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Abstract. Magnetic reconnection in three dimensions (3D) is a natural extension
from X-point reconnection in two dimensions. Of central importance in the 3D
process is a localized non-ideal region within which the plasma and magnetic field
decouple allowing for field line connectivity change. In practice, localized current
structures provide this localization; however, mathematically a similar effect can be
achieved with the localization of plasma resistivity instead. Physically though, such
approaches are unrealistic, as anomalous resistivity requires very localized currents.
Therefore, we wish to know how much information is lost in localizing η instead
of current? In this work we develop kinematic models for torsional spine and fan
reconnection using both localized η and localized current and compare the non-ideal
flows predicted by each. We find that the flow characteristics are dictated almost
exclusively by the form taken for the current profile with η acting only to scale the
flow. We do, however, note that the reconnection mechanism is the same in each
case. Therefore, from an understanding point of view, localized η models are still
important first steps into exploring the role of non-ideal effects.

1. Introduction
Magnetic reconnection is a fundamental physical process of many astrophysical
plasmas. It is the restructuring of magnetic field through the changing of connectivity
of the magnetic field lines. This restructuring allows the release of much of the stored
energy in the field. It is this property that makes reconnection attractive as the
mechanism responsible for phenomena such as magnetic substorms and solar flares.

In recent years much work has been done to understand this process in three
dimensions (3D). In three dimensions reconnection can take place at and around null
points in the form of spine-fan (or the degenerate spine and fan cases) and torsional
reconnection types (see [1] for a review). It may also occur at separator lines, that
is special field lines that connect two null points [2] or without the presence of null
points as long as in some region there is a component of electric field parallel to the
magnetic field [3].

Of importance in these processes is the localization of the non-ideal term (the
product of resistivity η and current density J) in Ohm’s law. In practice it is
the localization of the current structure that provides this (see, for instance, [4],
[5]). The localization may also be enhanced by anomalous resistivity generated by
microturbulence when the current layer becomes very thin [6]. However, this still
depends upon a localized current layer.
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In analytical methods, however, the reconnection process can be localized through
either η or current. Being a scalar rather than a vector dealing with η is much
simpler, thereby often making it the starting point of investigations into 3D non-
ideal processes. The local η approach sits a region of localized resistivity in a
superconducting plasma threaded with a magnetic field containing a linear or
constant current (for example [7]– [9]). Such a scenario is almost unrealizable
physically, because although anomalous resistivity is possible, it is created by a very
localized current and is anomalous above some background non-zero resistive value.

Despite its drawbacks this method seems to yield most of the important character-
istics of processes it is applied to. Therefore, the questions that need to be addressed
here are how much information is lost by localizing η instead of J? Are the resulting
flows seen driven by the form of η or current chosen? Is the reconnection mechanism
really the same? Often there is no local J model to compare with. In this work we
will attempt to address these questions by careful comparison of the flux transport
for a reconnection process localized using a local current region and one localized
using a localized resistivity. This will be done by extending the models developed
in [10] for torsional reconnection to include a localized resistive region.

Section 2 introduces the methodology. Sections 3–5 present our results and Secs
6 and 7 discuss the findings and present our conclusions, respectively.

2. The framework: Steady state magnetohydrodynamics (MHD)
We will work within the kinematic steady state MHD framework such that the
equations governing our system are given by

E + v × B = ηJ, (2.1)

∇ × E = 0, (2.2)

∇ × B = µ0J, (2.3)

∇ · B = 0. (2.4)

Equation (2.2) allows us to express the electric field in terms of an electric potential
(E = −∇Φ) whose behavior is governed by ideal as well as non-ideal terms. The
component of (2.1) parallel to the magnetic field allows us to express these terms
explicitly

Φ = −
∫

ηJ · Bds + Φ0, (2.5)

where ∇Φ0 · B = 0 and s = λ/|B|, and λ is the distance along a field line. For the
rest of this analysis the ideal term Φ0 is set to zero allowing only non-ideal effects
to be apparent. The integral is solved by using the field line equations in (r, φ, z)
expressed in terms of parameter s and some initial position (r0, φ0, z0). The field line
equations are obtained by solving

dr

Br

=
rdφ

Bφ

=
dz

Bz

= ds. (2.6)

These equations are invertible, so Φ can be represented as a function of s and initial
position to carry out the integral in (2.5) and then transferred back into a function
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of r, φ, and z to find the electric field from

E = −∇Φ. (2.7)

Thus, for a given magnetic configuration we can find the electric field due to non-
ideal effects (i.e. those due to ηJ �= 0). Using this we can also find the resulting flow
velocity perpendicular to the magnetic field by taking the vector product of (2.1)
with B to give

v⊥ =
(E − ηJ) × B

B2
. (2.8)

We see that the product ηJ appears twice; in (2.5) (and thus, implicitly in E) and
(2.8). It is, therefore, interesting to study the flow properties with localized ηJ.

Unless otherwise stated in the rest of this analysis we consider when B0 = µ0 =
η0 = 1 with vector plots produced using a (strength/max)1/d scaling.

3. Torsional spine
Consider the case of localization of the ηJ product to around the spine. We start
with a symmetric linear null point field

Bn = B0 (r, 0,−2z), (3.1)

to which we add a localized perturbation

Bp = µ0j0r
αe− a21r

2

l2 φ̂, (3.2)

from which we get a localized current density. The field line equations are then given
by

r = r0e
B0s, (3.3)

z = z0e
−2B0s, (3.4)

φ= µ0j0Fa2
1
(α − 1) + C, (3.5)

where Fn(A) =
∫
rAe− nr2

l2 ds and C is a constant of integration. This is solved by
choosing positive integer values for α and using

Fn(A + 2) =
l2

2n

(
AFn(A) − rA

B0
e− nr2

l2

)
, (3.6)

found by applying integration by parts to F(A). We then introduce a localized
resistivity with a similar form to Bp,

η = η0r
λe− a22r

2

l2 . (3.7)

Then (2.5) gives us the general electric potential for steady state torsional spine
reconnection

Φ = j0η0B0

[
− 4a2

1

l2
Fp(α + λ − 1) + 2(α + 1)Fp(α + λ − 3)

]
zr2, (3.8)

where p = a2
1 + a2

2. We find realistic solutions when α+ λ � 4 and even, generalizing
the previous result when λ = 0. This condition arises from the necessity that v⊥r �= 0
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Figure 1. Plasma flow in the fan plane when localization is radial only for j0 = 3, l = 1.75
and d = 11. Left: local J (α = 4, a1 = 1, λ = a2 = 0); right: local η (α = 1, a1 = 0,
λ = 3, a2 = 1).

except when r = 0 to avoid sinks and sources in the flow. In effect this means that
Ez �= 0 or as reported in [10], F(α − 3)/F(α − 1) �= 2/(α + 1)l2. This condition now
generalizes to

F(α + λ − 3)

F(α + λ − 1)
�= 2a2

1

(α + 1)l2
. (3.9)

Thus, it is the sum of α and λ that must be even. Moreover, we find that the choices
of λ that satisfy (3.9) are limited by the relative localization of η to J, i.e. (a2/a1)

2.
For a non-localized J (a1 = 0) we may use any value of λ as long as α + λ � 4 and
even. When J is localized, however, for some choices of λ a degree of η localization
is required (a2 �= 0) to find a realistic solution. For the rest of this analysis we will
only consider cases that are well behaved for all values of (a2/a1)

2.

3.1. Radial localization: Local η (J constant) vs. local J (η constant).

We start with direct comparison between flows for a localized current (with η

constant) and a localized η (with J constant). The two cases we consider are when
α = 4, a1 = 1, λ = a2 = 0 giving

J = ∇ ×
(
j0r

4e− r2

l2 φ̂

)
, η = η0, (3.10)

and when α = 1, a1 = 0, λ = 3, a2 = 1 giving

J = j0 (0, 0, 1), η = η0r
3e− r2

l2 . (3.11)

Figure 1 shows the perpendicular plasma flow in the fan plane for the two cases.
Both flows are rotational and clockwise in direction. Two factors dominate the
nature of the flows: the relative localization and relative power law nonlinearity of
η and J. In order to understand better the role of each, we now investigate them
separately.

3.1.1. Relative power law nonlinearity: α relative to λ. Consider localizing J without
localizing η, i.e set a1 = 1, a2 = 0 for various combinations of α and λ such that
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Figure 2. Plasma flow in the fan plane when localization is radial only with
a1 = 1, a2 = 0, j0 = 3, l = 1.75 and d = 11 for various combinations of α + λ = 4. Top
left α = 4, λ = 0 (constant η); top right α = 3, λ = 1; bottom left α = 2, λ = 2; bottom right
α = 1, λ = 3 (constant J along spine).

α + λ = 4,

J = ∇ ×
(
j0r

αe− r2

l2 φ̂

)
, η = η0r

λ. (3.12)

Figure 2 marks the progression from a strongly nonlinear current to a constant
current along the spine. We see that as the nonlinearity in J is decreased the relative
amount of outflow to rotation follows. This pattern is also apparent when α+ λ �= 4
and even but care with the relative values of a1 and a2 must be taken to find realistic
flows. So it appears that it is the nonlinearity of J that dictates the flow topology.
Is this the case for current localization also?

3.1.2. Relative localization: a1 relative to a2. Consider a nonlinear current and an
η that is constant along the spine, i.e. set α = 4, λ = 0. We can vary the radial
localization of such η and J through choices of a1 and a2

J = ∇ ×
(
j0r

4e− a21r
2

l2 φ̂

)
, η = η0e

− a22r
2

l2 . (3.13)
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Figure 3. Localized η case (a2 = 1) with j0 = 3, l = 1.75 and d = 11 when α = 4 and λ = 0.
Illustrated is the plasma flow in the fan plane when current localization is gradually increased.
Left: a1 = 0; middle: a1 = 1; right: a1 = 2.

Figure 3 shows how, keeping η localized (a2 = 1), as we increase the current
localization (a1) the region of strong outflow (relative to rotation) controlled by the
power law dependence of J is localized by the edge of the current region (i.e. the
region where |J|�|J|max here sitting beyond some radius R). Outside the current
region the flow is predominantly rotational. Once J is localized if we turn off the η

localization by setting a2 = 0 there is no change in the flow topology, only a scaling
up of magnitude where the plasma η is now greater. Thus, again it is the form of
J that dictates the topology of the plasma flow and therefore how flux is moved
around within the system. In this case η only acts to scale up or down the magnitude
of flow.

4. Torsional fan
Consider when the ηJ term is localized to near the fan plane. In this case the local
field perturbation takes the form

Bp = µ0j0rz
γe− b21z

2

l2 φ̂. (4.1)

This has a linear dependence on r to avoid singular currents. The field lines for this
field are described by

r = r0e
B0s, (4.2)

z = z0e
−2B0s, (4.3)

φ= µ0j0Gb2
1
(γ) + C, (4.4)

where C is a constant of integration and Gm(A) =
∫
zAe− mz2

l2 ds. This is solved by
choosing positive integer values for γ and using

Gm(A + 2) =
l2

2m

(
AGm(A) +

zA

2B0
e− mz2

l2

)
, (4.5)

found by applying integration by parts to G(A). After introducing resistivity with a
similar form to Bp,

η = η0z
δe− b22z

2

l2 , (4.6)
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(2.5) gives the general electric potential for steady state torsional fan reconnection,

Φ = j0η0B0

[ (
γGq(γ + δ − 2) − 2b2

1

l2
Gq(γ + δ)

)
zr2 + 4Gq(γ + δ + 1)

]
, (4.7)

where q = b2
1 + b2

2. We find realistic solutions when γ + δ � 3 and odd, generalizing
the previous result when δ = 0 [10]. This condition arises from the necessity that
v⊥z �= 0 except when z = 0, to avoid sinks and sources in the flow. In effect this
means that Er �= 0 and therefore

G(γ + δ − 2)

G(γ + δ)
�= 2b2

1

γl2
. (4.8)

Thus, it is the sum of γ and δ that must be odd. Like the torsional spine case choices
of δ that satisfy (4.8) are limited by the relative localization of η to J, in this case
(b2/b1)

2. The use of δ is further limited to even values so that η remains symmetric.
Therefore, since γ + δ � 3 for realistic solutions γ � 1 and odd. For the rest of this
analysis we again consider only cases that are well behaved for all values of (b2/b1)

2.

4.1. Vertical localization: Local η (J constant) vs. local J (η constant)

We begin again with the direct comparison between a local η model (with J constant)
and a local J model (with η constant). The two cases we will consider are when
γ = 3, b1 = 1 and δ = b2 = 0 giving

J = ∇ ×
(
j0rz

3e− z2

l2 φ̂

)
, η = η0, (4.9)

and when γ = 1, b1 = 0 and δ = 2, b2 = 1 giving

J = j0 (−r, 0, 2z), η = η0z
2e− z2

l2 . (4.10)

Figure 4 shows the perpendicular plasma flow in the xy-plane at various heights
above the fan plane for each case. As in the torsional spine case, there are slight
differences here too but due now to the nonlinearity and relative localization of η

and J in z.

4.1.1. Relative power law non-linearity: γ relative to δ. Consider localizing η in height
without localizing J, i.e. set b2 = 1, b1 = 0 for various combinations of γ and δ such
that γ + δ = 5,

J = ∇ ×
(
j0rz

γφ̂
)
, η = η0z

δe− z2

l2 . (4.11)

Figure 5 shows the progression from a strongly nonlinear current to a linear one
when |z| > 1 and |z| < 1. We see that above z = 1 an increase in nonlinearity of J
increases the relative amount of outflow to rotation whereas below z = 1 the trend
is reversed.

Generally the influence of J is enhanced by increasing γ. When |z| > 1 this
produces a positive effect but when |z| < 1 the smallness of J is excenuated and
the effect is negative. Therefore like the torsional spine case we see that the relative
amount of outflow to rotation is controlled by the nonlinearity of J.
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Figure 4. Plasma flow at various heights within the ηJ layer when the localization is in height
only with j0 = 3, l = 1 and d = 3. Top row: local J (γ = 3, δ = 0, b1 = 1, b2 = 0); bottom row:
local η (γ = 1, δ = 2, b1 = 0, b2 = 1).

Figure 5. Plasma flow in the xy-plane for vertical localization only with j0 = 3, l = 1 and
d = 3. Plotted for various combinations of γ + δ = 5 with η localized (b2 = 1) and J not
(b1 = 0). Left: γ = 1, δ = 4, middle: γ = 3, δ = 2, right: γ = 5, δ = 0.
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Figure 6. Plasma flow in the z = 3 plane when current localization is increased (b1) for a
localized η (b2 = 1) with j0 = 3, l = 1, d = 3 and γ = 1, δ = 2. Left: b1 = 0, middle: b1 = 0.5,
right: b1 = 1.

4.1.2. Relative localization: b1 relative to b2. Consider a current that is linear in r in
the fan plane and a nonlinear η, i.e. set γ = 1, δ = 2,

J = ∇ ×
(
j0rze

− b21z
2

l2 φ̂

)
, η = η0z

2e− b22z
2

l2 . (4.12)

We vary the vertical localization of each through choices of b1 and b2. In Fig. 6
we see that, keeping η localized (b2 = 1), increasing the current localization (b1)
increases the relative rotation to outflow. Further, careful investigation reveals the
region of increased rotational flow at the edge of the current layer (at some height
H where |J|�|J|max), moving down in height through the z = 3 plane as the current
layer is further localized (and H reduced). Such a region of increased rotation at the
edge of the current layer was also present in the torsional spine case beyond some
radius (R) that depended on the localization of J. Therefore, we again confirm that
the form of J plays an important role on the flow topology with η acting only to
alter the magnitude of the flow.

5. Field line localization
Consider a magnetic field perturbation localized through the exponential term to
the shape of the field lines,

Bp = µ0j0r
αzγ(zr2)βe− c21

l2
(zr2)2φ̂. (5.1)

When α and γ are non-zero this perturbation is not localized. For full localization

additional exponential factors are needed, i.e. e− r2

l2 or e− z2

l2 . Indeed this was the
approach used in [10] for a constant η. However, in the present context we only
wish to study the differences in the flows between local η and local J models. For
this purpose the above simpler form of Bp is sufficient. The field lines are described
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by

r = r0e
B0s, (5.2)

z = z0e
−2B0s, (5.3)

φ=
µ0j0

B0(α − 2γ − 1)
rα−1
0 z

γ
0(z0r

2
0)

βe− c21
l2

(z0r
2
0)

2

eB0(α−2γ−1)s + C. (5.4)

Taking resistivity with the form

η = η0r
λzδ(zr2)κe− c22

l2
(zr2)2 , (5.5)

and combining it with J in (2.5) we find the electric potential

Φ = j0η0

[ (
γ + β − 2c2

1

l2
(zr2)2

)
rz−1

D1
+ 2

(
α + 2β + 1 − 4c2

1

l2
(zr2)2

)
r−1z

D2

]
(5.6)

× rα+λzγ+δ(zr2)β+κe− c21+c22
l2

(zr2)2 ,

where D1 = α + λ − 2(γ + δ) + 3 and D2 = α + λ − 2(γ + δ) − 3. This potential
creates flows that are unstable to sinks and sources when the sign of both terms are
different. As such to find realistic solutions, we choose our constants either, so that

α + λ − 2(γ + δ) + 3 > 0 and α + λ − 2(γ + δ) − 3 > 0,

making Φ overall positive or so that

α + λ − 2(γ + δ) + 3 < 0 and α + λ − 2(γ + δ) − 3 < 0,

making it negative. It is interesting to note that when γ = δ = 0 we recover the
condition α + λ � 4 found for torsional spine if we insist Φ is positive and when
α = 1, λ = 0 we recover the condition γ + δ � 3 found for torsional fan if we insist
that Φ is negative. As in these models the electric field dominates the flow topology,
this goes some way to explaining why the flow directions for torsional spine and fan
are opposite.

5.1. Field line localization: Local η (J constant) vs. local J (η constant)

Let us now compare the flows for ηJ localized to the field lines. We will compare
when α = 4, β = 2, c1 = 0.4, λ = κ = c2 = γ = δ = 0 giving

J = ∇ ×
(
j0r

4(zr2)2e− c21
l2

(zr2)2φ̂

)
, η = η0, (5.7)

and when α = 1, λ = 3, κ = 2, c2 = 0.4, β = c1 = γ = δ = 0 with resulting current
and diffusion region of the form

J = j0 (0, 0, 1) , η = η0r
3(zr2)2e− c22

l2
(zr2)2 . (5.8)

Considering the form of ηJ for the first case we expect a band of oppositely directed
flow in accordance with the findings of [10]. For the second case the findings of Secs
3.1 and 4.1 suggest a simple scaling down of the flow with no oppositely directed
regions.

Figure 7 shows the side on view of the plasma flow for both cases. For the
localized current case we find the band of oppositely directed flow as expected with
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Figure 7. (colour online) Side on view of the plasma flow (symmetric about r = 0) when (left
panel) J is localized to the field lines with a constant η (c1 = 0.4, β = 2, α = 4, c2 = λ =
κ = γ = δ = 0), and when (right panel) η is localized to the field lines with J constant
(c2 = 0.4, κ = 2, α = 1, λ = 3, c1 = β = γ = δ = 0). Plots for j0 = 3, l = 1.75 and
d = 21 with red lines indicating v⊥r = 0.

the strongest flow in the region of the strongest current. Surprisingly, however, we
see the localized η case also has an oppositely directed flow existing as an infinitely
wide region rather than in a discrete band but with the strongest flow still within
the region of localized ηJ. Thus, localizing η introduces a topological feature of the
localized current flow. In general, when both η and J have some degree of field line
localization (c1 �= 0, c2 �= 0) we find a discreet band with a width dependent on the
localization of J , (c1). As in the cases of radial and vertical localization discussed
in Secs 3.1 and 4.1 the relative outflow to rotation in the flow is controlled by the
nonlinearity of J.

Thus, we find that localizing η gives some flavor of the equivalent localized J
solution but the flow topology is still dictated by the form of current chosen.

6. Discussion
Generally we see that in these models differences in the flow when η or J are
localized are driven by differences in the relative localization and relative power law
nonlinearity of the chosen forms of η and J. This should be expected as it is the
competition between power law and exponential decay that creates and controls the
localization of each quantity.

In the cases of radial and vertical localization we saw that η acts only as a scaling
factor to the magnitude of a flow topology dictated by the form taken for the current
profile. In this case when we use a local η with a constant or linear current, effects
seen in the equivalent localized current case (here the rotating flow at the edge of the
current region) are infinitely far from the null (this is to be expected as a1 = b1 = 0
is equivalent to l → ∞ in Bp). The flow inside the current region (be it infinite or
localized) is dominated by the behavior of the power law but crucially still by the
current.

For the field line localization we surprisingly find that when using a localized η,
the plasma flow is not simply scaled down but that the topology is altered. Using
a localized η in this case introduces a topological feature (the counter rotating
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region) of the equivalent localized J case. However, this region is a necessity of the
transition from radial to height localization. In [10] and again in this work we have
seen that the flow direction of torsional fan is oppositely directed in relation to
those seen for torsional spine. As discussed in detail in [10], this leads to distinct
regions of both flow types in more general perturbations (those with both r and z

nonlinearity). That we see distinct regions in models with a localized η and simple
J merely indicates that the reconnection process is the same as that seen in the case
of equivalent localized J.

Focusing on the other changes to the flow topology we saw that the infinite
counter rotating region (when η is localized for a constant J) becomes a discrete
band when J is also localized (c1 �= 0). We saw that the outer edge of the band
resides on the outer edge of the current region and gets moved in with it as the
current is further localized. In addition, the relative outflow to rotation is also
controlled by the nonlinearity of J. Thus, the flow topology is mainly dictated by
the profile of the current density.

7. Conclusion
In general we surmise that although localization of the ηJ product using a localized
η can localize a non-ideal region and its associated plasma flow to around the null
point, it is a situation very dependent upon the form of current chosen. Effects
from localizing the current are not seen fully in local η models, although these
models can still give an insight into the topological aspects of the equivalent local J
model. Topology aside, however, it is clear that the reconnection mechanism remains
the same for either approach and therefore from an understanding point of view
localized η models are still an important first step into exploring the role of non-ideal
effects.
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