply to hypothetical
planets with the same masses but with lower mean densities
and thus largerQ′. Recall thatCQ′;Q′ for themasses and radii
given in Table 1.
The simulations were bymeans ofN-body calculations using

the method described in e.g. Papaloizou & Terquem (2001).
From the consideration of numerical tractability we are unable
to consider very large values of Q′. In practice, we took either
CQ′=2.5 or CQ′=7.5 for each planet. However, in one case
considered below, tidal dissipation was only applied to the
innermost planet. Our general finding is that tidal dissipation
causes the system to evolve into a state where a strict
generalized Laplace resonance condition holds with all
resonant angles maintained in a state of libration. The period
ratios then increase with time with the system steadily
separating from strict commensurability. This type of

evolution is very similar to that obtained for two planet
systems under similar circumstances (e.g. Papaloizou 2011).

Numerical results

The results obtained for a simulation withQ′ = 2.5(ρ̄/2.4)−5/3

are shown in Fig. 1. The angles Φ1 and Φ2 initially circulate
with the action of dissipation through tides ultimately causing
them to librate with diminishing amplitude about 0 and π,
respectively. This evolution is well underway after a fewmillion
years. If the simulation was performed without tidal dissi-
pation, variations in all quantities would remain at the same
level with no tendency towards libration of the resonant angles.
The anglesΦ3 andΦ4 behave similarly toΦ1 andΦ2, ultimately
librating about 0 and π, respectively. This is all in accordance
with the analytic model of the subsection ‘The case when four
angles undergo small amplitude libration’. The lower left and
right panels of Fig. 1 show the evolution of the eccentricities
on the middle and outermost planet, respectively. As the
librational state is attained, the eccentricities approach slowly
decreasing values with superposed small oscillations. The
period ratios of the middle to innermost planet and the middle
to outermost planet then secularly increase as expected from
the analytic model of the subsection ‘The case when four angles
undergo small amplitude libration’ for which the generalized
three-body Laplace relation is assumed to hold exactly. We
have plotted expressions for the period ratios as a function of
time obtained from equation (51) with 1/T=1.81×10−13 yr−1,
being the value calculated from the analytic model, and the
integration constant t0=3.5×106 yr. We recall that in this case
q=4, and the period ratios can be found from |Δ21| using 16/5
(P2/P1−5/4)* |Δ21|/n1 and then the generalized three-body
Laplace relation to obtain the quantity P3/P2−4/3. The curves
marked with crosses represent these expressions which track
the numerical data quite well. It is not clear exactly how the
temporal fluctuations in the period ratios should be averaged
when considering such fits. However, we remark that the
lightly shaded regions in the period ratio plots are found to be
associated with high-frequency perturbations that are not
represented in the analytic model. On the other hand, the
darkly shaded regions are associated with longer period
librations. Thus the fits should apply to the darkly shaded
regions. We remark that the above analytically determined
curves for P2/P1 and P3/P2, as well as others discussed below,
obtained from equation (51), were calculated for positive
values of t0 that are comparable to the time for the resonant
angles to begin circulating and which may be regarded as a

Table 1. The radii, estimated masses, estimated mean densities and orbital periods in days for the three planets in the Kepler 60
system are given in the second to fifth columns, respectively. The sixth column contains the period ratio with the next innermost
planet where applicable

Planet (–) Radius (Rp/R⊕) Mass (m/M⊕) Mean density (ρ̄) Period (P) Period ratio (Pi/Pi−1)

1(b) 2.28 5.46 2.54 g cm−3 7.1316185 –

2(c) 2.47 6.44 2.36 g cm−3 8.9193459 1.2507
3(d) 2.55 6.88 2.29 g cm−3 11.9016171 1.3344
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characteristic time for transient behaviour. However, adopting
t0=0 produces curves that appear only slightly shifted from
those presented.
We also performed a simulation with the same parameters

except that tidal circularization applied only to the innermost
planet. The evolution is similar to that described for the
previous case but with the librational state taking longer to

attain. We have evaluated expressions for the period ratios as
a function of time obtained from equation (51), for CQ′=2.5
but with tidal effects acting only on the inner planet. For this
case, we found that the numerical results were reasonably
well represented when 1T=8.99×10−14 yr−1 as calculated
from the analytic model, together with t0=3.5×106 yr. From
this, we see that the secular evolution of the librating state

Fig. 1. Results forQ′ = 2.5(ρ̄/2.4)−5/3. The upper left panel shows the evolution of the period ratio of themiddle to innermost planet and the upper
right panel shows the evolution of the period ratio of the outermost tomiddle planet. The curvesmarkedwith crosses are obtained from the analytic
theory. Equation (51) was used as described in the text. The central left panel shows the evolution of the angles Φ1 and Φ2 which ultimately librate
about 0 and π, respectively. The central right panel shows the evolution of the anglesΦ3 andΦ4, which ultimately librate about 0 and π, respectively.
The lower left and right panels show the evolution of the eccentricities on the middle and outermost planets, respectively.
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occurs at a rate that is a factor of two slower when tides are
applied only to the innermost planet.

Dependence on Q′

In order to study the dependence of the evolution on Q′,
we show results forQ′=7.5(ρ̄/2.4)−5/3, with tidal effects applied
to all the planets in Fig. 2. In this case, the evolution towards
the librational state is as for the casewithQ′=2.5(ρ̄/2.4)−5/3 but
three times slower as expected. This is apparent from the
analytic curves obtained from equation (51). Thus we found
that 1/T = 6.04× 10−14 yr−1 and adopted t0=1.05×107 yr

for this case. In a similar manner, we have also confirmed the
applicability of equation (51) for a run withQ′=0.75(ρ̄/2.4)−5/3,
so that the range of Q′ considered spans one order of
magnitude.

Dependence on planet mass

We have explored the dependence of the evolution on planet
mass by rerunning the case for which Q′=7.5(ρ̄/2.4)−5/3 with
all of the planet masses increased by a factor of two while
retaining a constant mean density. The results were found to be
qualitatively similar but the evolutionary timescale is shorter.

Fig. 2. The same as for Fig. 1 but for Q′=7.5(ρ̄/2.4)−5/3.
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We see from equation (4) that the circularization time for each
planet scales asmi

−2/3 and so will be reduced by a factor of 22/3.
Equation (41) then implies thatT scales asmi

−8/3 and so should
be reduced by a factor of 28/3. This is accurately confirmed by
our curves determined from (51) that track the numerical data.
These had 1/T = 3.83× 10−13 yr−1 and t0=5.5×106 yr. We
remark that if we had increased the planet masses by a factor of
two while keeping their radii and Q′ constant, equations (4)
and (41) would imply that T scales as mi

−1 leading to a
relatively weaker reduction in the evolution time. We also
attempted simulations with the planet masses increased by a
factor of four. However, these were found to lead to disruption
of the system through instability within a time <106 yr.

A small variation of the initial period ratios

In this paper, we have focused on initial conditions near to
those appropriate to the Kepler 60 system. We remark that
Marti et al. (2013) found that the Laplace resonance in the non-
dissipative GJ876 system is defined by a tiny island of regular
motion surrounded by unstable highly chaotic orbits (see also
Gerlach & Haghighipour 2012). We comment that we found
that some runs starting with slightly different initial conditions
led to the same type of evolution as described above but took
significantly longer to arrive at the librating state. We give
results for the case with CQ′=2.5, but with different initial
conditions than those used previously, in Fig. 3. These were
such that the semi-major axis of the outermost planet was
decreased by a factor of 1.0050, while the semi-major axis of
the central planet was decreased by a factor of 1.0007. With
these changes the initial value of the period ratioP2/P1 changes
from 1.2507 to 1.2493 and the initial value of the period ratio
P3/P2 changes from 1.3344 to 1.3259. Accordingly these are
both below the values required for strict commensurability.
This simulation ultimately attains the same libration state, with
secular increasing period ratios, as in the case with the original
initial conditions. However, the initial period of time during
which the resonant angles circulate and there are relatively
large eccentricity oscillations are seen to last about twice as
long at around *1.5×107 yr in this case.

Discussion and conclusion

In this paper, we have constructed a simple analytic model that
describes the evolution of a three-planet system in a three-body
resonance under the influence of tidal circularization. This is
based on adopting a time-averaged system for which contribu-
tions from amaximum of four resonant angles, associated with
the first-order resonances between the inner pair and the outer
pair of planets, are retained.
When all four angles undergo small amplitude libration the

generalized three-body Laplace relation is maintained while
the period ratios increasingly depart from strict commensura-
bility. But when only three of the resonance angles undergo
small amplitude libration, the generalized three-body Laplace
relation was found to be replaced by a different relationship
between the period ratios which depends on details such as the
planet mass ratios and their orbital circularization time ratios.

Features of the analytic model such as the scaling of the
evolution timescale with the planet mass scale, its dependence
on tidal dissipation and the form of the evolution of the period
ratios away from commensurability were reproduced by our
numerical simulations that were carried out for a three-planet
systemwithmasses in the super-Earth regime that were focused
on the Kepler 60 system for which the inner pair exhibits a 5 :4
resonance and the outer pair exhibits a 4 :3 resonance.
However, we remark that much of the discussion should be
generic.
We now briefly discuss how our results can be used to

provide constraints on the amount of tidal dissipation that has
occurred in such interacting systems. This discussion again
adopts working parameters appropriate to the Kepler 60
system, although its form should again be generic. We remark
that although Steffen et al. (2013) confirmed the Kepler 60
system by observing anti-correlated transit-timing variations,
low signal-to-noise parabolic, rather than periodic, variations
are seen. Accordingly masses have not been determined and it
is unclear whether resonant angles are in a librating state.
However, at the present time the inner and outer pairs of

planets are very close to 5 :4 and 4 :3 resonances, respectively,
with fractional deviations *10−3. Such resonant chains are
readily produced through convergent migration of protopla-
nets driven by interaction with the gas disc. Accordingly, it is
commonly assumed that they were produced in this way while
the gas disc was present (e.g. Cresswell & Nelson 2006;
Terquem & Papaloizou 2007; Thommes et al. 2008; Libert &
Tsiganis 2011; Beaugé & Nesvorny 2012, Cossou et al. 2013)
rather than through in situ formation, which tends to avoid
resonances (Hansen & Murray, 2013). However, as noted by
the former authors such resonant chains may be broken after
the gas disperses by dynamical interactions and/or collisions
with remaining planetesimals. Thus at a later time, but still
shortly after formation, the system may differ to some extent
from a putative initial resonant liberating state formed through
convergent migration.
Although the above scenario forms a plausible basis for

the origin of planetary systems that are very close to
comprising a resonant chain, in principle the system could
have started from a state that underwent tidal evolution of the
type described here, with low Q′, in such a way that the exact
resonant state has been passed through only recently.
However, noting that the evolution is most rapid in the
resonant state this would seem to be unlikely. Accordingly, for
the purposes of discussion, we shall assume that the system was
formed close to the resonant state and consider how it would
subsequently evolve as a result of tidal interactions with the
central star.
We begin by estimating the time required for the system

to attain a generalized three-body Laplace resonance with
all four resonance angles liberating with small amplitude. For
simplicity in the discussion below, we assume that the same Q′
applies to all of the planets, noting that extension to consider
more general cases should be straightforward.
As expected, the evolution timescales in our simulations

have been found to scale with the tidal dissipation parameter
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Q′. From the results presented in Figs. 1 and 2, the time
required to attain a state in which the four resonant angles
attain a state of small amplitude libration can be estimated to
be *6.7×106CQ′ yr. Here we assume, as indicated by these
results, that this time is in general proportional to CQ′. Recall
that CQ′ for ρ̄i = 2.4 g cm−3 as assumed here.
Although they do not provide an estimate of the age of the

system, the stellar parameters given by Batalha et al. (2013)
indicate that the star of mass 1.09M⊙, radius 1.5R⊙ and
luminosity 2.5L⊙ is evolved. Accordingly, we shall adopt an
age of 5×109 yr in order to make illustrative estimates. Then

failure to attain the librating state implies thatQ′>*750. This
applies if Q′ does not vary with time and the same for all
planets (but see below). Should tides only operate on the
innermost planet, the estimated bound onQ′ should be reduced
by a factor of two.
We now consider the expected evolution assuming that the

system was formed in the four angle librating state. Then we
note that if the system was actually in a three-body resonance
with small amplitude librations, the observed small deviations
from exact commensurability would indicate a larger value of
Q′ than is given by the above bound. To show this, we consider

Fig. 3. The same as in Fig. 1 but with different initial conditions described in the text.
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the evolutionary timescale, tev, defined as the characteristic
time required for Δ21 to undergo a relative change of order
unity. Using equation (50), we find that

tev = Δ21

dΔ21/dt

∣∣∣∣
∣∣∣∣ = 3

Δ21

n1

( )3

T = 122 88
125

P2

P1
− 5

4

( )3

T . (71)

Using equations (41) and (50) while noting the scaling that
T/CQ′, we find that T = 2.21× 1012CQ′ yr. Thus

tev = 2.17× 1014
P2

P1
− 5
4

( )3

CQ
′ yr. (72)

Adopting the masses and period ratios in Table 1 we then
obtain

tev = 7.44× 104CQ′ yr. (73)

We recall that for the mean density ρ̄i = 2.4 g cm−3 adoptedCQ

′;Q′. In addition for fixedQ′, planetary radii and planet mass
ratios, tev is inversely proportional to the planetary mass scale.
Equation (73) implies that the system could not have begun in a
three-body resonance with four librating resonance angles and
have its present period ratios if CQ′<*6.7×104, this bound
scaling with the mass scale. On the other hand, if CQ′>*103

the librating state would not have been attained through
circularization.
Up to now we have assumed that Q′ is constant. If Q′ varies

with time, as evolution rates are /(Q′) −1, provided changes
are slow enough for the system to respond adiabatically, the
above estimates should relate to k(Q′) −1l−1, where the angle
brackets indicate a time average. This is effectively a statement
that the amount of tidal dissipation should have been limited.
Thus although periods of strong episodic tidal heating of the
type considered by Ojakangas & Stevenson (1986) may have
occurred, their integrated effect is constrained. We emphasize
that the above estimates are provisional and that it should be
possible to extend and refine the above discussion as more
information about systems of this kind becomes available.
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